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Abstract

A novel problem of improving causal effect esti-
mation accuracy with the help of knowledge trans-
fer under the same covariate (or feature) space set-
ting, i.e., homogeneous transfer learning (TL), is
studied, referred to as the Transfer Causal Learn-
ing (TCL) problem. While most recent efforts
in adapting TL techniques to estimate average
causal effect (ACE) have been focused on the het-
erogeneous covariate space setting, those meth-
ods are inadequate for tackling the TCL problem
since their algorithm designs are based on the
decomposition into shared and domain-specific
covariate spaces. To address this issue, we pro-
pose a generic framework called ℓ1-TCL, which
incorporates ℓ1 regularized TL for nuisance pa-
rameter estimation and downstream plug-in ACE
estimators, including outcome regression, inverse
probability weighted, and doubly robust estima-
tors. Most importantly, with the help of Lasso for
high-dimensional regression, we establish non-
asymptotic recovery guarantees for the general-
ized linear model (GLM) under the sparsity as-
sumption for the proposed ℓ1-TCL. From an em-
pirical perspective, ℓ1-TCL is a generic learning
framework that can incorporate not only GLM
but also many recently developed non-parametric
methods, which can enhance robustness to model
mis-specification. We demonstrate this empiri-
cal benefit through extensive numerical simula-
tion by incorporating both GLM and recent neu-
ral network-based approaches in ℓ1-TCL, which
shows improved performance compared with ex-
isting TL approaches for ACE estimation. Fur-
thermore, our ℓ1-TCL framework is subsequently
applied to a real study, revealing that vasopres-
sor therapy could prevent 28-day mortality within
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septic patients, which all baseline approaches fail
to show.

1. Introduction
Causal effect estimation from observational data has at-
tracted much attention in many fields since it is crucial for
informed decision-making and effective intervention design.
Several unbiased estimators for average causal effect (ACE)
have been proposed, e.g., the inverse probability weighted
(IPW) estimator, outcome regression (OR) estimator, and
doubly robust (DR) estimator, which have shown good em-
pirical performances and strong theoretical guarantees; see,
e.g., Yao et al. (2021), for a survey of those estimators. How-
ever, in the presence of limited data in the target study, there
is no guarantee both empirically and theoretically. In mod-
ern applications, advanced data acquisition techniques make
it possible to collect datasets from other domains, referred to
as the source domains, that are related to (but different from)
that of the target study. Transfer Learning (TL), which aims
to boost performance in the target domain with knowledge
gained from the source domain, has shown promise in this
regard (Torrey & Shavlik, 2010).

Specifically, in our motivating application, Electronic Medi-
cal Records (EMRs) from two geographically adjacent aca-
demic level 1 trauma centers are available, where, according
to the fitted models, the patients not only differ in the treat-
ment assignment mechanism but also in the way they re-
spond to treatment. Consequently, naive integration of both
datasets is impractical. Given limited data in the target do-
main, it is of great interest to find a principled TL approach
to integrate abundant data from source domain to improve
the estimation accuracy of the target domain causal effect.
Indeed, TL has been considered in causal inference in a dif-
ferent, but more straightforward manner, due to the special
treatment-and-control structure. For instance, Shalit et al.
(2017); Shi et al. (2019) proposed a novel NN architecture
tailored to causal effect estimation by considering shared
and group-specific layers in the potential outcome models
for treatment and control groups. However, adapting TL
techniques from the supervised learning setting to handle
data integration for causal effect estimation is non-trivial,
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as it requires counterfactual information. In causal infer-
ence, this problem is solved by the aforementioned plug-in
estimators (e.g., IPW, OR, and DR estimators), which in-
volve preliminary stage nuisance parameter estimation for
the propensity score (PS) and/or OR models. Hence, a natu-
ral solution is to apply data-integrative TL to the supervised
nuisance parameter estimation problem and subsequently
evaluate the plug-in estimators for ACE using target domain
data, where the hope is to improve ACE estimation accuracy
by enhancing the quality of estimated nuisance parameters,
regardless of whether the ground truth ACEs are the same
across both domains.

While there has been increased interest in applying data-
integrative TL techniques to causal inference in the presence
of heterogeneous covariate spaces (Yang & Ding, 2020; Wu
& Yang, 2022; Hatt et al., 2022; Bica & van der Schaar,
2022), these methods typically fail to handle the same co-
variate space setting, known as the inductive multi-task
transfer learning according to Pan & Yang (2010). This
limitation arises from their algorithm designs, which mostly
rely on domain-specific covariate spaces. To the best of our
knowledge, the first and only work studying data-integrative
TL for causal effect estimation under the inductive multi-
task setting, referred to as the Transfer Causal Learning
(TCL) problem, is Künzel et al. (2018). They proposed to
transfer knowledge by using neural network (NN) weights
estimated from the source domain as the warm-start of the
subsequent target domain NN training. Despite its improved
empirical performance, the theoretically grounded approach
for TCL problem is still largely missing. For other related
works on applying TL in causal inference, we refer readers
to an extended literature review in Appendix A and a nice
survey by Yao et al. (2021).

In this work, we fill this gap by presenting a generic frame-
work for the Transfer Causal Learning problem, called
ℓ1-TCL framework. It entails data-integrative transfer learn-
ing of the nuisance parameter and plug-in estimation for
causal effect in the target domain. The transfer learning
stage comprises two steps: (i) rough estimation step using
abundant source domain data, and (ii) bias correction step
via ℓ1 regularized estimation of the difference between the
target and source domain nuisance parameters using target
domain data. Subsequently, the estimated nuisance parame-
ters are plugged into the unbiased causal effect estimators,
including OR, IPW, and DR estimators.

Most importantly, as shown in Bastani (2021), by leverag-
ing techniques from Lasso for high-dimensional regression,
we can establish non-asymptotic recovery guarantees for
the causal effect estimators when the nuisance models (i.e.
PS and OR models) are parameterized using generalized
linear models (GLMs) and under the sparsity assumption
on the target and source nuisance parameters’ difference.

This successful application of ℓ1 regularized TL in causal
inference could inspire a potential research direction: Re-
cently, statistics literature has witnessed a surge of theo-
retically grounded TL approaches due to their empirical
success, and these principled approaches could be readily
adapted to the novel TCL problem; for example, TL for
non-parametric regression (Cai & Pu, 2022; Lin & Li, 2023)
and high-dimensional Gaussian graphical models (Li et al.,
2022) might be applied to causal effect estimation and causal
graph discovery (Spirtes et al., 2000; Pearl, 2009), respec-
tively. Furthermore, given that ℓ1 regularization not only
provides strong theoretical guarantees but also enhances
empirical performance in the presence of sparsity, it is nat-
ural to incorporate recently developed non-parametric PS
and OR models in ℓ1-TCL to improve robustness to model
mis-specification. Here, we show improved performance of
our ℓ1-TCL framework using NN-based approaches (Shalit
et al., 2017; Shi et al., 2019) by comparing with existing
TL approaches (Künzel et al., 2018) for ACE estimation
on a benchmark pseudo-real dataset (Brooks-Gunn et al.,
1992; Hill, 2011). The ℓ1-TCL framework is subsequently
applied to a real study and reveals that vasopressor therapy
could prevent mortality within septic patients, which all
baseline approaches fail to show.

2. Problem Set-Up
We study the causal inference under Neyman–Rubin Po-
tential Outcome framework (Rubin, 1974; Splawa-Neyman
et al., 1990). In this section, we briefly review IPW, OR, and
DR estimators for causal effect estimation and introduce the
formal set-up of our Transfer Causal Learning problem.

Notations. The notations used in this work follow stan-
dard conventions. Superscript T denotes vector or matrix
transpose, and ∥ · ∥p denotes the vector ℓp norm. We use
upper case letters to denote random variables (r.v.s) and
the corresponding lower case letters to denote their real-
izations. For asymptotic notations: f(n) = o(g(n)) or
g(n) ≫ f(n) means for all c > 0 there exists k > 0 such
that 0 ≤ f(n) < cg(n) for all n ≥ k; f(n) = O(g(n))
means there exist positive constants c and k, such that
0 ≤ f(n) ≤ cg(n) for all n ≥ k.

2.1. Background on causal effect estimation

Consider the tuple (X, Z, Y ) in the target study, where ran-
dom vector X ∈ X ⊂ Rd represents covariates measured
prior to receipt of treatment, r.v. Z ∈ {0, 1} is treatment
indicator (Z = 1 if treated and 0 otherwise) and r.v. Y is
the observed outcome:

Y = Y1Z + (1− Z)Y0.
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Here, Y0 and Y1, referred to as potential outcomes, are the
values of the outcome that would be seen if the subject were
to receive control or treatment. Throughout this work, we
are interested in estimating the ACE or average treatment
effect, which is formally defined as:

τ = E[Y1]− E[Y0].

In an observational study, the treatment Z is typically not
statistically independent from (Y0, Y1), since the character-
istics that determine the treatment assignment may also be
correlated, or “confounded”, with the potential outcome.
To handle this problem, a common practice is to assume
there are ‘no unmeasured confounders” (also known as the
Ignorability Assumption):

(Y0, Y1) ⊥⊥ Z | X.

In the following, we shall continue our study under the
above assumption.

IPW estimator. The propensity score e(X) = P(Z =
1|X) is the probability of treatment given covariates and
specifies the treatment assignment mechanism. Rosenbaum
& Rubin (1983) showed:

(Y0, Y1) ⊥⊥ Z | e(X),

which leads to an unbiased estimator for ACE through the
inverse probability weighting: Consider n samples from the
target domain:

Di = (xi, zi, yi), i = 1, . . . , n, (1)

and let ê(xi) be the estimated propensity score for i-th
subject, the IPW estimator for ACE is:

τ̂IPW =
1

n

n∑
i=1

ziyi
ê(xi)

− (1− zi)yi
1− ê(xi)

. (2)

OR estimator. An alternative unbiased estimator uses the
(potential) outcome regression model:

mz(X) = E[Yz|X], z ∈ {0, 1}.

Given samples (1), for z ∈ {0, 1}, let nz = #{i : zi = z}
(# represents the cardinality of a set) and m̂z(xi) be the
fitted potential outcome for i-th subject, the OR estimator
for ACE is given by:

τ̂OR =
1

n1

∑
zi=1

m̂1(xi)−
1

n0

∑
zi=0

m̂0(xi). (3)

DR estimator. The unbiasedness of IPW and OR estima-
tors requires correct specification of the PS and OR models,

respectively. To improve the robustness to model specifica-
tion, a doubly robust (in the sense that it is unbiased when
either the PS model or the OR model is correctly specified)
estimator is proposed. Given samples (1), the DR estimator
for ACE is defined as:

τ̂DR =
1

n

n∑
i=1

ziyi − m̂1 (xi) (zi − ê (xi))

ê (xi)

− (1− zi) yi + m̂0 (xi) (zi − ê (xi))

1− ê (xi)
.

(4)

For further background knowledge on the causal inference,
such as why the aforementioned estimators are unbiased, we
refer readers to Appendix B.1 and some nice survey studies
(Lunceford & Davidian, 2004; Bang & Robins, 2005; Yao
et al., 2021).

2.2. Set-up for Causal Transfer Learning problem

Assume we additionally observe ns samples of the covari-
ates, treatment and outcome tuple (Xs, Zs, Ys) from the
source domain (we will refer to (1) as samples from the
target domain):

Di,s = (xi,s, zi,s, yi,s), i = 1, . . . , ns.

In our motivating real example, n≪ ns, rendering it diffi-
cult to get an accurate ACE estimate by solely using target
domain data and necessitating the use of source domain
data. However, a practical issue often arises that neither the
nuisance models (i.e., PS and OR models) nor the ground
truth ACEs are the same between both domains, making
naively merging two datasets impractical. To be precise,
consider that the PS model takes the following form:

P(Z = 1|X) = e(X;βt), P(Zs = 1|Xs) = es(Xs;βs),
(5)

where functions e(·), es(·) have known form with unknown
d1-dimensional nuisance parameters, i.e., βt, βs ∈ Rd1 .
Similarly, the OR model has the following form: for z ∈
{0, 1},

E[Yz|X] = mz(X;αz,t), E[Yz,s|Xs] = mz,s(Xs;αz,s),
(6)

where functions mz(·),mz,s(·) have known form with un-
known nuisance parameters αz,t, αz,s ∈ Rd2 . In our TCL
problem, we aim to develop a principled method to integrate
data from both domains to help estimate the ACE in the tar-
get domain; to help readers understand the TCL set-up and
elucidate why the TCL problem is non-trivial, we present a
toy example in Appendix B.2.
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3. Parametric Approach Based on Generalized
Linear Models

We begin with a simple yet popular Generalized Linear
Model (Nelder & Wedderburn, 1972) parameterization of
the nuisance models (i.e., PS (5) and OR (6) models). A
GLM for r.v. Z̃ with parameter β and predictor X̃ is:

Z̃ | X̃ ∼ P(Z̃|X̃) = F (Z̃) exp{Z̃X̃Tβ −G(X̃Tβ)},

which satisfies

E[Z̃|X̃] = G′(X̃Tβ).

Here, G′(·), known as the (inverse) link function, is the
derivative of G(·); common non-linear choices include sig-
moid link function G′(x) = 1/(1 + e−x) on a domain
x ∈ R and exponential link function G′(x) = 1− e−x on
a domain x ∈ [0,∞). The function F (·) is a normalizing
function ensuring a valid probability distribution. Given
samples (x̃i, z̃i), i = 1, . . . , n, the maximum likelihood
estimation (MLE) of the GLM model parameter is given by:

β̂MLE = argmin
b

n∑
i=1

−z̃ix̃T

i b+G (x̃T

i b) .

3.1. Data-integrative transfer learning of propensity
score model parameters

As the treatment indicator is binary, the GLM parameteri-
zation with link function G′(·) = g(·) can be expressed as
follows:

E[Z|X] = P(Z = 1|X) = g(XTβt),

E[Zs|Xs] = P(Zs = 1|Xs) = g(XT

s βs).
(7)

Here, the nuisance parameters βt, βs have dimensionality
d1 = d. Without loss of generality, we consider same
link functions in both domains for simplicity; however, the
success of the knowledge transfer does not rely on this
“same link function condition” as long as the link functions
are known.

Guarantee for knowledge transferability. The key as-
sumption guaranteeing the success of the knowledge trans-
fer is the sparsity of the nuisance parameter difference ∆β ,
defined as:

∆β = βt − βs. (8)

Definition 1 (s-sparse vector). A vector u ∈ Rd is said to
be s-sparse (with 0 ≤ s ≤ d) if this vector has at most s
non-zero elements, i.e., ∥v∥0 ≤ s.

Here, we argue that the treatment assignment mechanisms
should be very similar across both domains, which is char-
acterized by the s-sparse difference ∆β , since the aforemen-
tioned two trauma centers in our study are geographically
adjacent and certain clinicians are affiliated with both cen-
ters.

ℓ1 regularized transfer learning of the nuisance param-
eters. The first stage involves two steps: (i) leveraging
abundant source domain data to estimate the source parame-
ter βs, which serves as a rough estimator of βt due to their
sparse difference, and (ii) using ℓ1 regularization to learn
the difference ∆β from target domain data, which corrects
the bias of the first-step rough estimator, i.e.,

β̂s = argmin
b

1

ns

ns∑
i=1

−zi,sxT

i,sb+G
(
xT

i,sb
)
,

β̂t = argmin
b

1

n

n∑
i=1

−zixT

i b+G (xT

i b) + λPS∥b− β̂s∥1.

Here, λPS > 0 is a tunable regularization strength hyper-
parameter and will be selected via cross-validation (CV)
in practice. Equivalently, the bias correction step can be
expressed as: β̂t = ∆̂β + β̂s, where ∆̂β is obtained by:

min
∆

n∑
i=1

−zixT

i (∆+ β̂s)+G
(
xT

i (∆ + β̂s)
)
+λPS∥∆∥1.

(9)
Later in Section 4, we will show that, even when n≪ d in
the bias correction step, with the help of high-dimensional
Lasso, ∆β can be faithfully recovered with theoretical guar-
antees. This is quite intuitive: source domain nuisance
parameters can be faithfully recovered using a large amount
of source domain data, whereas the sparsity assumption
guarantees valid inference of the difference using target
domain data via ℓ1 regularization.

3.2. Data-integrative transfer learning of outcome
regression model parameters

We parameterize the OR model via linear regression for
simplicity; however, our method and theory (to be presented)
can be extended to handle GLM parameterization for OR
model. For z ∈ {0, 1}, let

E[Yz|X] = XTαz,t, E[Yz,s|Xs] = XT

sαz,s, (10)

where the OR model nuisance parameters have dimension-
ality d2 = d. Similarly, the transferability guarantee comes
from the assumption that the following differences:

∆α,z = αz,t − αz,s, z ∈ {0, 1}, (11)

are s-sparse, i.e., ∥∆α,0∥0, ∥∆α,1∥0 ≤ s. This enables us
to apply the aforementioned ℓ1 regularized TL techniques
to estimate the OR model parameters in the target domain
with the help of source domain data: For z ∈ {0, 1}, denote
nz,s = #{i : zi,s = z}, and let λOR > 0 be the tunable
regularization strength hyperparameter:
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α̂z,s = argmin
α

1

nz,s

∑
zi,s=z

(
yi,s − xT

i,sα
)2
,

α̂z,t = argmin
α

1

nz

∑
zi=z

(
yi − xT

i α
)2

+ λOR∥α− α̂z,s∥1.

3.3. Plug-in estimation for average causal effect

In the second stage, the above fitted PS and/or OR model pa-
rameters via TL techniques are plugged into the downstream
IPW (2), OR (3), or DR (4) estimators, depending on the
user’s confidence in the PS and/or OR model specification,
to get the GLM-based ℓ1-TCL estimate of the ACE:

τ̂TLIPW =
1

n

n∑
i=1

ziyi

g(xT
i β̂t)

− (1− zi)yi

1− g(xT
i β̂t)

,

τ̂TLOR =
1

n1

∑
zi=1

xT

i α̂1,t −
1

n0

∑
zi=0

xT

i α̂0,t,

τ̂TLDR =
1

n

n∑
i=1

ziyi − xT
i α̂1,t(zi − g(xT

i β̂t))

g(xT
i β̂t)

− (1− zi)yi + xT
i α̂0,t(zi − g(xT

i β̂t))

1− g(xT
i β̂t)

.

(12)

4. Theoretical Analysis
Typically, to make valid inferences by solely using target
domain data, we need a sufficiently large amount of target
domain data such that n≫ d. However, in our setting, such
an assumption does not hold; to make things even worse,
we may encounter n < d case. Fortunately, with the help
of techniques from Lasso for high-dimensional regression,
recovery guarantees can still be established when we have
abundant source domain data, which only require target
domain sample size n to be on the order of log d. In this
section, we present the main results and their interpretations;
complete details including the technical assumptions and
proofs can be found in Appendices C, D, and E.

Main theoretical results. When the PS model is correctly
specified and the difference is s-sparse, i.e., ∥∆β∥0 ≤ s, in
the large sample limit n, ns → ∞, consider the following
regime:

n≫ s2 log d, ns ≫ nd2, (13)

By taking

λPS = O
(√

log d

(
1√
n
+

d
√
ns

))
,

we can show that, with probability at least 1 − 1/n, the
absolute estimation error is upper bounded as:

|τ̂TL − τ | = O
(

s

√
log d

n︸ ︷︷ ︸
bias correction error

+ sd

√
log d

ns︸ ︷︷ ︸
rough estimation error

)
,

where τ̂TL can be either the TLIPW estimator τ̂TLIPW or
the TLDR estimator τ̂TLDR in eq. (12).

Interpretations. Similar to the two-stage estimation, i.e.,
nuisance parameter recovery and plug-in estimation for
ACE, the proofs are done by plugging the non-asymptotic
upper bound on the vector ℓ1-norm of the nuisance pa-
rameter to the absolute error bound of the downstream
plug-in estimators, resulting in the above error bound
decomposition. In particular, the bias correction term is
O(s

√
log d/n) (which aligns with that of the classic Lasso

estimator, cf. Theorem 7.1 (Bickel et al., 2009)) and dom-
inates the rough estimation error term due to ns ≫ nd2

(13); however, according to the above error upper bound,
the condition on source domain sample size can be relaxed
to ns ≫ s2d2 log d to achieve consistency. Without the help
of the source domain, the overall error rate will be similar to
that of the rough estimation, which requires n≫ d2 target
domain samples to achieve a satisfying error bound (cf. The-
orem 1 (Bastani, 2021)). In contrast, the abundant source
domain data, characterized by ns ≫ nd2 in the considered
regime (13), relaxes the requirement on target domain sam-
ple size to n≫ s2 log d to achieve the same satisfying error
upper bound.

In our proof, we invoke the Compatibility Condition (Bas-
tani, 2021) for the sample covariance matrix, which is stan-
dard in high-dimensional Lasso literature; alternatively, as
suggested in Remark 1 (Bastani, 2021), if we consider the
classic Restricted Eigenvalue Condition (Bickel et al., 2009;
Meinshausen & Yu, 2009; van de Geer & Bühlmann, 2009),
we can prove ℓ2 error bound that scales as

√
s instead of

s; see Remark 1 in Appendix C on why we consider ℓ1
error bound for nuisance parameter estimation over the ℓ2
bound. Lastly, our non-asymptotic analysis shows that the
error upper bound with probability at least 1 − ε (for any
ε ∈ (0, 1)) will have a O(s

√
log(1/ϵ)/n) term. When we

consider the probability converging to one at a polynomial
rate, i.e., ε = 1/nκ for positive integer κ, this term will
be O(s

√
log nκ/n) and dominated by the O(s

√
log d/n)

term in the above bound under our considered regime (13).
The above result corresponds to the κ = 1 case.

Additional results for correctly specified OR model.
When the OR model specification is correct with s-sparse
differences ∥∆α,z∥0 ≤ s (z ∈ {0, 1}), if the samples in the
treatment and control groups are “balanced” in the sense that
there exists a constant r ∈ (0, 1) such that, for z ∈ {0, 1},
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lim inf
n→∞

nz
n

≥ r, lim inf
ns→∞

nz,s
ns

≥ r, (14)

where (recall that) nz = #{i : zi = z} and nz,s = #{i :
zi,s = z}, then, by taking

λOR = O
(√

log d

(
1√
rn

+
d

√
rns

))
,

for τ̂TL = τ̂TLOR or τ̂TLDR, we can show that with proba-
bility at least 1− 1/n, the absolute estimation error can be
upper bounded as follows:

|τ̂TL − τ | = O
(
s
√

log d

(
1√
rn

+
d

√
rns

))
.

Due to space consideration, complete details are deferred to
the Appendix (Appx.), including the assumptions, lemmas,
formal statements of the non-asymptotic theoretical guar-
antees, and all proofs. To help readers find the results, we
provide a summary of the locations of our theories in the
Appendix; see Table 1. Furthermore, the superior empiri-
cal performance of the above GLM parametric approach is
verified via numerical simulation in Appendix F.

Table 1. Locations of all non-asymptotic results.
Nuisance parameter estimation Plug-in ACE estimation

TLIPW Lemma 1 (Appx. C) Theorem 1 (Appx. C)
TLOR Lemma 3 (Appx. D) Theorem 2 (Appx. D)
TLDR Lemma 1, Lemma 3 Theorem 3 (Appx. E)

5. A Generic Framework for Transfer Causal
Learning

Inspired by the superior performance of the GLM-based
parametric approach, we now extend our method into a
generic framework for the TCL problem by considering
arbitrary parameterization of the nuisance model (i.e., PS
(5) and/or OR (6) models), which is called ℓ1-TCL frame-
work. This extension can benefit from improved robustness
to model mis-specification, and it is motivated by a well-
known observation (Tibshirani, 1996; Fan & Li, 2001; Zou
& Hastie, 2005) that, in the presence of the sparsity, ℓ1 regu-
larization does not only help establish theoretical guarantee
but also improves the estimation accuracy when only lim-
ited data is available. Most importantly, ℓ1-TCL can be
applied to conditional average causal effect estimation in
the presence of heterogeneous causal effect. We will begin
with formally presenting the ℓ1-TCL framework.

ℓ1-TCL framework. Consider arbitrary parameterization
of the nuisance model with finite-dimensional nuisance

parameter θ ∈ Θ. Given dataset D, suppose the esti-
mator for nuisance parameter can be obtained as: θ̂ =
argminθ∈Θ L(θ;D), where L is the loss function. In our
set-up, the ground truth nuisance parameters are different
across both domains, i.e., θt ̸= θs, and we assume their
difference θt − θs is sparse such that this difference can be
estimated from the target domain using ℓ1 regularization to
correct the bias of the rough estimator obtained from the
source domain. Formally, the nuisance parameter estima-
tion stage of our proposed ℓ1-TCL is given by:

Rough estimation:

θ̂s = argminθ∈Θ L(θ;Ds),

Bias correction:

θ̂t = argminθ∈Θ L(θ;Dt) + λ∥θ − θ̂s∥1,

where Ds = {Di,s, i = 1, . . . , ns} and Dt = {Di, i =
1, . . . , n} are the collections of source and target domain
samples respectively, and λ > 0 is a tunable hyperparam-
eter. In the subsequent plug-in estimation stage, the IPW
estimator (2), OR estimator (3), and/or DR estimator (4) are
evaluated using the estimated nuisance parameters above to
get the ℓ1-TCL estimate of the ACE.

Non-parametric approach based on neural networks.
While there exist many recent efforts on improving robust-
ness in causal inference, such as meta-learning (Westre-
ich et al., 2010) (notably, super learning (Pirracchio et al.,
2015)), using NN to parameterize the nuisance models
(Keller et al., 2015) is the most straightforward approach
due to NN’s superior model expressiveness. In the follow-
ing, we will consider two recently developed NN architec-
tures: Treatment-Agnostic Representation Network (TAR-
Net) (Shalit et al., 2017) and Dragonnet (Shi et al., 2019);
we defer further details, such as their loss functions, to Ap-
pendix B.3. The implementation of the nuisance parameter
estimation stage in our NN-based ℓ1-TCL is straightfor-
ward: the rough estimation step follows standard NN train-
ing using source domain data; in the bias correction step,
similar to eq. (9) for GLM, we will estimate the sparse dif-
ference between the target and source NN weights with zero
initialization. Complete details of our NN-based ℓ1-TCL
can be found in Appendix G.2.

Application. Heterogeneous causal effect has recently
drawn increasing attention in causal inference, and there
have been many popular machine learning approaches, such
as meta-learning (Curth & van der Schaar, 2021) and hetero-
geneous transfer learning (i.e., TL under the heterogeneous
covariate space setting) (Bica & van der Schaar, 2022),
applied to this problem. Typically, this problem is ap-
proached via the conditional average treatment (or causal)
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Table 2. Mean and standard deviation of absolute errors of estimated ACEs over 50 trials using IHDP dataset. The primary goal is
to compare three learning frameworks: we can observe that TL can help improve ACE estimation accuracy for all ACE estimators
(highlighted in green for each column) and our proposed ℓ1-TCL yields the best in-sample and out-of-sample results (highlighted in bold
font).

In-sample Dragonnet TARNet
IPW OR DR IPW OR DR

TO-CL 12.479(26.993) 0.868(1.47) 0.654(0.702) 6.85(6.192) 0.567(0.446) 0.468(0.364)
WS-TCL 6.414(9.667) 0.534(0.552) 0.572(0.636) 3.502(4.101) 0.413(0.313) 0.359(0.22)
ℓ1-TCL 6.412(9.664) 0.543(0.557) 0.58(0.634) 3.326(3.626) 0.36(0.312) 0.293(0.222)

Out-of-sample Dragonnet TARNet
IPW OR DR IPW OR DR

TO-CL 35.352(75.125) 0.826(1.248) 2.009(3.397) 5.664(6.884) 0.671(0.56) 0.367(0.318)
WS-TCL 17.684(20.993) 0.512(0.586) 1.324(1.492) 4.204(6.092) 0.476(0.399) 0.339(0.289)
ℓ1-TCL 17.682(20.996) 0.519(0.615) 1.337(1.494) 4.039(4.762) 0.418(0.353) 0.308(0.251)

effect (CATE) instead of ACE, i.e.,

τS = E[Y1|X ∈ S]− E[Y0|X ∈ S],

which studies the causal effect within a sub-cohort of pa-
tients whose covariates lie in a target subset of the covariate
space, i.e., S ⊂ X .

Built on the proposed ℓ1-TCL, we propose a Partition-then-
Transfer approach, which we call ParT, for CATE estima-
tion. Unlike the heterogeneous transfer learning approach
by Bica & van der Schaar (2022) which may require an addi-
tional dataset with a different covariate space, ParT handles
the single dataset (or multiple datasets with the same covari-
ate space) setting. Consider samples from a single dataset
as in eq. (1), let St ⊂ X be the target subset, and the goal
is to estimate τSt . ParT first partitions the covariate space
into X = Ss ∪ St, resulting in a source-target domain par-
tition: Ds = {Di : Xi ∈ Ss} and Dt = {Di : Xi ∈ St}.
Then, ℓ1-TCL can be readily applied to leverage knowledge
gained from Ds to help estimate the CATE (or target domain
ACE) τSt .

In practice, the target subset St is typically defined through
a binary (or categorical) covariate, resulting in a natural
covariate space partition based on the corresponding labels.
As the partitioned domains come from the same dataset, it is
reasonable to assume the underlying treatment assignment
mechanisms are similar across both domains and therefore
our ℓ1-TCL is applicable. Nevertheless, it is important to
develop a principled approach to determine whether the
knowledge is transferable from the partitioned source do-
main. In particular, when covariate space is partitioned via a
categorical covariate with three or more labels, the problem
is cast as a multiple-source TL problem since there are multi-
ple source domains; in this case, it is important to determine
which source domain to include in the transfer learning. In-
deed, Tian & Feng (2022) studied this multiple-source TL

problem using the ℓ1 regularized approach considered in
this work, which we believe can help establish theoretical
guarantee for ParT; however, this is out of the scope of
the current study, and we leave this for future discussion.
Next, we use a pseudo-real data experiment to show the
effectiveness of ParT.

6. Pseudo-Real Data Experiment
In this experiment, we aim to show the effectiveness of
ParT for CATE estimation, which also demonstrates the
good performance of its building block, i.e., our ℓ1-TCL
framework, by comparing with baseline frameworks. As
ground truth causal effects are inaccessible in most real stud-
ies, we consider a commonly used pseudo-real dataset, i.e.,
the Infant Health and Development Program (IHDP) dataset
(Brooks-Gunn et al., 1992; Hill, 2011). It includes 747 sub-
jects (139 treated and 608 control), with 6 continuous and
19 categorical covariates (of which 18 of them are binary).
We randomly pick one binary covariate (denoted by Xpar)
and assign subjects with labels 0 and 1 to source and target
domains, respectively, resulting in ns = 546, n = 201. The
goal is to study the ACE in the target domain, or the CATE
for the subjects with Xpar = 1. Due to space consideration,
additional details for the dataset, configurations, training,
and results are deferred to Appendix G.

Baseline approaches. We compare ℓ1-TCL framework
with two baseline learning frameworks: solely using tar-
get domain data to estimate ACE, which we call “target
only causal learning” (TO-CL), and the “warm-start” TCL
baseline (WS-TCL) by Künzel et al. (2018), which used the
estimated NN weights in the source domain as the warm-
start of the subsequent target domain NN training. For each
framework, the nuisance model for PS and OR is either
Dragonnet or TARNet with hyperparameters selected based
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on minimum average NN regression loss on a randomly
selected validation target domain dataset; the estimated nui-
sance parameters are subsequently plugged into IPW, OR,
and DR estimators to get the estimated ACEs.

Results. We report both in-sample (i.e., training and vali-
dation target datasets) and out-of-sample (i.e., testing target
dataset) absolute estimation errors over 50 trials in Table 2,
from which we can observe that: (i) transfer learning helps
improve estimation accuracy for all ACE estimators (we
will call a specific nuisance model coupled with a specific
plug-in estimator as an ACE estimator); (ii) in most cases,
our proposed ℓ1-TCL outperforms the existing WS-TCL ap-
proach; (iii) most importantly, the best results (highlighted
in bold fonts) are given by our proposed ℓ1-TCL frame-
work.

Another interesting finding is that plug-in estimators based
on the OR model typically perform better than PS model-
based IPW estimator, potentially due to severe model mis-
specification of the NN-based PS model. This is consistent
with the observation noted by Shi et al. (2019), who only
considered OR estimator in their experiments, and may
explain why NN classification cross entropy (CE) loss and
mean squared error (MSE) do not serve as good hyperparam-
eter selection criteria in our task; those results are presented
in Table 6 for completeness. To further validate the effec-
tiveness of our ℓ1-TCL (as well as our ParT), we report
results for source-target domain partition based on another
binary covariate (which yields ns = 642 and n = 105) in
Tables 7 and 8.

7. Real-Data Example
In this real experiment, we aim to investigate whether vaso-
pressor therapy can prevent mortality within sepsis patients.
Baseline approaches that only use the target domain data
or naively merge both domains’ data all indicate statisti-
cally significant promoting effect from treatment (verified
by the 90% confidence intervals (CI) of the ACE estimates),
which clearly violates common sense. Fortunately, by lever-
aging our ℓ1-TCL framework, we can reach a reasonable
conclusion that vasopressor therapy does prevent mortality
within sepsis patients. Due to space limitation, complete
details, such as patient demographics and training details,
are deferred to Appendix H.

Data description. We construct a retrospective cohort of
patients using in-hospital data from two adjacent academic,
level 1 trauma centers located in the South Eastern United
States in 2018. The data was collected and analyzed in
accordance with an institutional review board and relevant
ethics approval information will be provided if the paper
is accepted. A total of 34 patient covariates comprised

of vital signs and laboratory (Lab) results are examined
in this study. Patients are considered to be treated if they
received vasopressor therapy, which is defined as receiv-
ing norepinephrine, epinephrine, dobutamine, dopamine,
phenylephrine, or vasopressin, at any time within the 12-
hour window before sepsis onset. The outcome variable
is the 28-day mortality, which is a common metric used
by clinicians performing observational studies on sepsis
patients (Stevenson et al., 2014).

Baseline approaches. We choose the PS model param-
eterized by GLM (7) with sigmoid link function and IPW
estimator for ACE estimation. We begin with TO-CL frame-
work, i.e., without knowledge transfer, for both domains,
yielding ACEs 0.12 in the target domain and 0.057 in the
source domain. Even without the ground truth, those results
are counterintuitive as treatment should prevent mortality
(Avni et al., 2015; Wei et al., 2022). Indeed, the estimate
in the source domain is almost zero, which is closer to our
“believed ground truth” than that of the target domain, po-
tentially due to its larger sample size. Naively merging
two domains’ data, which we call Merge-CL framework,
is a tempting choice, given that two studied trauma cen-
ters sometimes share clinicians; it leads to a point estimate
of 0.082, which aligns with the intuition that Merge-CL
“drags” the TO-CL estimate of the target domain towards
that of the source domain, as the source domain has more
samples.

Table 3. Comparison of estimated ACEs in the real-data example:
the only reasonable result is given by our proposed ℓ1-TCL, which
indicates inhibiting causal effect from the vasopressor therapy to
28-day mortality in spesis patients.

Data used Target domain only Both domains
Framework TO-CL Merge-CL ℓ1-TCL

Point estimate 0.120 0.082 −0.011
Bootstrap mean 0.072 0.130 −0.853
Bootstrap median 0.072 0.120 −0.067
Bootstrap 90% CI [0.015, 0.134] [0.016, 0.275] [−7.257, 1.951]

ℓ1-TCL and uncertainty quantification. Now, we con-
sider TLIPW estimator (12) in our ℓ1-TCL, and it yields
a point estimate of −0.011, which is much closer to the
“believed ground truth”; most importantly, we now reach a
more reasonable conclusion that vasopressor therapy has an
inhibiting causal effect on mortality in sepsis patients. Ad-
ditionally, we perform bootstrap uncertainty quantification
(UQ) with 200 bootstrap trials, each with 700 random sam-
ples (with replacement) from the target domain. The base-
line frameworks (i.e., TO-CL and Merge-CL) all show
statistically significant promoting causal effects, verified by
the 90% bootstrap CI, which again violates common sense.
In contrast, despite the 90% CI contains zero, the mean and
median of bootstrap ℓ1-TCL causal effect estimates all sug-
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gest that vasopressor therapy can prevent 28-day mortality
within sepsis patients.

Discussion. Reliable decision-making is essential in
healthcare, which is a major application of our ℓ1-TCL.
One common approach is UQ; however, as reflected by the
wider bootstrap CI for our ℓ1-TCL (compared to that of the
baseline approaches), the performance of our ℓ1-TCL is sen-
sitive to the choice of hyperparameters — oftentimes there
exist bootstrap samples where the pre-selected grid does not
cover the empirical optimal choice, leading to unreasonably
large or small ACE estimates. It poses a practical challenge
that it requires large computational resources to perform
grid search for hyperparameter selection in each bootstrap
trial, rendering vanilla bootstrap impractical. Currently, the
most reliable estimate for drawing causal conclusions in
ℓ1-TCL framework would be the bootstrap median, which
still indicates inhibiting causal effect from the treatment.

Indeed, this highlights an important future direction, i.e.,
the development of a principled approach for UQ in TCL
problem. For example, Juditsky et al. (2023) recently in-
troduced a new CI construction approach for GLM using a
relatively novel concentration result of vector fields. This
may facilitate the construction of CI of the nuisance parame-
ters and hence the causal effect through the unbiased plug-in
estimators. This topic is outside the scope of this work, and
we leave it for future study.
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A. Extended Literature Survey
A.1. Background on transfer learning

Transfer learning (Torrey & Shavlik, 2010) has received increasing attention due to its empirical success in various fields,
ranging from machine learning problems, such as natural language processing (DAUME III, 2007), recommendation systems
(Pan & Yang, 2013) and computer vision (Tzeng et al., 2017), to science problems, such as predictions of protein localization
(Mei et al., 2011), biological imaging diagnosis (Shin et al., 2016), integrative analysis of “multi-omics” (e.g., genomics)
data (Sun & Hu, 2016; Hu et al., 2019; Wang et al., 2019), cancer image classification (Hosny et al., 2018; Sevakula et al.,
2018), drug sensitivity prediction (Turki et al., 2017) and discovery (Bastani, 2021), and so on. Based on whether or not the
target and source domains as well as the target and source tasks are the same, transfer learning problems can be divided
several different types (Pan & Yang, 2010). Our study focuses on “Inductive Multi-Task Transfer Learning” and our ℓ1
regularization-based approach can be categorized as “Transferring Knowledge of Parameters”. Our work only leverages a
particular transfer learning technique and we refer readers to Pan & Yang (2010); Weiss et al. (2016); Zhuang et al. (2020)
to comprehensive surveys on transfer learning.

A.2. Developments of ℓ1 regularized transfer learning approaches

The idea of using ℓ1 regularization to develop theoretically grounded TL approach could date back to Evgeniou & Pontil
(2004), who considered support vector machine with parameter decomposed as summation of a shared term and a task-
specific term and proposed a learning algorithm by imposing ℓ1 regularization on the task-specific terms in all domains.
Recently, this idea was applied to GLM by Bastani (2021), and this seminal work motivates several follow-up studies:
Tian & Feng (2022) extended this work to multi-source TL problems, Li et al. (2022) proved minimax optimality under
liner regression setting, and later on showed minimax rate of convergence for high-dimensional GLM estimation (Li et al.,
2023), and so on. Our work follows this line of study and adapts the ℓ1 regularized TL approach proposed by Bastani
(2021) to develop a theoretically grounded method for TCL, but the theoretical results may be strengthened using those
aforementioned recent developments. Most importantly, it is important to recognize that our work points out a new direction
on leveraging recently developed principled methods to contribute to the TCL problem.

A.3. Connections between transfer learning and causal inference

While the causal transfer learning problem (i.e., leveraging causal inference to help with TL problems, such as domain
adaption, by exploring the invariant causal relationships between both domains) has been studied in the past few years from
both empirical (Zhang et al., 2015; Magliacane et al., 2018; Yang et al., 2021) and theoretical (Rojas-Carulla et al., 2018;
Chen & Bühlmann, 2021) perspectives, the reverse study on adapting TL techniques to causal inference (i.e., our proposed
TCL problem) starts to attract more attention recently. In particular, a line of research (Yang & Ding, 2020; Wu & Yang,
2022; Hatt et al., 2022) focuses on the handling the unmeasured confounding variables in the target observational datasets
with the help of unconfounded randomized experimental source domain data, where, in its nature, only the TL approaches
for heterogeneous covariate space settings are applicable. However, such experimental data is not always available in reality,
and the fundamental problem of estimating causal effects under the classic no unmeasured confounding assumption receives
little attention; existing works along this direction include the aforementioned “warm-start” knowledge transfer approach
under our TCL setting (Künzel et al., 2018) and a special neural network architecture designed based on the shared covariate
space and the domain-specific covariate spaces (Bica & van der Schaar, 2022). Here, we not only provide a theoretically
grounded approach for TCL problem, but also use numerical evidence to show our proposed ℓ1-TCL outperforms the
existing warm-start method.

B. Additional Details for Problem Set-Up
B.1. Additional background knowledge on causal effect estimation

The gold-standard approach to estimating the causal effect is randomized controlled trials (RCT), where subjects are
randomized to receive treatment or placebo (i.e., the control group). However, RCT is unethical in most studies, such as
medical study. Therefore, the main question is how to estimate causal effect from observational data.

Let us recall the notations we use for the potential outcome framework (Rubin, 1974): random vector X ∈ Rd represents
covariates measured prior to receipt of treatment, Z ∈ {0, 1} is treatment indicator, Y is the observed outcome: Y =
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Y1Z+(1−Z)Y0, as well as potential outcomes Y0 and Y1. The ACE, which is the estimand, is defined as: τ = E[Y1]−E[Y0].

Apparently, observing Y0 and Y1 simultaneously is impossible, making it a tempting choice to estimate E[Y0] and E[Y1]
using the sample average outcome in the control and treatment group and take their difference. Unfortunately, the latter
estimate E[Y |Z = 0] = E[Y0|Z = 0] and E[Y |Z = 1] = E[Y1|Z = 1], which may be different from E[Y0] and E[Y1] since
the treatment Z is typically not statistically independent from (Y0, Y1) — the characteristics that lead a subject to receive
treatment may also be correlated, or “confounded” with the potential outcome.

In observational study, although (Y0, Y1) ⊥⊥ Z is unlikely to hold, it may be possible to identify subject characteristics
(or rather, some pre-treatment covariates) related to (or can affect) both potential outcome and treatment, referred to as
“confounders”. If we assume the covariate vector X contains all such confounders, we would have (Y0, Y1) ⊥⊥ Z | X, which
is referred to as “no unmeasured confounders” or ignorability assumption (Robins et al., 2000). Under this assumption, we
shall have

E[Y |Z = 1] = E{E[Y |Z = 1,X]} = E {E [Y1|Z = 1,X]}
= E {E [Y1|X]} = E [Y1] .

(15)

Similarly,
E[Y |Z = 0] = E{E[Y |Z = 0,X]} = E [Y0] .

The above observations actually motivate the unbiased estimator using the outcome regression model, i.e., the OR estimator
(3). Under the no unmeasured confounding assumption, the ACE τ is identifiable from observational data.

The propensity score e(X) = P(Z = 1|X) is the probability of treatment given covariates, which specifies the treat-
ment assignment mechanism. Rosenbaum & Rubin (1983) showed that (Y0, Y1) ⊥⊥ Z | e(X), which implies that
E [I(Z = 1)|Y1,X] = e(X). Therefore, we will have

E
[
ZY

e(X)

]
= E

{
E
[
I(Z = 1)Y1

e(X)

∣∣∣∣ Y1,X]}
= E

{
Y1
e(X)

E [I(Z = 1)|Y1,X]

}
= E[Y1].

(16)

Similarly,

E
[
(1− Z)Y

1− e(X)

]
= E[Y0].

The above observations actually motivate the application of IPW (Horvitz & Thompson, 1952) for ACE estimation and
show that IPW estimator (2) is unbiased under correct PS model specification.

One common drawback of both IPW and OR estimators is that they require correct specification of the PS and OR models
respectively, which is challenging in practice. To fix this issue, an augmented IPW estimator (also known as DR estimator)
is proposed (Robins et al., 1994; Rotnitzky et al., 1998; Scharfstein et al., 1999) — The main idea is, by incorporating an
augmented term (which is related to the OR model) in IPW, the estimator will be doubly robust. To elucidate the doubly
robustness, we re-write the DR estimator (4) as follows:

τ̂DR =
1

n

n∑
i=1

[
ziyi
ê (xi)

− zi − ê (xi)

ê (xi)
m̂1 (xi)

]
− 1

n

n∑
i=1

[
(1− zi) yi
1− ê (xi)

+
zi − ê (xi)

1− ê (xi)
m̂0 (xi)

]

=
1

n

n∑
i=1

[
m̂1 (xi) +

zi {yi − m̂1 (xi)}
ê (xi)

]
− 1

n

n∑
i=1

[
m̂0 (xi) +

(1− zi) {yi − m̂0 (xi)}
1− ê (xi)

]
.

Notice that:

E[Y1] = E
[
ZY

e(X)
− Z − e(X)

e(X)
m1(X)

]
= E

[
m1 (X) +

Z {Y −m1 (X)}
e (X)

]
,

E[Y0] = E
[
(1− Z)Y

1− e(X)
+
Z − e(X)

1− e(X)
m0(X)

]
= E

[
m0 (X) +

(1− Z) {Y −m0 (X)}
1− e (X)

]
.

Therefore, the DR estimator is unbiased when either the PS model or the OR model is correctly specified. Additionally,
those estimators have nice theoretical properties; see, e.g., Wooldridge et al. (2002); Wooldridge (2007) for theory of IPW
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estimator and Robins et al. (1994); Bang & Robins (2005) for theory of DR estimator. There are also other approaches to
estimate causal effects using propensity score, such as matching; see Lunceford & Davidian (2004) for a nice survey on the
use of propensity scores in causal inference and Yao et al. (2021) for a recent comprehensive survey on causal inference.

B.2. A motivating toy example for TCL problem

To elucidate why TCL problem is non-trivial, let us consider:

Treatment assignment : P(Z = 1|X1, X2) = g(β1X1 + β2X2),

Causal relationship : Y = τZ + αX2 + ϵ,

Figure 1. In the toy example, the treatment assignments differ
between target and source domains in that the effects from
covariate X2 are different. We do not impose assumptions on
whether or not the ACEs are the same for both domains.

where g(x) = 1/(1 + ex) is the sigmoid function. The goal
is to infer the causal effect from treatment Z to outcome Y ,
given potential confounding variables X1 and X2; the additive
noise ϵ is independent from the aforementioned r.v.s. The treat-
ment assignment mechanism and the causal relationship are
visualized in Figure 1; further experimental details such as the
configurations can be found in Appendix F.

Although IPW is consistent (Wooldridge et al., 2002;
Wooldridge, 2007), making inference from limited amount of
target domain data leads to estimate of the ACE with large bias,
as verified in Table 4. This necessitates the use of source do-
main data. One naive way is to integrate both datasets in the
estimation of the PS model nuisance parameters. However, due
to different treatment assignments, this naive data-integration
will not help correct the bias. To make things even worse, since we have ns ≫ n, this naive data-integrative estimate will
bias towards the source domain, leading to a potentially worse downstream IPW estimator, as verified in Table 4.

Table 4. Comparison of ACE estimation accuracy: the truth is τ = −0.067. Our proposed method with knowledge transfer yields the
most accurate one, which correctly recovers the inhibiting effect.

Data used Target only Both domains
Learning framework TO-CL Merge-CL ℓ1-TCL

IPW estimate 0.0002 0.0441 −0.0013

To leverage the abundant source domain data in a principled manner, we introduce a ℓ1 regularized TL approach for ACE
estimation, i.e., our proposed ℓ1-TCL framework; please see a graphical illustration in Figure 2.

Figure 2. Illustration of the general approach for TCL problem. In our proposed ℓ1-TCL framework, the nuisance parameter estimation
stage leverages ℓ1 regularized TL, and the plug-in estimation stage considers IPW, OR and DR estimators.
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B.3. Neural network-based nuisance models for causal effect estimation

In this part, we briefly review the aforementioned NN-based approaches for ACE estimation: TARNet (Shalit et al., 2017)
and Dragonnet (Shi et al., 2019), which can both be categorized as representation learning method according to Yao et al.
(2021).

TARNet. Consider covariate vector, treatment and observed outcome tuple (X, Z, Y ) tuple with realizations D =
{(xi, zi, yi), i = 1, . . . , n}. TARNet finds a representation of the covariates, denoted by Φ(xi) which maps the covariate
vector onto a representation space, and hypothesis of the potential outcome variable, denoted bymzi(Φ(xi)), simultaneously
by minimizing the following regularized objective function:

min
m0,m1,Φ

LTAR(m0,m1,Φ; D) =
1

n

n∑
i=1

wiL̃ (mzi(Φ(xi)), yi)

+ λCPLXℜ(m0,m1) + λBAL IPM
(
{Φ (xi)}i:zi=0 , {Φ (xi)}i:zi=1

)
,

where ℜ controls the model complexity, IPM(·, ·) represents the Integral Probability Metric (IPM) (Sriperumbudur et al.,
2012), such as the Maximum Mean Discrepancy and the Wassertein Distance, evaluated on two empirical distributions
defined by two collections of data-points on the representation space, and weights wi’s compensate for the difference in
treatment group size and are defined as follows:

wi =
zi
2u

+
1− zi

2(1− u)
, i = 1, . . . , n, u =

1

n

n∑
i=1

zi.

The loss function L̃ for the network training is decomposed into two terms, i.e., L̃ (mz(Φ(·)), ·) , z ∈ {0, 1}, which
correspond to the control and treatment groups, respectively. The weights for the treatment and control functions are updated
only if the sample belongs to that group. Either the MSE or log-loss can be used as L̃, depending on whether the outcome
variable is continuous or binary. Most importantly, to handle the problem of variance arising from treatment imbalance,
TARNet objective includes the empirical IPM to upper bound this variance; hyperparameter λBAL > 0 controls the trade-off
between outcome regression model fitting and the treatment-and-control distribution balanceness. When λBAL = 0, it
corresponds to the TARNet; otherwise, it corresponds to the Counterfactual Regression.

Dragonnet. Similarly, Dragonnet creates a shared representation of the covariates can be used to predict the treatment and
potential outcomes. It uses a NN for the shared representation followed by two NNs used for predicting potential outcomes
of the treatment and control groups respectively. However, instead of using a IPM layer, they incorporate a mapping layer
for the propensity score, which is named “propensity score head” and denoted by e(·), to connect the shared representation
of the covariates with the estimated propensity scores. To be precise, the objective function is:

min
θ

LDragon(θ;D) =
1

n

n∑
i=1

(mzi(θ;xi)− yi)
2︸ ︷︷ ︸

NN regression loss

+λBAL CE (e(θ;xi), zi)︸ ︷︷ ︸
NN classification CE loss

, (17)

where CE(·, ·) is the binary classification cross entropy loss and λBAL > 0 is a tunable hyperparameter controlling trade-off
between outcome regression model fitting and the treatment-and-control distribution balanceness.

For further details of TARNet and Dragonnet, we refer readers to the original papers. In our numerical experiments, we use
the open source implementation1 of TARNet and Dragonnet on the IHDP dataset and readers can find further implementation
details therein.

C. Non-Asymptotic Recovery Guarantee for TLIPW estimator
We begin our theoretical analysis with the TLIPW estimator. We will first prove the non-asymptotic upper bound on the ℓ1
regularized TL estimator for PS model and then plug it into the error bound for unbiased IPW estimator (2) to get the final
recovery guarantee for the TLIPW estimator.

1The are two implementations on GitHub, one is from the Dragonnet paper author: https://github.com/
claudiashi57/dragonnet, and the other is a reproduction of the results using PyTorch: https://github.com/alecmn/
dragonnet-reproduced.
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C.1. Guarantee for PS model nuisance parameter estimation with knowledge transfer

Let us begin with necessary assumptions:

Assumption 1. The covariates in both target and source domains are uniformly bounded, i.e., there exists MX > 0 such
that ∥xi∥∞ ≤MX , i = 1, . . . , n, and ∥xi,s∥∞ ≤MX , i = 1, . . . , ns.

The above assumption is a slightly different from the “standardized design matrix” assumption in Bastani (2021), which
requires the squared matrix F -norms of design matrices (x1, . . . ,xn)

T and (x1,s, . . . ,xns,s)
T to be n and ns, respectively.

However, we will see they serve the same purpose when proving Lemma 1 (to be presented). Denote the sample covariance
matrices as follows:

Σ =
1

n

n∑
i=1

xix
T

i ∈ Rn×n, Σs =
1

ns

ns∑
i=1

xi,sx
T

i,s ∈ Rns×ns . (18)

Assumption 2. The source domain sample covariance matrix Σs is positive-definite (PD); in particular, we assume that Σs

has minimum eigenvalue ψ > 0.

Here, Assumption 2 ensures we can faithfully recover βs using MLE from the source domain data, and this assumption is
mild when ns > d, which is satisfied under our considered regime (13).

Definition 2 (Compatibility Condition (Bastani, 2021)). The compatibility condition with constant ϕ > 0 is met for the
index set I ⊂ {1, . . . , d} and the matrix Σ ∈ Rd×d, if for all u ∈ Rd satisfying ∥uIc∥1 ≤ 3∥uI∥1, the following condition
holds:

∥uI∥21 ≤ #I
ϕ2

uTΣu,

where (recall that) # represents the cardinality of a set, and uI is a vector with j-th elements being uj , i.e., j-th element in
vector u, if j belongs to index set I and zero otherwise.

A standard assumption in high-dimensional Lasso literature is:

Assumption 3. The index set I = supp(∆β) (8) and target domain sample covariance matrix Σ (18) meet the above
compatibility condition with constant ϕ > 0.

This assumption guarantees the identifiablility of ∆β , and it holds automatically when target domain sample covariance
is PD. However, when n < d, the target domain sample covariance is rank-deficient and Assumption 3 is crucial for the
identifiablility of ∆β .

Assumption 4. The function G(·) is strongly convex with γ > 0, i.e., for all w1, w2 in its domain, the following holds:

G(w1)−G(w2) ≥ G′(w2)(w1 − w2) + γ
(w1 − w2)

2

2
.

Assumption 4 is standard in GLM literature, and it is automatically satisfied when the link function G′(·) = g(·) (7) is
linear, i.e., g(x) = x with domain x ∈ [0, 1]. Now, we are ready to present the recovery guarantee for the ℓ1 regularized TL
for the PS model nuisance parameters.

Lemma 1 (Transferable guarantee for PS model). Under Assumptions 1, 2, 3 and 4, when the PS model (7) is correctly
specified and the difference ∆β (8) is s-sparse, the following holds for the estimator β̂t with regularization strength
parameter λPS > 0:

P
(∥∥∥β̂t − βt

∥∥∥
1
≥ 5λPS

γ

(
1

8ψ2
+

1

ψ
+

s

ϕ2

))
≤

2d exp

(
− 2λ2PSn

125M2
X

)
+ 2d exp

(
−2λ2PSns
5d2M2

X

)
.

(19)

Remark 1. As one will see later in next subsection, the above error bound is invoked when we upper bound the error for the
estimated propensity scores, i.e., |g(xT

i βt)− g(xT
i β̂t)|, which involves applying Hölder’s inequality to get

xT

i (βt − β̂t) ≤ |xT

i (βt − β̂t)| ≤ ∥xi∥p1∥βt − β̂t∥p2 ,
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with 1/p1+1/p2 = 1, p1, p2 ≥ 1. Notice that common choices include (p1, p2) = (2, 2) and (∞, 1). As mentioned earlier,
we can invoke Restricted Eigenvalue Condition (CANDES & TAO, 2007; Bickel et al., 2009; Meinshausen & Yu, 2009;
van de Geer & Bühlmann, 2009) to upper bound ∥βt − β̂t∥2, which scales as

√
s instead of s; however ∥xi∥2 will scale as√

n under Assumption 1, which typically dominates the sparsity term in our regime (13). Therefore, the overall error upper
bound on ACE estimate will deteriorate to O(

√
sn log d/n), compared with O(s

√
log d/n) (to be presented below). This

explains why we use Compatibility Condition to obtain the ℓ1 error bound for the estimated nuisance parameters instead of
using Restricted Eigenvalue Condition to get the ℓ2 error bound.

C.2. Guarantee for plug-in TLIPW estimator

To bound the absolute estimation error |τ̂TLIPW − τ |, we additionally need some (mild) technical assumptions:
Assumption 5. The target domain outcomes are uniformly bounded, i.e., there exists MY > 0 such that |yi| ≤MY , i =
1, . . . , n.

This technical assumption helps simplify the analysis; however, our following theoretical analysis will also hold for sub-
Gaussian (see Definition 3) outcome random variables as shown by the techniques used in the proof of Theorem 3, case
(I).
Assumption 6. The propensity scores evaluated on the target domain data are bounded away from zero and one, i.e., there
exists 0 < mg < 1/2 such that

mg ≤ e(xi) = g(xT

i βt) ≤ 1−mg, i = 1, . . . , n.

Assumption 6 is standard for proving the theoretical guarantee of IPW estimator, see Wooldridge et al. (2002); Wooldridge
(2007) for classic asymptotic analysis for the IPW estimator’s

√
n-consistency and asymptotic normality (cf. Theorems 3.1

and 4.1 (Wooldridge et al., 2002) respectively). Now, by leveraging Hoeffding’s inequality, we can establish the following
concentration result:
Lemma 2. Under Assumptions 5 and 6, for any t > 0, we have:

P

(∣∣∣∣∣ 1n
n∑

i=1

ziyi
g(xT

i βt)
− (1− zi)yi

1− g(xT
i βt)

− τ

∣∣∣∣∣ ≥ t

)
≤ 4 exp

(
−
m2

gt
2n

8M2
Y

)
. (20)

Before presenting the non-asymptotic guarantee for TLIPW estimator, we additionally impose the following technical
assumption for simplicity:
Assumption 7. The link function g(·) is L-Lipschitz with constant L > 0, i.e., for x1, x2 in its domain we have |g(x1)−
g(x2)| ≤ L|x1 − x2|.

Finally, with the help of the above lemmas, we can establish the non-asymptotic upper bound on the absolute estimation
error of τ̂TLIPW as follows:
Theorem 1 (Non-asymptotic recovery guarantee for τ̂TLIPW (12)). Under Assumptions 1, 2, 3, 4, 5, 6 and 7, for any
constant δ > 0, if the PS model (7) is correctly specified and the difference ∆β (8) is s-sparse, as n, ns → ∞, suppose (13)
holds, i.e.,

s

√
log d

n
= o(1), d

√
n

ns
= O(1),

we take ℓ1 regularization strength parameter to be

λPS =

√
5M2

X log(6nd)

2n
max

{
25,

nd2

ns

}
, (21)

and we will have

P

(
|τ̂TLIPW − τ | ≤ (1 + δ)

(
C1s

√
log n+ log d

n
max

{
1,

nd2

25ns

}
+

2MY

mg

√
log n

n

))

≥ 1− 1

n
,

(22)
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where constant C1 = C1(MX ,MY , ψ, ϕ; γ,mg, L) is defined as:

C1 =
100

√
5M2

XMY L√
2m2

gγ

(
1

8ψ2
+

1

ψ
+

1

ϕ2

)
.

C.3. Proofs

Proof outline of Lemma 1. This proof mostly follows the proof of Theorem 6 in Bastani (2021). The differences in our
setting come from: (i) The Bernoulli r.v.s are sub-Gaussian with variance bounded by 1/4, which implies

E[Z − g(XTβt)] = 0, Var(Z − g(XTβt)) ≤ 1/4 + 1 = 5/4.

We need to substitute the variance terms with this upper bound (i.e., 5/4).

(ii) By Assumption 1, we have
n∑

i=1

(xi)
2
j ≤ nM2

X ,

where (xi)j denotes the j-th element in the vector xi. This implies that
∑n

i=1(zi − g(xT
i βt))(xi)j is (

√
5nMX/2)-sub-

Gaussian (cf. Lemma 16 in Bastani (2021)). Notice that this is different from “
∑n

i=1(xi)
2
j = n” due to the “normalized

feature assumption” in the proof of Lemma 4 Bastani (2021). Therefore, in addition to substituting the variance terms as
mentioned in (i), we need to include the additional MX term due to different model assumptions. Lastly, we perform the
same modification to Lemma 5 and its proof in Bastani (2021), and these lead to (19). For complete details of the proof, we
refer readers to Appendix C in Bastani (2021).

Proof of Lemma 2. For correctly specified propensity score model (7), the IPW estimator is unbiased as shown in eq. (16).
Notice that Assumptions 5 and 6 ensures ∣∣∣∣ ziyi

g(xT
i βt)

∣∣∣∣ ≤ MY

mg
.

By Hoeffding’s inequality, we have

P

(∣∣∣∣∣ 1n
n∑

i=1

ziyi
g(xT

i βt)
− E[Y1]

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−
m2

gt
2n

2M2
Y

)
.

Similarly, we have E
[
(1−Z)Y
1−e(X)

]
= E[Y0], and we can show

P

(∣∣∣∣∣ 1n
n∑

i=1

(1− zi)yi
1− g(xT

i βt)
− E[Y0]

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−
m2

gt
2n

2M2
Y

)
.

Recall that τ = E[Y1]− E[Y0], we have

P

(∣∣∣∣∣ 1n
n∑

i=1

ziyi
g(xT

i βt)
− (1− zi)yi

1− g(xT
i βt)

− τ

∣∣∣∣∣ ≥ t

)

≤P

(∣∣∣∣∣ 1n
n∑

i=1

ziyi
g(xT

i βt)
− E[Y1]

∣∣∣∣∣ ≥ t/2

)
+ P

(∣∣∣∣∣ 1n
n∑

i=1

(1− zi)yi
1− g(xT

i βt)
− E[Y0]

∣∣∣∣∣ ≥ t/2

)

≤4 exp

(
−
m2

gt
2n

8M2
Y

)
.

We complete the proof.
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Proof of Theorem 1. One one hand, plugging the regularization parameter choice (21) into (19) yields:

P
(∥∥∥β̂t − βt

∥∥∥
1
≥ 5λPS

γ

(
1

8ψ2
+

1

ψ
+

s

ϕ2

))
≤ 2

3n
. (23)

On the other hand, by setting t = 2MY

mg

√
log(12n)

n in eq. (20) we have

P

(∣∣∣∣∣ 1n
n∑

i=1

ziyi
g(xT

i βt)
− (1− zi)yi

1− g(xT
i βt)

− τ

∣∣∣∣∣ ≥ 2MY

mg

√
log(12n)

n

)
≤ 1

3n
. (24)

Due to Assumptions 5 and 6, we have∣∣∣∣∣ 1n
n∑

i=1

ziyi
g(xT

i βt)
− ziyi

g(xT
i β̂t)

∣∣∣∣∣ ≤ 1

n

n∑
i=1

MY |g(xT
i βt)− g(xT

i β̂t)|

mg

(
mg − |g(xT

i βt)− g(xT
i β̂t)|

) . (25)

Since g(·) is L-Lipschitz, we have

|g(xT

i βt)− g(xT

i β̂t)| ≤ L|xT

i (βt − β̂t)| ≤ L∥xi∥∞
∥∥∥β̂t − βt

∥∥∥
1
,

where the last inequality comes from the Hölder’s inequality. Due to Assumption 5 and the fact that f(x) = x/(mg − x)
monotonically increase on domain 0 ≤ x < mg , we can further bound the right hand side (RHS) of (25) as follows:∣∣∣∣∣ 1n

n∑
i=1

ziyi
g(xT

i βt)
− ziyi

g(xT
i β̂t)

∣∣∣∣∣ ≤ 1

n

n∑
i=1

MXMY L
∥∥∥β̂t − βt

∥∥∥
1

mg

(
mg −MXL

∥∥∥β̂t − βt

∥∥∥
1

)
≤ 1

n

n∑
i=1

MXMY L
∥∥∥β̂t − βt

∥∥∥
1

m2
g/2

.

(26)

The above inequality will hold since, for large enough n, ns and in the regime (13), Lemma 1 guarantees
MXL

∥∥∥β̂t − βt

∥∥∥
1
→ 0, and therefore we will have MXL

∥∥∥β̂t − βt

∥∥∥
1
≤ mg/2. Similarly, we can obtain

∣∣∣∣∣ 1n
n∑

i=1

(1− zi)yi
1− g(xT

i βt)
− (1− zi)yi

1− g(xT
i β̂t)

∣∣∣∣∣ ≤ 1

n

n∑
i=1

MXMY L
∥∥∥β̂t − βt

∥∥∥
1

m2
g/2

. (27)

Now, (23) and (24) tell us that, with probability as least 1− 1/n,

|τ̂TLIPW − τ |

≤

∣∣∣∣∣τ̂TLIPW − 1

n

n∑
i=1

ziyi
g(xT

i βt)
− (1− zi)yi

1− g(xT
i βt)

∣∣∣∣∣+
∣∣∣∣∣ 1n

n∑
i=1

ziyi
g(xT

i βt)
− (1− zi)yi

1− g(xT
i βt)

− τ

∣∣∣∣∣
<
20MXMY LλPS

m2
gγ

(
1

8ψ2
+

1

ψ
+

s

ϕ2

)
+

2MY

mg

√
log(12n)

n

≤20MXMY LλPS

m2
gγ

(
1

8ψ2
+

1

ψ
+

1

ϕ2

)
s+

2MY

mg

√
log(12n)

n
.

Plugging the λPS choice (21) into the above equation, and notice that, for any constant δ > 0, for large enough n the
following holds: √

log(12n) =
√
log 12 + log n ≤ (1 + δ)

√
log n,

√
log(6nd) ≤ (1 + δ)

√
log(nd).

We can obtain the non-asymptotic result in eq. (22). Now we complete the proof.
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D. Non-Asymptotic Recovery Guarantee for TLOR estimator
D.1. Guarantee for OR model nuisance parameter estimation with knowledge transfer

Now we prove the non-asymptotic guarantee for our proposed TLOR estimator.

Definition 3. A random variable Z ∈ R is σ-sub-Gaussian if E [etz] ≤ eσ
2t2/2 for all t ∈ R.

Many classical distributions are subgaussian; typical examples include any bounded, centered distribution, or the normal
distribution. For z ∈ {0, 1}, we denote the “noise terms” in the OR models (10) as follows:

ϵz = Yz − E[Yz|X] = Yz −XTαz,t,

ϵz,s = Yz,s − E[Yz,s|Xs] = Yz,s −XT

sαz,s.

Assumption 8. The noise terms are sub-Gaussian, i.e., for z ∈ {0, 1}, there exist constants σ, σs > 0 such that ϵz is
σ-sub-Gaussian, and ϵz,s is σs-sub-Gaussian.
Assumption 9. For z ∈ {0, 1}, the index set I = supp(∆α,z) (11) and target domain sample covariance matrix Σ (18)
meet the compatibility condition with ϕz > 0.
Lemma 3 (Transferable guarantee for OR model, cf. Theorem 5 (Bastani, 2021)). Under Assumptions 1, 2, (8) and 9,
assume the sample balanceness condition (14) holds, for z ∈ {0, 1}, when the OR model (10) is correctly specified and the
difference ∆α,z (11) is sz-sparse, i.e.,

∥∆α,0∥0 ≤ s0, ∥∆α,1∥0 ≤ s1,

the following holds for the estimator α̂z,t with regularization strength parameter λOR > 0:

P
(
∥α̂z,t − αz,t∥1 ≥ 5λOR

(
1

4ψ2
+

1

ψ
+

sz
2ϕ2z

))
≤

2d exp

(
− rnλ2OR

200σ2M2
X

)
+ 2d exp

(
− rnsλ

2
OR

2d2σ2
sM

2
X

)
.

(28)

D.2. Guarantee for plug-in TLOR estimator

Here, we impose an additional technical assumption that the covariates in the target domain are sub-Gaussian such that there
exists constant σX > 0:

P

(∣∣∣∣∣ 1n
n∑

i=1

xT

i αz,t − E[Yz]

∣∣∣∣∣ > t

)
≤ 2 exp

(
− nt2

2σ2
X

)
, z ∈ {0, 1}. (29)

Theorem 2 (Non-asymptotic recovery guarantee for τ̂TLDR (12)). Under Assumptions 1, 2, 8 and 9, suppose the sample
balanceness condition (14) holds and the covariates in target domain follow a sub-Gaussian distribution (29), as n, ns → ∞,
suppose (13) holds, for any constant δ > 0, when the OR model (10) is correctly specified with sz-sparse ∆z,α (11) (for
z ∈ {0, 1}), i.e.,

∥∆α,0∥0 ≤ s0, ∥∆α,1∥0 ≤ s1,

then by taking

λOR =

√
2M2

X log(12nd)max

{
100σ2

rn
,
d2σ2

s

rns

}
, (30)

we will have

P

(
|τ̂TLOR − τ | ≤ (1 + δ)

(
C2σ(s0 + s1)

√
log n+ log d

rn
max

{
100,

nσ2
sd

2

nsσ2

}

+ 2σX

√
2 log n

rn

))
≥ 1− 1

n
.

(31)

where constants C2 = C2(MX , ψ, ϕ0, ϕ1;mg) and C3 = C3(mg) are defined as follows:

C2 = 5
√
2M2

X

(
1

mg
− 1

)(
1

2ψ2
+

2

ψ
+

1

2ϕ20
+

1

2ϕ21

)
, C3 = 2

√
2

mg
. (32)
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D.3. Proof

The proof of Lemma 3 mostly follows that of Theorem 5 in Bastani (2021) and we omit it here. We only give detailed proof
of the main theorem.

Proof of Theorem 2. The absolute error of the TLOR estimator (12) can be decomposed as follows:

|τ̂TLOR − τ | ≤

∣∣∣∣∣ 1n1 ∑zi=1

xT

i (α̂1,t − α1,t)

∣∣∣∣∣+
∣∣∣∣∣ 1n0 ∑zi=0

xT

i (α̂0,t − α0,t)

∣∣∣∣∣
+

∣∣∣∣∣ 1n1 ∑zi=1

xT

i α1,t −
1

n0

∑
zi=0

xT

i α0,t − τ

∣∣∣∣∣
≤MX

(
∥α̂1,t − α1,t∥1 + ∥α̂0,t − α0,t∥1

)
+

∣∣∣∣∣ 1n1 ∑zi=1

xT

i α1,t −
1

n0

∑
zi=0

xT

i α0,t − τ

∣∣∣∣∣ .
On one hand, by setting the RHS of (29) as 1/(6n), we have that, with probability at least 1− 1/(3n), the following holds:∣∣∣∣∣ 1n

n∑
i=1

xT

i α1,t − xT

i α0,t − τ

∣∣∣∣∣ ≤ 2

√
2σ2

X log(12n)

n
.

One the other hand, following Lemma 3 and taking λOR as in eq. (30), we will have that, with probability at least 1−2/(3n),

∥α̂1,t − α1,t∥1 + ∥α̂0,t − α0,t∥1 ≤ 5λOR

(
1

2ψ2
+

2

ψ
+

s0
2ϕ20

+
s1
2ϕ21

)
.

Now, combing the above inequalities, we will have that, with probability at least 1− 1/n, the following holds:

|τ̂TLOR − τ | ≤ 2

√
2σ2

X log(12n)

n
+ 5MX

(
1

mg
− 1

)
λOR

(
1

2ψ2
+

2

ψ
+

s0
2ϕ20

+
s1
2ϕ21

)
= O

(
(s0 + s1)

√
log d

(
1√
rn

+
d

√
rns

))
.

To get (31), we only need to notice that, for any constant δ > 0, for large enough n the following holds:√
log(12n) =

√
log 12 + log n ≤ (1 + δ)

√
log n.

We can handle the log(12nd) term in λOR (30) in a similar manner and obtain
√

log(12nd) ≤ (1 + δ)
√

log(nd). Now, we
obtain the non-asymptotic result in eq. (31) and complete the proof.

E. Non-Asymptotic Recovery Guarantee for TLDR estimator
E.1. Guarantee for plug-in TLDR estimator

We impose another technical assumption as Bastani (2021) did (see Assumption 1 therein):

Assumption 10. The ground truth target domain OR model parameters are bounded, i.e., for z ∈ {0, 1}, there exists
Mα > 0 such that ∥αz,t∥1 < Mα.

Similarly, due to the doubly-robustness of the DR estimator, we have the following non-asymptotic recovery guarantee:

Theorem 3 (Non-asymptotic recovery guarantee for τ̂TLDR (12)). Under Assumptions 1 and 2, as n, ns → ∞, suppose
(13) holds. For any constant δ > 0:
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(I) When the PS model (7) is correctly specified and ∆β (8) is s-sparse, if we additionally assume Assumptions 3, 4, 5, 6, 7
and 10 hold, then by taking

λPS =

√
5M2

X log(10nd)

2n
max

{
25,

nd2

ns

}
, (33)

we will have

P

(
|τ̂TLDR − τ | ≤ (1 + δ)

(
C4s

√
log n+ log d

n
max

{
1,

25nd2

ns

}
+ C5

√
log n

n

))
≥ 1− 1

n
. (34)

where constants C4 = C4(MX ,MY , ψ, ϕ; γ,mg, L;Mα) and C5 = C5(MX ,MY ;mg;Mα) are defined as follows:

C4 =
100

√
5M2

X (MXMα +MY /mg)L√
2mgγ

(
1

8ψ2
+

1

ψ
+

1

ϕ2

)
, C5 = 2

MY +
√
10MXMα

mg
.

(II) When the OR model (10) is correctly specified and ∆z,α (11) is sz-sparse (for z ∈ {0, 1}), i.e.,

∥∆α,0∥0 ≤ s0, ∥∆α,1∥0 ≤ s1,

under Assumptions 8, 9, and we further assume the sample balanceness condition (14) holds and the covariates in the
target domain are sub-Gaussian (29), we strengthen Assumption 6 by assuming the link function g(·) (7) takes value on
[mg, 1−mg], then by taking

λOR =

√
2M2

X log(16nd)max

{
100σ2

rn
,
d2σ2

s

rns

}
, (35)

we will have

P

(
|τ̂TLDR − τ | ≤ (1 + δ)

(
C2σ(s0 + s1)

√
log n+ log d

rn
max

{
100,

nσ2
sd

2

nsσ2

}

+ C3σ

√
log n

n
+ 2σX

√
2 log n

rn

))
≥ 1− 1

n
.

(36)

where constants C2 = C2(MX , ψ, ϕ0, ϕ1;mg) and C3 = C3(mg) are defined in eq. (32).

E.2. Proof

Proof of Theorem 3. We consider two cases: (i) the PS model is correctly specified and (ii) the OR model is correctly
specified.

Case (I): the PS model is correctly specified. This proof closely resembles that of Theorem 1. We only need to showed
the augmented terms in the DR estimator, i.e.,

1

n

n∑
i=1

xT
i α̂1,t(zi − g(xT

i β̂t))

g(xT
i β̂t)

,
1

n

n∑
i=1

xT
i α̂0,t(zi − g(xT

i β̂t))

1− g(xT
i β̂t)

,

are very close to zero with high probability, which is straightforward since they both have zero mean under the correct PS
model specification assumption.

To simplify our proof below, we impose Assumption 10, which implies that, when n, ns → ∞, in regime (13), we will have
∥α̂z,t∥1 ≤Mα due to Lemma 3. Similarly, Assumption 6 ensures that mg/2 ≤ g(xT

i β̂t) ≤ 1−mg/2 for sufficiently large
n, ns. Now, we can show that

n∑
i=1

xT
i α̂1,t(zi − g(xT

i βt))

g(xT
i β̂t)
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is (
√
5nMXMα/mg)-sub-Gaussian. Notice that Bernoulli r.v. has variance bounded by 1/4 and∣∣∣∣∣ xT

i α̂1,t

g(xT
i β̂t)

∣∣∣∣∣ ≤ 2MXMα

mg
.

Thus, we have

P

(∣∣∣∣∣ 1n
n∑

i=1

xT
i α̂1,t(zi − g(xT

i βt))

g(xT
i β̂t)

∣∣∣∣∣ > t

)
≤ 2 exp

(
−

nm2
gt

2

10M2
XM

2
α

)
. (37)

Similarly, we can show that

P

(∣∣∣∣∣ 1n
n∑

i=1

xT
i α̂0,t(zi − g(xT

i βt))

1− g(xT
i β̂t)

∣∣∣∣∣ > t

)
≤ 2 exp

(
−

nm2
gt

2

10M2
XM

2
α

)
. (38)

We take RHS of Equations 37 and 38 to be 1/(5n), and therefore with probability at least 1− 2/(5n) we have:∣∣∣∣∣− 1

n

n∑
i=1

xT
i α̂1,t(zi − g(xT

i β̂t))

g(xT
i β̂t)

+
1

n

n∑
i=1

xT
i α̂0,t(zi − g(xT

i β̂t))

1− g(xT
i β̂t)

∣∣∣∣∣
≤
2MXMα

√
10 log(10n)

mg
√
n

+
4LM2

XMα∥βt − β̂t∥1
mg

.

(39)

By taking λPS as in eq. (33) and following the proof of Theorem 1, we have that with probability at least 1− 1/n:

|τ̂TLDR − τ |

≤

∣∣∣∣∣τ̂TLIPW − 1

n

n∑
i=1

ziyi
g(xT

i βt)
− (1− zi)yi

1− g(xT
i βt)

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑

i=1

ziyi
g(xT

i βt)
− (1− zi)yi

1− g(xT
i βt)

− τ

∣∣∣∣∣
+

∣∣∣∣∣− 1

n

n∑
i=1

xT
i α̂1,t(zi − g(xT

i β̂t))

g(xT
i β̂t)

+
1

n

n∑
i=1

xT
i α̂0,t(zi − g(xT

i β̂t))

1− g(xT
i β̂t)

∣∣∣∣∣
≤
20MX

(
MαMX + MY

mg

)
LλPS

mgγ

(
1

8ψ2
+

1

ψ
+

s

ϕ2

)
+

2MY

√
log(20n) + 2MXMα

√
10 log(10n)

mg
√
n

=O
(
s
√
log d

(
1√
n
+

d
√
ns

))
.

To get (34), we only need to notice that, for any constant δ > 0, for large enough n the following holds:√
log(10n) <

√
log(20n) =

√
log 20 + log n ≤ (1 + δ)

√
log n.

We can handle the log(10nd) term in λPS (33) in a similar manner and obtain
√

log(10nd) ≤ (1 + δ)
√
log(nd). Now, we

obtain the non-asymptotic result in eq. (34) and complete the proof.

Case (II): the OR model is correctly specified. We rewrite our TLDR estimator (12) as follows:

τ̂TLDR =
1

n

n∑
i=1

xT

i α̂1,t +
zi(yi − xT

i α̂1,t)

g(xT
i β̂t)

− xT

i α̂0,t −
(1− zi)(yi − xT

i α̂0,t)

1− g(xT
i β̂t)

.
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We decompose the estimator error as follows:

|τ̂TLDR − τ | ≤

∣∣∣∣∣ 1n
n∑

i=1

xT

i α1,t − xT

i α0,t − τ

∣∣∣∣∣+
∣∣∣∣∣ 1n

n∑
i=1

(
1− zi

g(xT
i β̂t)

)
xT

i (α̂1,t − α1,t)

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
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(
1− 1− zi

1− g(xT
i β̂t)

)
xT

i (α̂0,t − α0,t)
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∣∣∣∣∣ 1n

n∑
i=1

zi(yi − xT
i α1,t)

g(xT
i β̂t)

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑

i=1

(1− zi)(yi − xT
i α0,t)

1− g(xT
i β̂t)

∣∣∣∣∣ .
Notice that we strengthen the Assumption 6 that link function g(·) only takes value on [mg, 1−mg], which gives us∣∣∣∣∣ 1n

n∑
i=1

(
1− zi

g(xT
i β̂t)

)
xT

i (α̂1,t − α1,t)

∣∣∣∣∣ ≤
(

1
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− 1

)
1

n

n∑
i=1

|xT

i (α̂1,t − α1,t)| ,∣∣∣∣∣ 1n
n∑
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(
1− 1− zi

1− g(xT
i β̂t)

)
xT

i (α̂0,t − α0,t)

∣∣∣∣∣ ≤
(

1

mg
− 1

)
1

n

n∑
i=1

|xT

i (α̂0,t − α0,t)| .

Combing the above derivations with Assumption 1, we have

|τ̂TLDR − τ | ≤

∣∣∣∣∣ 1n
n∑

i=1

xT

i α1,t − xT

i α0,t − τ

∣∣∣∣∣+MX

(
1
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)(
∥α̂1,t − α1,t∥1 + ∥α̂0,t − α0,t∥1

)
+
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∣∣∣∣∣+
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n∑
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(1− zi)(yi − xT
i α0,t)

1− g(xT
i β̂t)

∣∣∣∣∣ .
(i) Since the OR model is assumed to be correct, we have E[Z(Y −XTαZ,t)] = 0. Under Assumption 6, we can show:

P

(∣∣∣∣∣ 1n
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)
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)
≤ 2 exp
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−
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)
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(40)

Similarly we will get:

P

(∣∣∣∣∣ 1n
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(1− zi)(yi − xT
i α0,t)

1− g(xT
i β̂t)
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)

=P
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)
≤ 2 exp
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−
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)
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(41)

By setting the RHS of the above two inequalities as 1/(8n), we have that, with probability at least 1− 1/(4n), the following
holds: ∣∣∣∣∣ 1n

n∑
i=1

zi(yi − xT
i α1,t)

g(xT
i β̂t)

∣∣∣∣∣+
∣∣∣∣∣ 1n
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i α0,t)

1− g(xT
i β̂t)

∣∣∣∣∣ ≤ 2

√
2σ2 log(16n)
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g

.

(ii) Similar to the proof of Theorem 2, by setting the RHS of (29) as 1/(8n), we have that, with probability at least 1−1/(4n),
the following holds: ∣∣∣∣∣ 1n

n∑
i=1

xT

i α1,t − xT

i α0,t − τ

∣∣∣∣∣ ≤ 2

√
2σ2

X log(16n)

n
.
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(iii) Finally, by taking λOR as in eq. (35) as well as following Lemma 3, we will have that, with probability at least
1− 1/(2n),

∥α̂1,t − α1,t∥1 + ∥α̂0,t − α0,t∥1 ≤ 5λOR

(
1

2ψ2
+

2

ψ
+

s0
2ϕ20

+
s1
2ϕ21

)
.

Now, plugging (i), (iii), (iii) back to the decomposition we will have that, with probability at least 1 − 1/n, the error
|τ̂TLDR − τ | can be (upper) bounded by:

2

√
2σ2

X log(16n)

n
+ 5MX

(
1

mg
− 1

)
λOR

(
1

2ψ2
+

2

ψ
+

s0
2ϕ20

+
s1
2ϕ21

)
+ 2

√
2σ2 log(16n)

rnm2
g

= O
(
(s0 + s1)

√
log d

(
1√
rn

+
d

√
rns

))
.

To get (36), we only need to notice that, for any constant δ > 0, for large enough n the following holds:√
log(16n) =

√
log 16 + log n ≤ (1 + δ)

√
log n.

We can handle the log(16nd) term in λOR (35) in a similar manner and obtain
√
log(16nd) ≤ (1 + δ)

√
log(nd) when n is

large enough. Now, we obtain the non-asymptotic result in eq. (36) and complete the proof.

F. Additional Details of Synthetic-Data Experiments
Here, for GLM-based parametric approach, we consider IPW estimator for demonstration purpose, since the focus of our
numerical simulation is on NN-based non-parametric approaches (see Section 6 and Appendix G).

F.1. Motivating toy example

In the toy example presented in Appendix B.2, the r.v.s X1 ∼ N(µ1, 1), X2 ∼ N(µ2, 1), ϵ ∼ N(0, 1/4). We choose
µ1 = 0, β1 = 0.1 for both domains; in target domain, we take µ2 = 2, β2 = −0.1 and the causal effects are chosen as
τ = −2/30 ≈ −0.067 and α = 0.1; in source domain, we take µ2,s = 1, β2,s = −0.2.

We randomly generate 2000 samples from target domain and the IPW estimate is −0.0531, which is pretty close to the
ground truth ACE and validates the effectiveness of IPW estimator. However, in our TCL set-up, we consider limited target
domain samples in that we can only observe the first 100 target domain samples, which yields a very biased IPW estimate:
0.0002. Additionally, we observe 1000 randomly generated samples from the source domain, but we “do not know” whether
or not the ACEs and the treatment assignment mechanisms are the same across both domains; apparently, in our toy example,
treatment assignment mechanisms are different.

In this work, we aim to leverage the abundant source domain data to improve the propensity score estimation via TL
techniques. Since we do not assume same ACEs in both domains, we evaluate the IPW estimator only using the target
domain data. However, fitting the PS model using the naively merged datasets (i.e., without the TL techniques) would
fail since the treatment assignment mechanisms across different domains are different: in our numerical example, this
naive approach yields a IPW estimate τ̂naive = 0.0441, which is even more biased than only using target domain data. Our
proposed ℓ1-TCL does help yield a more accurate estimated ACE: τ̂TLIPW = −0.0013. This toy example tells us that
additionally incorporate the source domain data “in a smart way” by using TL technique does improve the IPW estimator’s
accuracy — we can now at least infer that there is a inhibiting causal effect from treatment Z to outcome Y .

F.2. Synthetic-data experiments

Next, we consider GLM parametric approach. The goal is to simply demonstrate the effectiveness of the proposed ℓ1-TCL
framework compared with two baselines: solely using target domain data for causal learning, which we call TO-CL, and
naively merging both domains’ datasets for causal learning, i.e., Merge-CL.
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F.2.1. EXPERIMENTAL CONFIGURATIONS AND TRAINING DETAILS

We generate synthetic data where the treatment assignment follows the GLM PS model (7) with randomly generated
d-dimensional target domain nuisance parameters as well as s-sparse difference (from Gaussian distribution). We consider
d ∈ {10, 20, 50, 75, 100}, s ∈ {1, 3, 5, 7, 10}, source domain sample size ns ∈ {2000, 3000, 5000} and target domain
sample size n ∈ {100, 200, 500} settings. For demonstration purpose, the link function is chosen to be sigmoid function
and considered known a prior. This reduces the PS model fitting in the rough estimation step to naive logistic regression; in
the ℓ1 regularized bias correction step, we use gradient descent to optimize the objective function (9) with respect to the
(sparse) difference, which has in total 8000 iterations and learning rate 0.02 (which decays by half every 2000 iterations).
Hyperparameter λPS is chosen to maximize the treatment prediction area under ROC curve (AUC) on a validation (target
domain) dataset with size 50.

F.2.2. RESULTS

Figure 3 reports the difference between average (over independent 100 trials) ACE estimation errors of our proposed and the
baseline frameworks: positive values indicate improved accuracy whereas negative values are all truncated to zeros for better
visualization. From the comparison with TO-CL (left panel), we can observe that ℓ1-TCL yields more accurate ACEs for
most considered experimental settings. Most importantly, we can observe that the benefit from our TL approach is the most
significant when we have limited amount of target domain data and this benefit gradually disappears when we have more
and more target domain data. From the comparison with Merge-CL (right panel), we can observe improved accuracy for
almost all settings, verifying that Merge-CL is inherently flawed due to the the different PS models between target and
source domain. In our semi-synthetic data (or pseudo-real-data) experiment, we will not consider Merge-CL.

Figure 3. Comparison between our proposed ℓ1-TCL with TO-CL (left) and Merge-CL (right) baseline learning frameworks. In each
sub-heatmap, x-axis represents the sparsity s, and the y-axis represents the dimensionality d. We report the difference between average
ACE estimation errors of our proposed and the baseline frameworks: positive values indicate improved accuracy whereas negative values
are all truncated to zeros for better visualization.

G. Additional Details of Pseudo Real-Data Experiments
G.1. Description of IHDP dataset

The IHDP dataset was collected from an observational study in which the goal was to observe the impact of visits from
a healthcare provider on children’s cognitive development. Patients were placed in the treatment group if they received
special care or home visits from a provider. A semi-synthetic dataset was created from the original dataset by removing a
nonrandom amount of the treatment group in order to induce treatment imbalance. The final cohort consists of 747 subjects,
with 139 in the treatment group and 608 in the control group. Each subject contains 25 covariates, 6 of which are continuous
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Table 5. List of covariates in the IHDP dataset.

Type Name

Child’s measurements Birth Weight, Head Circumference, Weeks Born Preterm,
Birth Order, First Born, Neonatal Health Index, Sex, Twin Status.

Behaviors observed during pregnancy Smoked Cigarettes, Drank Alcohol, Took Drugs

Mother’s measurements at time of birth
Age, Marital Status, Educational Attainment,
Worked During Pregnancy, Received Prenatal Care,
Resident Site at Start of Intervention.

and 19 of which are binary. These variables were collected from the child’s measurements, the mother’s behaviors during
pregnancy, and the mother’s measurements at the time of birth. The variables are detailed in Table 5.

G.2. Experimental configurations and training details

The source-target domain partition is based on the 4-th categorical covariate, which yields ns = 546 source domain sample
(with labels 0) and n = 201 target domain samples (with labels 1). The rough estimation step in the nuisance parameter
estimation stage is simply done by applying Dragonnet or TARNet fitting on the source domain data; subsequently, in the
bias correction step, we randomly select 100 target domain samples as in-sample data, which are (randomly) decomposed
into 70 training samples and 30 validation samples, and 101 out-of-sample testing data.

The goal is to compare three learning frameworks: TO-CL, WS-TCL and our proposed ℓ1-TCL. Additionally, we use the
IPW, OR, and DR estimators for the downstream ACE estimation, which results in a total of 9 estimation procedures; here,
we call a specific learning framework coupled with a specific ACE estimator a estimation procedure (recall that an ACE
estimator is defined as a specific nuisance model coupled with a specific plug-in estimator for ACE).

Formally, the nuisance parameter estimation stage of, for example, Dragonnet-based ℓ1-TCL is done by:

Rough estimation for Dragonnet: θ̂s = argminθ LDragon(θ;Ds),

Bias correction for Dragonnet: θ̂t = θ̂s + argmin∆ LDragon(∆ + θ̂s;Dt) + λ∥∆∥1,

where the objective function LDragon is defined in eq. (17).

For WS-TCL as well as our proposed ℓ1-TCL frameworks, the rough estimation step uses default NN hyperparameters
in the open source implementation. Notice that those hyperparameters may not be optimal for the rough estimation
step using source domain data since the default hyperparameters are optimized using the full data; however, due to
limited computational resources, we only consider the following hyperparameter selection based on grid-search in the
bias correction step: We consider learning rate ∈ {1e-6, 2e-6, 5e-6, 1e-5, 2e-5, 5e-5, 1e-4, 1e-3} and batch size
∈ {1, 3, 6, 16, 32, 64}; in particular, for our proposed ℓ1-TCL, we also consider regularization strength λ ∈
{1e-6, 5e-6, 1e-5, 5e-5, 1e-4, 1e-3, 1e-2, 1e-1, 5e-1, 1e1}. For fair comparison, we additionally optimize the hyperparameter
for the baseline TO-CL framework by considering learning rate ∈ {1e-6, 2e-6, 5e-6, 1e-5, 2e-5, 5e-5, 1e-4, 1e-3}
and batch size ∈ {1, 3, 6, 16, 32, 64}. We will show that, even with sub-optimal NN hyperparameters in the rough
estimation steps, the TCL frameworks outperform the baseline TO-CL framework, verifying the necessity of using source
domain data for accurate ACE estimation.

The hyperparameter selection criteria are: NN regression loss, NN classification CE loss and MSE. Again let us take
Dragonnet as an example, slightly abuse the notation and let (xi, zi, yi), i = 1, . . . , n denote the validation target dataset,
then the three aforementioned hyperparameter selection metrics are: 1

n

∑n
i=1 (mzi(θ;xi)− yi)

2
, 1

n

∑n
i=1 CE (e(θ;xi), zi)

and 1
n

∑n
i=1 (e(θ;xi)− zi)

2.
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G.3. Additional results

We report additional results using NN classification-based criteria in Table 6, where the column-wise best results are
highlighted with green background color, indicating the best learning framework for the corresponding ACE estimator,
and the smallest error is highlighted in bold font, indicating the overall best estimation procedure. Results in Table 6
exhibit similar patterns as shown in Table 2 that TL, especially our proposed ℓ1-TCL, generally helps improve ACE
estimation accuracy, and IPW estimators do not perform well. Furthermore, as we can see from Table 6 In the case where
WS-TCL outperforms our proposed ℓ1-TCL, such as the out-of-sample accuracy for TARNet-DR ACE estimator in the “NN
classification CE loss” sub-table, the improvement of WS-TCL is typically marginal; in contrast, when ℓ1-TCL performs
the best, the improvement is significant, see, e.g., the rest TARNet-OR and TARNet-DR ACE estimators in both sub-tables
of Table 6 as well as Table 2.

Table 6. Additional mean and standard deviation table for other hyperparameter selection criteria (specified on top of each sub-table)
using the same source-target domain partition as in Table 2.

Hyperparameter selected based on minimum validation NN classification CE loss

In-sample Dragonnet TARNet
IPW OR DR IPW OR DR

TO-CL 11.411(30.657) 0.615(0.773) 0.675(0.649) 3.926(4.234) 0.768(0.545) 0.464(0.365)
WS-TCL 10.455(18.907) 0.682(0.75) 0.851(0.948) 3.418(3.428) 0.469(0.334) 0.383(0.262)
ℓ1-TCL 11.781(27.023) 0.813(1.123) 0.907(1.135) 4.012(6.241) 0.328(0.245) 0.326(0.334)

Out-of-sample Dragonnet TARNet
IPW OR DR IPW OR DR

TO-CL 32.228(45.735) 0.629(0.548) 1.513(1.627) 4.144(5.009) 0.806(0.641) 0.433(0.482)
WS-TCL 29.121(34.475) 0.629(0.816) 2.535(4.217) 4.371(5.18) 0.529(0.484) 0.349(0.339)

ℓ1-TCL 33.303(54.411) 0.746(0.951) 2.639(3.806) 5.779(9.668) 0.426(0.33) 0.35(0.429)

Hyperparameter selected based on minimum validation NN classification MSE

In-sample Dragonnet TARNet
IPW OR DR IPW OR DR

TO-CL 10.116(24.513) 0.767(1.077) 1.033(1.075) 4.647(5.418) 0.607(0.539) 0.474(0.322)
WS-TCL 8.342(13.545) 0.664(0.868) 0.719(0.789) 3.77(5.429) 0.589(0.431) 0.408(0.296)
ℓ1-TCL 8.249(13.454) 0.623(0.848) 0.704(0.759) 4.012(6.241) 0.328(0.245) 0.326(0.334)

Out-of-sample Dragonnet TARNet
IPW OR DR IPW OR DR

TO-CL 31.608(55.768) 0.743(0.892) 2.261(3.283) 4.764(6.154) 0.739(0.715) 0.383(0.384)
WS-TCL 26.398(47.011) 0.663(1.014) 1.711(2.249) 5.437(8.29) 0.73(0.698) 0.451(0.569)
ℓ1-TCL 25.786(46.738) 0.661(0.947) 1.666(2.185) 5.779(9.668) 0.426(0.33) 0.35(0.429)

In addition, we consider another (randomly selected) binary covariate for the source-target domain partition, which is the
8-th categorical covariate and yields ns = 642 source domain sample (with labels 0) and n = 105 target domain samples
(with labels 1). The (random) train-validation split gives 73 training samples (that is why we choose the largest batch size
grid to be 64) and 32 validation samples. We repeat the same experiments and report the results in Table 7.

In Table 7, we can observe similar patterns as mentioned before: The best in-sample performance is 0.352, which is given by
TARNet-DR estimator using proposed ℓ1-TCL, and it is much better than the best WS-TCL in-sample performance, which
is 0.375 also given by TARNet-DR estimator. In contrast, even though WS-TCL yields the best out-of-sample performance
via TARNet-OR estimator (0.623), there is only a marginal increment compared to that of ℓ1-TCL (0.627). Additionally,
the best out-of-sample performance of ℓ1-TCL is still given using the NN regression loss as the hyperparameter selection
criterion, which is consistent with previous findings.

Lastly, since both WS-TCL and ℓ1-TCL are sensitive to the choice of hyperparameters, there will be cases/trials where
the optimal empirical option of not covered by the pre-defined grid, leading to unfavorable results. Since our ℓ1-TCL has
one additional hyperparameter, i.e., the regularization strength, such effect will be amplified for ℓ1-TCL given the limited
computation resources when we perform grid search for hyperparameter selections. Therefore, we report the the median and
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IQR of the aforementioned experiments using 8-th categorical covariate for source-target domain partition in Table 8, which
shows that the both the in-sample and out-of-sample best (in terms of median) estimates are given by our ℓ1-TCL. Overall
all results above support the effectiveness of our proposed ℓ1-TCL framework.

Table 7. Additional absolute error mean and standard deviation table for all aforementioned hyperparameter selection criteria (specified on
top of each sub-table) using the a different (from that of Table 2) source-target domain partition.

Hyperparameter selected based on minimum validation NN regression loss

In-sample Dragonnet TARNet
IPW OR DR IPW OR DR

TO-CL 5.752(14.189) 0.572(0.483) 0.592(0.775) 5.713(9.2) 0.466(0.406) 0.457(0.434)
WS-TCL 6.448(10.771) 0.572(0.463) 0.675(1.08) 1.703(2.018) 0.44(0.362) 0.375(0.291)

ℓ1-TCL 5.376(9.682) 0.477(0.526) 0.526(0.884) 1.697(2.017) 0.448(0.362) 0.376(0.292)

Out-of-sample Dragonnet TARNet
IPW OR DR IPW OR DR

TO-CL 16.704(24.684) 0.89(1.05) 1.927(3.917) 9.916(12.285) 0.736(0.811) 0.685(0.851)
WS-TCL 21.43(22.895) 0.821(1.105) 2.252(2.92) 7.699(12.458) 0.623(0.908) 0.723(1.089)
ℓ1-TCL 18.03(21.948) 0.731(1.318) 1.661(2.259) 7.703(12.46) 0.627(0.906) 0.724(1.084)

Hyperparameter selected based on minimum validation NN classification CE loss

In-sample Dragonnet TARNet
IPW OR DR IPW OR DR

TO-CL 5.752(14.189) 0.572(0.483) 0.592(0.775) 6.302(12.42) 0.516(0.47) 0.496(0.703)
WS-TCL 6.448(10.771) 0.572(0.463) 0.675(1.08) 1.703(2.018) 0.44(0.362) 0.375(0.291)
ℓ1-TCL 6.442(10.761) 0.577(0.466) 0.677(1.139) 2.056(2.331) 0.446(0.449) 0.352(0.314)

Out-of-sample Dragonnet TARNet
IPW OR DR IPW OR DR

TO-CL 16.704(24.684) 0.89(1.05) 1.927(3.917) 10.353(15.414) 0.878(1.185) 0.782(1.099)
WS-TCL 21.43(22.895) 0.821(1.105) 2.252(2.92) 7.699(12.458) 0.623(0.908) 0.723(1.089)
ℓ1-TCL 21.41(22.875) 0.822(1.114) 2.272(2.948) 8.048(13.393) 0.632(0.809) 0.696(0.917)

Hyperparameter selected based on minimum validation NN classification MSE

In-sample Dragonnet TARNet
IPW OR DR IPW OR DR

TO-CL 5.752(14.189) 0.572(0.483) 0.592(0.775) 6.302(12.42) 0.516(0.47) 0.496(0.703)
WS-TCL 6.448(10.771) 0.572(0.463) 0.675(1.08) 1.703(2.018) 0.44(0.362) 0.375(0.291)
ℓ1-TCL 6.441(10.761) 0.576(0.465) 0.677(1.134) 2.056(2.331) 0.446(0.449) 0.352(0.314)

Out-of-sample Dragonnet TARNet
IPW OR DR IPW OR DR

TO-CL 16.704(24.684) 0.89(1.05) 1.927(3.917) 10.353(15.414) 0.878(1.185) 0.782(1.099)
WS-TCL 21.43(22.895) 0.821(1.105) 2.252(2.92) 7.699(12.458) 0.623(0.908) 0.723(1.089)
ℓ1-TCL 21.408(22.875) 0.822(1.112) 2.271(2.946) 8.048(13.393) 0.632(0.809) 0.696(0.917)
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Table 8. Median and IQR ([Q1, Q3]) of absolute errors of estimated causal effects ovee 50 IHDP datasets for all aforementioned
hyperparameter selection criteria (specified on top of each sub-table). The source-target domain partition is the same with that of Table 7.

Hyperparameter selected based on minimum validation NN regression loss

In-sample Dragonnet TARNet
IPW OR DR IPW OR DR

TO-CL 2.46[1.175,5.219] 0.481[0.244,0.657] 0.303[0.185,0.676] 3.097[2.196,5.591] 0.383[0.149,0.611] 0.345[0.163,0.617]
WS-TCL 3.212[1.411,6.828] 0.46[0.291,0.717] 0.433[0.192,0.731] 1.086[0.512,1.851] 0.338[0.165,0.662] 0.289[0.141,0.547]
ℓ1-TCL 2.048[1.251,5.817] 0.339[0.155,0.589] 0.288[0.112,0.593] 1.086[0.511,1.784] 0.353[0.159,0.659] 0.289[0.142,0.542]

Out-of-sample Dragonnet TARNet
IPW OR DR IPW OR DR

TO-CL 9.297[3.413,14.861] 0.587[0.296,0.979] 0.835[0.277,1.876] 5.068[2.957,12.122] 0.451[0.22,0.87] 0.452[0.199,0.825]
WS-TCL 15.119[4.856,27.383] 0.513[0.286,0.901] 0.979[0.547,2.246] 3.636[0.973,10.543] 0.425[0.121,0.764] 0.399[0.157,0.897]
ℓ1-TCL 12.953[5.219,19.517] 0.368[0.183,0.737] 0.862[0.457,1.982] 3.636[0.97,10.543] 0.426[0.127,0.762] 0.395[0.163,0.958]

Hyperparameter selected based on minimum validation NN classification CE loss

In-sample Dragonnet TARNet
IPW OR DR IPW OR DR

TO-CL 2.46[1.175,5.219] 0.481[0.244,0.657] 0.303[0.185,0.676] 2.699[2.089,4.958] 0.359[0.245,0.586] 0.315[0.162,0.58]
WS-TCL 3.212[1.411,6.828] 0.46[0.291,0.717] 0.433[0.192,0.731] 1.086[0.512,1.851] 0.338[0.165,0.662] 0.289[0.141,0.547]
ℓ1-TCL 3.215[1.406,6.861] 0.461[0.298,0.719] 0.43[0.195,0.702] 1.187[0.705,2.253] 0.309[0.196,0.55] 0.27[0.096,0.477]

Out-of-sample Dragonnet TARNet
IPW OR DR IPW OR DR

TO-CL 9.297[3.413,14.861] 0.587[0.296,0.979] 0.835[0.277,1.876] 5.103[2.116,11.363] 0.541[0.362,0.813] 0.51[0.258,0.719]
WS-TCL 15.119[4.856,27.383] 0.513[0.286,0.901] 0.979[0.547,2.246] 3.636[0.973,10.543] 0.425[0.121,0.764] 0.399[0.157,0.897]
ℓ1-TCL 15.117[4.856,27.358] 0.514[0.266,0.891] 0.976[0.593,2.275] 3.781[0.832,11.022] 0.361[0.193,0.76] 0.429[0.201,0.748]

Hyperparameter selected based on minimum validation NN classification MSE

In-sample Dragonnet TARNet
IPW OR DR IPW OR DR

TO-CL 2.46[1.175,5.219] 0.481[0.244,0.657] 0.303[0.185,0.676] 2.699[2.089,4.958] 0.359[0.245,0.586] 0.315[0.162,0.58]
WS-TCL 3.212[1.411,6.828] 0.46[0.291,0.717] 0.433[0.192,0.731] 1.086[0.512,1.851] 0.338[0.165,0.662] 0.289[0.141,0.547]
ℓ1-TCL 3.215[1.405,6.859] 0.461[0.299,0.719] 0.43[0.194,0.702] 1.187[0.705,2.253] 0.309[0.196,0.55] 0.27[0.096,0.477]

Out-of-sample Dragonnet TARNet
IPW OR DR IPW OR DR

TO-CL 9.297[3.413,14.861] 0.587[0.296,0.979] 0.835[0.277,1.876] 5.103[2.116,11.363] 0.541[0.362,0.813] 0.51[0.258,0.719]
WS-TCL 15.119[4.856,27.383] 0.513[0.286,0.901] 0.979[0.547,2.246] 3.636[0.973,10.543] 0.425[0.121,0.764] 0.399[0.157,0.897]
ℓ1-TCL 15.116[4.852,27.351] 0.514[0.265,0.892] 0.974[0.593,2.275] 3.781[0.832,11.022] 0.361[0.193,0.76] 0.429[0.201,0.748]
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H. Additional Details of Real-Data Example
H.1. Description and pre-processing of real data

Vasopressor therapy for septic patients has been shown to decrease the risk of 28-day mortality (Avni et al., 2015). Therefore,
it is worth observing the underlying causal structure of this treatment. Indeed, Wei et al. (2022) showed that vasopressor
therapy may have a inhibiting effect on sepsis, which suggests its inhibiting effect on mortality as well.

In our study, all patient data for each encounter is binned into hourly windows that begin with hospital admission and end
with discharge. If more than one measurement occurs in an hour, then the average of the values is recorded. To ensure that
causal effect estimation is performed on data series of similar lengths (which could help control potentially unobserved
confounding), patients are included in the cohort if they meet the Sepsis-3 criteria during the hospital stay, and we examine
exactly 12 hours of data before and after sepsis onset, resulting in a 25-hour subset of the full patient encounter (i.e., the hour
of sepsis onset as well as 12 hours before and after this time). The resulting summary statistics of the patient demographics
are reported in Table 9.

Table 9. Summary statistics for patient demographics in selected cohort; Q1 and Q3 stand for the 25% and 75% quantiles, which gives the
interquartile range (IQR).

Source Target

Treatment Control Treatment Control
Number 207 1249 58 700
Age, median and [Q1,Q3] 63.0 [51.0,70.5] 64.0 [53.0,74.0] 55.5 [37.25,67.5] 58.0 [41.0,68.0]

Male, number and percentage 131 (63.3%) 652 (52.2%) 38 (65.5%) 449 (64.1%)

28D-Mortality, number and percentage 43 (20.8%) 117 (9.4%) 20 (34.5%) 71 (10.1%)

Total Hospital Days, median and [Q1,Q3] 22.0 [12.5,33.5] 13.0 [8.0,21.0] 25.5 [13.0,45.5] 18.0 [10.0,31.0]

The 28-day mortality, i.e., the binary outcome variables, is defined as the patient’s death within 28 days or less after the time
of admission. Covariates from the EMR data include:

• Vital Signs — in the ICU environment, these are usually recorded at hourly intervals. However, patients on the floor
may only have measurements for every 8 hours.

• Laboratory Results — the Lab tests are most commonly ordered on a daily basis. However, the collection frequency
may change based on the severity of a patient’s illness and clinician’s request.

Our study considers in total 4 vital signs and 30 Lab results, as presented in Table 10. Since the covariate names explain
themselves, we omit further descriptions of those covariates.

Table 10. List of covariates, i.e., vital signs and Lab results, included in the real-data example.

Type Name

Vital signs Temperature (◦C), Pulse (Heart Rate), Oxygen Saturation by Pulse Oximetry (SpO2),
Best Mean Arterial Pressure (MAP).

Lab result

Excess Bicarbonate (Base Excess), Blood Urea Nitrogen (BUN), Calcium, Chloride,
Creatinine, Glucose, Magnesium, Phosphorus, Potassium, Hemoglobin, Platelets,
White Blood Cell Count (WBC), Alanine Aminotransferase (ALT), Albumin,
Ammonia (NH3), Aspartate Transaminase (AST), Direct Bilirubin, Total Bilirubin,
Fibrinogen, International Normalized Ratio (INR), Lactic Acid (Lactate),
Partial Thromboplastin Time (PTT), Prealbumin, B-type Natriuretic Peptide (BNP),
Troponin I, Fraction of Inspired Oxygen (FiO2), Partial Pressure of Carbon Dioxide (PaCO2),
pH, Arterial Oxygen Saturation (SaO2), Glasgow Coma Scale (GCS) Total Score.
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It is common for vital signs and laboratory results to be missing due to the recording irregularity issues listed earlier. To
handle this problem, we imputed any missing values. Values were first imputed using the fill-forward method. In the
fill-forward method, any missing hourly values are replaced with the most recent value from the preceding hours. Any
remaining missing values were then imputed using the population median. Lastly, for each patient, we take the first data
point after the time of the sepsis onset time for our experiments.

H.2. Experimental configurations and training details

The hyperparameter of TLIPW estimator (12) in our ℓ1-TCL framework is selected via 5-fold CV using target domain
data based on maximum average treatment classification prediction AUC. As mentioned previously, we use vanilla logistic
regression for rough estimation using source domain data, and in the ℓ1 regularized bias correction step, we use gradient
descent to optimize the objective function (9) with respect to the (sparse) difference. In our implementation of the bias
correction step, we perform grid search over total number of iterations ∈ {5000, 10000, 20000}, initial
learning rate ∈ {0.05, 0.02, 0.01, 0.005, 0.001}, learning rate decay ratio ∈ {0.5, 0.8, 0.9, 0.95} and ℓ1
regularization strength log10 λ ∈ {−2.5,−2.25,−2, . . . , 0}. The learning rate decays every 1000 iterations.

For the bootstrap uncertainty quantification, we re-fit the model with hyperparameter re-selected for each bootstrap
sample; then, 90% confidence interval is constructed based on the 5% and 95% quantiles of the bootstrap ACE estimates.
Additionally, the mean and median of the bootstrap ACE estimates are reported.
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