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ABSTRACT

Vision–Language Models (VLMs) show promise as zero-shot goal-conditioned
value functions, but their frozen pre-trained representations limit generalization
and temporal reasoning. We introduce VITA, a zero-shot value function learning
method that enhances both capabilities via test-time adaptation. At inference, a
lightweight adaptation module is updated via a gradient step on a meta-learned
self-supervised loss, such that each test-time update improves value estimation. By
updating sequentially over a trajectory, VITA encodes history into its parameters,
addressing the temporal reasoning limitations. To mitigate shortcut learning, we
propose a dissimilarity-based sampling strategy that selects semantically diverse
segments of the trajectory during training. In real-world robotic manipulation tasks,
VITA generalizes from a single training environment to diverse out-of-distribution
tasks, environments, and embodiments, outperforming the state-of-the-art zero-shot
method using autoregressive VLMs. Furthermore, we demonstrate that VITA’s
zero-shot value estimates can be utilized for reward shaping in offline reinforcement
learning, resulting in multi-task policies on the Meta-World benchmark that exceed
the performance of those trained with the simulation’s fuzzy-logic dense rewards.

1 INTRODUCTION

Vision-Language Models (VLMs) have demonstrated strong generalization across diverse tasks and
domains by learning from large-scale, unstructured web data without human supervision (Radford
et al., 2021; Alayrac et al., 2022). In contrast, despite significant advances in learning generalist
policies for robotics (Brohan et al., 2023; Ghosh et al., 2024) and 3D virtual environments (Reed
et al., 2022), state-of-the-art methods have yet to achieve comparable success due to their reliance
on expert demonstrations (Ho & Ermon, 2016). World models (Ha & Schmidhuber, 2018; Hafner
et al., 2021; Matsuo et al., 2022) have emerged as a promising solution, enabling agents to learn
in simulated environments, with applications spanning robotics (Yang et al., 2023; Bar et al., 2024;
Agarwal et al., 2025), autonomous driving (Hu et al., 2023), and video games (Bruce et al., 2024).
Despite the potential of world models to generate realistic visual trajectories in diverse, open-ended
environments (Hughes et al., 2024; Silver & Sutton, 2025), a critical challenge remains: how can
agents effectively learn from videos at scale without relying on human supervision?

A line of research explores policy learning directly from expert visual trajectories by inferring actions
from visual transitions (Edwards et al., 2019; Baker et al., 2022; Schmidt & Jiang, 2024). These latent
actions can be mapped to executable controls in deployment, although this remains a challenging
task in practice. In parallel, other work focuses on learning a universal goal-conditioned value
function, using it as a zero-shot reward shaping and supervision signal for reinforcement learning
(RL) and imitation learning, respectively (Chen et al., 2021; Ma et al., 2022). In this framework,
goal-conditioned value estimation can be formulated as: predicting how far an agent has progressed
toward completing a task, based on visual observations and a natural language task description (Lee
et al., 2021a; Ma et al., 2023b; 2024; Dashora et al., 2025).

Prior work has employed contrastive VLMs (Radford et al., 2021) for zero-shot reward shaping,
leveraging the similarity between task descriptions and visual observations in a shared multimodal
representation space to ground progress in semantic context (Ma et al., 2023b; Baumli et al., 2023;
Rocamonde et al., 2024). However, these methods fail to capture the temporal context needed
to disambiguate visually similar states that occur at different stages of a task (e.g., folding vs.
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unfolding a shirt). In contrast, autoregressive VLMs (Alayrac et al., 2022) incorporate temporal
context by conditioning on the entire visual trajectory within the prompt; however, they inherit a
bias toward monotonically increasing predictions from the chronologically ordered datasets used in
pre-training (Ma et al., 2024). Both VLM architectures rely on pre-trained representations (Ma et al.,
2023b; 2024; Baumli et al., 2023; Rocamonde et al., 2024; Du et al., 2023) for zero-shot prediction,
which limits both their generalization and their temporal reasoning (Pătrăucean et al., 2023). To this
end, recent work has explored domain-specific fine-tuning (Zhang et al., 2025; Ma et al., 2023b) as
well as few-shot learning (Sontakke et al., 2023; Ma et al., 2024).

In this work, we introduce VITA, a zero-shot value function learning method that enhances both
generalization and temporal reasoning through test-time adaptation, outperforming the state-of-the-art
zero-shot approach (Ma et al., 2024) on real-world robotic manipulation tasks. Unlike prior methods
that require access to target-task trajectories or few-shot demonstrations, VITA adapts online to both
the semantic and temporal context of trajectories. At inference, a lightweight adaptation module is
updated in negligible time with a gradient step on a meta-learned self-supervised loss (Sun et al.,
2024), such that each test-time update improves value function estimation (Finn et al., 2017). By
updating sequentially over a test trajectory, the value function estimator encodes trajectory history into
its parameters (Sun et al., 2024), thereby addressing the temporal reasoning limitations of prior work.
To mitigate shortcut learning (Geirhos et al., 2020), we introduce a dissimilarity-based sampling
strategy that encourages reliance on semantic cues, supported by empirical evidence. Our evaluation
demonstrates the effectiveness of our method across core capabilities of value function estimation:
generalization under distribution shifts, differentiation between expert and non-expert trajectories,
and reward shaping for offline RL (Levine et al., 2020).

We summarize our key contributions as follows:

• We propose VITA, a test-time adaptation method that enhances the generalization and
temporal reasoning of contrastive VLMs for zero-shot value function estimation, without
requiring few-shot or task-specific demonstrations.

• VITA generalizes from a single training environment to diverse out-of-distribution tasks,
environments, and embodiments in robotic manipulation, outperforming the state-of-the-art
zero-shot method (Ma et al., 2024).

• VITA’s zero-shot value estimates for reward shaping yield offline RL policies on the
Meta-World benchmark for multi-task learning (MT10) that surpass those trained with the
simulation’s fuzzy-logic dense rewards (Yu et al., 2020).

2 PRELIMINARIES

2.1 GOAL-CONDITIONED VALUE FUNCTIONS

In video trajectories, task progress estimation is equivalent to learning a goal-conditioned value func-
tion under reward functions that measure task completion. Therefore, we formulate goal-conditioned
value function that predicts the degree of task completion from visual-language representations as
task progress estimation. Formally, the value function is defined as: V : O × G → [0, 1] which
maps an observation ot ∈ O and a goal specification g ∈ G to a scalar value indicating the predicted
progress toward goal completion. We set V (ot; g) = 0 to correspond to the start of the task and
V (ot; g) = 1 to indicate completion. Task progress is commonly aligned with temporal position in
expert demonstrations, based on the assumption that such trajectories exhibit monotonically increas-
ing progress toward goal completion (Lee et al., 2021a; Ma et al., 2024; Dashora et al., 2025). Given
an expert trajectory τ = (o1, . . . , oT ) ∼ πE , temporal progress is defined using normalized timestep
indices: V πE (ot; g) =

t
T where T is the trajectory length. This provides supervision for learning a

goal-conditioned value function V , which can generalize beyond expert data to estimate task progress
from arbitrary observation-goal pairs.

2.2 TEST-TIME TRAINING FOR SEQUENCE MODELING

Test-time training (TTT) (Sun et al., 2020) is a test-time adaptation method that treats inference as
a self-supervised learning task (Goodfellow et al., 2016), updating model parameters on each test
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Vision-Language
 Encoder

"Put the red thing in
the silver pot"

"Place the yellow
object inside the pot"

1. Learning Value Function in In-Distribution Environments via Meta-Learning

"Fold the cloth from left to right"

Value Function
Estimator

50%0% 100%

2. Zero-shot Value Function for OOD Test Trajectory via Test-time Adaptation 

MLP
"Take the silver bowl

lid on the table"

Figure 1: Overview of VITA. VITA learns goal-conditioned value functions via meta-learning and
achieves zero-shot generalization to out-of-distribution trajectories through test-time adaptation.

instance without access to labels. While originally proposed for static image classification (Sun
et al., 2020), recent work extends TTT to sequence modeling (Sun et al., 2024; Wang et al., 2023),
where a parametric adaptation module fadapt is updated at each timestep using a gradient step on
a self-supervised loss. The adaptation parameters thereby serve as an implicit memory, encoding
sequence history into the updated parameters. Sun et al. (2024) further propose to meta-learning the
self-supervised task, following the gradient-based meta-learning paradigm (Finn et al., 2017). In this
setting (Sun et al., 2024), the self-supervised loss is parameterized by learnable linear projections
and trained to minimize downstream prediction loss after a test-time update, rather than directly
minimizing it. In this work, we apply TTT to goal-conditioned value function learning, where
temporal context is captured through sequential updates, and the self-supervised task is meta-learned
to improve value estimation rather than being predefined a priori.

3 VITA: ZERO-SHOT VALUE FUNCTIONS VIA TEST-TIME ADAPTATION

3.1 MODEL ARCHITECTURE

Our goal-conditioned value function estimator comprises three modules: (1) a multimodal encoder
that extracts joint visual-language representations from visual trajectories and their task descriptions;
(2) an adaptation module updated at test-time using a self-supervised loss that is meta-learned to
improve value estimation; and (3) a regression head that predicts value estimates.

3.1.1 MULTIMODAL INPUT REPRESENTATION

We use a frozen contrastive vision-language encoder, CLIP (Radford et al., 2021), to extract repre-
sentations from visual observations and goal descriptions. Given a visual trajectory τ = (o1, . . . , oT )
and a language task description g, we concatenate their representations at each timestep t to form
a sequence of joint multimodal representations (z1, z2, . . . , zT ), where zt = [ϕv(ot);ϕg(g)] ∈ R2d,
and ϕv and ϕg denote the visual and language encoders, respectively. CLIP is pre-trained with a
contrastive objective to align paired image-text inputs in a shared representation space (Radford
et al., 2021). As a result, representations of visual observations that are semantically closer to goal
completion tend to be closer to the representations of the goal description.
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3.1.2 TEST-TIME ADAPTATION

To adapt multimodal representations to both semantic and temporal context, we employ an adaptation
module fadapt following the test-time training paradigm described in 2.2. At inference, the parameters
of fadapt are updated online via a gradient step on a meta-learned self-supervised loss ℓself. This loss
is formulated as a reconstruction objective using learnable linear projections PK and PV , which are
meta-learned during training to improve value estimation after test-time adaptation. In particular,
given PK ∈ Rd′×d that generates a perturbed input view and PV ∈ Rd′×d for the target, the
self-supervised loss is defined as:

ℓself(zt; θt−1, PK , PV ) = ∥fadapt(PKzt; θt−1)− PV zt∥2 . (1)

where θt−1 denotes the parameters of fadapt before test-time adaptation. At each timestep t, the
parameters are updated by

θt = θt−1 − η∇θℓself(zt; θt−1), (2)
with learning rate η. Through sequential updates, fadapt implicitly retains information from past visual
observations, thereby capturing temporal context.

3.1.3 ZERO-SHOT VALUE FUNCTION ESTIMATOR

After test-time adaptation, a meta-learned linear projection PQ ∈ Rd′×d maps the input zt into
an adaptation space Rd′

. Then, this representation is passed through the adaptation module fadapt,
followed by a regression head h that outputs predicted values of the goal-conditioned value function:

V (zt; g) = h(fadapt(PQzt; θt)) (3)

The regression head h is a two-layer multilayer perceptron (MLP), following value-function estimator
architectures used in deep reinforcement learning (Espeholt et al., 2018). The network is trained
using normalized progress labels yt from expert demonstrations as described in Section 2.1, with a
supervised prediction loss Lpred defined as the mean squared error between predicted values V (zt; g)
and targets yt. At inference, the regression head h remains frozen, while the adaptation module fadapt
is updated online using the self-supervised objective. This enables the value function estimator to
generalize in a zero-shot setting without requiring task-specific visual trajectories.

3.2 TRAINING PROCEDURE

We train the value function estimator with gradient-based meta-learning, optimizing a self-supervised
loss ℓself such that test-time adaptation improves the supervised prediction loss Lpred (Sun et al., 2024).
Training is performed on diverse sub-trajectories selected via dissimilarity-based sampling, which
mitigates shortcut learning and encourages reliance on semantic and temporal cues.

3.2.1 META-LEARNING

During training, the adaptation module fadapt is updated online at each timestep using the self-
supervised loss ℓself. Following the gradient-based meta-learning paradigm (Finn et al., 2017), we
differentiate through these adaptation updates with respect to the supervised prediction loss Lpred.
This optimizes the initialization θ0 of fadapt, the linear projections PK , PV , PQ, and the regression
head h. Formally, the total training loss combines the supervised prediction loss Lpred with the
self-supervised loss ℓself, weighted by a scalar λ. The learned parameters θ0 serve as the initialization
for adaptation at inference time. This approach enables the value function estimator to learn to adapt
its internal representations at test time that improves value function estimation.

3.2.2 DISSIMILARITY-BASED SAMPLING

Expert visual trajectories often contain consecutive frames that are highly redundant, as noted in
prior work on video action recognition (Wang et al., 2018). Such redundancy can encourage the
value function estimator to exploit shortcut cues (Geirhos et al., 2020; Lee et al., 2021b), for example,
by overfitting to frequently occurring late-stage visual patterns. To mitigate this, we propose a
dissimilarity-based sampling strategy that constructs mini-batches from the most visually diverse
sub-trajectories within each trajectory. This increases intra-batch variance and acts as a form of
importance sampling, emphasizing underrepresented but semantically meaningful segments.
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(a) “Put red object into silver pot.” (b) “Fold clothes from left to right.”

(c) “Sweep into pile.” (d) “Put orange object in drawer.”

Figure 2: Examples of visual trajectories paired with task descriptions under different distribution
shifts. (a) In-distribution. (b, c) Environment shift. (d) Embodiment and environment shift.

Formally, given a sequence of multimodal representations {z1, . . . , zT }, we extract fixed-length
sub-trajectories using a sliding window of size wtr and stride s, yielding a candidate set W . A diverse
subset of size k maximizes pairwise dissimilarity:

W ′ = argmax
U⊂W, |U|=k

∑
{wi,wj}∈(U2)

∥wi − wj∥22, (4)

where each wi is a sub-trajectory of length wtr. Directly solving Eq. 4 is intractable, requiring
enumeration of all

(|W|
k

)
subsets. To approximate this objective efficiently, we adopt a scoring-based

heuristic, assigning each window w ∈ W a score equal to its total dissimilarity with all others:

s(w) =
∑
v∈W

∥w − v∥22, W ′ = argmax
U⊂W, |U|=k

∑
w∈U

s(w). (5)

Thus, by computing a diversity score s for each window and selecting the k highest-scoring windows,
we obtain a heuristically diverse subset with polynomial-time complexity. The overhead is negligible
compared to model training, as shown by our complexity analysis in Appendix G. We empirically
validate dissimilarity-based sampling against full-trajectory sampling in the ablation study (Section
4.6.1), showing improved ability to distinguish expert from non-expert visual trajectories.

4 EXPERIMENTS

Our evaluation demonstrates the effectiveness of VITA across core capabilities of goal-conditioned
value functions: (i) generalization in value estimation for real-world robotic manipulation under
distribution shifts in task, environment, and embodiment; (ii) differentiation between expert and
non-expert visual trajectories in real-world robotic manipulation tasks; (iii) effective zero-shot reward
shaping for offline RL in Meta-World MT10, a simulated benchmark for multi-task robot learning.

4.1 TRAINING SETUP

We train VITA on expert visual trajectories paired with natural language task descriptions from
the BridgeData V2 dataset (Walke et al., 2023), which spans a wide range of manipulation tasks,
environments, and robot embodiments. In particular, we use a curated subset consisting of 2,986
expert demonstrations covering pick-and-place manipulation tasks, but it does not include folding,
sweeping, or stacking tasks. All demonstrations are collected using a single robot embodiment
(WidowX 250) across 4 configurations of the ToyKitchen environment. An additional 287 expert
demonstrations are held out as the in-distribution test set, referred to as tk pnp. Appendix A includes
examples from the training set. We use OpenCLIP ViT-B/32 as the frozen backbone for encoding
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video frames and task descriptions. The training objective combines Lpred with Lself, weighted by
λself = 0.5. During training, we use dissimilarity-based sampling with window size wtr = 8, number
of sub-trajectories k = 8, and stride s = 1. At test time, we use one gradient step (tep = 1) on Lself
with learning rate η = 0.1. Further details and hyperparameter sweeps are reported in Appendix D.

4.2 BASELINES

We compare VITA against value functions based on contrastive and autoregressive zero-shot VLMs.
VLM-CL computes zero-shot value estimates from cosine similarity between CLIP representations
of each frame and task description (Baumli et al., 2023). VLM-RM regularizes CLIP embeddings
by projecting features along the direction from a generic reference prompt to the task prompt (Ro-
camonde et al., 2024). CLIP-FT trains a supervised regression head on frozen CLIP multimodal
representations. GVL (Ma et al., 2024) is the state-of-the-art zero-shot value function that leverages
autoregressive VLMs. In our experiments, GVL-0S refers to the zero-shot setting, where the VLM
is prompted with only the test trajectory and task description. GVL-1S corresponds to a one-shot
in-context setting, where a full shuffled trajectory from the training distribution, along with its
progress labels, is provided as an example. We follow GVL in using Gemini 1.5 Pro (gemini-1.5
Pro-latest) (Team et al., 2024) with its proposed prompt template. We also tested Qwen-VL
2.5 (Yang et al., 2024), which failed to overcome temporal bias, and GPT-4o (Hurst et al., 2024), which
refused to produce value estimates. Additional implementation details are provided in Appendix D.

4.3 EVALUATING GENERALIZATION UNDER DISTRIBUTION SHIFTS

Table 1: Validation VOC scores for value function estimation under distribution shifts relative to the
training distribution. ID = In-Distribution, ES = Environment Shift, EM = Embodiment Shift, ES &
EM = Environment and Embodiment Shift.

Shift Dataset VLM-CL VLM-RM CLIP-FT GVL-0S GVL-1S VITA

ID tk pnp 0.038 0.029 0.251 0.269 0.252 0.782

ES

lm pnp 0.017 0.033 0.149 0.305 0.272 0.725
td fold 0.031 0.072 0.152 0.326 0.318 0.709
ft fold 0.108 0.099 0.162 0.331 0.387 0.658
rd fold 0.095 0.055 0.126 0.372 0.406 0.606
ms sweep -0.129 -0.226 0.148 0.158 0.150 0.490

EM
dt tk pnp 0.042 -0.041 0.149 0.258 0.211 0.820
dt tk stack 0.035 0.046 0.099 0.254 0.277 0.708

ES & EM
dt ft stack 0.026 0.028 0.049 0.212 0.249 0.698
dt rd pnp 0.023 0.041 0.211 0.329 0.316 0.695

We evaluate the ability of progress estimators to generalize across novel environments, tasks, and
robot embodiments using subsets of BridgeData V2 curated to introduce variation along these axes.
Environment shifts involve changes in scene layout or background. For example, lm pnp is a
pick-and-place task in front of a laundry machine, while td fold, ft fold, and rd fold feature
cloth folding on different surfaces. ms sweep introduces a long-horizon sweeping task in a confined
tray. Embodiment shifts are evaluated using the DeepThought robot, which differs from the training
embodiment (WidowX 250) in both morphology and camera perspective. dt tk pnp (pick-and-
place) and dt tk stack (stacking) retain the in-distribution environment with a new embodiment,
while dt ft stack (stacking) and dt rd pnp (drawer pick-and-place) involve both embodiment
and environment shifts. Each dataset includes 200 expert trajectories with task descriptions, except
for ms sweep, which contains 100 due to its size limitation. Appendix B provides a full description
of our evaluation datasets. We evaluate the performance of a value function estimator using the
Value Order Correlation (VOC) metric (Ma et al., 2024), which measures the alignment between
the predicted progress towards task completion and the chronological order of the frames in a visual
trajectory. Formally, let p1, . . . , pT denote the predicted progress values for a trajectory of T frames,
and let rt = t represent the temporal index. VOC is defined as the Spearman rank correlation ρs
between the predicted values and the temporal indices.
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Our experiments show that VITA consistently outperforms both zero- and one-shot GVL, highlighting
the importance of preserving temporal order in value function estimation. CLIP-FT performs
comparably to GVL on the in-distribution task but fails to generalize to out-of-distribution settings.
Both VLM-CL and VLM-RM perform poorly, likely due to their lack of temporal modeling. For
GVL-0S and GVL-1S, in some cases, in-context examples improve performance, while in others,
they provide no benefit or even degrade performance. Both GVL methods perform well on folding
tasks (td fold, ft fold, rd fold), but fail to achieve comparable performance on stacking
(dt tk stack, dt ft stack) and pick-and-place (dt tk pnp, lm pnp) tasks, suggesting that
the autoregressive VLM used in GVL may be biased toward folding-like robotic manipulations.
In contrast, VITA achieves consistent performance across all task types and distribution shifts,
indicating stronger generalization than in-context learning. All methods, except CLIP-FT, perform
worse on the long-horizon task ms sweep, but VITA achieves the highest VOC score. Under
embodiment shifts, VITA demonstrates strong generalization. In dt tk pnp, which uses a different
robot embodiment but shares the same environment and tasks as the training set, VITA exceeds
their in-distribution performance, indicating that test-time adaptation can effectively transfer across
robot embodiments. In contrast, GVL-1S performs poorly on both dt tk pnp and dt tk stack,
suggesting that few-shot learning fails to generalize under embodiment shifts in our evaluation setup.

4.4 DIFFERENTIATING EXPERT FROM NON-EXPERT TRAJECTORIES

Beyond generalization, we evaluate VITA’s robustness by testing its ability to distinguish expert
from suboptimal visual trajectories, assigning lower progress scores to the latter. To this end, we
compare model predictions on expert and scripted (non-expert) visual trajectories collected from
the same in-distribution setting of BridgeData V2. The scripted trajectories are generated in the
ToyKitchen environment using a heavily randomized controller (Walke et al., 2023), under the
same embodiment and environmental configuration as the expert demonstrations. These include
pick-and-place tasks involving object categories that may overlap with the training set, such as
general objects (sc pnp obj), rigid items (sc pnp robj), soft toys (sc pnp stoy), and utensils
(sc pnp uten). While these trajectories match the training distribution in task, embodiment, and
environment, their behavior deviates from the smooth and monotonic progress typically exhibited
by expert demonstrations. Appendix C includes examples from the scripted dataset. As scripted
datasets are generated by a randomized controller, they are not designed to reflect quantifiable levels
of suboptimality. Nonetheless, an effective value function estimator should assign lower VOC scores
to suboptimal trajectories relative to expert ones when evaluated in the same setting. We measure
discriminative success with BinVOC, a binary evaluation metric defined as 1 [VOCexp > VOCsubopt],
which is 1 when expert trajectories achieve higher VOC than suboptimal ones and 0 otherwise.

The model’s discriminative performance is evaluated using BINVOC, averaged over all scripted
datasets. Performance on expert visual trajectories (VOCexp) is measured on the in-distribution
test set tk pnp, which features pick-and-place tasks similar to those in the scripted evaluation.
VITA, GVL-0S, and GVL-1S achieve perfect discrimination, consistently assigning higher VOC
scores to expert trajectories across all tasks. CLIP-based baselines (VLM-CL, VLM-RM) likely
underperform due to the absence of temporal modeling. CLIP-FT performs more reliably, but fails
on one task, suggesting sensitivity to object distribution shifts.

4.5 ZERO-SHOT REWARD SHAPING FOR OFFLINE RL

We evaluate our value function estimator on the Meta-World MT10 benchmark (Yu et al., 2020),
which consists of ten diverse robotic manipulation tasks, including pick-and-place, door opening, and
pushing. VITA is trained on real-world robotic data and evaluated zero-shot in this simulated setting.
For each task, we generate 20 expert visual demonstrations using Meta-World’s expert policies. The
goal-conditioned value estimator is then used to define a dense reward for each visual observation.
Policies are trained with Implicit Q-Learning (IQL) (Kostrikov et al., 2021) in the offline RL setting.
We repeat expert data generation and policy training across 10 random seeds. After training, each
multi-task policy is evaluated on 20 rollouts per task, and we report the average return across episodes
for each (task, seed) pair. We report the interquartile mean (IQM) across all pairs, together with 95%
stratified bootstrap confidence intervals, following the evaluation protocol proposed by Agarwal et al.
(2021). The training details and evaluation protocol are further described in Appendix E.
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Method BinVOC

VLM-CL 0.25
VLM-RM 0.00
CLIP-FT 0.75
GVL-0S 1.00
GVL-1S 1.00
META-WL –
VITA 1.00

(a) Expert vs. Non-Expert (BinVOC).

Method IQM 95% CI

VLM-CL 0.760 [0.722, 0.791]
VLM-RM 0.746 [0.718, 0.771]
CLIP-FT 0.785 [0.759, 0.809]
GVL-0S – –
GVL-1S – –
META-WL 0.779 [0.750, 0.804]
VITA 0.815 [0.785, 0.838]

(b) Offline RL on MT10 (IQM).

Table 2: (a) Success in distinguishing expert from scripted robot demonstrations, measured by average
BinVOC across 4 in-distribution scripted datasets. (b) Offline RL performance on the Meta-World
MT10 benchmark measured by interquartile mean (IQM) with 95% stratified bootstrap CIs.

Table 2 reports performance on MT10. VITA achieves the highest IQM return (0.815), outperforming
all CLIP-based baselines. A direct comparison with GVL is infeasible at scale, since it relies on
Gemini-1.5, a proprietary autoregressive VLM with prohibitively high inference cost in RL settings,
while open-source alternatives did not yield reliable progress estimates in our preliminary tests. We
also report the fuzzy-logic dense reward provided by Meta-World (META-WL), which achieves
0.779. Despite its strong performance, META-WL is outperformed by VITA, indicating that a value
estimator trained on real-world data can generalize effectively to simulated reward shaping.

4.6 ABLATION STUDIES

4.6.1 EFFECT OF DISSIMILARITY-BASED SAMPLING ON DISCRIMINATIVE PERFORMANCE

We compare the impact of different sub-trajectory sampling strategies used during training to improve
test-time adaptation. Full-trajectory sampling (Sun et al., 2024) computes the adaptation loss over all
overlapping sub-trajectories with stride s = 1, which in our setup leads to overfitting to global tempo-
ral shortcuts. Random sampling improves diversity by selecting sub-trajectories uniformly, but lacks
semantic diversity. In contrast, dissimilarity-based sampling explicitly promotes semantic diversity,
resulting in better generalization. Our proposed method, which selects sub-trajectories that maximize
pairwise dissimilarity, outperforms both full-trajectory and random sampling in differentiating expert
and non-expert visual trajectories. For further details, please refer to Appendix F.1.

4.6.2 TRAJECTORY-LEVEL VS. STEP-BY-STEP ADAPTATION.

We provide an additional analysis that shows the impact of step-by-step adaptation compared to
trajectory-level adaptation and the benefit of implicit memory. We compare our implicit adaptation
approach, TTT, which updates the model at each step, with a trajectory-level adaptation method, where
updates are made once per trajectory. Across all datasets, step-by-step (online) adaptation consistently
outperforms trajectory-level (offline) adaptation, demonstrating the advantage of dynamic updates
at each timestep. Trajectory-level updates have a limited impact on the model’s ability to adapt
compared to the more granular, step-by-step approach. We provide the full analysis in Appendix F.2.

5 RELATED WORK

5.1 VLMS AS VALUE FUNCTION ESTIMATORS

Contrastive VLMs have been applied as zero-shot reward models (Baumli et al., 2023; Rocamonde
et al., 2024) and goal-conditioned value functions (Ma et al., 2023b; 2024), using frame-level
similarity scores but lacking temporal modeling and domain adaptation. Some works fine-tune
CLIP on domain-specific video datasets (Fan et al., 2022; Jiang et al., 2024) or apply few-shot
learning (Sontakke et al., 2023) to generate dense rewards, but both require task-specific supervision
and depart from the zero-shot setting. VLC (Alakuijala et al., 2024), DecisionNCE (Li et al.,
2024), and LIV (Ma et al., 2023b) pursue multimodal pretraining to learn language-conditioned value
functions, relying primarily on scale for generalization. ReWiND (Zhang et al., 2025) instead employs
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frozen unimodal encoders with a cross-modal sequential aggregator trained on large robot datasets,
explicitly modeling temporal progress but still requiring substantial pretraining and task-specific
fine-tuning. Autoregressive models (Alayrac et al., 2022) apply in-context learning over trajectories,
used for success detection (Du et al., 2023) and progress prediction (GVL) (Ma et al., 2024). GVL
mitigates monotonic bias from ordered pretraining data by shuffling frames at inference, but this
discards temporal order, which is essential to disambiguate similar states. Our approach preserves
chronological order while adapting online, capturing temporal context without such shortcuts.

5.2 TEST-TIME ADAPTATION

Test-time adaptation methods provide parameter-efficient solutions for adapting VLMs without the
need for full fine-tuning. Prompt-based methods, for example, optimize model parameters at test
time based on the task context, although their underlying mechanisms are opaque (Zhou et al., 2022;
Khattak et al., 2023; Ma et al., 2023a). Lim et al. (2025) suggested that CLIP representations
could support test-time adaptation, based on the observation that CLIP encodes human-interpretable
concepts discovered via mechanistic interpretability (Bricken et al., 2023). CLIP-based similarity has
also been used as a reward signal, with weights optimized at test time via reinforcement learning (Zhao
et al., 2024). Another approach is test-time training (Sun et al., 2020), where an adaptation module is
updated at each timestep via a self-supervised loss. Unlike meta-reinforcement learning methods (Finn
et al., 2017; Bauer et al., 2023), which require task-specific adaptation episodes during training,
test-time training enables direct online adaptation during inference, without the need for task labels.

6 DISCUSSION, LIMITATIONS, AND FUTURE WORK

Discussion. We show that test-time adaptation enables value functions for robotic manipulation to
generalize across distribution shifts in task, environment, and embodiment. By updating sequentially
over a trajectory, VITA encodes history into its parameters, capturing temporal and semantic context
more effectively than CLIP-based baselines and in-context learning with autoregressive VLMs. This
may be due to the fact that in-context learning approaches, despite their generalization capabilities,
are not explicitly trained for progress estimation, which requires temporal reasoning over visual
trajectories. In addition, VITA can distinguish expert from non-expert visual trajectories and perform
zero-shot reward shaping, enabling downstream applications in RL and imitation learning.

Limitations. Test-time adaptation improves generalization of zero-shot progress estimation across
unseen tasks and environments in our experiments, but it can still face challenges in settings with
high execution variability or extended durations. Although the adaptation overhead is negligible due
to the lightweight adaptation module, updating a value function estimator at every timestep may be
potentially unsafe during deployment, limiting applicability in real-time scenarios.

Future Work. We plan to explore alternative approaches for test-time adaptation of vision–language
models, particularly in the context of training agents within world models. While we provide empirical
evidence that dissimilarity-based sampling mitigates shortcut learning, a theoretical analysis of how
diversity-based sampling influences shortcut learning remains a promising direction. This lies beyond
the scope of our core contribution, which introduces a value function estimator that meta-learns a
test-time adaptation mechanism to improve zero-shot performance and temporal reasoning.

9
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A TRAINING DATASET

(a) ”Put red object into silver pot.” (b) ”Take silver bowl lid from table.”

(c) ”Place yellow object inside pot.” (d) ”Move red object from pot to left burner.”

Figure 3: Each subfigure shows the start and end frames from an expert demonstration used for
training, along with its natural language task description. Demonstrations are collected across four
distinct ToyKitchen environments.

B EVALUATION DATASETS

Table 3: Dataset descriptions with task type, environment, and shift breakdown relative to our training
distribution. Checkmarks indicate a distribution shift along the task, environment, or embodiment
dimension.

Dataset Task Type Environment Task Environment Embodiment
tk pnp pick-and-place toy kitchen

lm pnp pick-and-place laundry machine ✓
td fold fold cloth tabletop (dark wood) ✓ ✓
ft fold fold cloth folding table ✓ ✓
rd fold fold cloth robot desk ✓ ✓
ms ft sweep sweep folding table (tray) ✓ ✓

dt tk pnp pick-and-place toy kitchen ✓
dt tk stack stack blocks toy kitchen ✓ ✓

dt ft stack stack blocks folding table ✓ ✓ ✓
dt rd pnp pick-and-place robot desk (drawer) ✓ ✓
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(a) dt tk ms: ”Move yellow object from burner
to center.”

(b) dt tk stack: ”Place green cube on top of
arch.”

(c) dt ft stack: ”Move egg to table.” (d) dt rd pnp: ”Put orange object in drawer.”

Figure 4: Each subfigure shows the start and end frames from an evaluation trajectory under embodi-
ment shift, along with its natural language task description. The top row depicts tasks in the same
environment (ToyKitchen) using a different robot (DeepThought), while the bottom row includes
tasks that also involve new environments.

(a) lm pnp: ”Place blue cloth inside washer.” (b) td fold: ”Fold cloth bottom right to top left.”

(c) ft fcpnp: ”Fold clothes from left to right.” (d) rd fold: ”Fold cloth bottom right to top left.”

(e) ms ft sweep: ”Sweep into pile.”

Figure 5: Each subfigure shows the start and end frames from an evaluation trajectory under environ-
ment shift, along with its natural language task description. All tasks are performed using the same
robot embodiment across visually and structurally different environments.
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C SCRIPTED DATASET

(a) sc pnp obj: ”Pick up an object and place it.” (b) sc pnp robj: ”Pick up a rigid object and
place it.”

(c) sc pnp stoy: ”Pick up a soft object and
place it.”

(d) sc pnp uten: ”Pick up a kitchen utensil and
place it.”

Figure 6: Each subfigure shows the start and end frames from a scripted evaluation trajectory
collected in the ToyKitchen environment using the WidowX 250 robot. All tasks involve pick-and-
place behavior with varying object categories. We use generic task descriptions due to the lack of
publicly available annotations.
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D MODEL ARCHITECTURE

D.1 MODEL AND TRAINING DETAILS

We use the OpenCLIP ViT-B/32 encoder pre-trained on the OpenAI dataset as a frozen backbone.
Each visual observation and task description is encoded using the CLIP vision and text encoders to
produce their representation, respectively. We opted for a joint (concatenation-based) representation
over an element-wise product based on improved validation performance. The adaptation module
fadapt is a two-layer residual MLP with GELU activation and a projection dimension d′ = 64. The
model is trained using the AdamW optimizer with a learning rate of 1 × 10−4, weight decay of
1× 10−4, and a cosine learning rate schedule with 10% warmup. We use a batch size of 32 and pad
all trajectories to a maximum length of 120 frames (matching the longest sequence in the training
set). The weighting coefficient λself of the self-supervised loss in the total training objective is set to
0.5, selected based on validation performance. We train for 5 epochs, as validation VOC typically
plateaus early, with extended training providing no further improvement. For dissimilarity-based
sampling, we set the stride to s = 2, the sub-trajectory length to wtr = 8, and the number of selected
windows to k = 16, unless otherwise specified. All experiments were run on NVIDIA RTX 6000
Ada Generation GPUs.

D.2 TEST-TIME TRAINING HYPERPARAMETERS

At inference time, we adapt only the temporal adaptation module fadapt, using the same projection
dimension (d′ = 64) as in training. We perform adaptation over a single gradient step (t ep = 1),
using a learning rate of 0.1. This configuration was selected from a sweep over learning rates {5.0,
1.0, 0.1, 0.01} and adaptation steps {1, 5, 10}, based on performance on the validation set. Unless
otherwise noted, the adaptation module is not reset between evaluation episodes.

D.3 BASELINES

VITA uses t ep = 1, projection dimension d′ = 64, and learning rates η of 0.1 and 1.0, respectively,
selected via hyperparameter tuning.CLIP-FT shares the same architecture as our method but excludes
the adaptation module and self-supervised loss. It uses a frozen CLIP encoder, followed by a linear
projection and a two-layer MLP to predict task progress. The model is trained with standard
supervised regression, without meta-learning or test-time adaptation. To increase expressivity, it
uses an 8× larger projection matrix and 10× more training steps than our method (Lin et al., 2022).
For VLM-RM, we use a baseline prompt that describes the environment. For bothGVL-0S and
GVL-1S, we use the latest version of Gemini 1.5 Pro, gemini-1.5-pro-latest (Team et al.,
2024), whereas the original GVL implementation used an earlier release, gemini-1.5-pro. We
also evaluated GVL using the open-source autoregressive VLM Qwen-VL 2.5 (Yang et al., 2024),
which failed to overcome temporal bias despite frame shuffling, while GPT-4o (Hurst et al., 2024)
consistently declined to produce scalar progress estimates in our setup. All evaluations followed the
prompt template introduced in the original GVL work (Ma et al., 2024).

E OFFLINE RL SETUP

E.1 TRAINING CONFIGURATION

We use Implicit Q-Learning (IQL) with the following settings, kept fixed across all tasks. Expec-
tile regression is set to τ = 0.7, with advantage weighting temperature 3.0 and clipping thresh-
old 100.0. The actor and critic use learning rates 1 × 10−4 and 3 × 10−4, respectively, with
batch size 256. Policies are trained for 100,000 gradient steps, with evaluation every 10,000
steps on 20 rollouts per task (horizon 150). Implementation follows d3rlpy, with configura-
tion: expectile=0.7, weight temp=3.0, max weight=100.0, actor lr=1e-4,
critic lr=3e-4, batch size=256.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E.2 EVALUATION PROTOCOL

Following Agarwal et al. (Agarwal et al., 2021), we report the interquartile mean (IQM) of returns
across all task–seed pairs. The IQM computes the mean of the middle 50% of scores, which reduces
sensitivity to outliers compared to the mean or median. For statistical robustness, we estimate
95% confidence intervals using stratified bootstrap with 10,000 resamples, stratified by task. This
procedure is applied consistently across all methods in Meta-World MT10 experiments.
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F ABLATION STUDIES

F.1 EFFECT OF DISSIMILARITY-BASED SAMPLING ON DISCRIMINATIVE PERFORMANCE

Table 4: Disc@VOC results across scripted datasets under different training-time sampling strategies
for test-time adaptation. A checkmark indicates successful discrimination between expert and
suboptimal trajectories Each method is denoted as Type(wtrain, k), where: FT = full-trajectory, Rand
= random sampling, Diss = dissimilarity-based sampling.

Dataset FT (8,–) Rand (8,8) Diss (8,4) Diss (4,8) Diss (8,8)
sc pnp obj ✓ ✓ ✓
sc pnp robj ✓ ✓ ✓ ✓ ✓
sc pnp stoy ✓ ✓
sc pnp uten ✓ ✓ ✓ ✓ ✓

Avg. Disc@VOC 0.25 0.75 1.0 0.50 1.0

We evaluate how different sub-trajectory sampling strategies during training impact the ability of our
model to discriminate expert from suboptimal trajectories. In Table 4, we compute Disc@VOC for 4
scripted datasets, capturing whether a given model assigns a higher average VOC to expert trajectories
(tk pnp) than to each evaluation dataset. We compare three strategies: (1) Full-trajectory sampling
applies adaptation over all overlapping sub-trajectories of length wtr using stride 1, following prior
work (Sun et al., 2024); (2) Random sampling uniformly samples k sub-trajectories of length wtr
per video; and (3) our proposed Dissimilarity-based sampling constructs a candidate set using stride
⌊wtr/2⌋, and selects k sub-trajectories that maximize pairwise dissimilarity in the representation
space.

Our results show that dissimilarity-based sampling with wtr = 8 and k = 8 yields perfect dis-
criminative performance (4/4). Sampling fewer windows (k = 4) of size wtr = 8 leads to the
same performance, while reducing sub-trajectory length to wtr = 4 reduces effectiveness. The
full-trajectory baseline performs the worst, confirming that adapting over all consecutive windows can
lead to overfitting to global temporal cues. Random sampling outperforms full-trajectory sampling
but remains less reliable than dissimilarity-based selection. These findings highlight the importance
of both sub-trajectory diversity and semantic locality in enabling discriminative test-time adaptation.

F.2 TRAJECTORY-LEVEL VS. STEP-BY-STEP ADAPTATION

Table 5: Validation VOC scores for progress estimation under distribution shifts. ID = In-Distribution,
ES = Environment Shift, EM = Embodiment Shift, ES+EM = Environment and Embodiment Shift.

Shift Dataset TTT-TR TTT-RS VITA
ID tk pnp 0.1917 0.1918 0.7822

ES

lm sweep 0.1843 0.1854 0.7246
td fold 0.1402 0.1393 0.7085
ft fold 0.1302 0.1311 0.6583
rd fold 0.1161 0.1172 0.6056
ms ft sweep -0.0225 -0.0191 0.4898

EM
dt tk pnp 0.2123 0.2118 0.8203
dt tk stack 0.0833 0.0830 0.7081

ES+EM
dt ft stack 0.0558 0.0537 0.6979
dt rd pnp 0.1665 0.1660 0.6951

We evaluate three adaptation strategies: (1) TTT-TR, which updates the adaptation module once per
trajectory; (2) TTT-RS, which resets the adaptation module at every step and updates using only the
current visual observation; and (3) VITA, our implicit memory variant that incrementally updates the
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adaptation parameters across timesteps. All approaches use the same architecture and initialization.
As shown in Table 5, TTT-TR and TTT-RS achieve nearly identical results, indicating that applying
a single update per trajectory offers no advantage over resetting at each step. In contrast, VITA
consistently outperforms TTT-TR and TTT-RS, highlighting the benefit of retaining temporal context
throughout the trajectory.

G COMPLEXITY ANALYSIS OF DISSIMILARITY-BASED SAMPLING

Let W denote the candidate set of size Nc = |W|. To approximate diverse subset selection without
the exponential cost of enumerating all

(
Nc

b

)
subsets as described in Eq. 4, we adopt a scoring-based

heuristic that assigns each candidate window a diversity score equal to the sum of its pairwise
distances to all others (i.e., the row sum of the distance matrix). Let the number of candidate windows
be Nc = T −wtr + 1, each represented by a flattened feature vector of dimension m = wtr · d, where
d is the dimension of each multimodal representation zt. We compute the full pairwise distance
matrix D ∈ RNc×Nc on the GPU using batched cdist, which requires O(N2

c · wtr · d) operations.

In our experiments, training trajectories are short (mean length 69, max length 120). With a batch
size of 32, feature dimension d = 1024 (CLIP-based multimodal representation), and window length
wtr = 8, the worst-case computational cost is:

32 ·N2
c · wtr · d = 32 · 1142 · 8 · 1024 ≈ 340 MFLOPs.

This overhead is negligible compared to the cost of a single forward and backward pass through our
model, while promoting the selection of diverse windows.
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