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Abstract
The global deployment of the 5G network has led to a substantial

increase in the deployment of edge servers to host web applications,

catering to the growing demand for low service latency by edge

web users. Running edge servers 24/7 leads to enormous energy

consumption and excessive carbon emissions. Energy-efficient edge

resource provision is desired to achieve sustainable development

goals in the new multi-access edge computing (MEC) architecture.

Recently, several approaches have been proposed to solve the de-

mand response problem for energy saving in cloud computing and

MEC. However, accurate location information of edge web users

should be provided, which sacrifices edge web users’ privacy. To

protect edge web users’ location privacy while saving energy in

MEC, we systematically formulate this location privacy-preserving

edge demand response (LEDR) problem. To solve the LEDR problem

effectively and efficiently, we propose a system named GEES by

incorporating differential geo-obfuscation to secure user privacy,

while maximizing system utility and energy efficiency through

inference with theoretical analysis. Extensive and comprehensive

experiments are conducted based on a synthetic real-world dataset,

and the results demonstrate that GEES outperforms representative

approaches by 23.02%, 31.47%, and 17.29% on average in terms of

energy efficiency, user privacy and system utility.

Keywords
multi-access edge computing, location privacy, edge energy saving

1 Introduction
The proliferation of data-intensive applications and the growing de-

mands for low-latency services have highlighted the significance of

Multi-Access Edge Computing (MEC) and reshaped the computing

paradigms [1]. By redistributing resources to the network edges,

MEC liberates the computing capabilities of web users’ devices

and enables real-time web services to improve users’ quality of

experiences. The evolving landscape of MEC systems has spurred

research efforts across diverse domains, including edge intelligence

[2, 3], edge privacy and security [4, 5], and edge resource [6, 7],

driven by the goal of delivering low-latency web services [8].

Demand response in cloud computing has received extensive

research attention [9–11], driven by predictions that global elec-

tricity consumption by data centers will reach 8% by 2030 [12]. As

an extension of cloud computing, MEC involves dense edge server

deployments near base stations, e.g., the density could reach as high

as 50 per km
2
in real-world 5G deployments [13]. This results in

significant energy issue with cost escalations for energy consump-

tion, posing new challenges to environmental sustainability [14].

Recent efforts [15, 16] have begun addressing the edge demand

response challenge by adopting strategies similar to those used in

data centers —workload shifting and consolidation on selected edge

servers, along with the shutdown of unused servers to conserve

102 10 0 10 102 103

Computation Time (ms)

Data 3

Data 2

Data 1

Lo
ca

tio
n 

Da
ta

Differential Privacy Homomorphic Encryption

Figure 1: Location privacy protection latency tests
energy. To optimize the energy consumption of edge servers and

satisfy users’ quality of experience, users’ actual locations are re-

quired by existing approaches. However, this greatly compromises

users’ location privacy. From the perspective of users, sacrificing

their privacy to reduce the energy consumption of edge servers is

a lack of motivation. This is undoubtedly disheartening, as it could

lead to a reduction in users’ willingness to access edge web services

due to privacy concerns, ultimately eroding the benefits of the MEC

architecture. Thus, it is urgent to solve this privacy issue.
To protect users’ location privacy, cloaking-based methods[17]

and homomorphic encryption [18] are two widely-used approaches.

However, applying these techniques in edge demand response sce-

narios faces significant practical challenges. Cloaking-based meth-

ods aim to protect privacy by injecting obfuscated unreal data.

However, severe distortion in cloaking unreal data leads to poor

service performance [17]. Homomorphic encryption, which facili-

tates encrypted computations without exposing raw location data,

introduces substantial computational complexity and serious over-

head. This violates the key objective of MEC to pursue the low

latency, causing performance degradation. Moreover, homomor-

phic encryption and cloaking-based methods are also sensitive to

prior knowledge, rendering them vulnerable to inferences, such

as Bayesian Inference Attacks (BIA) [19]. Practically, edge servers

might attempt to infer users’ locations by leveraging prior knowl-

edge of users, with the intention of enhancing services, if they are

aware that the uploaded locations are intentionally obfuscated.

Differential privacy [20] is anotherwidely-used privacy-preserving

approach in web services [21, 22], mobile crowdsensing (MCS) [23]

and location-based services (LBS) [24] by introducing noise to lo-

cation data to enable confident data sharing and build trust in

location-based applications. Compared to homomorphic encryp-

tion, differential privacy is an extremely efficient method while

ensuring absolute privacy for users. To demonstrate this, we mea-

sured the computation time of differential privacy and holomorphic

encryption for a bigint transformed string containing the user’s

location information in August 2023. In the experiments, we apply

homomorphic encryption
1
and differential privacy by adding noise

drawn from Laplace distribution to the original data. The overall

computation time reported in Figure 1 depicts the superior advan-

tage of differential privacy safeguarding latency-sensitive services,

e.g., the time taken by homomorphic encryption is > 100× the time

taken by differential privacy. Compared to cloaking-based methods,

1
https://github.com/data61/python-paillier
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Figure 2: MEC system example
differential privacy offers a more rigorous and adaptable privacy

protection framework, which demonstrates stronger robustness

anti prior knowledge and a better trade-off between privacy and

data availability [25]. Those advantages make differential privacy

more suitable for addressing privacy-related problems in MEC than

homomorphic encryption and cloaking-based methods.

Relying solely on differential privacy is still very challenging

to realize an effective edge demand response strategy to achieve

low energy consumption and high user coverage (referred to as

system utility hereafter) due to the injected data noise. Figure 2

demonstrates a simple MEC system example comprising 4 base

stations, 4 edge servers {𝑠1, ..., 𝑠4} and 6 users located at {𝑙1, ..., 𝑙6}.
Assuming that each edge server has enough resources, e.g., CPU,

GPU, Memory, etc., to host nearby users. According to users’ actual

locations, all six users can be allocated to edge servers 𝑠2, 𝑠3 and 𝑠4.

In this case, edge server 𝑠1 can be powered off to save energy. To

protect location privacy based on differential privacy, base stations

store the obfuscation mechanism provided by their trustworthy

control server in advance and send the mechanism to users. In this

way, users’ locations {𝑙1, ..., 𝑙6} are obscured to obfuscated locations
{𝑙∗
1
, ..., 𝑙∗

6
}. Now, all four edge servers need to be powered on to

serve nearby users based on {𝑙∗
1
, ..., 𝑙∗

6
}, increasing the energy con-

sumption. The inference method might be adopted by edge servers,

where inferred locations are denoted as { ˆ𝑙1, ..., ˆ𝑙6}. According to

inferred locations, 𝑠3 can be powered off, since all the users can be

allocated to 𝑠1, 𝑠2 and 𝑠4. Although energy consumption is reduced,

user 𝑢3 is not truly covered by any running edge servers, thus fur-

ther decreasing the system utility. Hence, developing a system that

empowers users to utilize edge web services without privacy com-

promises while maintaining satisfactory system utility and energy

efficiency, becomes increasingly imperative and urgent.

To address this location privacy-preserving edge demand re-

sponse (LEDR) problem, considering energy and privacy issues in

MEC, we design a geo-obfuscated edge energy saving (GEES) sys-
tem to enable fast location privacy preservation with the maximum

system utility and energy efficiency jointly. Contributions of this

paper can be summarized as follows:

• To the best of our knowledge, this is the first attempt to leverage

differential geo-obfuscation in the edge demand response prob-

lem, so as to secure users’ location privacy, ensure system utility

and improve energy efficiency.

• GEES deploys a novel approach named Deflected Distribution

Positioning (DDP) to maximize system utility with privacy guar-

antees by solving the Optimal Transport (OT) problem between

the obfuscated distribution and the real distribution.

• Once users’ locations are obfuscated, GEES employs a Secure

Greedy Response (SGR) algorithm to finalize the edge demand

response strategies by powering on and off the edge servers to

improve system utility and energy efficiency.

• Comprehensive experiments verify that GEES significantly out-

performs benchmarks, including the state-of-the-art approach

with various differential privacy approaches.

2 Preliminaries
2.1 Differential Privacy
Differential privacy is a rigorous privacy protection scheme, which

was first used for location privacy-preserving in [24]. It obfuscates

the location through probabilistic means to prevent adversaries

from distinguishing the users’ actual locations. In this way, even if

an adversary observes the published location 𝑙∗ and possesses the

obfuscation mechanism P, it fails to find the actual location 𝑙 .

Definition 1 (Differential Privacy). Suppose the obfuscated
area includes a set of locations {𝑙1, ..., 𝑙𝑛} ∈ L, then a probabilistic
geo-obfuscation function P satisfies 𝜖-differential privacy, iff

P(𝑙∗ | 𝑙1) < 𝑒𝜖 ·𝑑𝑖𝑠𝑡 (𝑙1,𝑙2 ) · P(𝑙∗ | 𝑙2), ∀𝑙1, 𝑙2, 𝑙∗ ∈ L (1)

where P(𝑙∗ | 𝑙1) is the probability of obfuscating 𝑙1 to 𝑙∗, 𝑑𝑖𝑠𝑡 (𝑙1, 𝑙2) is
the Euclidean distance between 𝑙1 and 𝑙2, and 𝜖 is the privacy budget.
The smaller 𝜖 , the higher the privacy.

Exponential mechanism is a prevalent mechanism to realize

𝜖-differential privacy [26]. Given the overall location set L and

neighboring protected location set (NPLS) 𝜁 , it leverages a scoring

function 𝜌 : L × 𝜁 → R, which assigns a real-valued score to each

in/output pairs, in order to ensure that outputs with better utility

can receive higher scores.

Definition 2 (Sensitivity [27]). For any pair of neighboring
locations 𝑙1 and 𝑙2 on NPLS 𝜁 and 𝑙 ∈ L, the sensitivity of the scoring
function 𝜌 is given by its maximum change:△𝜌 = max𝑙1,𝑙2,𝑙 | 𝜌 (𝑙1, 𝑙)−
𝜌 (𝑙2, 𝑙) | .

Definition 3 (Exponential Mechanism [28]). Given a scoring
function 𝜌 on L × 𝜁 and actual location 𝑙 ∈ L, the exponential
mechanism selects and outputs an element 𝑙∗ ∈ 𝜁 on NPLS with
probability proportional to exp( 𝜖 ·𝜌 (𝑙,𝑙

∗ )
2△𝜌 ).

To preserve 𝜖-differential privacy, other mechanisms, such as

the Laplace mechanism and Gaussian mechanism, achieve geo-

obfuscation by adding proportional noise drawn independently

and identically distributed from the respective distributions to the

query output.

2.2 Optimal Transport
Optimal transport (OT) is a mathematical framework that was orig-

inally developed to transport a set of resources from one location to

another efficiently [29]. It serves as a powerful means of comparing

and aligning probability distributions, enabling precise quantifica-

tion of dissimilarities. In recent years, it has garnered significant

attention in the computing field [30]. Compared to metrics such as

𝑋 2
and Kullback-Leibler divergence, it has demonstrated notable

performance enhancements.

2
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Wasserstein distanceW𝑝 , as a key definition of OT, quantifies

the dissimilarity between two probability distributions. By consid-

ering both the values and spatial arrangement of the distributions,

it enables precise measurement of distributional discrepancies. This

metric has been widely applied in probability-based applications,

such as domain adaption [31], and data association [32].

Definition 4 (𝑝-Wasserstein distance). The 𝑝-Wasserstein
distance between two probability measures 𝜇 and 𝜈 on a metric space

(X, 𝑑) is defined asW𝑝 (𝜇, 𝜈) =
(
inf𝛾 ∈Π (𝜇,𝜈 )

∫
|𝑥 − 𝑦 |𝑝 𝑑𝛾 (𝑥,𝑦)

) 1

𝑝 ,
where 𝜇 and 𝜈 represent probability measures, Π(𝜇, 𝜈) is the set of
all joint distributions with marginals 𝜇 and 𝜈 , and 𝛾 (𝑥,𝑦) represents
the probability of the joint occurrence of 𝑥 and 𝑦. The parameter 𝑝
controls the emphasis on different characteristics of the distributions.

Specifically,W2 considers individual contributions in 2-norm

space, which is favored for its precision and computational effi-

ciency in practical OT problems [33].

3 Problem Formulation
In this section, we first introduce the privacy games in MEC. Next,

we present the system model and formally formulate the location

privacy-preserving edge demand response (LEDR) problem.

3.1 Edge Privacy Games
Users and edge servers always have divergent interests when it

comes to privacy issues in MEC. Users usually prefer not to disclose

their actual location precisely when accessing edge services, while

edge servers desire their actual locations to deliver accurate service

and reduce energy consumption. Therefore, users and edge servers

are often engaged in privacy games. Under edge privacy games,

there are four main roles:

Control server. Hosted by the network provider with dedicated

communication protocols and strict security measures for manag-

ing base stations, the control servers are regarded as inherently

trustworthy entities [34, 35]. In this study, the control server gener-

ates the geo-obfuscation mechanism P and sends it to base stations

for dispatching in advance (Step #1 in Section 4.1).

Base stations. Base stations store P locally from the control server

and play the role of senders. Once a user enters the coverage of a

base station, the base station directly distributes P to her (Step #2
in Section 4.1). We assume that base stations are also trustworthy,

the same as [34, 35].

Users. Users receive P from base stations to obfuscate their actual

locations locally to protect their privacy and upload obfuscated

locations to edge servers (Step #3 in Section 4.1).

Edge servers. Edge servers collaboratively serve nearby users.

However, edge servers are semi-trusted, as they are interested in

users’ actual locations to achieve low-energy edge demand response

and apply inference methods to predict such locations (Section 4.2).

Figure 3 illustrates a general architecture of edge privacy games:

Geo-obfuscation in user-side. From a user’s perspective, her

location 𝑙𝑘 needs to be obfuscated to obtain the new location 𝑙∗
𝑘

through geo-obfuscation mechanism P. The input of P is the actual

location 𝑙𝑘 ∈ L, where L is the set of all possible values of the

user’s location, i.e., the locations that user could visit while releasing

obfuscated location 𝑙∗
𝑘
∈ L is sampled according to the following

Real
Locations

Obfuscated
Locations

Inferred
Locations

Prior
Knowledge

Distortion

Geo-
obfuscation Inferences Strategies

Figure 3: Private game architecture

probability distribution:

P(𝑙∗
𝑘
| 𝑙𝑘 ) = 𝑃𝑟 {𝑙∗

𝑘
∈ L | 𝑙𝑘 ∈ L} ≥ 0 &

∑︁
𝑙∗
𝑘
∈L P(𝑙

∗
𝑘
| 𝑙𝑘 ) = 1

In this way, users’ location privacy can be successfully protected

by involving noise into the location information through the geo-

obfuscation mechanism P.
Inference in server-side. In fact, while the user is protecting

her privacy, the edge server also makes efforts to reveal the user’s

actual location through inferences to deliver accurate service and

reduce energy consumption on the edge servers. Let 𝜋 denote the

prior leakage of the users’ location distribution over 𝑙 as the prior

knowledge: 𝜋 (𝑙𝑘 ) = 𝑃𝑟 {𝑙𝑘 ∈ L}. Based on 𝜋 (𝑙𝑘 ), the edge server
performs inferences on the obfuscated location 𝑙∗

𝑘
from the user

through an inference mechanism Q, aiming to find the users’ actual

location by observing the outcomes of the protection mechanism.

Given any released 𝑙∗
𝑘
and any prior knowledge of users, mechanism

Q generates estimated location
ˆ𝑙𝑘 ∈ L on edge servers according

to the probability distribution:

Q( ˆ𝑙𝑘 | 𝑙∗𝑘 ) = 𝑃𝑟 { ˆ𝑙𝑘 ∈ L | 𝑙∗𝑘 ∈ L} ≥ 0 (2)

3.2 System Model
Given𝑀 physical edge servers S = {𝑠1, ..., 𝑠 𝑗 , ..., 𝑠𝑀 } possessing 𝑞-
dimensional computing resourcesR = {𝑟1, ..., 𝑟𝑀 } (𝑟 𝑗 = {𝑟1𝑗 , ..., 𝑟

𝑞

𝑗
}),

𝑁 usersU = {𝑢1, ..., 𝑢𝑘 , ..., 𝑢𝑁 } with ℎ-dimensional resources de-

mands 𝑑 = {𝑑1, ..., 𝑑𝑁 }(𝑑𝑘 = {𝑑1
𝑘
, ..., 𝑑ℎ

𝑘
}), the objective of the loca-

tion privacy-preserving edge demand response (LEDR) problem is

to maximize the overall system performance, in terms of system

utility F𝑢 , user privacy F𝑝 , and energy efficiency F𝑒 .
System Utility. A primary goal of MEC systems is to serve the

maximum number of nearby users. Here, we define the system

utility by the coverage rate of all the users in an MEC system,

denoted by 𝐹𝑐 . To calculate the system utility, we first introduce

the effective user set in the LEDR problem:

Definition 5 (Effective User Set). Users with accessibility to
edge web services whose real and inferred locations are within the
range of a running edge server) are defined as setΔ𝑋 = {𝑢𝑘 | 𝑑𝑖𝑠𝑡 ( ˆ𝑙𝑘 , 𝑠 𝑗 )
≤ 𝑐 𝑗 ∧ 𝑑𝑖𝑠𝑡 (𝑙𝑘 , 𝑠 𝑗 ) ≤ 𝑐 𝑗 }, where 𝑠 𝑗 is the edge server serving user 𝑢𝑘 .

According to the inferred location
ˆ𝑙 , the adjacent servers cov-

ering the inferred location
ˆ𝑙𝑘 of user 𝑢𝑘 , denoted by J ( ˆ𝑙𝑘 ) =

{𝑠 𝑗 | 𝑑𝑖𝑠𝑡 ( ˆ𝑙𝑘 , 𝑠 𝑗 ) ≤ 𝑐 𝑗 }. In this way, we define user 𝑢𝑘 ’s alloca-

tion decision as 𝑎𝑘 , where 𝑎𝑘 ∈ {0}∪ { 𝑗 | 𝑠 𝑗 ∈ J (𝑙𝑘 )}. Here, 𝑎𝑘 = 𝑗

indicates that user 𝑢𝑘 is served by edge server 𝑠 𝑗 , while 𝑎𝑘 = 0

means that 𝑘 is not allocated to any edge server. The user allocation

strategy is denoted by A = {𝑎1, ..., 𝑎𝑁 }.
Let N𝑗 (A) denote the number of users served by edge server

𝑠 𝑗 according to A, The total number of users covered by strategy

3
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Figure 4: Definitions of effective user and privacy area

A, denoted by N𝑡𝑜𝑡𝑎𝑙 is calculated with N𝑡𝑜𝑡𝑎𝑙 =
∑
𝑠 𝑗 ∈S N𝑗 (A).

Therefore, the system utility 𝐹𝑐 , i.e., the coverage rate of all the

users in an MEC system, is calculated with:

F𝑐 =
N𝑡𝑜𝑡𝑎𝑙

𝑁
∈ [0, 1] (3)

User Privacy. Following the analysis in [36], we first introduce

V𝑘 , the inference error, i.e., the expectation of Euclidian distance

between the 𝑢𝑘 ’s actual location 𝑙𝑘 and the inferred location
ˆ𝑙𝑘 ∈ 𝜁 :

V𝑘 =
∑︁

ˆ𝑙𝑘 ∈L
Q( ˆ𝑙𝑘 | 𝑙∗𝑘 ) · ∥ ˆ𝑙𝑘 − 𝑙𝑘 ∥2 (4)

The inference errorV𝑘 can be considered how distorted the location

can be restored during the inference process. Intuitively, we use the

area proportion of inference error to the coverage radius 𝑐 𝑗 of the

allocated edge server 𝑠 𝑗 to define the privacy rate 𝑅 to determine

user privacy, as shown in Figure 4(b). In this way, a user𝑢𝑘 ’s privacy

G𝑘 is calculated with:

G𝑘 = ∥ V𝑘

𝑐 𝑗
∥2
2

(5)

Therefore, the system privacy F𝑝 , calculated by the average privacy
value of all the users, is:

F𝑝 =
∑︁

𝑢𝑘 ∈Δ𝑋
G𝑘
N(𝑎𝑘 )

∈ [0, 1] (6)

Energy Efficiency. Edge demand response aims to reduce the

energy consumption of edge servers while serving nearby users.

However, the LEDR problem can be more complicated, as geo-

obfuscation is introduced for privacy protection, and extra energy

may be consumed as discussed in Section 1 with Figure 2. Therefore,

how to maintain satisfying energy efficiency with privacy and

utility guarantees is the critical challenge.

Similar to [6, 37], the energy consumption consists of three main

components, including running cost 𝑒𝑟𝑐
𝑗
, mode switching cost 𝑒𝑠𝑐

𝑗

and maintenance cost 𝑒𝑚𝑐
𝑗

. Specifically, the running cost 𝑒𝑟𝑐
𝑗

can

be calculated by 𝑒𝑟𝑐
𝑗

=
∑
𝑢𝑘 ∈N𝑗 (A) 𝑝𝑘 , where 𝑝𝑘 is the energy cost

for serving user 𝑢𝑘 . The mode switching cost is calculated by 𝑒𝑠𝑐
𝑗

=

𝛽 𝑗 (1−𝑚 𝑗 ), where 𝛽 𝑗 is the start-up energy cost of activating server
𝑠 𝑗 , and𝑚 𝑗 ∈ {0, 1} represents current status of 𝑠 𝑗 , i.e.,𝑚 𝑗 = 1 is

active and𝑚 𝑗 = 0 is inactive. For the maintenance cost, 𝑒𝑚𝑐
𝑗

= 𝜏 ·𝑚 𝑗 ,

where 𝜏 is the unit cost for maintaining one activated server. Then,

the effective system energy consumption 𝐸𝑐 is denoted by:

𝐸𝑐 =
∑︁

𝑢𝑘 ∈Δ𝑋,𝑠 𝑗 ∈S
𝑒𝑟𝑐𝑗 + 𝑒𝑠𝑐𝑗 + 𝑒𝑚𝑐

𝑗 (7)

while the original energy consumption 𝐸𝑜 without edge demand

response strategies is:

𝐸𝑜 =
∑︁

𝑢𝑘 ∈U,𝑠 𝑗 ∈S
𝑒𝑟𝑐𝑗 + 𝑒𝑠𝑐𝑗 + 𝑒𝑚𝑐

𝑗 (8)

The system energy efficiency 𝐹𝑒 is defined by the ratio of effective

energy consumption over the original energy consumption:

F𝑒 =
𝐸𝑐

𝐸𝑜
∈ [0, 1] (9)

3.3 Problem Formulation
Now, we formulate the Location privacy-preserving Edge Demand

Response (LEDR) problem systematically by two phases: differential
geo-obfuscation and distortion-aware edge demand response, jointly
optimizing user privacy, system utility and energy consumption.

3.3.1 Probabilistic Differential Geo-obfuscation:
In the LEDR problem, edge servers may possess significant prior

knowledge about the user geo-distributionwithin the region. For ex-

ample, in an organized and vibrant area, users tend to be uniformly

distributed [38]. Simultaneously, as introduced in Section 2.1, prob-

abilistic methods could be employed to obfuscate users’ locations.

Such obfuscated locations uploaded from users to base stations for

resource demands are often drawn from such an exponential distri-

bution (details about selecting exponential distribution can be found

in Section 4.1) under differential privacy [28]. Logically, the closer

the obfuscated distribution aligns with the original distribution, the

better the system’s utility could be. Therefore, the first phase of the

LEDR problem is to handle the gap between obfuscated distribu-

tion Φ with prior knowledge 𝜋 about users’ real distribution while

ensuring differential privacy guarantees. In this way, Objective #1
of the LEDR problem is to minimize the Wasserstein-2 distanceW2

between the two distributions:

Objective #1 min W2 (Φ, 𝜋 ) (10)

𝑠.𝑡 . P(𝑙∗
𝑘
| 𝑙1 ) < 𝑒𝜖 ·𝑑 (𝑙1,𝑙2 ) · P (𝑙∗

𝑘
| 𝑙2 ), ∀𝑙1, 𝑙2, 𝑙∗𝑘 ∈ L (11)∑︁

𝑙𝑘 ∈L
𝜋 (𝑙𝑘 ) P (𝑙∗𝑘 | 𝑙𝑘 ) = 𝜋 (𝑙∗

𝑘
), ∀𝑙∗

𝑘
∈ L (12)

As introduced in Sec. 2.1, constrant (11) ensures users’ differential

privacy with privacy budget 𝜖 . Constraints (12) ensure that the

geo-obfuscation will not change users’ overall location distribution.

Maintaining crucial statistics unchanged during obfuscation is a

widely adopted approach in statistical disclosure control [23, 39]. It

helps protect individual privacywhile retaining general information

in the obfuscated data, making it harder to infer specific individual

details.

3.3.2 Distortion-aware Edge Demand Response:
The second phase of solving the LEDR problem is to allocate con-

tained resources on edge servers to users under geo-distortion

to maximize user privacy, system utility, and energy efficiency

jointly. To generalize the LEDR problem, a set of parameters B =

{𝑏1, 𝑏2, 𝑏3}(
∑
3

1
𝑏𝑖 = 1) are set based on the priority of system utility,

user privacy, and energy efficiency in various MEC scenarios. This

allows the model and the approach GEES (detailed in Section 4) be

applied to various scenarios according to different needs. In this

way, Objective #2 of the LEDR problem is to maximize the overall

system performance:

Objective #2 max 𝑏1 · F𝑐 + 𝑏2 · F𝑝 + 𝑏3 · F𝑒 (13)

𝑠.𝑡 .
∑︁

𝑢𝑖 ∈U
𝑑
𝑔

𝑖
≤ 𝑟

𝑔

𝑗
, ∀𝑔 ≤ 𝑞, 𝑠 𝑗 ∈ S (14)

𝑎𝑘 ∈ {0} ∪ { 𝑗 | 𝑑𝑖𝑠𝑡 (𝑙𝑘 , 𝑠 𝑗 ) ≤ 𝑐 𝑗 ) }, ∀𝑢𝑘 ∈ U, 𝑠 𝑗 ∈ S (15)

Resource constraint (14) guarantees that the allocated resources of

each edge server cannot exceed its available resources and coverage

constraint (15) confines that each user only can directly access edge

servers covering this user. The impacts of priority of system utility,

user privacy, and energy efficiency, i.e.,B = {𝑏1, 𝑏2, 𝑏3}, are detailed

4
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2. Score Matrix: 3. Obfuscated Outputs:1. Personalized NPLS:

Figure 5: Probabilistic optimization process

evaluated and discussed in Section 5.3. The problem hardness of

LEDR is theoretically analyzed in Appendix B.

4 Geo-obfuscated Edge Energy Saving System
To tackle the LEDR problem systematically, including geo-obfuscation
probabilistic optimization and resource allocation under geo-distortion,
we design a geo-obfuscated edge energy saving (GEES) system to

maximize user privacy, system utility and energy efficiency. Follow-

ing the logic in Section 3.3, GEES first proposes a novel approach

(Section 4.1) named deflected distribution position (DDP) to opti-

mize geo-obfuscation probabilistic to achieve Objective #1, then
designs a secure greedy response (SGR) approach (Section 4.2) to

improve the overall system performance, i.e., Objective #2.

4.1 Geo-obfuscation Probabilistic Optimization
To achieve the geo-obfuscation function optimization, we propose

an exponential-based probabilistic method, inspired by the Particle

Swarm Optimization (PSO) [40]. Compared to other mechanisms in

differential privacy, such as Laplace [24] and Gaussian [27] which

directly add noise to location data, the exponential mechanism pro-

vides a more flexible form of randomness. By designing a scoring

function to assess the utility of the data, it can offer more accurate

privacy protection in various scenarios, allowing for a more pre-

cise trade-off between privacy and utility. Thus, the exponential

mechanism is adopted in our design to perform geo-obfuscation.

To evaluate the impacts of various differential privacy mechanisms,

extensive experiments are conducted in Section 5, while the results

can verify the advantages of the exponential mechanism.

As introduced in section 2.1, a scoring function 𝜌 should be

defined to accommodate the LEDR scenario. The ideal situation

is that the obfuscated location distribution uploaded to an edge

server can closely resemble the actual location distribution of users

while adhering to privacy constraints. Specifically, for a personal-

ized NPLS, an appropriate scoring function would assign higher

scores to the locations near the actual locations, aiming to keep

the obfuscated locations as close as possible to the original ones.

However, due to privacy and objective constraints, the mapping

results often experience deflections.

To tackle the above-mentioned issue, a novel approach named

Deflected Distribution Positioning (DDP) is designed in this section.

DDP adopts the probability density values drawn from the Gaussian

distribution 𝑋 ∼ 𝑁 (𝜇, 𝜎2) as scores to simulate the corresponding

outputs. By optimizing the 𝜇 and 𝜎2 under privacy constraints

consistently, the position of Gaussian distribution is manipulated

nimbly on the array to accommodate the requirements and generate

corresponding scores wisely. Figure 5 provides an overview of the

DDP algorithm 1, which consists of three steps.

• Step #1. Given 𝑢𝑘 actual location 𝑙𝑘 , the NPLS around the actual

location 𝜁𝑘 is partitioned into a 10 × 10 location set on base sta-

tions, where each grid in this set corresponds to a 10𝑚×10𝑚 unit.

Then, personalized NPLSs 𝜁𝑘 are transformed into 100× 1 arrays.
Each grid is assigned a score value drawn from the probability

density function of a shiftable and adjustable Gaussian distribu-

tion 𝑁 (𝜇, 𝜎2). In this step, a classical evolutionary algorithm of

Particle Swarm Optimization (PSO) is employed to optimize the

parameters of the distribution on the trustworthy base stations.

As discussed in Section 3.1, this process is executed by the con-

trol server of base stations in advance. After the optimization,

the control server sends mechanism P to base stations.

• Step #2. Once a base station receives P, it stores P locally. After

that, if a user enters its coverage, it automatically sends P to the

user for geo-obfuscation.

• Step #3. In this step, users can apply P on their own devices to

obfuscate their locations.

Finally, the obfuscated results are transmitted to edge servers to

balance the privacy constraints and system utility. The pseudo-code

of DDP is presented in Algorithm 1.

Algorithm 1 Deflected Distribution Positioning

1: initialization
2: set swarm of 𝐼 particles with bounded 𝜇𝑖 and 𝜎

2

𝑖
and𝑇 iteration times

3: set particle best positions and fitness: p
global

= p
local

= (𝜇𝑖 , 𝜎2

𝑖
) ,

𝑓
global

= 𝑓
local

= 𝑓 (𝜇𝑖 , 𝜎2

𝑖
)

4: end initialization

as Trustworthy Control Server:

⊲ Step #1: Preparation and Probabilistic Optimization

5: Partition the NPLSs and transform into 100 × 1 arrays

6: for each iteration 𝑡 = 1, ...,𝑇 do
7: for each particle 𝑖 = 1, ..., 𝐼 do
8: Update particle velocity:

9: Δ𝜇𝑖 = 𝑐
𝜇

1
· rand( ) · (𝜇

local
− 𝜇𝑖 ) + 𝑐𝜇

2
· rand( ) · (𝜇

global
− 𝜇𝑖 )

10: Δ𝜎2

𝑖
= 𝑐𝜎

1
· rand( ) · (𝜎2

local
− 𝜎2

𝑖
) + 𝑐𝜎

2
· rand( ) · (𝜎2

global
− 𝜎2

𝑖
)

11: Update particle position:

12: 𝜇𝑖 = 𝜇𝑖 + Δ𝜇𝑖
13: 𝜎2

𝑖
= 𝜎2

𝑖
+ Δ𝜎2

𝑖

14: Evaluate fitness: 𝑓𝑖 = 𝑓 (𝜇𝑖 , 𝜎2

𝑖
)

15: if 𝑓𝑖 > 𝑓
local

then
16: Update particle best: p

local
= (𝜇𝑖 , 𝜎2

𝑖
) , 𝑓

local
= 𝑓𝑖

17: if 𝑓𝑖 > 𝑓
global

then
18: Update global best: p

global
= p

local
, 𝑓

global
= 𝑓𝑖

19: end if
20: end if
21: end for
22: end for
23: Dispatch optimized exponential-based mechanism P to base stations

as Base station:

⊲ Step #2: Mechanism Storage and Dispatch

24: store P locally

25: send P to a user once the user enters its coverage

as User 𝑢𝑘 :

⊲ Step #3: Geo-Obfuscation
26: 𝑢𝑘 ’s personalized geo-obfuscation with optimized P(𝑙∗

𝑘
|𝑙𝑘 )

5
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4.2 Secure Greedy Response
Based on DDP proposed in Section 4.1, GEES now formulate a

privacy-aware edge demand response strategy to solve the LEDR

problem under geo-distortion. To address it, we propose a greedy-

based mechanism named secure greedy response (SGR) for jointly

maximizing user privacy, system utility and energy efficiency.

Given the NP-hardness of the problem, SGR employs a heuristic

approach by consistently prioritizing user allocations with both

the highest joint privacy and resource demands to the remaining

available resources on nearby edge servers. Before introducing the

details of SGR, key definitions are firstly detailed below:

Definition 6 (Dominant Resource Demands). Considering
user 𝑢𝑘 with her 𝑞-dimensional resource demand 𝑑𝑘 = {𝑑1

𝑘
, ...𝑑

𝑞

𝑘
}, the

dominant resource demand 𝑑∗
𝑘
of 𝑢𝑘 is the maximum proportion of

required resources over the available resource of nearby edge servers,
formulated as:

𝑑∗
𝑘
≜ max

𝑟 𝑗 ≥𝑑𝑘

𝑑
𝑔

𝑘

max
𝑠 𝑗 ∈J( ˆ𝑙𝑘 )

𝑟
𝑔

𝑗

(16)

Definition 7 (Joint Privacy-Energy Principle). Given edge
server 𝑠 𝑗 , its coverage radius 𝑐 𝑗 , and the distance between the user’s
obfuscated location 𝑙∗

𝑘
and the inferred location ˆ𝑙𝑘 , the joint privacy-

energy rate is defined as:
𝑦 𝑗 ≜ max

𝑟 𝑗 ≥𝑑𝑘 , 𝑠 𝑗 ∈J( ˆ𝑙𝑘 )

(𝑏2 · 𝑑𝑖𝑠𝑡 ( ˆ𝑙𝑘 , 𝑙∗𝑘 ) + 1) · 𝑑𝑘
𝑏3 · 𝑟 𝑗 · 𝑐 𝑗

(17)

Consequently, the joint energy-privacy principle will therefore select
the server 𝑠 𝑗 with maximum 𝑦 𝑗 for responding.

The pseudo-code of SGR is presented in Algorithm 2. SGR starts

with the initialization of unserved usersU = {𝑢1, ..., 𝑢𝑁 } and edge

serversS = {𝑠1, ..., 𝑠𝑀 } (Lines 1-3). SGRwill first obtain users obfus-

cated locations through Algorithm 1 (Line 4). Next, SGR performs

inferences and finds nearby edge servers based on the users’ obfus-

cated locations 𝑙∗ and sorts their resource demandsD = {𝑑1, ..., 𝑑𝑁 }
in decreasing order (Lines 5-6). After that, SGR iterates to formu-

late the edge demand response A by allocating users to available

edge servers following the joint privacy-energy principle until no

feasible allocation decision updates such as all users are allocated

or no sufficient resources to serve any unserved users (Lines 7-21).

In each iteration, the algorithm first initializes allocation decision

𝑎𝑘 as null (Line 9). Next, after checking the availability of nearby

edge server based on 𝑢𝑘 ’s obfuscated location 𝑙∗
𝑘
, SGR iterates to

allocate unserved 𝑢𝑘 to an available edge server 𝑠 𝑗 (𝑠 𝑗 ∈ J (𝑙∗𝑘 ))
based on the joint privacy-energy principle and update the remain-

ing resources of 𝑠 𝑗 (Lines 10-14). After the iteration, the system

information can be updated, including the available edge servers

and remaining resources (Lines 15-18). Finally, A is returned for

implementation as the strategy of this LEDR problem (Lines 22-23).

4.3 Theoretical Performance Analysis
DDP in Algorithm 1 consists of particle iteration and update pro-

cesses. With 𝐼 particles, DDP iterates 𝑇 times for each user. During

each iteration, every particle needs to update its mean and variance,

calculate fitness, and perform comparisons. Therefore, the time

complexity of Algorithm 1 is 𝑂 (𝐼 ·𝑇 ·𝑂 (1)) = 𝑂 (𝐼 ·𝑇 )
In Algorithm 2, SGR aims to formulate a series of allocation

strategies with a maximum of𝑁 iterations (Line 6). In each iteration,

Algorithm 2 Secure Greedy Response

1: initialization
2: set with unserved users U = {𝑢1, ...,𝑢𝑁 } and available edge servers

S = {𝑠1, ..., 𝑠𝑀 }
3: end initialization
4: obtain {𝑙∗

1
, ...𝑙∗

𝑘
, ...𝑙∗

𝑁
} ∈ L by Algorithm 1

5: obtain { ˆ𝑙1, ... ˆ𝑙𝑘 , ... ˆ𝑙𝑁 } ∈ L through inferences and find all the nearby

edge servers J( ˆ𝑙𝑘 ) of each estimated
ˆ𝑙𝑘

6: sort users’ demands in a decreasing order following dominant resource

demands

7: repeat
8: for 𝑢𝑜 ∈ U do
9: 𝑎𝑘 = (0, ..., 0) // 𝑎𝑡

𝑘
= {𝑎1

𝑘
, ..., 𝑎ℎ

𝑘
}

10: if J( ˆ𝑙𝑘 ) ≠ ∅ and 𝑢𝑘 is unserved then
11: find the most suitable edge server 𝑠 𝑗 based on the joint privacy-

energy principle.

12: update 𝑎𝑘 with 𝑎𝑘 ← 𝑗

13: update 𝑠 𝑗 ’s remaining resources with 𝑟 𝑗 ← 𝑟 𝑗 − 𝑑𝑘
14: end if
15: if 𝑟 𝑗 < min𝑑𝑘 then
16: S ← S/𝑠 𝑗
17: end if
18: update the status of neighbor machines J( ˆ𝑙𝑘 ) ∈ S
19: 𝑘 ← 𝑘 + 1
20: end for
21: until no decision updates or no sufficient resources

22: return A = (𝑎1, ..., 𝑎𝑁 )
23: implement LEDR strategies A

finding the optimal edge server for an individual user is𝑂 (𝑀) since
there are a maximum of𝑀 nearby edge servers for consideration

(Line 9). Therefore, Algorithm 2 can formulate strategies within

𝑂 (𝑁 ·𝑀) time in the worst-case scenario.

The theoretical analysis of user privacy achieved by GEES can

be found in Appendix C.

5 Evaluation
In this section, experiments are conducted to evaluate the perfor-

mance of GEES in LEDR scenarios. Both the dataset and experiment

codes used have been published
2
for the validation and reproduc-

tion of experimental results.

5.1 Experiment Settings
Experiment Data: Here, we synthesize a new dataset named EDR

based on the information from AWS wavelength
3
, Alibaba Cloud

4
,

and a real-world dataset EUA
5
, including edge server capacities,

edge server coverages, edge server and user locations, server start-

up and maintenance costs, etc.

Impletations: To comprehensively analyze the performance

of our approach in various MEC scenarios, we conduct a series of

experiments, i.e., Set #1, with variations in four parameters: 1) the

number of users 𝑁 ; 2) the number of edge servers𝑀 ; 3) the privacy

budget 𝜖; and 4) weighted coefficients B, respectively. Moreover,

2
https://anonymous.4open.science/r/LEDR-8AB4

3
https://aws.amazon.com/wavelength/features/

4
https://github.com/alibaba/clusterdata

5
https://github.com/swinedge/eua-dataset

6
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Figure 6: System effectiveness with geo-obfuscation
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Figure 7: System effectiveness with-
out geo-obfuscation

we evaluate the performance of GEES in terms of system utility and

energy efficiency when no privacy protection mechanism is applied

in Set #2 to demonstrate the universality of GEES. In the default

configurations, users are uniformly distributed within the area,

where each user’s personalized NPLS is divided into a 10x10 grid,

with each 10 × 10 unit size. Additionally, the weights coefficients

are set as B2 = (0.25, 0.5, 0.25) by default. Table 1 provides an

overview of the experiment configurations. We repeat experiments

15 times each time a setting parameter changes and report the

average results.

5.2 Benchmark Systems
To evaluate GEES, a state-of-the-art edge demand response ap-

proach called EESaver [16] is involved. EESaver aims to reduce

energy consumption while maintaining efficient service provision

in a greedy manner. However, EESaver focuses exclusively on tack-

ling edge demand response issues, inadvertently neglecting user

privacy concerns. For a fair comparison, EESaver is enhanced to

EESaver-D, EESaver-L and EESaver-Gwith various privacy guar-

antees, i.e., DDP (in Section 4.1), Laplace [24] and Gaussian [27],

respectively. To further investigate the impact of various privacy

guarantees, we also combine our SGR algorithm (in Section 4.2)

with Laplace and Gaussian, i.e., SGR-L and SGR-G, in the experi-

ments for comparison. Details of Laplace and Gaussian differential

privacy can be found in Appendix D.

5.3 System Effectiveness
Figure 6 demonstrates the performance of GEES in experiment Set

#1.1, #1.2, #1.3, and #1.4 respectively, measured by the overall system

score in Eq. (13). Different components of the scores in user privacy,

system utility, and energy efficiency are presented individually to

constitute the overall system performance. In general, the results

show that GEES consistently achieves the highest system performance
in all cases, and our SGR-based approaches, i.e., SGR-L and SGR-

G, also outperform other approaches significantly across various

experimental configurations and sets.

Table 1: Parameter Settings

Users 𝑁 Edge Servers𝑀 Privacy 𝜖(ln) Coefficients B
Set #1.1 100, 150, ..., 300 30 2 B2
Set #1.2 150 10, 25, ..., 70 2 B2
Set #1.3 150 30 2, 4, ..., 10 B2
Set #1.4 150 30 2 B1 , B2 , B3 , B4
Set #2.1 100, ..., 300 30 NA B5
Set #2.2 150 10, ..., 70 NA B5
where B1 = (0.50, 0.25, 0.25), B2 = (0.25, 0.50, 0.25), B3 = (0.25, 0.25, 0.50), B4 =
(0.33, 0.33, 0.33), and B5 = (0.50, 0.00, 0.50).

Impact of system size. In practical applications, ensuring scalabil-

ity is of paramount importance. Thus, GEES must be able to scale

with system size, including the number of users and the number

of edge servers. With the increase in the number of users from

100 to 300 in Set #1.1, Figure 6(a) depicts that GEES significantly

outperforms SGR-L, SGR-G, EESaver-D, EESaver-L, EESaver-G by

50.36%, 67.18%, 7.74%, 34.86%, 63.34% in terms of user privacy on

average. This shows the superior performance of GEES in privacy

preservation. In terms of system utility and energy efficiency, the

performance of GEES reaches close to SGR-G, which achieves the

highest system utility and energy efficiency. Notably, while the PSO-

based EESaver (EESaver-P) approach ensures the second-highest

privacy, its usability significantly lags behind GEES by large mar-

gins. With an increasing number of edge servers (Set #1.2), Figure

6(b) demonstrates that the overall system performance of all ap-

proaches increases from 10 to 25, and stabilizes when the number

of edge servers exceeds 25. In addition, GEES continues to achieve

the highest system performance, especially user privacy, with com-

petitive system utility and energy efficiency.

Impact of privacy budget. Experimental results of Set # 1.3 demon-

strate the variations in the privacy budget 𝜖 from ln2 to ln10. Figure

6(c) depicts that user privacy achieved by all the approaches slightly

decreases while the system utility and energy efficiency achieved by

all the approaches increase, with the increase in the privacy budget

𝜖 . Serving as a pivotal parameter in differential privacy, 𝜖 quantifies

the intensity of privacy protection, where larger 𝜖 corresponds to

weaker privacy levels. Consequently, as 𝜖 increases, the average

user privacy decreases. Simultaneously, it grants the system greater

flexibility in utilizing users’ actual location, leading to better system

utility and energy efficiency. Again, GEES achieves the highest user

privacy and overall system performance. Comparatively, while the

baselines can maintain relatively similar levels of privacy, their

usability falls significantly short of GEES.

Impact of weighted coefficients. To evaluate the impacts of the

weighted coefficients in Section 3.3.2, i.e., B = {𝑏1, 𝑏2, 𝑏3}, Set # 1.4
sets various combinations of those coefficients. As illustrated by

Figure 6(d), under various configurationweights, GEES outperforms

other comparison approaches again. Based on the analysis above,

GEES has been proven to provide privacy protection for web users

while maintaining satisfactory system utility and energy efficiency.

Performance without privacy protection. Now, we investigate
the performance of GEES in scenarios without privacy protection

in Sets #2.1 and #2.2. In this case, weighted coefficients are set to

𝑏1 = 𝑏3 = 0.5, as the privacy weight is 𝑏2 = 0. The experimental

results are shown in Figure 7. In general, GEES still outperforms

EESaver with significant margins without privacy protection. In
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Figure 7, as the number of users rises from 100 to 300, GEES consis-

tently outperforms the EESaver in a stable way, with from 4.14% to

33.73% higher in the system performance. With the increase in the

number of edge servers from 10 to 70, the system performance of

both GEES and EESaver increases. Specifically, the system perfor-

mance of GEES is 16.28% higher than that of EESaver when 𝑀 is

10. Apparently, even in LEDR scenarios without privacy considera-

tion, GEES can still achieve higher performance, compared to the

state-of-the-art approach.

5.4 System Overhead
As discussed in Section 1, achieving low latency is a primary goal

of MEC. Consequently, the system overhead is an important metric

to evaluate the performance of GEES, as LEDR strategies must be

swiftly formulated to guarantee real-time service. Here, the sys-

tem overhead is measured by the time taken to formulate LEDR

strategies. Figure 8 shows the computation time taken by different

approaches to formulate LEDR strategies. GEES and SGR-based

approaches introduce an overhead of less than 0.2 seconds while

EESaver-based approaches take around 1 second. Specifically, as the

number of users rises from 100 to 300 in Figure 8(a), the computa-

tion time of GEES increases from 0.11s to 0.34s, and the SGR-based

approaches maintain relatively lower computation times among

these approaches. On the other hand, the EESaver-based approaches

show a steep increasing trend from 0.64s to 1.59s. As the number

of servers increased from 10 to 70 in Figure 8(b), the results ex-

hibit a similar pattern, with the computation time changing from

0.07s to 0.34s for GEES and from 0.38s to 1.87s for EESaver-based

approaches on average. Figure 8(c) demonstrates the computation

time when the privacy budget increases. Moreover, the system over-

heads of all the approaches remain stable, while GEES consistently

outperforms the EESaver-based approaches by 0.73s faster on av-

erage. Meanwhile, GEES demonstrates lower computational time

across different sets of weight coefficients in Figure 8(d).

Based on the analysis above, among all the approaches, GEES is

proven to solve the LEDR problem effectively and efficiently.

6 Related Work
6.1 Edge Demand Response
The proliferation ofMulti-access Edge Computing (MEC) has opened

a number of research topics, including edge-assisted federated learn-

ing [41], edge user allocation [15, 37] and edge data caching [42–44].

However, MEC faces new challenges in optimizing resource allo-

cation in dynamic environments with the concerns of both the

user privacy guarantee and the energy consumption. Recently, re-

searchers start paying attention to energy saving in MEC. Chen et

al. [6] propose an online auction mechanism via cloudlet control to

optimize energy allocation and resource utilization. This approach

solely takes into account the status of cloudlets, however, its scal-

ability is limited by addressing resource constraints separately in

real-world scenarios. Edgedr [37] surpasses the primary constraints

above by granting the flexibility to control the energy consumption

of each server individually. In pursuit of heightened performance

and utility in MEC, Cui et al. [16] propose EESaver, a mechanism

to reduce energy consumption while maintaining good system per-

formance. However, EESaver falls short of addressing the growing
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Figure 8: System Overhead

privacy concerns of users in the MEC environment. In fact, there

still exists a research gap to explore the privacy and energy issues

in edge demand response.

6.2 Location Privacy
Location privacy preservation has emerged as a critical concern

in order to adapt for location-sensitive applications, such as mo-

bile crowdsensing (MCS) [45, 46] and local business service sys-

tems (LBSS) [47]. Cloaking [17, 48] and homomorphic encryption

[49, 50] have been widely used in practice for protecting location

privacy due to their feasibility. Regrettably, such methods might

lead to significant location distortion and overhead in MEC with

high latency, thereby compromising service quality. Meanwhile, the

aforementioned methods are also sensitive to the adversary’s prior

knowledge. To mitigate this concern, more studies are involving

differential privacy methods to protect location privacy. Wang et al.

[23] introduce a new framework for task allocation in MCS, which

integrates differential geo-obfuscation to safeguard participants’

location privacy while optimizing worker travel distance. Yu et al.

[28] investigate a personalized error-bounded dynamic differen-

tial location privacy mechanism to defend privacy leakage against

Bayesian adversaries. In this paper, we leverage the advantages of

differential privacy in the LEDR problem, aiming to ensure user

privacy while maximizing system utility and energy efficiency.

7 Conclusion
This paper investigates the location privacy-preserving edge de-

mand response (LEDR) problem. To tackle the LEDR problem sys-

tematically and theoretically, we propose a novel system, named

GEES, to optimize the geo-obfuscation and edge demand response

strategies collectively. GEES leverages differential geo-obfuscation

to protect users’ location privacy, simultaneously ensuring sys-

tem utility and energy efficiency. GEES is verified via extensive

experiments against representative approaches under various pri-

vacy mechanisms. Experimental results demonstrate that GEES

outperforms other mechanisms with superior performance on user

privacy, system utility, and energy efficiency. As part of our future

work, we will delve into the potential vulnerabilities of GEES and

explore corresponding defense mechanisms.
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A Summary of Notations

Table 2: Summary of Notations

Notation Description

𝑎𝑘 = 𝑗 decision to allocate 𝑢𝑘 to 𝑠 𝑗

B = {𝑏1, 𝑏2, 𝑏3 } pre-configured weighted coefficients

𝑐 𝑗 coverage radius of 𝑠 𝑗

D = {𝑑1, ..., 𝑑𝑁 } set of user resource demands

𝑑𝑘 = {𝑑1

𝑘
, ..., 𝑑ℎ

𝑘
} 𝑢𝑘 ’ h-dimensional resource demand

G𝑘 𝑘 ’s privacy area proportion

L actual location distribution sets

𝑙𝑘 𝑢𝑘 ’s actual location

𝑙∗
𝑘

𝑢𝑘 ’s obfuscated location

ˆ𝑙𝑘 inferred location of 𝑢𝑘

𝑀 # of edge servers

𝑚 𝑗 activation status of 𝑠 𝑗

𝑁 # of users

N𝑗 (𝑎𝑘 ) # of users allocated to 𝑠 𝑗

P(𝑙∗ | 𝑙 ) geo-obfuscation mechanism assigning 𝑙 to 𝑙∗

Q( ˆ𝑙 | 𝑙∗ ) inference mechanism given 𝑙∗ to infer
ˆ𝑙

R = {𝑟1, ..., 𝑟𝑀 } set of edge server resources

𝑟 𝑗 = {𝑟 1𝑗 , ..., 𝑟
𝑞

𝑗
} 𝑠 𝑗 ’s q-dimensional resources

S = {𝑠1, ..., 𝑠𝑀 } set of edge servers

𝑠 𝑗 edge server 𝑗

U = {𝑢1, ...,𝑢𝑁 } set of users

𝑢𝑘 user 𝑘

V𝑘 𝑢𝑘 ’s inference error

Δ𝑋 effective user set

𝜁 neighboring protected location set of users.

𝛽 𝑗 start-up energy cost of activating 𝑠 𝑗

𝜏 cost of maintaining an activated server

𝜖 𝜖-differential privacy budget

𝜋𝑘 prior knowledge of 𝑢𝑘 ’s overall location

distribution

B NP-hardness of LEDR
Proof. Here, we systematically analyze the hardness of the

LEDR problem.Without loss of generality, we decompose our LEDR

problem into two sub-problems as discussed in 3.3, namely prob-

abilistic differential geo-obfuscation (PDG) and distortion-aware

demand response allocation (DDR). Afterward, we introduce the

𝑁𝑃-hard Bin Packing (BP) problem, which aims to pack items into

the minimum number of bins while respecting their capacities.

For the PDG sub-problem, let the sizes of the items be denoted

as 𝜔𝑖 and the capacities of the bins by 𝜏 . Given an instance of

the classic BP problem, we construct two distributions 𝑃 and 𝑄 as

follows:

𝑃 = {𝜔1, 𝜔2, . . . , 𝜔𝑛}, 𝑄 = {𝜏, 𝜏, . . . , 𝜏},
where 𝑃 represents the sizes of items and 𝑄 represents the capac-

ities of bins. The Wasserstein distanceW(𝑃,𝑄) between these

distributions represents the minimum cost of redistributing the

items (sizes in 𝑃 ) to satisfy the capacities (sizes in 𝑄). Therefore,

the above optimal transport problem remains 𝑁𝑃-hard following

the reduction.

Meanwhile, it is assumed that DDR problem is also a type of

classic BP problem, involving𝑚 bins S = {𝑠1, ..., 𝑠𝑚} and 𝑛 items

U = {𝑢1, ..., 𝑢𝑛} with the size of 𝑑𝑖 , where each bin are endowed

with capacities 𝑟 𝑗 . The conventional BP problem is concerned with

arranging items into minimal bins while adhering to the constraint:∑
𝑢𝑖 ∈U 𝑑ℎ

𝑖
≤ 𝑟ℎ

𝑗
,∀ℎ ≤ 𝑞, 𝑠 𝑗 ∈ S. In this scenario, edge servers and

users are projected to bins and items, respectively. Therefore, it can

be transformed into fill edge servers’ available resources by users’

resource demands.

Given polynomial-time reductions from the BP problem to both

subproblems, the LEDR problem is also 𝑁𝑃-hard.

□

C Privacy Performance Analysis
In this section, we theoretically and systematically analyze the

privacy performance of GEES against a typical inference method,

i.e., Bayesian inference. Bayesian Inference Attacks (BIA) [19] is a

widely-used method in privacy games to estimate the user’s actual

location. With the Bayes rule, the probability can be calculated as

follows:

Q( ˆ𝑙 | 𝑙∗ ) = 𝜋 ( ˆ𝑙 ) · P (𝑙∗ | ˆ𝑙 )
𝑃𝑟 {𝑙∗} =

𝜋 ( ˆ𝑙 ) · P (𝑙∗ | ˆ𝑙 )∑
𝑙 ∈L 𝜋 (𝑙 ) · P (𝑙∗ | 𝑙 ) (18)

Theorem 1. Let 𝜁 be the neighboring protected location set (NPLS)
of location 𝑙 , then the upper bound of posterior probability by Bayesian
adversaries can be obtained as 𝑒𝜖 · 𝜋 (𝑙 )∑

𝑥 ∈𝜁 𝜋 (𝑥 ) .

Proof.

𝑃𝑟 (𝑙 | 𝑙∗ ) = 𝜋 (𝑙 ) P (𝑙∗ | 𝑙 )∑
𝑥 ∈L 𝜋 (𝑥 )P (𝑙∗ | 𝑥 )

=
𝜋 (𝑙 ) P (𝑙∗ | 𝑙 )∑

𝑥 ∈𝜁 𝜋 (𝑥 ) P (𝑙∗ | 𝑥 ) +∑𝑥 ∈L\𝜁 𝜋 (𝑥 ) P (𝑙∗ | 𝑥 )

≤ 𝜋 (𝑙 ) P (𝑙∗ | 𝑙 )∑
𝑥 ∈𝜁 𝜋 (𝑥 ) P (𝑙∗ | 𝑥 )

=
𝜋 (𝑙 )∑

𝑥 ∈𝜁 𝜋 (𝑥 ) P (𝑙∗ | 𝑥 )/P (𝑙∗ | 𝑙 )

(19)

According to the definition of differential privacy in (1), and 0 <

𝑒−𝜖 < 1, we can also have that 𝑒−𝜖 ≤ P(𝑙
∗ | 𝑙 )

P (𝑙∗ | 𝑥 ) ≤ 𝑒𝜖

Therefore, the above can be derived as:

𝑃𝑟 (𝑙 | 𝑙∗ ) ≤ 𝜋 (𝑙 )
𝜋 (𝑥 ) + 𝑒−𝜖 · ∑𝑥 ∈𝜁 , 𝑥≠𝑙 𝜋 (𝑥 )

≤ 𝑒𝜖 · 𝜋 (𝑙 )∑
𝑥 ∈𝜁 𝜋 (𝑥 )

(20)

□

The upper bound of the posterior probability in (20) ensures

users’ absolute privacy by narrowing the effectiveness of inferences

from the untrusted servers. This implies that regardless of prior

knowledge, differential privacy can protect user privacy within

the budget 𝑒𝜖 . Therefore, it can guarantee the effectiveness and

robustness of differential geo-obfuscation.

Next, we consider the lower bound of privacy gain by inference,

representing the worst case in which the edge server surmises user

privacy within NPLS.

Theorem 2. The lower bound of privacy Gof a user is:

∥ min

ˆ𝑙 ∈L, 𝑠 𝑗 ∈J( ˆ𝑙 )

∑︁
𝑙 ∈𝜁

𝑃𝑟 (𝑙 | 𝑙∗ )∑
𝑥 ∈𝜁 𝑃𝑟 (𝑥 | 𝑙∗ ) ·

𝑑𝑖𝑠𝑡 ( ˆ𝑙, 𝑙 )
𝑐 𝑗

∥2
2

(21)
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Proof. Let z be the optimal inferred location, represented by:

𝑧 = argmin

𝑙 ∈L

∑︁
𝑥 ∈𝜁

𝑃𝑟 (𝑙 | 𝑙∗ )∑
𝑥 ∈𝜁 𝑃𝑟 (𝑥 | 𝑙∗ ) · 𝑑𝑖𝑠𝑡 (

ˆ𝑙, 𝑙 ) (22)

Then, the inference error of (4) becomes

V𝑘 =
∑︁
𝑥 ∈𝜁

𝑃𝑟 (𝑙 | 𝑙∗ )∑
𝑥 ∈𝜁 𝑃𝑟 (𝑥 | 𝑙∗ ) · 𝑑𝑖𝑠𝑡 (𝑧, 𝑙 )

=
∑︁
𝑥 ∈𝜁

𝜋 (𝑙 ) · P (𝑙∗ | 𝑙 )∑
𝑥 ∈𝜁 𝜋 (𝑥 ) · P (𝑙∗ | 𝑥 ) · 𝑑𝑖𝑠𝑡 (𝑧, 𝑙 )

(1)

≥ 𝑒−𝜖 ·
∑︁
𝑙 ∈𝜁

𝜋 (𝑙 )∑
𝑥 ∈𝜁 𝜋 (𝑥 ) · 𝑑𝑖𝑠𝑡 (𝑧, 𝑙 )

≥ 𝑒−𝜖 · min

ˆ𝑙 ∈𝜁

∑︁
𝑙 ∈𝜁

𝜋 (𝑙 )∑
𝑥 ∈𝜁 𝜋 (𝑥 ) · 𝑑𝑖𝑠𝑡 (

ˆ𝑙, 𝑙 )

(23)

Therefore, the lower bound of privacy G of a user is derived as:

G
(5)

≥ ∥ 𝑒−𝜖 · min

ˆ𝑙 ∈𝜁 , 𝑠 𝑗 ∈J( ˆ𝑙 )

∑︁
𝑙 ∈𝜁

𝜋 (𝑙 )∑
𝑥 ∈𝜁 𝜋 (𝑥 ) ·

𝑑𝑖𝑠𝑡 ( ˆ𝑙, 𝑙 )
𝑐 𝑗

∥2
2

(24)

Theorems 1 and 2 collectively delineate the capability of differ-

ential geo-obfuscation method of GEES in countering Bayesian

adversaries, which is contingent on the prior distribution of users

in NPLS. This signifies that geo-obfuscation based on differential

privacy can safeguard user privacy. Simultaneously, edge servers

can enhance the overall service performance by gaining a certain

degree of knowledge regarding users through Bayesian inferences

with observations and prior knowledge.

□

D Baselines in Differential Privacy
Laplace. Laplace-based differential obfuscation mechanism [24]

introduces Laplacian noise to users’ actual location. Mathematically,

this will be expressed formally as:

𝑃 (𝑙∗ | 𝑙 ) ∝ 𝑒−𝜖
𝑑𝑖𝑠𝑡 (𝑙,𝑙∗ )
D(L)

(25)

where 𝑑𝑖𝑠𝑡 (𝑙, 𝑙∗) represents the distance between the actual loca-

tion 𝑙 and a nearby obfuscated location 𝑙∗, D(L) is the maximum

distance between any two locations in the target area L, and 𝜀 is a
privacy budget.

Gaussian. The Gaussian mechanism[27], as a relaxed mecha-

nism in differential privacy, perturbs an actual location by adding

noise sampled from a Gaussian distribution, which is mathemati-

cally represented by:

𝑃 (𝑙∗ | 𝑙 ) ∝ 𝑒−𝜖 ·
𝑑𝑖𝑠𝑡 (𝑙,𝑙∗ )2

2𝜎2
(26)

where𝑑𝑖𝑠𝑡 (𝑙, 𝑙∗) represents the distance between the actual location
𝑙 and a nearby obfuscated location 𝑙∗, and𝜎 is the standard deviation

of the Gaussian noise.
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