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ABSTRACT

Recent progress in empirical and certified robustness promises to deliver reliable
and deployable Deep Neural Networks (DNNs). Despite that success, most exist-
ing evaluations of DNN robustness have been done on images sampled from the
same distribution that the model was trained on. Yet, in the real world, DNNs may
be deployed in dynamic environments that exhibit significant distribution shifts.
In this work, we take a first step towards thoroughly investigating the interplay
between empirical and certified adversarial robustness on one hand and domain
generalization on another. To do so, we train robust models on multiple domains
and evaluate their accuracy and robustness on an unseen domain. We observe that:
(1) both empirical and certified robustness generalize to unseen domains, and (2)
the level of generalizability does not correlate well with input visual similarity,
measured by the FID between source and target domains. We also extend our
study to cover a real-world medical application, in which adversarial augmenta-
tion enhances both the robustness and generalization accuracy in unseen domains.

1 INTRODUCTION

Deep Neural Networks (DNNs) are vulnerable to small and carefully designed perturbations, known
as adversarial attacks (Szegedy et al., 2014; Goodfellow et al., 2015). That is, a DNN fθ : Rd →
P(Y) can produce two different predictions for the inputs x ∈ Rd and x + δ, although both x and
x+ δ are perceptually indistinguishable. Furthermore, DNNs are found to be brittle against simple
semantic transformations such as rotation, translation, and scaling (Engstrom et al., 2019). These
observations raised concerns regarding the deployability of DNNs in security-critical applications,
such as self-driving and medical diagnosis (Papernot et al., 2016; Finlayson et al., 2019; Ma et al.,
2021). This brittleness provoked several efforts to build models that are not only accurate but also
robust (Gu & Rigazio, 2015). Building robust models is usually achieved either (i) empirically,
where the DNN’s training routine is changed to include such malicious adversarial examples in the
training set (Madry et al., 2018), or (ii) certifiably, where theoretical guarantees are given about the
robustness of a DNN in a region around a given input x (Lécuyer et al., 2019).

Despite great progress in the adversarial robustness literature on building accurate and robust mod-
els, most approaches are tested on in-distribution data. In other words, the scenario considered is
one in which both the training and testing sets are independently and identically distributed (IID).
However, this IID assumption rarely holds in practice, as data in the real world can be sampled from
various distributions with significant domain shifts. For example, a deep-learning based medical
image classifier may be trained on data collected from one hospital, but later deployed in a dif-
ferent hospital (Bándi et al., 2019). Unfortunately, DNNs struggle to generalize to out-of-domain
data (Geirhos et al., 2020; 2021), even in the absence of of adversarial examples. This lack of gener-
alization has led the research community to invest in the problem of Domain Generalization (DG).
The aim of DG is to learn invariant representations from diverse distributions of data, denoted as
source domains, such that these representations generalize to an unseen distribution, known as the
target domain (Wang et al., 2021; Gulrajani & Lopez-Paz, 2021). This setup mimics the unexpected
nature of real-world distribution shifts, where models are constantly exposed to novel domains, and
fine-tuning on all these domains becomes impractical. While there has been considerable effort
in improving the generalization of DNNs (Tzeng et al., 2014; Sun & Saenko, 2016; Motiian et al.,
2017; Zhang et al., 2021; Shen et al., 2021; Wang et al., 2021; Zhou et al., 2022), the generalizability
of adversarial robustness to unseen domains remains unexplored.
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In this work, we set out to study the interplay between domain generalization and adversarial robust-
ness. We conduct comprehensive experimental studies on five standard DG benchmarks provided by
DomainBed (Gulrajani & Lopez-Paz, 2021) and WILDS (Koh et al., 2021). In our experiments, we
study both empirical and certified robustness against input perturbations and spatial deformations.
We first investigate the generalizability of empirical robustness, which a DNN obtains by employing
the popular adversarial training method (Madry et al., 2018) while training on the source data. We
find that, in many scenarios, improving empirical robustness in the source domain generalizes to
the target domain with little cost on the performance of the model on unperturbed data. We then
inspect the generalizability of certified robustness against both input perturbations and parametric
deformations by employing Randomized Smoothing (RS) (Cohen et al., 2019) and DeformRS (Al-
farra et al., 2022a). We observe that certified robustness generalizes to unseen domains when using
randomized smoothing frameworks against pixel perturbations and five different input deformations
including rotation, translation, and scaling. To the best of our knowledge, we provide the first large
scale experimental analysis of the generalizability of adversarial robustness to unseen domains. Our
analysis leads to the following contributions:

1. We contrast the behavior of robustness under both transfer learning and domain general-
ization. Unlike transfer learning, domain generalization does not always improve through
robust training.

2. We empirically show that visual similarity, between the source and target domains, does
not correlate well with the level of generalizability to the target domain.

3. We analyze a practical medical application, in which adversarial training in the source
domain improves the generalization of accuracy and robustness in the target domain.

2 RELATED WORK

Domain Generalization. Domain generalization (DG) studies the ability of models to learn rep-
resentations that can be readily applied to data from unseen domains (Wang et al., 2021; Zhou et al.,
2022). In the DG setup, a model is trained on multiple source domains and then evaluated on an un-
seen target domain, which exhibits a significant shift from the training domains. DG approaches can
be categorized into different groups. (i) Data augmentation techniques learn generalizable models
by increasing the diversity of the source data (Gong et al., 2019; Zhou et al., 2020; 2021). (ii) Repre-
sentation learning methods aim at extracting domain-invariant representations that seamlessly apply
in any unseen domain (Blanchard et al., 2011; Nguyen et al., 2021; Lu et al., 2022) (iii) Learning-
strategy approaches may achieve generalization through meta-learning, self-supervised learning, or
optimization procedures that seek flat minima (Li et al., 2018; Carlucci et al., 2019; Cha et al., 2021).
In this work, we study DG from an adversarial robustness lens. In particular, we analyze both the
generalization accuracy and robustness of adversarially trained classifiers on unseen domains.

Adversarial Robustness. Adversarial attacks are imperceptible, semantic-preserving perturba-
tions that can fool DNNs (Goodfellow et al., 2015; Szegedy et al., 2014). Given the security concerns
that adversarial attacks induced, several works proposed changing the training routine to enhance
model robustness (Zhang et al., 2019). For example, adversarial training (Madry et al., 2018) encour-
ages the model to classify adversarial examples correctly. While empirical defenses like adversarial
training are effective in enhancing the robustness of the underlying model, such approaches do not
guarantee robustness. Subsequently, many empirical defenses were broken when more powerful
attacks were designed (Carlini & Wagner, 2017; Athalye et al., 2018). As a result, there has been
a growing interest in certifiably robust classifiers, for which no adversary can exist in a specified
region around a data point (Raghunathan et al., 2018; Mohapatra et al., 2020; Lee et al., 2021). A
scalable approach to achieving certified robustness is Randomized Smoothing (RS) (Cohen et al.,
2019). RS constructs a smooth classifier from any arbitrary base classifier by outputting the most
probable class when the input is subjected to Gaussian noise. Recently, DeformRS extended RS
to provide certified robustness against parameterized geometric deformations (Alfarra et al., 2022a;
S. et al., 2022). In this work, we set out to study the interplay between (empirical and certified)
robustness and domain generalization by deploying adversarial training, RS, and DeformRS.

Adversarial Training in Dynamic Environments. To improve the ability of machine learning
models to learn generalizable knowledge, researchers have proposed several problems, such as trans-
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Problem Setup Training Data Target Data Problem Condition Access to Target

Transfer learning Ssource, Starget Starget Ysource ̸= Ytarget ✓
Domain generalization S = {Si|i = 1, . . . , N} SN+1 PXY (Sk) ̸= PXY (Sn) for k ̸= n ✗

Table 1: Comparison between Domain Generalization (DG) and Transfer Learning. DG differs
from transfer learning in two main ways. 1) The model in DG never sees the target data during
training, so fine-tuning on the target is not allowed. 2) The target labels are kept fixed in DG;
however, the target samples are drawn from a domain that is distinct from the source domains.

fer learning, continual learning, domain adaptation, and domain generalization (Zhuang et al., 2020;
Delange et al., 2021; Wang & Deng, 2018; Wang et al., 2021). Among these problems, only transfer
learning, where a model pre-trains on tasks with large datasets and then adapts to downstream tasks
with limited data, has been thoroughly studied under the lens of adversarial robustness. Salman et al.
(2020) showed that, in terms of downstream task accuracy, adversarially trained representations out-
perform nominally trained representations. Utrera et al. (2021) further explained that adversarial
training in the source domain increases shape bias, resulting in better transferability. Finally, Deng
et al. (2021) provided theoretical justification to support these empirical findings. Besides down-
stream task accuracy, Shafahi et al. (2020) studied the transferability of robustness itself. Although
useful, these transfer learning results presume fine-tuning on the target domain, which is not pos-
sible in many real-life scenarios. Table 1 illustrates the differences between transfer learning and
domain generalization, which is the setup we adopt. In this paper, we take a first step to empirically
investigate whether adversarial training leads to robust representations that generalize well without
requiring prior knowledge of the target domain.

3 BACKGROUND ON DOMAIN GENERALIZATION

Domain Generalization Setup. Given an input space X and a label space Y , one can define a
joint distribution PXY over X and Y . A domain, or distribution, is a collection of samples drawn
from PXY . In our setting, the input and label spaces are fixed, but we may have multiple unique
joint distributions. Specifically, we assume that there are N source domains of varying sizes. For
each task n, Sn = {(xj , yj)}|Sn|

j=1 ∼ P(n)
XY . We denote the training set by S = {Si|i = 1, . . . , N}.

The aim of DG is to use S to learn a mapping f : X → Y that minimizes the error on some unseen
target domain T ∼ P(N+1)

XY . We enforce that P(k)
XY ̸= P(n)

XY for k ̸= n, k, n ∈ {1, . . . , N +1}, which
means that the target domain is distinct from the source domains that are, in turn, also distinct from
each other. More formally, given S, we seek a parameterized model fθ∗ such that:

θ∗ = argmin
θ

E
(x,y)∼P(T )

XY

[L(fθ(x), y)] , (1)

where L is the cross-entropy loss for the classification task. Note that the model is not allowed
to sample the target domain during training, so most methods use the empirical risk of the source
datasets as a proxy for the true target risk. The supervised average risk (E) is given by:

E =
1

N

N∑
n=1

1

|Sn|

|Sn|∑
i=1

[L(fθ(x), y)] (2)

with (x, y) ∼ S. In practice, we define a fixed held-out validation set Sv ⊂ S. The average
risk on this source validation set is used to select the best model, which is evaluated on the target
domain without any fine-tuning steps. In what follows, Section 4 (and Section 5) investigates the
generalizability of empirical (and certified) robustness to diverse target domains.

4 EMPIRICAL ROBUSTNESS AND DOMAIN GENERALIZATION

In this section, we study the generalizability of empirical robustness methods that enhance the adver-
sarial robustness of DNNs. We begin with a brief introduction of Adversarial Training (AT) (Madry
et al., 2018), after which we study the effect of deploying AT in a domain generalization setup.
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4.1 BACKGROUND AND SETUP

Adversarial Attacks. Adversarial attacks are small imperceptible perturbations that, once added
to a “clean” input sample, cause the classifier fθ to misclassify the perturbed sample. Formally, let
(x, y) be an input label pair where fθ correctly classifies x (i.e. argmaxi f

i
θ(x) = y). An attacker

crafts a small perturbation δ such that argmaxi f
i
θ(x+ δ) ̸= y, which is usually obtained by solving

the following optimization problem:

max
δ

L(fθ(x+ δ), y) s.t. ∥δ∥p ≤ ϵ, (3)

where p ∈ {2,∞}, ϵ > 0 is a small constant that enforces the imperceptibility of the added pertur-
bation, and L is a suitable loss function (e.g. Cross Entropy). Let δ∗ be the solution to the problem
in Eq. 3, then the adversarial example is denoted by xadv = x+ δ∗.

Adversarial Training as Augmentation. Adversarial Training (AT) (Madry et al., 2018) trains the
classifier on adversarial examples rather than clean samples. In particular, AT obtains the network
parameters θ∗ by solving the following optimization problem:

min
θ

E(x,y)∼D

[
max

δ,∥δ∥p≤ϵ
L(fθ(x+ δ), y)

]
, (4)

where D is a data distribution. In general, the inner maximization problem is solved through K steps
of Projected Gradient Descent (PGD) (Madry et al., 2018). While conducting adversarial training
enhances the model’s robustness against adversarial attacks, this usually comes at the cost of losing
some clean accuracy (performance on unperturbed samples). To alleviate the drop in performance,
we follow the method by Zhang et al. (2019) and deploy adversarial training as a data augmentation
scheme. In particular, we obtain network parameters θ∗ that minimize the following objective:

θ∗ = argmin
θ

E
(x,y)∼P(T )

XY

[λL(fθ(x), y) + (1− λ)L(fθ(xadv), y)] , (5)

where λ ∈ [0, 1] controls the robustness-accuracy trade-off.

Training & Evaluation Setup. In our experiments, we focus on image classification and adopt
the framework of DomainBed (Gulrajani & Lopez-Paz, 2021), which is the standard benchmark in
the image domain generalization literature. All models are initialized with a ResNet-50 backbone
pre-trained on ImageNet-1K (Deng et al., 2009). We train all models with adversarial augmentation
to minimize the objective in Eq. 5 on the source domains, where xadv is computed with a Projected
Gradient Descent (PGD) attack (Madry et al., 2018) using 20 PGD steps. The target domain remains
unseen until test time. Specifically, we follow the training-domain validation strategy described in
DomainBed for model selection. We experiment with a range of perturbation budgets (ϵ) on various
datasets: PACS, OfficeHome, VLCS, and TerraIncognita (Gulrajani & Lopez-Paz, 2021). We report
the ℓ∞ results in the main paper, where we use ϵ ∈ {0, 8/255, 16/255, 32/255}. The appendix includes
experiments for ℓ2 perturbations due to space constraints. Note that for ϵ = 0, the training objective
reduces to the empirical risk minimization in Eq. equation 2. Each model is trained on one value of
ϵ but is evaluated on all four values of ϵ with 20 steps of PGD attacks. In the following experiments,
we fix λ in Eq. 5 to 0.5 and leave the ablation to the appendix.

4.2 THE GENERALIZATION OF EMPIRICAL ROBUSTNESS

In this section, we investigate the generalizability of empirical robustness to unseen domains. More
precisely, we are interested in understanding the interplay between standard accuracy and robust
accuracy in the scope of source vs. target domains. We report in Figure 1 the standard accuracy
(first column of each matrix) and robust accuracy against different values of ϵ on all considered
datasets. We further summarize the clean and robust accuracy at ϵ = 8/255 in Table 2 for ease of
comparison. Next, we analyze these results to answer the following questions.

Q1: Do adversarially robust models generalize better than their standard-trained counter-
parts? No, which is evident from the first two rows of Table 2. With the exception of the smallest
dataset PACS, the clean accuracy of the robust model in the unseen domain is lower than that of the
standard-trained model by 3.6% or more. 1 Unlike transfer learning, where robust training in
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Figure 1: Evaluation of ℓ∞ Robustness. We train models in the source domain and evaluate them
in both the source and target domains with different ϵ values. In the Source tables, the (ith, jth) entry
represents a model trained with ϵ = i and evaluated on ϵ = j on samples drawn from source domain.
In the Target tables, the (ith, jth) entry is a model trained in the source with ϵ = i and evaluated on
ϵ = j on samples drawn from target domain. No fine-tuning is done in the target domain.

Dataset
PACS OfficeHome VLCS TerraIncognita

Clean Accuracy (%) Standard Model 84.23 60.56 78.15 64.70

Robust Model 84.00 56.89 72.72 60.02

Robust Accuracy (%) Standard Model 40.29 9.91 14.72 0.87

Robust Model 73.54 45.73 62.75 31.04

Table 2: Generalization of Robustly- and Nominally- Trained Models on Various Datasets.
Applying adversarial training on the source domain leads to significant improvements in the model’s
robustness in the target domain, relative to the observed drop in the standard accuracy.

the source domain is favorable, robust training does not improve generalization to the target
domain if no fine-tuning is allowed. This result contrasts with findings from the transfer learning
literature, where models trained robustly in the source domain outperform standard-trained models
across a variety of downstream tasks (Salman et al., 2020). It is especially surprising given that
previous works suggest that robust training encourages shape bias over texture bias, hinting at better
generalization (Geirhos et al., 2019; Utrera et al., 2021). Moreover, Deng et al. (2021) showed that
adversarial training in the source domain results in provably better representations for fine-tuning on
the target domain. Such seemingly contradictory findings can be reconciled by considering the key
differences between transfer learning and domain generalization summarized in Table 1. Specifi-
cally, previous works in transfer learning assume that the model can sample the target domain at
some point to perform fine-tuning. Since domain generalization does not allow access to the target
domain, such benefits are not guaranteed. We encourage future works to investigate under what
conditions adversarial training helps the generalization accuracy with no fine-tuning on the target.

Q2: Does a higher source domain robustness correspond to a higher target domain robustness?
As expected, DNNs lose some robustness when evaluated on a target domain that is distinct from
the training domains. This observation is evident by comparing any cell in the top row (Source)
tables in Figure 1 with the corresponding cell in the second row (Target) tables. For example, the
TerraIncognita model, which is trained and evaluated on (ϵ = 8/255) adversaries, loses around 35%
accuracy when the distribution shifts to the target domain. Nevertheless, by observing that all the
source and target tables have similar color trends, we find that 2 higher robustness in the source
domain corresponds to higher robustness in the target domain. Our results suggest that one way
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to increase the out-of-distribution robustness of a deployed model is to improve its robustness in the
source validation set, which supports the applicability of ongoing efforts in adversarial robustness
research (Zhang et al., 2019; Wang et al., 2020; Wu et al., 2020).

Q3: Does the robustness-accuracy trade-off generalize to unseen domains? As observed in Fig-
ure 1, 3 achieving a more robust model comes at the cost of standard accuracy not only in the
source domain, but also in the target domain. Looking at OfficeHome, the target robust accuracy
of a robust model (trained and evaluated on ϵ = 16/255) is 50% more than that of the standard-
trained model. Yet, the clean accuracy of the robust model is about 6% less than the standard model
accuracy. In general, as the network becomes more robust to a particular perturbation budget ϵ in
the source domain, it becomes more robust to adversaries generated within that budget in the tar-
get domain. Nevertheless, the performance of the robust network on clean samples decreases in
both domains. Therefore, consistent with the robustness literature (Tsipras et al., 2019), robustness
comes at the cost of standard accuracy even in the unseen target domains.

5 CERTIFIED ROBUSTNESS AND DOMAIN GENERALIZATION

In Section 4, we analyzed the interplay between empirical robustness (obtained by adversarial train-
ing) and domain generalization. While empirical robustness studies give hints about the reliability of
a given model under adversarial attacks, they give no guarantees against the existence of such adver-
saries. To deploy DNNs in dynamic environments (Koh et al., 2021), we need robustness guarantees
to carry over into unseen domains. To that end, we study the generalizability of the certified robust-
ness of DNNs. We deploy Randomized Smoothing (RS) and DeformRS to certify DNNs against
input perturbations and deformations. We start by giving a brief overview of RS and DeformRS.

5.1 BACKGROUND AND SETUP

Certifying Against Additive Perturbations and Input Deformations. Randomized smooth-
ing (RS) (Cohen et al., 2019) is a method for constructing a “smooth” classifier from a given clas-
sifier fθ. The smooth classifier returns the average prediction of fθ when the input x is subjected to
additive Gaussian noise:

gθ(x) = Eϵ∼N (0,σ2I) [fθ(x+ ϵ)] . (6)

Let gθ predict label cA for input x with some confidence, i.e. Eϵ[f
cA
θ (x + ϵ)] = pA ≥ pB =

maxc̸=cA Eϵ[f
c
θ (x+ ϵ)], then, as shown by Zhai et al. (2020), gθ’s prediction is certifiably robust at

x with certification radius:
R =

σ

2

(
Φ−1(pA)− Φ−1(pB)

)
, (7)

where Φ−1 is the inverse CDF of the standard Gaussian distribution. As a result of Eq. 7,
argmaxi g

i
θ(x+ δ) = argmaxi g

i
θ(x), ∀∥δ∥2 ≤ R.

While Eq. 7 provides theoretical guarantees for robustness against additive perturbations, DNNs are
also brittle against simple input transformations such as rotation. Alfarra et al. (2022a) extended
randomized smoothing to certify parametric input deformations through DeformRS, which defined
the parametric smooth classifier for a given input x with pixel coordinates p as follows:

gϕ(x, p) = Eϵ∼D [fθ(IT (x, p+ νϕ+ϵ))] , (8)
where IT is an interpolation function (e.g. bilinear interpolation) and νϕ is a parametric deformation
function with parameters ϕ (e.g. ν is a rotation function and ϕ is the rotation angle). Analogous to the
RS formulation in Eq. 6, g outputs the average prediction of fθ over deformed versions of the input
x. Alfarra et al. (2022a) showed that parametric-domain smooth classifiers are certifiably robust
against perturbations to the parameters of the deformation function. In particular, g’s prediction is
constant with certification radius:

R = σ (pA − pB) for D = U [−σ, σ],

R =
σ

2

(
Φ−1(pA)− Φ−1(pB)

)
for D = N (0, σ2I).

(9)

Put simply, as long as the perturbations to the deformation function parameters (e.g. rotation angle)
are within R, the prediction of g remains constant. In this work, we leverage RS and DeformRS to
study the generalizability of certified robustness to unseen target domains.
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Figure 2: Generalizability of Certified Robustness. We certify ResNet-50 and ViT-Base against
pixel perturbations and input deformations in the source and target domains of PACS. We observe
that 1) certified robustness deployed via randomized smoothing generalizes to unseen domains, and
that 2) a stronger architecture (ViT-Base) leads to a better source and target certified accuracy.

Experimental Setup. To split the data into source and target domains, we use the Photo, Art,
Cartoon, and Sketch distributions from PACS (Li et al., 2017). We use RS to certify pixel pertur-
bations and DeformRS to certify five input deformations: rotation, translation, scaling, affine, and
a deformation characterized by a Discrete Cosine Transform (DCT) basis. Following (Gulrajani
& Lopez-Paz, 2021), we employ data augmentation during training and train solely on the source
domains. To evaluate the certified robustness of the trained classifier, we plot the certified accuracy
curves for both the source and target domains for each considered deformation. The certified accu-
racy at a radius R is the percentage of the test set that is both classified correctly and has a certified
radius of at least R. We calculate the certified radius for a given input through either Eq. 7 for pixel
perturbations or Eq. 9 for input deformations. Here, we report the envelope plots, which illustrate
the best certified accuracy per radius over all values of the smoothing deformation parameter ϕ. We
leave the detailed results for each choice of ϕ to the appendix. We employ Monte Carlo sampling
with 100k samples to estimate pA and bound pB = 1− pA by following the standard practice (Zhai
et al., 2020; Cohen et al., 2019; Alfarra et al., 2022a). Finally, we follow (Zhai et al., 2020) in
reporting the Average Certified Radius (ACR) of correctly classified samples.

Regarding the architecture, we follow the DomainBed (Gulrajani & Lopez-Paz, 2021) benchmark in
selecting ResNet-50 as a backbone. To assess the effect of deploying a more powerful architecture on
the generalizability to unseen domains, we further include experiments with the recent transformer
model ViT-Base (Dosovitskiy et al., 2021).

5.2 GENERALIZABILITY OF CERTIFIED ROBUSTNESS TO UNSEEN TARGET DOMAINS

We investigate under what scenarios the certified robustness generalizes to unseen domains. We first
show how much certified accuracy (CA) is maintained when the target domain exhibits a distribution
shift. Then, we study whether a stronger backbone architecture can boost the CA generalizability.
Finally, we evaluate how well perceptual similarity, as measured by FID and R-FID (Heusel et al.,
2017; Alfarra et al., 2022c), predicts the generalization of certified robustness.

Q4: Can certified robustness, obtained via randomized smoothing, generalize to unseen do-
mains? We train smooth classifiers on a collection of source domains and certify the models on
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Figure 3: Does visual similarity correlate with robustness generalizability? We vary the target
domain and plot the certified accuracy curves for two deformations: scaling and translation. A
sample from each domain is shown in the second row. The FID/R-FID distances between the source
domains and each target are reported in the first row. Visual similarity, measured by FID and R-FID,
does not correlate with the level of robustness generalization to the target domain.

both the source and target domains. The target domains are unseen before certification. We plot the
source CA curve with dashed black lines and the target CA curve with solid blue in Figure 2, along
with the corresponding ACR. Our results show that 4 a considerable portion of the certified
robustness, acquired by randomized smoothing, is maintained in the unseen domain. When
certified against pixel perturbations in the unseen domain, the average certified radius of ResNet-50
drops by around 6% only. Utilizing DeformRS, we extend this result from simple pixel perturba-
tions to geometric deformations, like rotation and translation. This experiment is promising, since
the models are never trained on the target data, but still exhibit some certified robustness. This
validates the importance of recent research efforts that improve on randomized smoothing (Zhai
et al., 2020; Alfarra et al., 2022b). To address real-world security challenges, we encourage future
certified robustness works to conduct experiments on domain generalization datasets.

Q5: Does the target certified accuracy improve when the feature extractor is improved? To in-
vestigate the influence of the backbone architecture on the certified robustness of a deployed model,
we change the architecture from ResNet-50 to ViT-Base and plot the target CA curve for ViT-Base in
solid blue in Figure 2. We observe that the target ACR obtained by ViT-Base on PACS is higher than
the target ACR obtained by ResNet-50 across deformations. 5 A significant improvement of the
target certified robustness is achieved by using a stronger backbone architecture. This result
is consistent with the robustness literature (Gowal et al., 2020), where stronger backbones tend to
exhibit better robustness, and the domain generalization literature (Gulrajani & Lopez-Paz, 2021),
where stronger backbones tend to exhibit better generalization accuracy. We believe that research
on models with better generalization can lead to better certified robustness in unseen domains.

Q6: Does the generalizability of certified robustness correlate with the perceptual similarity
between the source and target domains? In all previous experiments, we considered the average
certified accuracy over all possible target domains. We now conduct a more fine-grained study
to these target domains individually. We measure the drop in the average certified radius (∆ACR)
between the source and target domains with the perceptual similarity between both domains captured
by FID (Heusel et al., 2017) and the more robust R-FID (Alfarra et al., 2022c). To that end, we
conduct experiments on PACS where we select one domain as the unseen target and treat the rest
as source domains. We train a classifier on the source data and plot the certified accuracy curves
against scaling and translation deformations on both the source and target domains in Figure 3
accompanied by ∆ACR. We also report the FID and R-FID between the source and target domains.
Note that higher FID/R-FID indicates less similarity of distributions. 6 Perceptual similarity, as
captured by FID and R-FID, is not predictive of performance and robustness generalizability.
Surprisingly, the photo domain, which has the highest FID (34.3) and R-FID (87.7) scores, exhibits
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the largest certified accuracy generalization. In this case, the ACR for the target domain is higher
than the source domain resulting in a negative ∆ACR (−0.1 when certifying against translation).
The appendix includes experiments with other deformations where we observe similar behavior. We
regard the development of a suitable distribution similarity metric, which better correlates with the
level of generalizability, as an important research direction.

6 REAL-WORLD APPLICATION: MEDICAL IMAGES
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Figure 4: Certified Robustness in the Medical
Domain. The generalization of robustness against
pixel variations in medical images is critical. Yet,
there is a significant gap in certified robustness
when the DNN is deployed in an unseen hospital.

To demonstrate the applicability of the DG
setup to real-world settings, we investigate the
generalization of robustness in medical diag-
nostics. Data collected by medical imaging
techniques, like computed tomography (CT)
and magnetic resonance imaging (MRI), is sus-
ceptible to noise. This noise includes in-
tensity variations caused by subject move-
ment (Shaw et al., 2019), respiratory mo-
tion (Axel et al., 1986), quantum noise associ-
ated with X-rays (Hsieh, 1998), and inhomo-
geneity in the MRI magnetic field (Leemput
et al., 1999). Moreover, due to privacy con-
cerns, a model trained in one medical institu-
tion should be deployed in another with limited data sharing and retraining (Kaissis et al., 2020;
Ziller et al., 2021; Liu et al., 2021). To test the generalization of robustness in this practical setup,
we use the DG dataset WILDS CAMELYON17 (Bándi et al., 2019; Koh et al., 2021) to train models
on tissue images from four hospitals and evaluate them on images from an unseen hospital. For the
first time, in addition to domain generalization, we explore robustness in CAMELYON17. The task
in WILDS CAMELYON17 is to predict whether a tissue image contains a cancerous tumor or not.

Adversarial Augmentation for Better Generalizability. We test the generalization accuracy of
a standard-trained (ϵ = 0) and a robust (ϵ = 8/255) model by following setup from Section 4. In
contrast to the domains studied in Table 2, adversarial training improves generalization to the unseen
hospital. While the clean accuracy of the standard model is 94.05%, the clean accuracy of the robust
model is 95.28%. This value is even competitive with the target accuracy (95.25%) obtained by
the popular DG strategy CORAL (Sun & Saenko, 2016). The robust accuracy also improves from
82.03% to 92.67%. This significant boost in domain generalization can be attributed to the similarity
between pixel perturbations and the underlying domain shift in the medical images. We encourage
future works to study different adversarial training methods that go beyond pixel perturbations, and
to propose application-specific augmentations for different distribution shifts.

Certified Robustness. Next, we investigate the generalizability of certified robustness to the unseen
hospital. We follow the experimental setup in Section 5 and measure the certified accuracy on
the source and target domains. We observe from Figure 4 that some of the certified robustness
generalizes to the unseen hospital when evaluated with pixel perturbations and scaling deformations.
We include the results for other deformations in the appendix. We note that the drop in certified
accuracy to the unseen hospital (given pixel perturbations) is 4 times what we saw in the PACS
dataset in Section 5. This is concerning, as many sources of noise affect medical imaging data, so
robust medical diagnostics is important for real-world adoption of AI for Health. We encourage
future research to develop better methods to close the target-source gap in certified robustness.

7 CONCLUSION

We conducted a large scale empirical analysis to study the interplay between adversarial robustness
and domain generalization. We deployed adversarial training and randomized smoothing as empiri-
cal and certified defenses. We found that both empirical and certified robustness generalize to unseen
domains. We further included experiments on a real-world application, where adversarial training
benefits both clean and robust accuracy in an unseen domain. Based on our findings, we encourage
more research to understand: (i) under which conditions robust training improves the generalization
accuracy, and (ii) what methods can improve certified accuracy in unseen domains.
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A EMPIRICAL ROBUSTNESS AND DOMAIN GENERALIZATION

A.1 THE EFFECT OF λ ON ROBUSTNESS GENERALIZATION

How does the parameter λ in equation 5 affect the target robustness? We study the effect of
varying λ, which controls the robustness-accuracy trade-off in equation 5. Intuitively, the closer λ is
to zero, the more robust the model is. However, this added robustness comes at the cost of clean data
accuracy. Similar to 1, which shows the robust accuracies on various datasets with given λ = 0.5, in
Figure 5 we visualize the evaluation results for PACS dataset for λ = 0.1 and λ = 0.9. The extreme
case of robust only training (λ = 0) is visualized in Figure 6

Figure 5: The Effect of λ on Robustness Generalizability. As we decrease the value of λ, the
network sacrifices the clean accuracy to improve the robust accuracy.

Figure 6: Robust Training Only (λ = 0). In the extreme case, λ = 0, the network is only trained
on adversarial samples from the source domain without any clean source samples. This leads to a
sharp drop in the network’s accuracy on both the source and target domains.

A.2 THE GENERALIZATION OF ℓ2 ROBUSTNESS

Do the paper conclusions about the generalization of robustness hold if we consider ℓ2 ad-
versarial attacks? We repeat the experiments in Section 4.2 using ℓ2 adversarial augmentations.
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We set ϵ = {0, 0.5, 1.0, 5.0}. Each model is trained on one ϵ but is evaluated on all ϵ values. We
see from Figure 7 that the paper conclusions also hold when considering ℓ2 robustness. Following
Section 4.2, we answer the following questions:

Figure 7: Evaluation of ℓ2 Robustness. The robustness of the source domain (row 1) and the
target domain (row 2) follow a similar trend for each dataset. Robustness transfers from the source
domains to the target domains, a higher robustness in the source domain is associated with higher
robustness in the target domain and vice versa.

Q1: Do adversarially robust models generalize better than their standard-trained counter-
parts? Again the answer is no. Adversarially trained models tend to experience a drop in general-
izability when compared to their standard-trained counter-parts.

Q2: Does a higher source-domain robustness correspond to a higher target-domain robust-
ness? As expected, the answer is still yes. As observed across Table 7, when we have a higher
robustness in the source domain we consistently observe a higher robustness in the target domain.

Q3: Does the robustness-accuracy trade-off generalize to unseen domains? Yes, similar to
what was observed in ℓ∞ experiments, the robustness-accuracy trade-off exists in unseen domains.
Robustness in the target domain comes at the cost of clean accuracy.
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A.3 THE EFFECT OF USING A STRONGER EMPIRICAL DEFENSE

Figure 8: Robustness Generalizability Using TRADES. Utilizing a stronger adversarial training
method , TRADES, does not provide guarantees towards higher target robustness .

Does the use of a stronger defense, e.g. TRADES (Zhang et al., 2019), improve the generaliz-
ability of DNN robustness? When a stronger adversarial robustness method is deployed, in gen-
eral and unexpectedly we obtain lower robustness generalizability compared to standard adversarial
training. We also happen to experience a sharper drop in target accuracy for ϵ = 8/255, 16/255.
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B CERTIFIED ROBUSTNESS AND DOMAIN GENERALIZATION
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Figure 9: Effect of Varying the Deformation Parameter ϕ. We observe that 1) for Pixel Pertur-
bations, Scaling, and Rotation, the higher ϕ gets, the larger the Average Certified Radius (ACR)
becomes; and (2) for Affine, DCT, and Translation, high ϕ values can result in low ACRs.
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B.1 THE EFFECT OF ϕ ON THE GENERALIZATION OF CERTIFIED ROBUSTNESS

To complement Figure 2, we investigate the behavior when the deformation parameter ϕ varies.
Following Section 5.2, we certify ResNet-50 and ViT-Base against pixel perturbations and input
deformations in the source and target domains of PACS. We break down each envelope curve in
Figure 2 into multiple curves, each representing one choice of ϕ in Eq. 8. We label each curve
with the corresponding ϕ value in Figure 9. We observe that the effect of ϕ largely depends on
the type of perturbation. On the one hand, for Scaling and Pixel Perturbations, a higher ϕ values
corresponds to a larger Average Certified Radius (ACR); on the other hand, for Affine, DCT, and
Translation, a higher ϕ values might correspond to a smaller ACR. This is because for the latter group
of deformations, a higher ϕ results in a completely deformed image, which hinders the certification
ability of the model, even at a small radius. We visualize images from these deformations in Section
D. Note that the trends in Figure 2 still stand. Specifically, (1) for ϕ values where there’s a reasonable
certified accuracy in the source, that certified accuracy generalizes to the target. Moreover, (2) A
stronger architecture (ViT-Base) generally leads to a better source and target certified accuracy.

B.2 DOES VISUAL SIMILARITY CORRELATE WITH ROBUSTNESS GENERALIZABILITY?

We repeat the experiments in Section 5.2, which aim to evaluate the ability of FID/R-FID to predict
the generalization of robustness, on pixel perturbations and the following deformations: rotation,
affine, and DCT. We observe from Figure 10 that the FID/R-FID values do not predict the level of
generalizability of certified robustness, which matches our paper findings.
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(e) (Affine) Target: Art
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(i) (DCT) Target: Art
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(m) (Pixel) Target: Art
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Figure 10: Does visual similarity correlates with robustness generalizability? We vary the target
distribution and plot the certified accuracy curves for different deformations. The FID/R-FID dis-
tances between the source and target distributions are shown in the first row. Visual similarity (FID
and R-FID) does not correlate with the level of robustness generalization to the target domain.

C REAL-WORLD APPLICATION: MEDICAL IMAGES

Clean Samples

(a) Hospital 1 (b) Hospital 2 (c) Hospital 3 (d) Hospital 4 (e) Hospital 5

Figure 11: A visualization of the images taken from the 5 hospitals in Camelyon17.

We repeat the certified robustness experiments in Section 6 on the following deformations: affine,
DCT, translation, and rotation. We observe from Figure 12 that the source-target certification gap
is similar for affine, DCT, and translation. However, the certified accuracy curves for rotation are
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(b) (DCT)
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(c) (Translation)
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(d) (Rotation)
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Figure 12: Does visual similarity correlates with robustness generalizability? We vary the target
distribution and plot the certified accuracy curves for two deformations: scaling and translation. A
sample from each distribution is shown in the second row. The FID/R-FID distances between the
source distributions and each target are inset in the first row. Visual similarity, measured by FID and
R-FID, does not correlate with the level of robustness generalization to the target domain.

different. This makes sense when we consider the way the Camelyon17 dataset is constructed (Bándi
et al., 2019; Koh et al., 2021). The dataset includes cropped histopathological images, each of which
may contain a tumor tissue in the central 32x32 region. Due to the nature of this construction, rotated
versions of the image look similar, which explains why the source and target certified radii remain
almost constant. Samples from the Camelyon17 dataset are visualized in Figure 11.

D VISUALIZING THE DOMAIN GENERALIZATION DATASETS

We visualize a few samples from each of the domain generalization datasets we used in the paper. We
note that the datasets are diverse in terms of the nature of domain shifts and real-world applicability.
Along with the clean samples, we visualize deformed versions of the samples under various values
of σ for all the studied deformations.
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Clean Samples

Affine, σ = 0.1, 0.3, 0.5

Rotation, σ = 0.1, 0.3, 0.5
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Translation, σ = 0.1, 0.3, 0.5

DCT, σ = 0.1, 0.3, 0.5
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Pixel Perturbation, σ = 0.1, 0.3, 0.5

Scaling, λ = 0.1, 0.3, 0.5
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