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ABSTRACT

Vision language models (VLMs) often generate hallucination, i.e., content that
cannot be substantiated by either textual or visual inputs. Prior work primarily
attributes this to over-reliance on linguistic prior knowledge rather than visual in-
puts. Some methods attempt to mitigate hallucination by amplifying visual token
attention proportionally to their attention scores. However, these methods over-
look the visual attention sink problem, where attention is frequently misallocated
to task-irrelevant visual regions, and neglect cross-modal fusion balance by en-
hancing only visual attention without adjusting attention to the user query. This
can result in amplifying incorrect areas while failing to properly interpret the user
query. To address these challenges, we propose a simple yet effective method
called Gaze Shift-Guided Cross-modal Fusion Enhancement (GIFT). GIFT pre-
computes a holistic visual saliency map by tracking positive changes in visual
attention, or “gaze shifts”, during user query comprehension, and leverages this
map to amplify attention to both salient visual information and the user query at
each decoding step. This reduces the impact of visual attention sink, as irrele-
vant tokens exhibit minimal shifts, while ensuring balanced cross-modal fusion
for well-integrated representation. Extensive experiments show that GIFT effec-
tively mitigates hallucination in VLMs across both generative and classification
tasks, achieving up to 20.7% improvement over greedy decoding, while maintain-
ing general vision-language performance with low computational overhead.

1 INTRODUCTION

Vision language models (VLMs) (Li et al.l 2023c; Liu et al., [2023b; Zhu et al., 2023} |Liu et al.,
2024bj; [Hurst et al.| [2024; Wang et al., 2024b; Bai et al., 2025)) have recently achieved remarkable
progress on tasks that require joint reasoning over textual and visual information, such as visual
question answering, visual reasoning, and image captioning. Despite these advances, VLMs remain
prone to generating hallucination, i.e., content that cannot be substantiated by either textual or visual
inputs (Liu et al., 2024a). This issue poses serious challenges, particularly in high-stakes domains
such as biomedicine (Li et al., 2023b; |Chen et al.,2024b)), autonomous driving (Wang et al.,|2023}; L1
et al.| [2025), and robotics (Chen et al.l 2024a; |Li et al.,[2024), where factual accuracy and reliability
are critical for safe and effective operation.

Recent analyses suggest that these failures are primarily due to vision language models (VLMs)
over-relying on linguistic prior knowledge while under-utilizing visual inputs (Wang et al.| |2024a;
Zhang et al.| [2024). To mitigate this, inference-time interventions have been proposed to enhance
visual grounding by highlighting visual signals based on visual saliency, i.e., the relevance of spe-
cific visual regions to the task at hand. For instance, |Yin et al.|(2025) enhances attention allocated to
visual tokens during decoding in proportion to their attention scores. While this approach strength-
ens the contribution of visual information, it does not account for the balance between visual and
query signals during cross-modal fusion. Consequently, the model may attend to relevant regions
but misinterpret the query, forming inaccurate integrated representations. Moreover, this approach
does not address the issue of visual attention sink (Kang et al., [2025), where attention is persis-
tently misallocated to irrelevant visual tokens, potentially amplifying incorrect regions throughout
generation. To mitigate the issue of visual attention sink, existing methods recalibrate visual token
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Figure 1: Examples of visual saliency maps from LLaVA 1.5 7B. The vanilla method (Static)
averages visual token attention over all query tokens, while the proposed method (Shift) averages
positive changes in visual token attention over information-rich query tokens. Shift more effectively
highlights task-relevant visual regions and mitigates the impact of visual attention sink, where irrel-
evant regions receive erroneously high saliency scores.

attention (Kang et all, 2023}, [Zhu et all, 2025b), but they fail to address the broader problem of low
overall visual contribution during decoding.

To address these limitations, we propose an inference-time hallucination mitigation method for
VLMs called Gaze Shift-Guided Cross-modal Fusion Enhancement (GIFT). Drawing inspiration
from human vision, we hypothesize that VLMs, like humans, dynamically shift their “visual gaze”
when processing information-rich words in a user query. By tracking positive changes in visual
token attention, i.e., “gaze shifts”, over these information-rich query tokens at the layer exhibiting
the largest positive change, GIFT pre-computes a holistic visual saliency map that captures task-
relevant regions prior to decoding, requiring pre-filling only up to that layer. This mechanism also
mitigates the impact of visual attention sink, as irrelevant regions exhibit minimal or no attention
shift. During decoding, GIFT leverages this saliency map to proportionally amplify attention to
salient visual tokens in critical cross-modal fusion layers, where the model attends strongly to both
visual and query tokens. In contrast to (2025)), which only increases attention to visual to-
kens, GIFT also adjusts attention to query tokens based on the overall visual attention amplification
ratio, maintaining cross-modal balance and forming well-integrated representations.

In summary, our main contributions are three-fold:

* We introduce a novel mechanism that captures a holistic view of salient visual regions while
effectively mitigating the visual attention sink problem. This mechanism pre-computes a task-
relevant visual saliency map prior to decoding by tracking positive shifts in visual attention, i.e.,
“gaze shifts”, as the VLM processes information-rich words in a user query.

* We propose GIFT, a lightweight inference-time hallucination mitigation method that leverages
the precomputed saliency map to guide visual attention enhancement while proportionally scaling
attention to query tokens to preserve cross-modal fusion balance.

* We show that GIFT consistently mitigates hallucination across VLM architectures and model
sizes, achieving gains of up to 20.7% on CHAIR, 15.9% on MMHal-Bench, and 3.0% improve-
ment on POPE, while preserving general vision-language performance with low computational
overhead. Extensive ablation studies further validate the contribution of each component.
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2 RELATED WORK

VLM Hallucination Mitigation. A key cause of hallucination in VLMs is over-reliance on lin-
guistic prior knowledge rather than visual inputs (Wang et al.|[2024a}; Zhang et al.||2024). To address
this, training-based approaches have introduced specialized learnable modules (Zhao et al.| [2024)
or curated data augmentations (Liu et al.l 2023a; Pi et al 2024} (Chen et al., 2025) to encourage
stronger reliance on visual features. While effective, these methods often suffer from high compu-
tational costs and limited scalability.

Another line of work focuses on inference-time mitigation, which can be broadly categorized into
three types: (1) Contrastive decoding (Leng et al., [2024; |[Liu et al., 2024c; Huo et al.| [2024} Wang
et al.l 2025} [Zhu et al.,|2025a)), which reduces over-reliance on knowledge priors by contrasting the
output distributions of two inputs, one with the original visual inputs and one with perturbed or ab-
sent visual inputs. However, this approach incurs significant computational overhead due to the need
for generating counterpart outputs. Our method instead strengthens visual contributions directly in
intermediate layers, eliminating the need for generating alternatives. (2) Visual input modification,
which manipulates the raw image to emphasize salient regions derived from intermediate signals
such as visual attention, by blurring irrelevant areas (Yu et al.,2024), magnifying key regions (Mao
et al., [2025), or cropping salient patches (Zhang et al.l [2025). These techniques typically require
additional forward passes or auxiliary inputs, increasing computational cost, and can struggle when
multiple regions are salient or when a single region is overly large. In contrast, our method operates
directly on intermediate outputs without constraints on the number or size of relevant regions. (3)
Attention steering, which directly amplifies attention towards visual tokens, either by applying a
constant value (Zhu et al., 2025a)) or scaling proportionally to attention scores (Yin et al.| [2025).
While this increases the contribution of visual features, such methods often neglect cross-modal
fusion balance, i.e., overemphasizing visual features without adequately reinforcing query token
attention can impair proper comprehension. They also overlook the visual attention sink problem
(Kang et al.,|2025)), which our approach explicitly addresses.

Attention Sink. Attention sink refers to the phenomenon where task-irrelevant sink tokens, such
as those with limited semantic meaning or representing background, receive disproportionately high
attention weights. This issue has been observed in both language models (Xiao et al.,[2024; |[Ferrando
& Voital 2024) and vision transformers (Darcet et al.,|2023). Similar patterns have been identified
in vision language models (VLMs) by Kang et al.| (2025) and [Zhu et al.| (2025b), where mitigation
strategies recalibrate visual attention to suppress these sink tokens. However, these methods do not
address a broader limitation that visual features contribute relatively little during generation. In this
work, we present a simple yet effective method that pre-computes a task-relevant visual saliency
map by tracking positive changes in visual attention, i.e., “gaze shifts”, over information-rich query
tokens. During decoding, this saliency map, which is robust to visual attention sink, is used to jointly
amplify attention to both visual and query tokens, improving cross-modal integration.

3  VISUAL SALIENCY MAP COMPUTATION VIA GAZE SHIFT TRACKING

In this section, we present our mechanism for computing a visual saliency map that captures a
holistic view of salient visual regions while mitigating the visual attention sink problem. We first
examine whether a simple average of visual attention across user query tokens, referred to as “static
gaze”, can effectively produce a holistic, noise-free visual saliency map.

Vision language models (VLMs) typically process three inputs: a system instruction s, visual inputs
v, and a user text query ¢t. The system instruction and query are tokenized into sequences Xg and
X, while the visual input v is encoded by a visual encoder into dense embeddings and then pro-
jected into text-aligned visual tokens Xy (Liu et al.,|2023b; Wang et al.| [2024b). These components
are concatenated as X = [Xg; Xv; X7, and passed into a large language model (LLM) to generate
output tokens autoregressively:

y¢ = argmaxpy (y¢ | y<t, X5, Xv, Xr) (D
where y; denotes the sequence of previously generated tokens.

Within the model, the attention matrix A! € R"*"*" encodes how each of the n tokens attends to
all others across h attention heads at layer [. For simplicity, batch dimensions are omitted. Visual
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Figure 2: Volume of visual attention positive shifts in VLMs when processing information-rich
query tokens across layers. The volume reflects how strongly the model reallocates focus within
visual regions, with the largest shifts occurring in early to middle layers, indicating that VLMs settle
on relevant visual regions once identified.

attention sink (Kang et al., |2025) refers to the phenomenon where query-irrelevant visual tokens
receive disproportionately high attention. From this matrix, we extract the submatrix representing
attention from query tokens X to visual tokens Xy, which serves as the foundation for constructing
the visual saliency map.

Prior work (He et al., [2024; |Yin et al., 2025} Kang et al., 2025) has demonstrated that only a subset
of attention heads are primarily responsible for attending to visual information. Following their
findings, at each layer [, we select the top 50% of attention heads with the highest cumulative
attention to visual tokens Xy aggregated across all query tokens X7, denoted as HY. - We then
compute the mean attention over these selected heads and average across all query tokens, applying
min-max normalization to produce the saliency map S':

S' = Min-max BT %] Z AL deXxv 2)

he?—tl i€Xr

where h indexes attention heads HZTV, 1 indexes query tokens X, and j indexes visual tokens Xy, .

Figure |1 shows “static” saliency maps from LLaVA-1.5 7B (Liu et al.,2023b) on the left side of
each example. While they partially highlight relevant visual regions, they often assign high saliency
scores to irrelevant areas as well. This misallocation, known as visual attention sink (Kang et al.,
2025)), can produce misleading signals, such as emphasizing unrelated features, and negatively affect
downstream generation.

To address this, we propose a simple yet effective approach inspired by human vision. We hy-
pothesize that, like humans, VLMs dynamically shift their “visual gaze” to capture relevant visual
information while comprehending the user query. By tracking positive changes in visual atten-
tion, referred to as ‘“‘gaze shifts”, over information-rich query tokens, we obtain a holistic view
of task-relevant visual regions. Since irrelevant regions typically exhibit minimal or no change in
attention, this approach naturally mitigates the issue of visual attention sink. We restrict tracking
to information-rich words, where attention shifts are most meaningful, and consider only positive
shifts, since negative shifts merely indicate moving focus away from previously salient regions and
would cancel out meaningful increases.

Concretely, we first extract information-rich words from the user query using spaCy’s Part-Of-
Speech (POS) tagging (Honnibal et al., 2020), which incurs minimal computational overhead, se-
lecting words tagged as NOUN, PROPN, VERB, ADJ, ADV, or NUM. These words correspond to a

set of query tokens Xr,.. Atlayer [, we select the top 50% of attention heads, 7:[5”‘,, with the highest
cumulative positive changes in attention to visual tokens aggregated across these information-rich
query tokens. Here, the positive change in attention is defined as the increase in visual attention
from the previous query to the current one, with negative changes set to zero. Using these heads and
query tokens, we compute a refined saliency map that captures the average positive shift in visual
attention, emphasizing task-relevant regions:

S! = Min-max T %] >3 max(AL, —AL 0|, jeXy )

|H er |XTT hele 1€XTT
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Figure 3: Illustration of GIFT. GIFT tracks positive changes in visual attention, i.e., “gaze shifts”
across information-rich query tokens to compute a visual saliency map, which guides enhancement
of salient visual attention while preserving cross-modal fusion balance.

Figure [T| shows the resulting “shift” saliency maps from LLaVA-1.5 7B on the right side of each
example, which more accurately highlight relevant regions and reduce noise from irrelevant areas
compared to “static” maps.

To select the optimal layer for computing the visual saliency map, we sample 50 examples from
the training set of TextVQA (Singh et al., 2019), a visual question answering dataset, and measure

the sum of S! before min-max normalization to identify where visual attention is most dynamically
realigned during query processing. As shown in Figure [2] this peak generally occurs in the early to
middle layers across models. In the following sections, we denote the visual saliency map extracted

from the optimal layer as S.

We quantitatively compare the “static” and “shift” ap-

proaches using 1,000 examples from the MSCOCO  Taple 1: Comparison of visual saliency
2014 training set (Lin et al.;2014), each consisting of ethods. The score represents the propor-
an image, an object instance, and its bounding box. tjon of saliency falling inside the bounding

The “static” maps are obtained by averaging visual pox, normalized by the box’s relative area.
attention across all query tokens, while the “shift”

maps track positive changes in visual attention across Stati .

. . . . ) atic ~ Shift
information-rich query tokens. To avoid confounding
factors, we restrict the examples to instances whose ~ Norm. Saliency Score ~ 5.40  11.92
category appears only once in the image. For evalu-
ation, we replace min-max normalization with sum normalization so that each saliency map sums
to 1, and measure the fraction of total saliency falling inside the bounding box, normalized by the
box’s area relative to the image. Table[T]shows that the “shift” method achieves significantly higher
scores, indicating stronger focus on task-relevant regions and reduced noise from irrelevant areas.

4 GAZE SHIFT-GUIDED CROSS-MODAL FUSION ENHANCEMENT

Having computed a holistic, noise-reduced visual saliency map, we introduce our hallucination mit-
igation method, illustrated in Figure[3] which leverages it to guide cross-modal fusion enhancement
through attention steering during decoding.

Selecting Cross-modal Fusion Enhancement Layers. We first examine which layers are most
effective for enhancing cross-modal fusion. Unlike the visual saliency map in Section [3] which
tracks attention flow from query tokens to visual tokens, here we analyze flow from output tokens
to both query and visual tokens. Using the 50 TextVQA examples, we measure the proportion
of attention allocated to visual tokens and to query tokens over information-rich output words Y.,
denoted as Rlv and ’RZT, and at each layer retain the top 50% attention heads with the highest values,
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Figure 4: Attention proportions of query and visual tokens from output tokens across layers.
The attention proportions of query and visual tokens follow similar patterns across layers, suggesting
that effective cross-modal fusion relies on contributions from both modalities.

denoted as HL,,, and HL. To ensure attention patterns are not dominated by linguistic priors,
which intensify with output length (Min et al., 2024} Xie et al.,[2025), we restrict outputs to a single
sentence. Formally:

Ry X S Al Rl YYD Y Al

he?—ll €Yy jeXy he?—tl €Y jeXr

Figure[d]shows a consistent trend across models that attention proportions to query and visual tokens
rise and fall together across layers, highlighting their joint contribution to well-integrated represen-
tations, though the absolute attention levels remain low. This indicates that effective cross-modal
fusion requires simultaneously enhancing attention to both. We select layers with high attention to
both visual and query tokens for enhancement, denoted as L, as these are the layers where cross-
modal fusion is most active.

Enhancing Visual Attention via Attention Steering. Attention steering (Zhang et al., 2023) aims
to bias the attention matrix A toward salient tokens by adding a learned or heuristic bias B

Q K'
( Vg
where B assigns positive values only to salient tokens at specific attention heads and M is attention
mask. In VLMs, these salient tokens typically correspond to visual tokens representing important

image regions. Prior approaches either apply constant biases (Zhu et al. |2025a) or scale them
proportionally to attention scores (Yin et al.,2025) at each decoding step.

A = Softmax + B+ M) 5)

In our work, for the selected layers £, we enhance visual token attention for the top heads H.)y,
at each decoding step using the pre-computed saliency map. Unlike |Yin et al.|(2025), which relies
on attention scores at the current step, our map is derived from user query processing, providing a
holistic view of visual saliency with full query context. The formulation is defined as:

Al _ i =A _exp(aS;), €L, heMtyy, jeXy 6)

-1j

where S’ is the saliency score for visual token j, « is a scaling factor, and —1 denotes the current
decoding position. After sum normalization, this is equlvalent to Eq.[5 I with bias term B = aS To

reduce the impact of outliers, we clip the saliency map Sin Eq.|3 Iat three standard deviations before
min-max normalization, preventing overemphasis on any single region.

Balancing Cross-modal Fusion. Previous attention steering approaches (Yin et al|, [2025} [Zhu
et al.| |2025a) focus solely on visual tokens, neglecting the contribution of query tokens in cross-
modal fusion. As shown in Figure [ the attention proportions of query and visual tokens tend to
move together across layers, and both remain low even in layers with relatively higher proportions.
Boosting only visual attention may improve grounding, but it risks weakening query comprehension,
which is crucial for properly intepreting and utilizing visual information.
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Table 2: Performance on vision-hallucination datasets. Our method, GIFT, outperforms all base-
lines across datasets and models. The best results are highlighted in bold.

Model Method CHAIR POPE MMHal-Bench
Cs() Cid) FI(1) Acc.(1) Hal() Score(?)

Greedy 502 154 824 795 652 222

VAF 196 143 810 772 663 2.16

LLaVA-157B  Rel-Attn 490 136 820 783 637 2.19

VAR 540 155 831 801 608 2.40

Ours 398 106 838 819 573 2.48

Greedy 468 131 817 782 562 261

VAF 474 132 806 764 592 2.46

LLaVA-1513B Rel-Attn 446 132 815  77.8 656 2.15

VAR 518 140 822 785 562 252

Ours 396 119 821 789 558 272

Greedy 248 9.1 860 865 327 3.53

Qwen2-VLTB 1o 212 77 868 869 2715 3.58

To preserve the balance of cross-modal fusion, we also scale query token attention proportionally to
the overall visual attention enhancement. Formally:
Aéz :Agz,—l,j '6rl7 l E‘Ca hEHlOTa ] G)(T

»—1,J

Al
. Z Z% (7

heHl,, jeXv ~ L

where ! quantifies the overall relative increase in visual attention at layer I, and 3 is a scaling
coefficient. After scaling, we normalize the enhanced attention matrix so that, for each head and

position, the attention across all tokens sums to one: Aﬁm — Alm/ Zj Alh,i’j.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Models and Baselines. We evaluate our method on three models of varying architectures and
sizes, including LLaVA-1.5 7B (Liu et al.| 2023b), LLaVA-1.5 13B (Liu et al.,|2023b), and Qwen2-
VL 7B (Wang et al. [2024b). We compare it against standard greedy decoding and three closely
related approaches. VAF (Yin et al., 2025) amplifies the contribution of visual tokens by scaling
visual token attention in proportion to their attention scores at each decoding step. VAR (Kang et al.,
2025) identifies visual sink tokens based on model-specific hidden state dimensions and redistributes
their attention proportionally to non-sink tokens in “image-centric” attention heads. MLLMs_know
(Zhang et al., 2025)) crops salient visual regions as additional inputs to the model, using different
strategies to identify salient regions; we evaluate the best-performing variant, Rel-Attn. Since these
three approaches do not provide Qwen2-VL implementations or configurations, we compare our
method with them only using the LLaVA-1.5 7B and 13B models.

Benchmark and Metrics. We evaluate our method on both vision-hallucination datasets and gen-
eral vision-language task datasets to assess its effectiveness in reducing hallucination while main-
taining reasoning capabilities, as overemphasizing visual perception can potentially impair reason-
ing. The vision-hallucination datasets cover three tasks: POPE (Li et al., 2023d) for object detection,
evaluated using F1 and accuracy; CHAIR (Rohrbach et al., |2018) for image captioning, evaluated
using CHAIRs and CHAIRi; and MMHal-Bench (Sun et al., [2023) for vision question answering,
evaluated using hallucination rate and informativeness score. The general vision-language datasets
include MME (Fu et al, [2023) and SEED-Bench (Li et al., [2023a)), both evaluated using accuracy.
Further details on datasets and metrics are provided in Appendix [A]
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Implementation Details. We set o to 5.0 for LLaVA-1.5 7B and 13B, and 4.0 for Qwen2-VL
7B. The higher value for LLaVA, determined via hyperparameter tuning, reflects its lower original
visual and query token attention compared to Qwen, as shown in Figure [d] Visual saliency maps
are computed at layer 11 for LLaVA-1.5 7B, 10 for LLaVA-1.5 13B, and 14 for Qwen2-VL 7B,
while cross-modal fusion is enhanced at layers 12-22, 14-20, and 5-18, respectively. We set 3 to
1.0 for all models to preserve the original cross-modal balance. Additional implementation and
hyperparameter tuning details are provided in Appendix [B]and Appendix [C] respectively.

5.2 EXPERIMENTAL RESULTS

Table 2| presents the performance on vision-hallucination datasets. GIFT consistently outperforms
all baselines across datasets, including CHAIR, POPE, and MMHal-Bench, and across models of
varying architectures and sizes, including LLaVA-1.5 7B, LLaVA-1.5 13B, and Qwen2-VL 7B.
Compared to greedy decoding, GIFT achieves improve-

ments of up to 20.7% on CHAIR, 15.9% on MMHal- Tgple 3: Results on general vision-
Bench, and 3.0% on POPE, while also improving output Japguage datasets.

informativeness on MMHal-Bench by 11.7%. These re-

§ult§ demonstr.ate .its ef.fecti.v.eness and robustness in mit- Model Method SEED. MME
igating hallucinations in vision-language models across Greedy 655 17516
diverse evaluation settings. Qualitative examples from VAF 649  1787.6
MMHal-Bench are provided in Appendix [E] to further il- ~ LLaVA-1.57B 5;‘;{“‘" 222 igé{‘)g
lustrate its impact. Ours 65:6 1750.5
In addition, Table[3|presents benchmarking results on two Greedy ~ 67.8 18075

I vision-1 task datasets, SEED-Bench and T
general vision-language task datasets, -bench an LLaVA-1.513B  Rel-Attn 667  1758.5
MME. GIFT consistently achieves performance compara- VAR 679 17825
ble to greedy decoding across datasets and models, indi- Ours 67.7 18159
cating minimal impact on reasoning capabilities. In con- Qwen2-vL 7B Oreedy 76.0  2278.9

Ours 76.0 2279.1

trast, other baseline methods exhibit mixed results, high-
lighting the challenge of mitigating hallucination without compromising reasoning.

6 ANALYSES

In this section, we analyze GIFT’s performance from three perspectives: the contribution of visual
attention enhancement and cross-modal fusion balance, the impact of the enhancement coefficient
« on hallucination and reasoning, and its computational efficiency compared to baselines.

Cross-modal Fusion Enhancement. We perform ablation studies to evaluate the joint contribu-
tion of two components: (1) enhancing visual token attention in proportion to task-relevant saliency,
and (2) preserving cross-modal fusion balance. We consider two variants: one that increases visual
attention without maintaining fusion balance by omitting Eq[7] and another that calibrates visual
attention distribution to emphasize salient tokens while keeping the overall visual contribution un-

changed. In the latter, the enhanced visual attention Al is scaled down by r! from qu 7| leaving query
token attention unchanged. Evaluation is conducted on two vision-hallucination datasets, POPE and
MMHal-Bench. We exclude CHAIR as its image captioning queries lack sufficient specificity for
query attention enhancement to meaningfully improve cross-modal representations. Table 4] shows
that our full method consistently outperforms both ablation variants across datasets and models by
up to 21.9%, underscoring that both components are essential for effective hallucination mitigation.

Impact of Enhancement Coefficient. To examine the impact of enhancement coefficient & on
hallucination and general reasoning capabilities, we evaluate our method with « values ranging from
1.0 to 7.0 on the POPE and MME datasets. Figure [5|presents the results for LLaVA-1.5 7B. As «
increases, the hallucination rate steadily decreases, as indicated by the POPE curve. However, when
a exceeds 5.0, performance on the MME dataset drops below that of greedy decoding, suggesting
that excessive emphasis on visual and query tokens may lead the model to overfit to perceptual
details while underutilizing reasoning. Similar trends are observed for LLaVA-1.5 13B and Qwen2-
VL 7B, with details availble in Appendix
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Table 4: Performance comparison of strategies: increasing visual attention only (Inc. V.), recali-
brating visual attention only (Cal. V.), and increasing both visual and query attention (Ours).

Model Setup MMHal-Bench POPE
Hal. () Score (1) FI1 (1) Acc.(])
Inc. V. 60.8 2.36 82.3 79.3
LLaVA-1.5 7B Cal. V. 61.5 2.32 82.4 79.5
Ours 57.3 2.48 83.8 81.9
Inc. V. 59.2 2.51 81.3 77.6
LLaVA-1.513B Cal. V. 59.8 2.46 81.6 78.0
Ours 55.8 2.72 82.1 78.9
Inc. V. 35.2 341 85.3 86.0
Qwen2-VL 7B Cal. V. 31.9 3.56 85.8 86.4
Ours 27.5 3.58 86.8 86.9

Computation Efficiency. We benchmark GIFT’s computational overhead using LLaVA-1.5 7B
on MMHal-Bench, measuring latency relative to greedy decoding with a fixed output length of 32
tokens, which approximates the average output length under greedy decoding. As shown in Figure[6]
GIFT runs only at 1.13x the latency of greedy decoding, compared to 1.56x for Rel-Attn, 11.10x for
VAR, and 1.01x for VAF. Despite being slightly slower than VAF, GIFT consistently outperforms
all baselines across vision-hallucination datasets and models, offering a strong tradeoff between

efficiency and performance.
1800
GIFT (Ours).l 13

1780

84.31 —s— POPE (GIFT)
~—- POPE (Greedy)
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MME (Greedy)
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83.1 1740 VAR 11.10
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Figure 5: Performance of LLaVA-1.5 7B on the
POPE and MME datasets with varying enhance-
ment coefficients .

Figure 6: Relative inference latency of different
methods compared to standard greedy decoding
(greedy decoding = 1.0).

7 CONCLUSION

This work identifies critical limitations that existing inference-time hallucination mitigation meth-
ods for vision-language models (VLMs) fail to address simultaneously, including visual attention
sink, low visual contribution, and imbalanced cross-modal fusion. To address these challenges, we
introduce Gaze Shift-Guided Cross-modal Fusion Enhancement (GIFT), a simple yet effective ap-
proach that constructs a holistic visual saliency map by tracking “gaze shifts” during user query
processing and uses it to enhance both visual and query attentions at each decoding step. Extensive
experiments show that GIFT reduces hallucination across models and datasets by up to 20.7%, while
maintaining general vision-language reasoning performance with low computational overhead.

We also acknowledge a primary limitation of GIFT. The method relies heavily on the user query,
and vague, ambiguous, or visually irrelevant queries may result in inaccurate visual saliency maps,
reducing the effectiveness of hallucination mitigation. Future work will focus on improving the
identification of vision-relevant, information-rich query tokens, potentially through a small fine-
tuned auxiliary model, and on developing strategies for handling cases where visual information is
not required to answer the query.
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USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, we used large language models (LLMs) as a tool to polish writing. The LLM was not
involved in developing research ideas, conducting experiments, or analyzing results. Its contribu-
tions were restricted to language-level assistance only.
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A  DATASETS

POPE. The Polling-based Object Probing Evaluation (POPE) (Li et al.| [2023d) assesses object
hallucination in VLMs using binary questions (e.g., “Is there a frisbee in the image?”). Objects
are drawn from three splits: random, popular, and adversarial, corresponding respectively to ran-
domly chosen missing objects, frequently occurring objects, and co-occurring but absent objects.
POPE uses images from MSCOCO (Lin et al.} 2014}, A-OKVQA (Schwenk et al.|[2022), and GQA
(Hudson & Manning}, 2019), resulting in nine splits, each containing 500 MSCOCO images with six
questions per image. Results are reported as macro-averaged F1 and accuracy over all splits.

CHAIR. CHAIR (Captioning Hallucination Assessment with Image Relevance) (Rohrbach et al.}
2018)) contains 500 images for evaluating hallucination in image captioning. We use two metrics:
C'1, which measures the proportion of hallucinated objects among all mentioned objects in captions,
and C's, which measures the proportion of captions containing at least one hallucinated object.
Formally, these are defined as:

|hallucinated objects| |captions with hallucinated objects|
— o =

1

~ |all mentioned objects|’ |all captions|

MMHal-Bench. MMHal-Bench (Sun et al.| [2023) is a benchmark designed to evaluate halluci-
nation in vision language models (VLMs). It contains 96 challenging questions based on images
from the Openlmages dataset (Kuznetsova et al.l [2020)), each paired with a corresponding ground-
truth answers and annotated image content. Model responses are scored using GPT-4 through a
pre-defined prompt that assesses both informativeness and hallucination.

MME. MME (Fu et al.| [2023)) is a benchmark designed to assess both perception and cognition
capabilities of vision language models across 14 subtasks. Each subtask evaluates a specific aspect
of visual understanding or reasoning capability. For all experiments, We report performance using
the accuracy metric as defined in the original paper.

SEED-Bench. SEED-Bench (Li et al.l [2023a) is a comprehensive benchmark designed to eval-
uates general vision-language reasoning capabilities. It contains 19,000 multiple-choice questions
spanning 12 evaluation dimensions, covering both image and video modalities. In this work, we
focus exclusively on the image modality and report model performance using accuracy.

B IMPLEMENTATION DETAILS

For all experiments, we employ greedy decoding with eager attention computation, and run inference
on a single NVIDIA A100 Tensor Core GPU (40GB) instance to ensure reproducibility and fair
comparisons across models and baselines. We use float16 precision for LLaVA-1.5 7B and 13B, and
bfloat16 for Qwen2-VL.

For POPE, different baselines append varying suffixes to the questions, such as “Please just answer
yes or no.” or “Answer the question using a single word or phrase.”, leading to substantial variation
in evaluation results. To ensure fair comparison, we use the original dataset questions without modi-
fication. For MMHal-Bench, since the original GPT-4 version has been deprecated, we use GPT-4.1
(gpt-4.1-2025-04-14) for scoring. To account for the inherent randomness in GPT-4.1 scoring out-
puts, each evaluation is repeated five times, and the results are averaged. We set the max number of
new tokens to 10 for POPE, MME, and SEED-Bench, and to 1024 for CHAIR and MMHal-Bench.
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Figure 7: Performance on the POPE and MME datasets with varying enhancement coefficients «
across models.

C HYPERPARAMETER TUNING

Our method involves four key hyperparameters: (1) the layer used to compute the visual saliency
map, (2) the layers selected for cross-modal fusion enhancement, (3) the visual attention enhance-
ment coefficient o, and (4) the query attention enhancement coefficient 3.

Layer for Computing Visual Saliency Map. We select the saliency map computation layer as the
one exhibiting the largest positive changes in visual token attention when processing information-
rich user query tokens, as discussed in Section [3] Based on Figure[2] this corresponds to layer 11
for LLaVA-1.5 7B, layer 10 for LLaVA-1.5 13B, and layer 14 for Qwen2-VL 7B.

Layers for Cross-Modal Fusion Enhancement. Since the benchmarks we consider lack dedi-
cated validation sets for hyperparameter tuning, we follow |Kang et al.| (2025) by randomly sample
10% of the POPE and MME datasets as “pseudo-validation” sets for tuning, applying the resulting
hyperparameters to all benchmark samples. Given the large number of transformer layers across
models, we restrict the grid search for cross-modal fusion enhancement layers: the start layer is
chosen between the first layer reaching a visual attention proportion of 0.2 and the peak layer, and
the end layer is chosen between the peak layer and the last layer reaching 0.2, based on Figure
Following this procedure, we select layers 12-22 for LLaVA-1.5 7B, layers 14-20 for LLaVA-1.5
13B, and layers 5-18 for Qwen2-VL.

Visual Attention Enhancement Coefficient. To tune the visual attention enhancement coefficient
«, we vary its value from 1.0 to 7.0 on the POPE and MME datasets, evaluating the trade-off between
hallucination mitigation and reasoning performance. Results across all three models are shown in
Figure Based on these results, we set a = 5.0 for LLaVA 7B and 13B, and o = 4.0 for Qwen2-VL
7B. The higher value required for LLaVA reflects its lower original visual and query token attention
compared to Qwen, as shown in Figure[d] which necessitates stronger enhancement.

Query Attention Enhancement Coefficient. For query token attention enhancement, we set 5 =
1.0 to preserve the original cross-modal fusion balance. Investigating whether this balance is truly
optimal is left for future work.

D LIMITATIONS AND FUTURE WORK

We acknowledge several limitations to address in future work. First, our method relies heavily on the
user query; vague, ambiguous, or visually irrelevant queries may result in inaccurate visual saliency
maps, reducing the effectiveness of hallucination mitigation. Future work will focus on improving
the identification of vision-relevant, information-rich query tokens, potentially through a small fine-
tuned auxiliary model, and on developing strategies for handling cases where visual information is
not required to answer the query. Second, not all decoding steps require attention to visual inputs,
as some steps primarily involve reasoning. Developing a method to dynamically determine when
to enhance cross-modal fusion is left for future work. Third, while the computational overhead
is relatively low, inference is still 13% slower than standard greedy decoding. This overhead can
be reduced by adopting more efficient attention computation mechanisms or pruning layers during
visual saliency map computation, and by partially reusing the computed key-value caches for layers
preceding the start of cross-modal fusion enhancement.
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E QUALITATIVE ANALYSIS

Figure [BHI2] illustrate example outputs from the MMHal-Bench dataset, comparing our method,
GIFT, with standard greedy decoding. GIFT effectively mitigates hallucination by accurately de-
scribing facts present in the image and correctly identifying absent entities. For instance, in Figure[9]
the user query asks for a description of the person playing tennis, while the image only contains a
tennis racket and a ball without any person. GIFT correctly responds that no person is present,
whereas greedy decoding assumes a person is in the scene and hallucinates details based on visual
cues and model’s knowledge priors. This improvement can be attributed to GIFT’s cross-modal
fusion balance, which enhances both visual and query attention for more accurate and tightly in-
tegrated representations of visual and textual information. Figure [2] shows that, although GIFT
generates fewer hallucinations than greedy decoding, some errors remain, highlighting the need for
further refinement.

oS T T T \
m Vision Input (V)

| | Ground Truth:

The traffic signs at the top and bottom are white, while the one

in the center is blue.

Greedy Decoding:
The traffic signs at the top, in the middle, and at the bottom are
white with black text.

AN J

m— — — — — — — —
|User Query (T) |

| What colors are the traffic signs at the |
top, in the middle, and at the bottom?

GIFT (Ours):

The top, the traffic sign is white with black text. In the middle, the
traffic sign is blue with white text. At the bottom, the traffic sign is
white with black text.

< - - - - - - =

/

Figure 8: An example from the MMHal-Bench dataset. Hallucinations are highlighted in red.

/"@ Vi_sionpuT E;)_ ‘ | \

Ground Truth:
No, there is only a tennis racket and a ball on the ground. No one is
playing tennis in this photo.

Greedy Decoding:

The the photo, there is a person playing tennis. The person is
holding a blue and white tennis racket with a black grip. They are
standing on a green tennis court, and the ball is in the air,
indicating that they are in the middle of a serve or a return. The

< Y person is wearing a white shirt and black shorts, and they appear
to be focused on the game.
SN
| 3 Wk ey (1) | GIFT (Ours):

| Describe the person playing tennis | There is no person in the photo.

in this photo.

== e J

Figure 9: An example from the MMHal-Bench dataset. Hallucinations are highlighted in red.
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| 3 User Query (T) |
| Describe the details in this photo. |
< -

\_

Ground Truth: \

In the photo, a woman's hand is holding a man's hand. The woman's
hand is wearing a diamond wedding ring, while the man's hand is
wearing a simple wedding band. It seems that the woman is in a white
dress and the man is in a black suit, but only a part can be seen in this
photo. The image is black and white, except the wedding ring and
band. This photo is likely taken in a wedding.

Greedy Decoding:

The image is a black-and-white photograph that captures a close-up
view of two hands resting on a white surface, likely a wedding dress.
The hands are positioned in a way that they overlap, with the left
hand on top of the right hand. Both hands are adorned with rings,
indicating a wedding or engagement setting. The left hand, which is on
top, has a ring on the ring finger, while the right hand, which is
underneath, has a ring on the middle finger. The background is
blurred, focusing attention on the hands and the rings. The overall
composition suggests a moment of celebration or commitment, likely a
wedding ceremony.

GIFT (Ours):

The image is a black and white photograph that captures a close-up
view of two hands resting on top of each other. The hands belong to a
bride and groom, as indicated by the presence of wedding rings. The
bride's hand is adorned with a diamond engagement ring and a
wedding band, while the groom's hand features a simple wedding
band. The background is a white fabric, likely the bride's wedding
dress, which adds to the formal and celebratory atmosphere of the
scene. The photograph focuses on the the hands and rings,

emphasizing the significance of the wedding ceremony. /

Figure 10: An example from the MMHal-Bench dataset. Hallucinations are highlighted in red.

/_® B B -

| 3 User Query (T) |

| What color are the two cars from |
right to left in the image?

&________/

Ground Truth:
The two cars from right to left in the image are black and blue.

Greedy Decoding:
The two cars from right to left in the image are black.

GIFT (Ours):
The two cars from right to left in the image are black and blue.

/

Figure 11: An example from the MMHal-Bench dataset. Hallucinations are highlighted in red.
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. —

N

Describe the image in detail.

| 3 User Query (T)

Ground Truth: \

In this image, I see a book, a pen, and a television on a table. The TV
screen shows a man wearing a tie and a suit speaking in a park.

Greedy Decoding:

The image shows a large flat-screen television mounted on a wall.
The television is displaying a scene with a man in a suit and tie, who
appears to be speaking or present. The man is standing in front of a
backdrop that includes greenery and a body of water, possibly a river
or a lake. The screen also shows a graphical representation of water
levels, with a blue bar indicating the water level at 5.05 meters in
January 2. The television is placed on a wooden surface, possibly a
desk or a table, and there is a notebook and a pen on the surface to
the left of the television. The notebook is open, and the pen is resting
on it. The overall setting suggests a casual or professional
environment, possibly an office or a study room.

GIFT (Ours):

The image depicts a television set mounted on a wall, displaying a
scene with a man in a suit and tie. The man appears to be speaking or
present in a formal setting, possibly a newsroom or a professional
environment. The television screen shows a graphical representation
of water levels, with a blue bar indicating the water level at 5.05
meters. The background of the screen includes greenery, suggesting an
outdoor or natural setting. \n\nIn the foreground, there is a desk with a
notebook and a pen on it. The notebook is open, and the pen is placed
on top of it. The desk appears to be made of wood, and the notebook is
white with black lines, indicating it is likely a standard lined notebook.
The pen is black and appears to be a standard ballpoint pen. The

overall setting suggests a workspace or a study area. /

Figure 12: An example from the MMHal-Bench dataset. Hallucinations are highlighted in red.
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