
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REVISITING DNN TRAINING FOR INTERMITTENTLY-
POWERED ENERGY-HARVESTING MICRO-COMPUTERS

Anonymous authors
Paper under double-blind review

ABSTRACT

The deployment of Deep Neural Networks (DNNs) in energy-constrained envi-
ronments, such as Energy Harvesting Wireless Sensor Networks (EH-WSNs),
introduces significant challenges due to the intermittent nature of power availability.
This study introduces NExUME, a novel training methodology designed specifically
for DNNs operating under such constraints. We propose a dynamic adjustment of
training parameters—dropout rates and quantization levels—that adapt in real-time
to the available energy, which varies in energy harvesting scenarios.
This approach utilizes a model that integrates the characteristics of the network
architecture and the specific energy harvesting profile. It dynamically adjusts
training strategies, such as the intensity and timing of dropout and quantization,
based on predictions of energy availability. This method not only conserves energy
but also enhances the network’s adaptability, ensuring robust learning and inference
capabilities even under stringent power constraints. Our results show a 6% to 22%
improvement in accuracy over current methods, with an increase of less than 5%
in computational overhead. This paper details the development of the adaptive
training framework, describes the integration of energy profiles with dropout and
quantization adjustments, and presents a comprehensive evaluation using real-
world data. Additionally, we introduce a novel dataset aimed at furthering the
application of energy harvesting in computational settings.

1 INTRODUCTION

The increasing demand for ubiquitous, sustainable, and energy-efficient computing, combined
with advancements in energy harvesting systems, has spurred significant research into battery-less
devices (Gobieski et al., 2019; Resch et al., 2020; Mishra et al., 2021; Saffari et al., 2021; Afzal et al.,
2022). Such platforms represent the future of the Internet of Things (IoT) and energy harvesting
wireless sensor networks (EH-WSNs). Equipped with modern machine learning (ML) techniques,
these devices can revolutionize computing, monitoring, and analytics in remote, risky, and critical
environments such as oil wells, mines, deep forests, oceans, remote industries, and smart cities.
However, the intermittent and limited energy income of these deployments demands optimizations
for ML applications at the algorithm (Yang et al., 2017; Shen et al., 2022; Mendis et al., 2021),
orchestration (Maeng & Lucia, 2018; Mishra et al., 2021), compilation (Gobieski et al., 2018), and
hardware development (Qiu et al., 2020; Islam et al., 2022; Mishra et al., 2024) layers. Despite
these advancements, achieving consistent and accurate inference—thereby meeting service level
objectives (SLOs)—in such intermittent environments remains a significant challenge, exacerbated by
unpredictable resources, form-factor limitations, and variable computational availability, particularly
when employing task-optimized deep neural networks (DNNs).

There are two major problems with performing DNN inference under intermittent power. (I) Energy
Variability: Even though DNNs can be tailored to match the average energy income of the energy
harvesting (EH) source through pruning, quantization, distillation, or network architecture search
(NAS) (Yang et al., 2018; 2017; Mendis et al., 2021), there is no guarantee that the energy income con-
sistently meets or exceeds this average. When the income falls below the threshold, the system halts
the inference and checkpoints the intermediate states (via software or persistent hardware) (Maeng
& Lucia, 2018; Qiu et al., 2020), resuming upon energy recovery. Depending on the EH profile,
this might lead to significant delays and SLO violations. (II) Computational Approximation: To

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

address (I) and maintain continuous operation, EH-WSNs may skip some compute during energy
shortfalls by dropping neurons (zero padding) or by approximating computations (quantization).
Adding further approximation to save energy atop an already heavily reduced network can propagate
errors through the layers, leading to significant accuracy drops (Islam & Nirjon, 2019; Kang et al.,
2022; Lv & Xu, 2022; Kang et al., 2020), further violating SLOs.

In certain energy-critical scenarios, even EH-WSNs applying state-of-the-art techniques fail to con-
sistently meet SLOs, sometimes skipping entire inferences to deliver results on time. Fundamentally,
while current DNNs can be trained or fine-tuned to fit within a given resource budget—be it com-
pute, memory, or energy—they are not trained to expect a variable or intermittent resource income.
Although intermittency-aware NAS (Mendis et al., 2021), (?) could alleviate certain problems,
they often assume fixed resource constraints and do not account for real-time energy fluctuations.
Moreover, existing works like Keep in Balance (Yen et al., 2023), Stateful Neural Networks (Yen
et al., 2022), ePerceptive (Montanari et al., 2020), and Zygarde (Islam & Nirjon, 2019) address
aspects of intermittent computing but do not integrate energy variability awareness directly into the
training and inference processes to enable dynamic adaptation. This calls for revisiting the entire
training process; we need to train the DNN in such a way that it is aware of the intermittency and
adapts to it.

Motivated by these challenges, we propose NExUME (Neural Execution Under InterMittent
Environments), a novel framework designed specifically for environments with intermittent power
and EH-WSNs, with potential applications in any ultra-low-power inference system. NExUME
uniquely integrates energy variability awareness directly into both the training (DynFit) and inference
(DynInfer) processes, enabling DNNs to dynamically adapt computations based on real-time energy
availability. This involves an innovative strategy of learning instantaneous energy-aware dynamic
dropout and quantization selection during training, and an intermittency-aware task scheduler during
inference. The method includes targeted fine-tuning that not only regularizes the model but also pre-
vents overfitting, enhancing robustness to fluctuations in resource availability. Our key contributions
can be summarized as follows:

• DynFit: A novel training optimizer that embeds energy variability awareness directly into the DNN
training process. This optimizer allows for dynamic adjustments of dropout rates and quantization
levels based on real-time energy availability, thus maintaining learning stability and improving
model accuracy under power constraints.

• DynInfer: An intermittency- and platform-aware task scheduler that optimizes computational
tasks for intermittent power supply, ensuring consistent and reliable DNN operation. DynInfer
leverages software-compiler-hardware co-design to manage and deploy tasks. With the help of
DynFit, DynInfer provides 6%–22% accuracy improvements with ≤ 5% additional compute over
existing methods.

• Dataset: A first-of-its-kind machine status monitoring dataset, involving multiple types of EH
sensors mounted at various locations on a Bridgeport machine to monitor its activity status,
facilitating research in predictive maintenance and Industry 4.0 applications.

2 BACKGROUND AND RELATED WORK

Energy Harvesting and Intermittent Computing: The exploding usage of IoTs, connected devices,
and wearable electronics project the number of battery operated devices to be 24.1 Billion by
2030 (Insights, 2023). This has a significant economic (users, products and data generating dollar
value) as well as environmental (battery and e-waste) impact (Mishra et al., 2024). In fact, advances
in EH has lead to a staggering development in intermittently powered battery-free devices (Maeng
& Lucia, 2018; Gobieski et al., 2019; Qiu et al., 2020; Saffari et al., 2021; Afzal et al., 2022). A
typical EH setup consists of 5 components, namely, energy capture (solar panel, thermocouple, etc),
power conditioning, voltage regulation (buck or boost converter), energy storage (super capacitor)
and compute unit (refer §Appendix B for details about each of them). To cater towards the sporadic
power income and failures, an existing body of works explores algorithms, orchestration, compiler
support, and hardware development (Yang et al., 2017; 2018; Mendis et al., 2021; Maeng & Lucia,
2018; Gobieski et al., 2018; Qiu et al., 2020; Islam et al., 2022; Mishra et al., 2024; 2021; Ma
et al., 2016; 2017; Liu et al., 2015). Most of these works rely on software checkpointing (static
and dynamic (Maeng & Lucia, 2018), refer §Appendix C) to save and restore, while some of the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

prior works developed nonvolatile hardware (Ma et al., 2016; 2017) which inherently takes care
of the checkpointing. Considering the scope of these initiatives, it is crucial to acknowledge that,
despite the substantial support for energy harvesting and intermittency management, developing
intermittency-aware applications and hardware necessitates multi-dimensional efforts that span from
theoretical foundations to circuit design.

Intermittent DNN Execution/Training: As the applications deployed on such EH devices demand
analytics, executing DNNs on EH devices and EH-WSNs have become prominent (Lv & Xu, 2022;
Gobieski et al., 2019; Qiu et al., 2020; Mishra et al., 2021). However, due to computational constraints,
limited memory capacity and restricted operating frequencies, many of these applications fail to
complete inference execution with satisfactory SLOs, despite comprehensive software and hardware
support (Mishra et al., 2021). While the works relying on loop-decomposition or task partition (e.g.,
see (Qiu et al., 2020; Gobieski et al., 2019) and the references therein) ensure “forward progress”,
they do not guarantee an inference completion while meeting SLOs. Optimizing DNNs for the energy
constraints (Yang et al., 2018; 2017), or performing early exit and depth-first slicing (Lv & Xu, 2022;
Islam & Nirjon, 2019) does ensure more forward progress, but such approaches compromise accuracy
while often imposing scheduling overheads and higher memory footprint. One major issue is, most of
the works leverage “pre-existing” DNNs, which are typically designed for running on a stable resource
environment, while being deployed on an intermittent environment with pseudo notion of stability
via check-pointing, and therefore, one direction of works (Mendis et al., 2021) looks for performing
network architecture search for intermittent devices. However, this research direction only accounts
for fixed lower and upper bounds of energy and compute capacities, overlooking the “sporadic” nature
of energy availability and the elasticity of the compute hardware (i.e., the ability to dynamically scale
frequency, compute, and memory). Moreover, while the DNN is designed to operate within a specific
power window, it is not trained to adapt to these fluctuations. Consequently, during extended periods
of energy scarcity, the system lacks mechanisms for computational approximation, such as dynamic
dropouts (neuron skipping) and dynamic quantization. Essentially, the DNN is trained to manage
within a static resource budget, ignoring the “dynamism” of the resources. In contrast, our work
prioritizes the integration of this dynamism in both the network architecture search (NAS) and the
training phases, adapting more effectively to fluctuating energy and compute conditions.

3 NEXUME FRAMEWORK

To address the issues with intermittency-aware DNN training and inference, we propose NExUME:
(Neural Execution Under InterMittent Environments). NExUME has three interrelated compo-
nents: (1) DynNAS: Intermittency- and platform-aware neural architecture search; (2) DynFit:
Intermittency- and platform-aware DNN training with dynamic dropouts and quantization; and (3)
DynInfer: Intermittency- and platform-aware task scheduling for inference. While each component
can individually optimize DNNs for intermittent environments, their combination yields the best
results. Our innovation lies in the integration of energy variability awareness directly into both the
training and inference processes, enabling dynamic adaptation to real-time energy conditions, which
is not addressed by existing methods (Mendis et al., 2021; Yen et al., 2023; 2022; Montanari et al.,
2020; Islam & Nirjon, 2019). To search for the best architecture for the given intermittent environ-
ment, DynNAS utilizes the approach proposed by iNAS (Mendis et al., 2021). After the network
architecture is determined, DynFit is used to train the network considering energy intermittency, and
DynInfer is employed to perform inference under intermittent power conditions.

In this section, we elaborate on the key components, focusing on DynFit and DynInfer, and explain
how they uniquely adapt DNN training and inference to intermittent power conditions.

3.1 DYNFIT: INTERMITTENCY-AWARE LEARNING

DynFit is designed to optimize deep neural networks (DNNs) for execution in environments char-
acterized by intermittent power supply due to energy harvesting. The primary goal of DynFit is to
adapt the DNN’s training process to operate efficiently under unpredictable energy budgets while
maintaining acceptable accuracy and adhering to predefined service level objectives (SLOs).

DynFit introduces key mechanisms to dynamically adjust computational complexity based on energy
availability, thereby enabling energy-efficient execution of DNN models in constrained environments.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

These mechanisms include: (i) Dynamic Dropout, which adjusts the dropout rates based on available
energy to reduce computational load; (ii) Dynamic Quantization, which modifies quantization levels
in response to energy constraints to save energy; and (iii) QuantaTask design, which defines atomic
computational units that can be executed without interruption given the energy budget.

Unlike standard implementations where dropout rates and quantization levels are fixed or adjusted
solely based on training dynamics, DynFit adjusts these parameters in real-time based on the energy
profile of the device. Specifically, during training, we simulate energy variability by incorporating
energy traces into the training loop. At each training iteration, the available energy Eb is sampled
from these traces. Based on Eb, we adjust the dropout rate di for each layer i according to:

di = dmax

(
1− Eb

Emax

)
, (1)

where dmax is the maximum allowable dropout rate, and Emax is the maximum energy observed in
the traces. Similarly, the quantization levels qj are adjusted:

qj = qmin + (qmax − qmin)
Eb

Emax
. (2)

This ensures that when energy is low, higher dropout rates and lower quantization bit-widths are used
to reduce computational load, and vice versa.

Modeling Energy Consumption: The energy consumption of DNN operations is modeled based
on empirical profiling data from the hardware platform. Let eop denote the energy consumed per
computational operation, which varies with operation type and data precision. The total energy
consumption of a QuantaTask q is modeled as Eq = eop × ℓq, where ℓq is the number of operations
in the task. By integrating the energy model into the training process, DynFit ensures the adjustments
to dropout and quantization directly correspond to actual energy savings on the target hardware.

A QuantaTask is defined as the smallest atomic unit of computation that can be executed entirely
without interruption under the current energy and hardware constraints. Each QuantaTask ensures
that execution proceeds without partial computation, which would otherwise lead to overhead from
checkpointing and potential data corruption. The main properties of QuantaTasks are atomicity and
respect for energy constraints. Figure 1 illustrates QuantaTask execution with a simple example.

A3 B3

B2

B1
X X X

A2

A1

X

Figure 1: An example of variable QuantaTask in a matrix multiplication scenario. Depending on the
available energy, the task (vector inner product) can be divided into multiple iterations such that each
QuantaTask is guaranteed to finish given the energy availability. E is available energy, and Eb is the
energy required to finish one inner product.

Optimization Variables, Constraints, and Objective Function: The optimization problem is
formulated with variables: the weights W, dropout rates d, quantization levels q, and QuantaTask
sizes ℓ. The objective is to minimize the total loss, including prediction loss and regularization terms
penalizing energy consumption (subject to energy constraints):

min
W,d,q,ℓ

L(Ŷ,Y) + λ1

M∑
j=1

cq(qj) + λ2

N∑
i=1

cd(di). (3)

Formulation of the Composite Optimization Problem: The problem is non-convex due to the
discrete nature of quantization levels and dropout rates. We employ an alternating optimization
strategy, iteratively optimizing subsets of variables while keeping others fixed. Our method differs
from standard approaches by integrating energy constraints directly into the optimization, ensuring
that the network learns to adapt its parameters based on energy availability.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.1.1 ADAPTIVE REGULARIZATION STRATEGY

DynFit introduces an adaptive regularization strategy to address potential overfitting and under-
training due to uneven weight updates caused by dynamic dropout and quantization. We monitor the
update frequency Fp of each weight wp over a window of T iterations:

Fp =
1

T

T∑
t=1

Up(t), Up(t) =

{
1, if wp is updated at iteration t

0, otherwise
(4)

Weights with Fp < θlow are considered under-trained, and those with Fp > θhigh are considered
overfitting. We adjust dropout rates and apply L2 regularization accordingly to balance the training
process. This adaptive strategy ensures that all weights are adequately trained despite the dynamic
adjustments. Dropout scheduling techniques are incorporated, where dropout rates are increased
or decreased over time based on the training progress and energy availability, mitigating potential
overfitting introduced by static dropout variations.

Complexity Analysis of DynFit: The time complexity of DynFit during training is O(N · T), where
N is the number of weights and T is the number of training iterations. The overhead introduced
by monitoring update frequencies and adjusting dropout rates is negligible compared to the overall
training time, as these operations are simple arithmetic computations per iteration. The space
complexity is O(N) for storing the update frequencies and additional parameters. Compared to
classical training, DynFit adds minimal overhead, with a tradeoff of ≤ 5% additional compute for
significant gains in accuracy under intermittent power conditions.

3.2 DYNINFER: INTERMITTENCY-AWARE INFERENCE SCHEDULING

DynInfer optimizes the inference phase of DNNs operating under intermittent power conditions.
Unlike traditional systems with stable power, intermittent environments pose unique challenges for
executing inference tasks efficiently and reliably.

The inference process is represented as a set of tasks T = {T1, T2, . . . , TN}, where each task Ti is
characterized by its energy requirement Ei, execution time τi, priority pi, deadline Di, and criticality
level ci. At any given time t, the available energy is denoted as Eb(t).

Task Fusion and Scheduling: DynInfer introduces a novel task scheduling algorithm that dynam-
ically adjusts to real-time energy availability. When the energy required for executing multiple
QuantaTasks exceeds the available energy budget, DynInfer employs task fusion to combine smaller
tasks into larger atomic units that can be executed within the energy constraints.

Formal Definition of Task Fusion: Let Q = {q1, q2, . . . , qk} be a set of QuantaTasks with in-
dividual energy requirements Eqi . If

∑
i Eqi ≤ Eb, the available energy budget, then tasks can

be executed sequentially without interruption. However, if
∑

i Eqi > Eb, we aim to fuse tasks to
minimize checkpointing overhead. Task fusion is formalized as finding a partition of Q into subsets
Q1,Q2, . . . ,Qm such that, for each subset Qj ,

∑
qi∈Qj

Eqi ≤ Eb, and m is minimized. This
reduces the number of checkpoints and the overhead associated with task switching. For example,
Consider two convolution operations C1 and C2 with energy requirements EC1 and EC2 , respectively.
If individually EC1 , EC2 > Eb but EC1 + EC2 ≤ Eb, we fuse C1 and C2 into a single task. The
fused task executes both convolutions atomically within the energy budget, avoiding the overhead of
checkpointing between them.

Scheduling Problem Formulation: The scheduling problem is formulated with decision variables
si (task start times) and binary variables xi ∈ {0, 1} (indicating whether a task is scheduled). The
energy availability constraint over time is expressed as (subject to energy and task constraints):∑

i:si≤t<fi
Ei ≤ Eb(t) The objective is to maximize the total weighted priority of scheduled tasks:

max
{xi,si}

N∑
i=1

(
pi − αEi − β(fi −Di)

+
)
xi. (5)

Scheduling Performance Assurance: Our scheduling heuristic, Energy-Aware Priority Scheduling,
while sub-optimal in the theoretical sense, is designed to perform near-optimally in practice for real-
time systems. We ensure its performance by: 1. Empirical Validation: We compare the heuristic’s

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

performance with the optimal solution on smaller problem instances using exhaustive search and find
that the heuristic achieves within 95% of the optimal task completion rate. 2. Theoretical Analysis:
The heuristic prioritizes tasks based on effective priority P eff

i = pi

Ei
× ϕi, where ϕi accounts for

deadline urgency. This balances task importance against energy consumption, leading to efficient
utilization of available energy. 3. Complexity Analysis: The heuristic has a time complexity of
O(N logN) due to sorting tasks based on P eff

i , which is acceptable for real-time applications.

Complexity Analysis of DynInfer: The time complexity of the scheduling algorithm is O(N logN)
due to sorting tasks, and the space complexity is O(N) for storing task parameters. Compared to
classical inference, DynInfer introduces additional overhead for scheduling and task fusion, but this
is offset by the gains in reliability and efficiency under intermittent power.

Handling Extremely Low or Sporadic Energy Levels: In environments with extremely low or
sporadic energy levels where consistent dropout and quantization adjustments may not be feasible,
NExUME handles this by: 1. Implementing a minimum viable model configuration that operates
at the lowest acceptable energy consumption, achieved by maximizing dropout rates and using the
lowest quantization bit-widths. 2. Prioritizing essential tasks and deferring non-critical computations.
3. Employing predictive energy harvesting models to anticipate energy availability and adjust
computations proactively. In extreme cases, the system can enter into a low-power standby mode and
resume operation when sufficient energy is available. These strategies ensure that the system remains
operational and provides degraded but acceptable performance under severe energy constraints.

Novelty in Energy-Aware Scheduling: While energy-aware scheduling is not novel in itself, our
contribution lies in adapting scheduling algorithms specifically for intermittent power environments.
Existing scheduling algorithms typically assume stable energy availability and do not account for
the atomicity constraints imposed by intermittent power supply. Our scheduling approach uniquely
integrates: 1. Real-time energy availability into scheduling decisions. 2. Task fusion to minimize
checkpointing overhead, which is critical in intermittent environments. 3. Dynamic adjustment of
computational tasks based on both energy and task criticality. These innovations enable efficient and
reliable DNN inference under intermittent power conditions, differentiating our work from existing
energy-aware schedulers.

Rationale Behind Method Design: The overall method design of NExUME is motivated by the
need to enable DNNs to function reliably in environments with intermittent and unpredictable energy
supply. By integrating energy variability into both training and inference, we allow the DNN to
adapt its computational load dynamically, ensuring that critical tasks are completed within energy
constraints. This holistic approach addresses the limitations of existing methods that treat training
and inference separately or do not account for real-time energy fluctuations.

Implementation Details: We design a full software-compiler-hardware co-designed
execution framework for commercial devices with non-volatility support (like MSP-
EXP430FR5994 with FeRAM). Figure 2 shows a detailed overview of our execution design.

job conv2D(SZ_IP, SZ_mask)
 calc_compute();
 calc_memory();
 calc_engy();
 reshape(input, mask)
 ret #task_Conv2D()

job convBN(SZ_IP, SZ_mask)
 calc_compute();
 calc_memory();
 calc_engy();
 reshape(input, mask)
 ret #task_BN()

Def Infer(input,model)
 ...
Def Coreset(IP,Algo)
 ...
Def Communicate(Data)

backUp(task, data)
 ...
 Write2FeRAM()
 ReStore(task)
 ...
Rdf4mFRAM(task)

Job ****
Job ****

Job ****

task_Conv2D(ID#1)
 ret <IP * MASK>

task_Conv2D(ID#2)
 ret <IP * MASK>

task_Conv2D(ID#3)
 ret <IP * MASK>

task_Conv2D(ID#3)
 ret <IP * MASK>

BackUp(#3)

User Program

...

Vo
lta

ge
 M

on
ito

r

So
ft
wa
re

Mi
dd
le
wa

re
 &

Co
mp
il
er

Po
we
r
At

om
ic

As
se
mb
ly

 C
od
e

LE
A

Ac
ce

le
ra

to
r

task_Conv2D(ID#7)
 ret <IP * MASK>

Coreset(OP#7,IS)
 ... ret IS#

Communicate(IS#)
 ... sendData()

HOST-SIDE-Exec...
 Recover(IS#)
 Infer(RData)

Rdf4mFRAM(#3)

ret 2 //T=task_next ret -1 //pwr emgncy

ret 1 //Coreset ret 2 //T=task_next

Int Pred_Pwr(task_next)
 ...
 ret 2 //T=task_next
 ret 1 //save to coreset
 ret 0 //backup
 ret -1 //pwr emgncy

Power
Emergency

H
ar

dw
ar

e
Su

pp
or

te
d

M
on

ito
rin

g,
 B

ac
ku

p
an

d
Re

st
or

eP1
P2

L1

C1 C2

Cn

T1 T2 T3
Lb

Lr

L3

T4

T5

L3

Figure 2: Software-Compiler-Hardware
Driven DynInfer Flow.

To support user programs (P1), we implement a moving
window-based power predictor (P2) which takes its input
from the on-board EH capacitor. Considering the energy
available, the predictor makes an informed decision on
how to proceed. The compiler deconstructs the program
into jobs to perform seamless program execution. These
jobs form the functional program execution DAG. For ex-
ample, for a DNN execution, the jobs could be CONV2D
(C1), batch normalization (C2), etc. However, certain jobs
could be too big to execute atomically on harvested en-
ergy. Therefore, we profile the tasks using the compute
platform (in this case using the MSP-EXP430FR5994 and
the LEA in it) to further divide the jobs into Power Atomic
Tasks (QuantaTasks). These QuantaTasks are carefully coded with optimized assembly language to
maximize their efficiency. We take advantage of the on-board NV FeRAM to perform backup and
restore in case of power emergencies. In case of a power emergency, the task is abandoned and a
hardware-assisted backup and restore is performed.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 EXPERIMENTAL RESULTS

NExUME can be seamlessly integrated as a “plug-in” for both training and inference frameworks in
deep neural network (DNN) applications, specifically designed for intermittent and (ultra) low-power
deployments. In this section, we discuss the effectiveness of NExUME across two distinct types
of environments, highlighting its versatility and broad applicability. Firstly, we evaluate NExUME
using publicly available datasets (§4.2) commonly utilized in embedded applications across multiple
modalities—including image, time series sensor, and audio data. These datasets represent typical use
cases in embedded systems where energy efficiency and minimal computational overhead are crucial.
We use both commercial-off-the-shelf (COTS) hardware and state-of-the-art ReRAM Xbar-based
hardware for this evaluation. Secondly, we introduce a novel dataset aimed at advancing research in
predictive maintenance and Industry 4.0 (Lasi et al., 2014), and test NExUME on a real manufacturing
testbed (§4.3) with COTS hardware. We have developed a first-of-its-kind machine status monitoring
dataset, available at https://hackmd.io/@Galben/rk7YN6jmR, which involves mounting
multiple types of sensors at various locations on a Bridgeport machine to monitor its activity status.

4.1 DEVELOPMENT AND PROFILING OF NEXUME

NExUME uses a combination of programming languages and technologies to optimize its functional-
ity in intermittent and low-power computing environments. The software stack comprises Python3
(2.7k lines of code), CUDA (1.1k lines of code), and Embedded C (2.1k lines of code, not including
DSP libraries). Our training infrastructure utilizes NVIDIA A6000 GPUs with 48 GiB of memory,
supported by a 24-core Intel Xeon Gold 6336Y CPU. We employ PyTorch v2.3.0 coupled with CUDA
version 11.8 as our primary training framework. To assess the computational overhead introduced by
DynFit, a component of NExUME, we use NVIDIA Nsight Compute. During the training sessions
enhanced by DynFit, we observed an increase in the number of instructions ranging from a minimum
of 11.4% to a maximum of 34.2%. While the overhead in streaming multi-processor (SM) utilization
was marginal (within 5%), there was a noticeable increase in memory bandwidth usage, ranging
from 6% to 17%. Moreover, we have implemented a modified version of the matrix multiplication
operation that strategically skips the loading of rows and/or columns from the input matrices into the
GPU’s shared memory and register files. This adaptation is guided by the dropout mask vector and
the specific type of sparse matrix operation being performed. This technique effectively reduces the
number of load operations by an average of 12%, thereby enhancing the efficiency of computations
under energy constraints and contributing to the overall performance improvements in NExUME.

4.2 NEXUME ON PUBLICLY AVAILABLE DATASETS

Datasets: For image data, we consider the Fashion-MNIST (Xiao et al., 2017) and CIFAR10 (Alex,
2009) datasets; for time series sensor data, we focus on popular human activity recognition (HAR)
datasets, MHEALTH (Banos et al., 2014) and PAMAP2 (Reiss & Stricker, 2012); and for audio, we
use the AudioMNIST (Becker et al., 2023) dataset.

Inference Deployment Embedded Platforms: For commercially off-the-shelf micro-controllers,
we choose Texas Instruments MSP430FR5994 (Instruments, 2024a), and Arduino Nano 33 BLE
Sense (Arduino, 2024) as our deployment platforms with a Pixel-5 phone as the host device. The
host device is used for data logging—collecting SLOs, violations, power failures, etc., along with
running the “baseline” inferences without intermittency.

Baselines: We take the combination of best available approaches for DNN inference on intermittent
environment as baselines. All these DNNs are executed with the state-of-the-art checkpointing
and scheduling approach (Maeng & Lucia, 2018). Baseline Full Power is a DNN designed by
iNAS (Mendis et al., 2021) for running while the system is battery-powered and has to hit a target SLO
(latency < 500ms). Baseline AP is a DNN compressed to fit the average power of the energy harvesting
(EH) environment using iNAS (Mendis et al., 2021) and energy-aware pruning (EAP) (Yang et al.,
2017; 2018). Baseline PT takes the Full Power DNN and uses techniques proposed by (Yang et al.,
2018) and (Yang et al., 2017) to prune, quantize, and compress the model. Baseline iNAS+PT
designs the network from the ground up while combining the work of iNAS (Mendis et al., 2021) and
EAP (Yang et al., 2018; 2017).

7

https://hackmd.io/@Galben/rk7YN6jmR

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

We also compare our approach with recent state-of-the-art methods specifically designed for in-
termittent systems, namely Stateful (Yen et al., 2022), ePerceptive (Montanari et al., 2020), and
DynBal (Yen et al., 2023). These methods introduce various techniques such as embedding state
information into the DNN, multi-resolution inference, multi-exit architectures, and runtime reconfig-
urability to handle intermittency in energy-harvesting devices. We have faithfully re-implemented
these methods as per the descriptions and adjusted them for a fair comparison under our setup.

Results: Table 1 shows the accuracy of our approach against the baselines and the recent state-of-the-
art methods using the TI MSP board powered by piezoelectric energy harvesting. The inferences
meeting the SLO requirements are the only ones considered for accuracy; i.e., a correct classification
violating the latency SLO is considered as “incorrect”.

Datasets Full Power AP PT iNAS+PT Stateful ePerceptive DynBal NExUME
FMNIST 98.70 71.90 79.72 83.68 85.40 86.25 87.50 88.90
CIFAR10 89.81 55.05 62.00 66.98 68.50 70.20 71.75 76.29

MHEALTH 89.62 59.76 65.40 71.56 73.80 74.95 76.10 80.75
PAMAP 87.30 57.38 65.77 70.33 72.20 73.35 74.50 75.16

AudioMNIST 88.20 67.29 73.16 75.41 76.80 77.95 78.60 80.01

Table 1: Accuracy comparison on TI MSP board using piezoelectric energy harvesting.

As observed in Table 1, NExUME consistently outperforms the state-of-the-art methods across
all datasets. For instance, on CIFAR10, NExUME achieves an accuracy of 76.29%, which is
approximately 4.54% higher than DynBal, the next best method. This improvement is significant in
the context of energy-harvesting intermittent systems, where achieving high accuracy under strict
energy constraints is challenging. The superior performance of NExUME can be attributed to
its unique integration of energy variability awareness directly into both the training (DynFit) and
inference (DynInfer) processes. Unlike other methods that either focus on modifying the DNN
architecture or optimizing inference configurations, NExUME adapts the DNN’s computational
complexity in real-time based on instantaneous energy availability, leading to more efficient use of
scarce energy resources and improved accuracy.

Dataset Platform Energy Source Stateful ePerceptive DynBal NExUME
FMNIST MSP430FR5994 Piezoelectric 20.1 20.8 21.5 23.4
CIFAR10 Arduino Nano Thermal 16.0 16.5 17.0 18.5

MHEALTH ESP32 S3 Eye Piezoelectric 18.5 19.0 19.6 21.0
PAMAP STM32H7 Thermal 16.5 17.0 17.5 19.0

AudioMNIST Raspberry Pi Pico Piezoelectric 20.5 21.0 21.7 23.2

Table 2: Energy efficiency comparison on different hardware platforms.

Table 2 presents the energy efficiency in MOps/Joule for each dataset on different hardware platforms
using piezoelectric and thermal energy harvesting. NExUME achieves the highest energy efficiency
across all platforms and datasets. This demonstrates that NExUME not only improves accuracy but
also enhances energy utilization, making it highly suitable for deployment in energy-constrained
intermittent environments. The improvements in energy efficiency are due to NExUME’s ability to
adjust computational workload dynamically, minimizing energy wastage and ensuring that computa-
tions are matched to the available energy budget. NExUME, thanks to its inherent learnt adaptability,
significantly reduces saves, restores, reconfigurations and READ/WRITE from/to nonvolatile memory
or to the flash memory in the cases and devices where NVMs are not present which gives it edge over
the baselines across multiple devices.

Discussion of Results: 1. Dynamic Adaptation: NExUME’s DynFit and DynInfer components
enable real-time adjustments of dropout rates and quantization levels during training and inference
based on instantaneous energy availability. This allows the DNN to maintain high accuracy even
under severe energy constraints. 2. Energy Variability Awareness: By integrating energy profiles
directly into the training process, NExUME ensures that the model learns to handle fluctuations in
energy supply, leading to more robust performance compared to methods that do not consider energy
variability during training. 3. Efficient Scheduling: DynInfer’s energy-aware task scheduling and task

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

fusion mechanisms reduce overhead from checkpointing and optimize the execution of tasks within
the available energy budget. 4. Holistic Approach: Unlike other methods that focus on either training
or inference optimizations, NExUME provides a comprehensive solution that addresses both phases,
leading to superior overall performance.
4.3 NEXUME ON MACHINE STATUS MONITORING [Our New Dataset]

Automation and monitoring and analytics are the key ingredients in the upcoming Industry 4.0. To
enable sustainable machine status monitoring with energy harvesting (from machine vibrations or
Wifi signals) we evaluate our setup using Bridgeport machines for monitoring their status. Prior
works (Center, 2018) majorly focused on fault analysis but there are little to no datasets on predictive
maintenance. Setup and Sensor Arrangement: Two different types of 3-axis accelerometers (with
100Hz and 200Hz sampling rate) were placed in three different locations of a Bridgeport machine
to collect and analyze data under different operating status. There were 5 operating statuses: three
different speeds of rotation of the spindle (R1: 100RPM, R2: 200RPM, R3: 300RMP with no job;
RPM – rotations per minute), spindle under job (SJ), and spindle idle (SI). We collected over 700,000
samples over a period of 2 hours for each of the sensors. The sensor data were cleaned, normalized,
and converted to the power spectrum density for further analysis. We use iNAS (Mendis et al., 2021)
to find the DNNs meeting the energy income and train them using our proposed DynFit. Table 3
shows the accuracy of classification tasks against the different baselines and state-of-the-art methods.

Class Full Power AP PT iNAS+PT Stateful ePerceptive DynBal NExUME
R1 84.93 74.46 77.02 79.62 80.85 81.50 82.15 83.60
R2 85.85 76.21 79.18 80.36 81.95 82.60 83.25 84.50
R3 81.09 72.43 75.38 78.18 79.05 79.70 80.35 80.85
SJ 90.95 82.33 85.00 87.58 88.60 89.15 89.80 90.50
SI 94.76 85.31 88.05 89.90 91.00 91.65 92.30 93.00

Table 3: Accuracy of NExUME and other methods for industry status monitoring dataset using TI
MSP board and piezoelectric energy source. Results collected over 200 experiment cycles.

NExUME demonstrates superior performance across all operating classes, achieving the highest
accuracy in each case. For example, for the spindle idle (SI) class, NExUME attains an accuracy
of 93.00%, outperforming DynBal by 0.70%. While the margins may appear small, in industrial
settings, even minor improvements in classification accuracy can have significant implications for
predictive maintenance and operational efficiency. The improved performance of NExUME in this
real-world application further validates its effectiveness and practical utility. By effectively managing
energy constraints and adapting to intermittent power conditions, NExUME enables more reliable and
accurate monitoring in industrial environments where energy harvesting is a viable power solution.

4.4 SENSITIVITY AND ABLATION STUDIES OF NEXUME

To elucidate the influence of variable SLOs and hardware-specific settings on system performance,
we conducted a comprehensive sensitivity study. This study involved adjusting the acceptable
latency and the capacitance of the energy harvesting setup to assess their impacts on accuracy. As
shown in Figure 3a, the accuracy improves with increased latency, but with diminishing returns.
Similarly, Figure 3b demonstrates that, while increasing capacitance should theoretically stabilize
the system, its charging characteristics can lead to extended charging times, thus exceeding the
latency SLO. Notably, some anomalies in the data were attributed to abrupt power failures, a common
challenge in intermittent energy harvesting systems. An ablation study evaluates the contributions of
individual components within NExUME. The results, plotted in Figure 3c, indicate that the greatest
improvements are derived from the “synergistic operation” of all components, particularly DynFit
and DynInfer. Although iNAS enhances network selection, its lack of intermittency awareness
significantly impacts accuracy.

4.5 LIMITATIONS AND DISCUSSION

We recognize that modern architectures like Transformers have become prevalent in the ML commu-
nity due to their superior performance on large-scale datasets. However, deploying such architectures

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

200 250 300 350 400 450 500 550 600
Latency (ms)

78
80
82
84
86
88
90
92
94

Ac
cu

ra
cy

 (%
)

Accuracy vs. Latency for Different Classes

R1 R2 R3 SJ SI

(a) Accuracy vs Latency

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Capacitance (F)

78
80
82
84
86
88
90
92

Ac
cu

ra
cy

 (%
)

Accuracy vs. Capacitance for Different Classes

R1 R2 R3 SJ SI

(b) Accuracy vs Capacitance

FMNIST CIFAR10 MHEALTH PAMAP AudioMNISTMachine
Dataset

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Abalation Study

DN DN+DF DN+DF+DI

(c) Ablation Study
Figure 3: Sensitivity and ablation study. DN is DynNAS, DF is DynFit, and DI is DynInfer.

on ultra-low-power, energy-harvesting devices presents significant challenges due to their substantial
computational and memory requirements. NExUME focuses on enabling efficient and reliable
deployment of DNNs in intermittent environments, which are often constrained in terms of com-
putational resources and energy availability. In many real-world applications, especially in IoT
and edge computing, there is a critical need for smaller, energy-efficient models that can operate
autonomously without reliance on batteries. These tiny, reusable devices contribute to reducing
embodied carbon and represent a significant step toward sustainability. Moreover, we believe that
advancing the capabilities of smaller models in intermittent environments is crucial for widespread
adoption of sustainable, battery-free devices in various domains, including environmental monitoring,
industrial IoT, and healthcare. By addressing the challenges of intermittent computing, our work
contributes to the broader goal of enabling pervasive, sustainable intelligence at the edge.

NExUME is especially advantageous in intermittent environments, and its utility extends to ultra-
low-power or energy scavenging systems. However, the efficacy of DynFit and iNAS is contingent
upon the breadth and depth of the available dataset. Additionally, profiling devices to ascertain their
energy consumption, computational capabilities, and memory footprint necessitates detailed micro-
profiling using embedded programming. This process, while informative, yields only approximate
models that are inherently prone to errors. DynFit, with its stochastic dropout features, occasionally
leads to overfitting, necessitating meticulous fine-tuning. While effective in smaller networks, our
studies involving larger datasets (such as ImageNet) and more complex network architectures (like
MobileNetV2 and ResNet) reveal challenges in achieving convergence without precise fine-tuning.
DynFit tends to introduce multiple intermediate states during the training process, resulting in
approximately 14% additional wall-time on average. The development of DynInfer requires an
in-depth understanding of microcontroller programming and compiler directives. The absence
of comprehensive library functions along with the need for computational efficiency frequently
necessitates the development of in-line assembly code for certain computational kernels.

5 CONCLUSIONS

This study presents NExUME, an advanced framework designed to optimize the training and inference
phases of deep neural networks within the constraints of intermittently powered, energy-harvesting
devices. By integrating adaptive neural architecture and energy-aware training techniques, NExUME
significantly enhances the viability of deploying machine learning models in environments with
limited and unreliable energy sources. The results from our extensive evaluations demonstrate
that NExUME can substantially outperform traditional methods in energy-constrained settings,
with improvements in accuracy and efficiency that facilitate real-world applications in remote and
wearable technology. Specifically, improvements ranging from 6.10% to 17.13% over existing
methods highlight NExUME’s capability to adapt dynamically to fluctuating energy conditions,
ensuring both operational longevity and computational integrity. The broader implication of this work
extends beyond technological advancements, suggesting a paradigm shift in how the machine learning
community approaches the design and deployment of systems in energy-limited environments. By
prioritizing energy efficiency and system adaptability, NExUME contributes to the sustainability
and accessibility of machine learning solutions, enabling their deployment in regions where power
infrastructure is absent or unreliable. This is particularly crucial in developing regions where
such technology can drive innovation in healthcare, agriculture, and education. Furthermore, the
development of energy-efficient, adaptive systems like NExUME is aligned with the growing need
for sustainable computing practices across all disciplines of technology. It challenges the machine
learning community to consider not only the accuracy and efficiency of algorithms but also their
environmental impact and accessibility, ensuring a broader positive social impact.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Sayed Saad Afzal, Waleed Akbar, Osvy Rodriguez, Mario Doumet, Unsoo Ha, Reza Ghaffarivar-
davagh, and Fadel Adib. Battery-free wireless imaging of underwater environments. Nature
communications, 13(1):5546, 2022.

Krizhevsky Alex. Learning multiple layers of features from tiny images. https://www. cs. toronto.
edu/kriz/learning-features-2009-TR. pdf, 2009.

Arduino. Arduino nano 33 ble sense with headers. https://store-usa.arduino.
cc/products/arduino-nano-33-ble-sense-with-headers, 2024. Accessed on
05/19/2024.

Oresti Banos, Rafael Garcia, Juan A Holgado-Terriza, Miguel Damas, Hector Pomares, Ignacio Rojas,
Alejandro Saez, and Claudia Villalonga. mhealthdroid: a novel framework for agile development
of mobile health applications. In Ambient Assisted Living and Daily Activities: 6th International
Work-Conference, IWAAL 2014, Belfast, UK, December 2-5, 2014. Proceedings 6, pp. 91–98.
Springer, 2014.

Sören Becker, Johanna Vielhaben, Marcel Ackermann, Klaus-Robert Müller, Sebastian Lapuschkin,
and Wojciech Samek. Audiomnist: Exploring explainable artificial intelligence for audio
analysis on a simple benchmark. Journal of the Franklin Institute, 2023. ISSN 0016-0032.
doi: https://doi.org/10.1016/j.jfranklin.2023.11.038. URL https://www.sciencedirect.
com/science/article/pii/S0016003223007536.

Case Western Reserve University Bearing Data Center. Bearing fault data. https://
engineering.case.edu/bearingdatacenter/download-data-file, 2018. Ac-
cessed: 2024-11-27.

Graham Gobieski, Nathan Beckmann, and Brandon Lucia. Intermittent deep neural network inference.
In SysML Conference, pp. 1–3, 2018.

Graham Gobieski, Brandon Lucia, and Nathan Beckmann. Intelligence beyond the edge: Inference
on intermittent embedded systems. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems, pp. 199–213, 2019.

Transforma Insights. Iot & ai market forecasts. https://transformainsights.com/
research/tam/market, 2023. Accessed: 05/19/2021.

Texas Instruments. Msp430fr5994 mixed-signal microcontrollers. https://www.ti.com/
product/MSP430FR5994, 2024a. Accessed: 05/19/2024.

Texas Instruments. Msp dsp library: Low energy accelerator (lea) user’s guide.
https://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/
DSPLib/1_30_00_02/exports/html/usersguide_lea.html, 2024b. Accessed:
05/19/2024.

Bashima Islam and Shahriar Nirjon. Zygarde: Time-sensitive on-device deep inference and adaptation
on intermittently-powered systems. arXiv preprint arXiv:1905.03854, 2019.

Sahidul Islam, Jieren Deng, Shanglin Zhou, Chen Pan, Caiwen Ding, and Mimi Xie. Enabling fast
deep learning on tiny energy-harvesting iot devices. In 2022 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 921–926. IEEE, 2022.

Chih-Kai Kang, Hashan Roshantha Mendis, Chun-Han Lin, Ming-Syan Chen, and Pi-Cheng Hsiu.
Everything leaves footprints: Hardware accelerated intermittent deep inference. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 39(11):3479–3491, 2020.

Chih-Kai Kang, Hashan Roshantha Mendis, Chun-Han Lin, Ming-Syan Chen, and Pi-Cheng Hsiu.
More is less: Model augmentation for intermittent deep inference. ACM Transactions on Embedded
Computing Systems (TECS), 21(5):1–26, 2022.

Heiner Lasi, Peter Fettke, Hans-Georg Kemper, Thomas Feld, and Michael Hoffmann. Industry 4.0.
Business & information systems engineering, 6(4):239–242, 2014.

11

https://store-usa.arduino.cc/products/arduino-nano-33-ble-sense-with-headers
https://store-usa.arduino.cc/products/arduino-nano-33-ble-sense-with-headers
https://www.sciencedirect.com/science/article/pii/S0016003223007536
https://www.sciencedirect.com/science/article/pii/S0016003223007536
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://transformainsights.com/research/tam/market
https://transformainsights.com/research/tam/market
https://www.ti.com/product/MSP430FR5994
https://www.ti.com/product/MSP430FR5994
https://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/DSPLib/1_30_00_02/exports/html/usersguide_lea.html
https://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/DSPLib/1_30_00_02/exports/html/usersguide_lea.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yongpan Liu, Zewei Li, Hehe Li, Yiqun Wang, Xueqing Li, Kaisheng Ma, Shuangchen Li, Meng-Fan
Chang, Sampson John, Yuan Xie, et al. Ambient energy harvesting nonvolatile processors: From
circuit to system. In Proceedings of the 52nd Annual Design Automation Conference, pp. 1–6,
2015.

Mingsong Lv and Enyu Xu. Efficient dnn execution on intermittently-powered iot devices with
depth-first inference. IEEE Access, 10:101999–102008, 2022.

Kaisheng Ma, Xueqing Li, Karthik Swaminathan, Yang Zheng, Shuangchen Li, Yongpan Liu, Yuan
Xie, John Jack Sampson, and Vijaykrishnan Narayanan. Nonvolatile processor architectures:
Efficient, reliable progress with unstable power. IEEE Micro, 36(3):72–83, 2016.

Kaisheng Ma, Xueqing Li, Jinyang Li, Yongpan Liu, Yuan Xie, Jack Sampson, Mahmut Taylan
Kandemir, and Vijaykrishnan Narayanan. Incidental computing on iot nonvolatile processors. In
Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, pp.
204–218, 2017.

Kiwan Maeng and Brandon Lucia. Adaptive dynamic checkpointing for safe efficient intermittent
computing. In 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI
18), pp. 129–144, 2018.

Hashan Roshantha Mendis, Chih-Kai Kang, and Pi-cheng Hsiu. Intermittent-aware neural architecture
search. ACM Transactions on Embedded Computing Systems (TECS), 20(5s):1–27, 2021.

Cyan Subhra Mishra, Jack Sampson, Mahmut Taylan Kandemir, and Vijaykrishnan Narayanan.
Origin: Enabling on-device intelligence for human activity recognition using energy harvesting
wireless sensor networks. In 2021 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 1414–1419. IEEE, 2021.

Cyan Subhra Mishra, Jack Sampson, Mahmut Taylan Kandemir, Vijaykrishnan Narayanan, and
Chita R Das. Usas: A sustainable continuous-learning´ framework for edge servers. In 2024 IEEE
International Symposium on High-Performance Computer Architecture (HPCA), pp. 891–907.
IEEE, 2024.

Alessandro Montanari, Manuja Sharma, Dainius Jenkus, Mohammed Alloulah, Lorena Qendro, and
Fahim Kawsar. eperceptive: energy reactive embedded intelligence for batteryless sensors. In
Proceedings of the 18th Conference on Embedded Networked Sensor Systems, pp. 382–394, 2020.

Keni Qiu, Nicholas Jao, Mengying Zhao, Cyan Subhra Mishra, Gulsum Gudukbay, Sethu Jose, Jack
Sampson, Mahmut Taylan Kandemir, and Vijaykrishnan Narayanan. Resirca: A resilient energy
harvesting reram crossbar-based accelerator for intelligent embedded processors. In 2020 IEEE
International Symposium on High Performance Computer Architecture (HPCA), pp. 315–327.
IEEE, 2020.

Attila Reiss and Didier Stricker. Introducing a new benchmarked dataset for activity monitoring. In
2012 16th international symposium on wearable computers, pp. 108–109. IEEE, 2012.

Salonik Resch, S Karen Khatamifard, Zamshed I Chowdhury, Masoud Zabihi, Zhengyang Zhao,
Husrev Cilasun, Jian-Ping Wang, Sachin S Sapatnekar, and Ulya R Karpuzcu. Mouse: Inference
in non-volatile memory for energy harvesting applications. In 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 400–414. IEEE, 2020.

Ali Saffari, Sin Yong Tan, Mohamad Katanbaf, Homagni Saha, Joshua R Smith, and Soumik Sarkar.
Battery-free camera occupancy detection system. In Proceedings of the 5th International Workshop
on Embedded and Mobile Deep Learning, pp. 13–18, 2021.

Tianyi Shen, Cyan Subhra Mishra, Jack Sampson, Mahmut Taylan Kandemir, and Vijaykrishnan
Narayanan. An efficient edge-cloud partitioning of random forests for distributed sensor networks.
IEEE Embedded Systems Letters, 2022.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Designing energy-efficient convolutional neural
networks using energy-aware pruning. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 5687–5695, 2017.

Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler, Vivienne Sze, and
Hartwig Adam. Netadapt: Platform-aware neural network adaptation for mobile applications. In
Proceedings of the European conference on computer vision (ECCV), pp. 285–300, 2018.

Chih-Hsuan Yen, Hashan Roshantha Mendis, Tei-Wei Kuo, and Pi-Cheng Hsiu. Stateful neural
networks for intermittent systems. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 41(11):4229–4240, 2022.

Chih-Hsuan Yen, Hashan Roshantha Mendis, Tei-Wei Kuo, and Pi-Cheng Hsiu. Keep in balance:
Runtime-reconfigurable intermittent deep inference. ACM Transactions on Embedded Computing
Systems, 22(5s):1–25, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A MORE RESULTS ON OTHER PLATFORMS AND EH SOURCES

Figure 4: Hardware setup of NExUME using MSP-EXP430FR5994 as the edge compute, Adafruit
ItsyBitsy nRF52840 Express for communicating, Energy Harvester Breakout - LTC3588 with super-
capacitors as energy rectification and storage and a Pixel-5 phone as the host.

Datasets Full Power MSP on Piezo
AP PT iNAS+PT NExUME Better

FMNIST 98.70 71.90 79.72 83.68 88.90 6.24%
CIFAR10 89.81 55.05 62.00 66.98 76.29 13.90%
MHEALTH 89.62 59.76 65.40 71.56 80.75 12.84%
PAMAP 87.30 57.38 65.77 65.38 75.16 14.97%
AudioMNIST 88.20 67.29 73.16 75.41 80.01 6.10%

Table 4: Accuracy of NExUME on MSP board using vibration from a Piezoelectric harvestor. Better
refers to the improvement over iNAS+PT baseline.

Datasets Full Power MSP on Thermal
AP PT iNAS+PT NExUME Better

FMNIST 98.70 80.92 86.32 88.93 95.62 7.53%
CIFAR10 89.81 64.78 69.29 71.53 83.78 17.13%
MHEALTH 89.62 69.77 73.99 77.70 89.62 15.34%
PAMAP 87.30 66.33 71.84 74.47 85.24 14.46%
AudioMNIST 88.20 73.84 78.03 81.60 87.64 7.40%

Table 5: Accuracy of NExUME on MSP board using thermocouple based thermal harvester. Better
refers to the improvement over iNAS+PT baseline.

Datasets Full Power Arduino on RF
AP PT iNAS+PT NExUME Better

FMNIST 98.70 74.44 79.63 83.61 90.44 8.17%
CIFAR10 89.81 58.11 63.91 65.01 79.60 22.44%
MHEALTH 89.62 63.52 67.40 74.30 83.86 12.87%
PAMAP 87.30 61.39 67.24 69.45 77.00 10.87%
AudioMNIST 88.20 66.11 74.28 76.60 78.87 2.97%

Table 6: Accuracy of NExUME on Arduino nano board using WiFi based RF harvester. Better refers
to the improvement over iNAS+PT baseline.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Datasets Full Power Arduino on Thermal
AP PT iNAS+PT NExUME Better

FMNIST 98.70 77.04 80.44 83.08 89.90 8.20%
CIFAR10 89.81 60.38 65.90 66.98 80.70 20.48%
MHEALTH 89.62 65.74 69.88 72.41 85.75 18.42%
PAMAP 87.30 62.76 65.93 71.46 81.27 13.73%
AudioMNIST 88.20 69.12 73.86 77.79 83.54 7.39%

Table 7: Accuracy of NExUME on Arduino nano board using thermocouple based thermal harvester.
Better refers to the improvement over iNAS+PT baseline.

B DETAILS ON ENERGY HARVESTING

A typical energy harvesting (EH) setup captures and converts environmental energy into usable
electrical power, which can then support various electronic devices. Here’s a simplified breakdown of
the process:

1. Energy Capture: The setup begins with a harvester, such as a solar panel, piezoelectric
sensor, or thermocouple. These devices are designed to collect energy from their surround-
ings—light, mechanical vibrations, or heat, respectively.

2. Power Conditioning: Once energy is harvested, it often needs to be converted and stabilized
for use. This is done using a rectifier, which transforms alternating current (AC) into a more
usable direct current (DC).

3. Voltage Regulation: After rectification, the power might not be at the right voltage for the
device it needs to support. A matching circuit, including components like buck or boost
converters, adjusts the voltage to the appropriate level, ensuring the device receives the
correct current and voltage.

4. Energy Storage: Finally, to ensure a continuous power supply even when the immediate
energy source is inconsistent (like when a cloud passes over a solar panel), the system
includes a temporary storage unit, such as a super-capacitor. This component helps smooth
out the supply, providing steady power to the compute circuit.

By integrating these components, an EH system can sustainably power devices without relying on
traditional power grids, making it ideal for remote or mobile applications.

C INTERMITTENT COMPUTING AND CHECK-POINTING

C.1 INTERMITTENCY-AWARE GENERAL MATRIX MULTIPLICATION (GEMM)

Here we explain the operation of an energy-aware algorithm for performing General Matrix Multipli-
cation (GeMM). The algorithm is designed to operate in environments where energy availability is
intermittent, such as in devices powered by energy harvesting. It includes mechanisms for loop tiling,
checkpointing, and resumption to manage computation across power interruptions effectively.

C.1.1 ALGORITHM OVERVIEW

The GeMM operation, typically expressed as C = A×B, where A, B, and C are matrices, is imple-
mented with considerations for energy limitations. The algorithm breaks the matrix multiplication
into smaller chunks (tiles), periodically saves the state before potential power losses, and resumes
computation from the last saved state upon power restoration.

C.1.2 FUNCTION DEFINITIONS

• SAVE_STATE: Saves the current indices and the partial result of the output matrix C to
non-volatile memory to allow recovery after a power interruption.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

• LOAD_STATE: Retrieves the last saved indices and partial result from non-volatile memory
to resume computation.

C.1.3 LOOP TILING

The algorithm uses loop tiling to divide the computation into smaller blocks that can be managed
between power interruptions. This tiling not only makes the computation manageable but also
optimizes memory usage and cache performance, which is critical in constrained environments.

C.1.4 CHECK-POINTING MECHANISM

Before each power interruption, detected through an energy monitoring system, the algorithm saves
the current state using the SAVE_STATE function. This state includes the loop indices and the
current value of the element being processed in C. This ensures that no computation is lost when the
power goes out.

C.1.5 RESUMPTION MECHANISM

Upon resuming, the algorithm loads the saved state using the LOAD_STATE function. This state
is used to continue the computation exactly where it left off, minimizing redundant operations and
ensuring efficiency.

D FORMULATION OF DYNAMIC DROPOUTS:

D.1 L2 DYNAMIC DROPOUT WITH QUANTATASK OPTIMIZATION

L2 Dynamic Dropout leverages the L2 norm of the weights to influence dropout rates, combined with
the QuantaTask optimization to handle energy constraints in intermittent systems.

Mathematical Formulation: Let W be the weight matrix of a layer. The L2 norm of the weights is
calculated as:

∥W∥2 =

√∑
i,j

W 2
ij

Define the dropout probability pi for neuron i based on the L2 norm of its corresponding weights.
The idea is to use the inverse of the L2 norm to determine the probability:

pi =
α

∥Wi∥2 + ϵ

where α is a scaling factor to adjust the overall dropout rate, and ϵ is a small constant to avoid division
by zero. Define a binary dropout mask m = [m1,m2, . . . ,mn] where mi ∈ {0, 1}. Each element of
the mask is determined by sampling from a Bernoulli distribution with probability 1− pi:

mi ∼ Bernoulli(1− pi)

Apply the dropout mask during the forward pass. Let ai denote the activation of neuron i:

adropout
i = ai ·mi

Training with L2 Dynamic Dropout and QuantaTask Optimization: Initialize the network
parameters W, dropout mask m, and scaling factor α. Define the energy budget Eb for a single
quanta and for the entire inference. Initialize the loop iteration parameters l. Compute the activations
a and apply the dropout mask:

adropout
i = ai ·mi

Compute the loss L(Y, Ŷ) where Y is the output of the network and Ŷ is the target output. Calculate
the gradients of the loss with respect to the weights:

∂L
∂Wij

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

For each layer L and loop i within the layer, estimate the energy Ei required for the current quanta
size li:

Ei ← DynAgent.estimateEnergy(L, i, li)
If Ei > Eb, fuse tasks to reduce the overhead:

FuseTasks(L, i, li, Eb)

Update Ei after task fusion:

Ei ← DynAgent.estimateEnergy(L, i, li)

Update the dropout mask m based on the L2 norm of the weights:

pi =
α

∥Wi∥2 + ϵ

mi =

{
0 if Bernoulli(1− pi) = 0

1 otherwise
Perform the backward pass to update the network weights, considering the dropout mask:

W←W − η
∂L
∂W

⊙m

where η is the learning rate and ⊙ denotes element-wise multiplication.

Inference with L2 Dynamic Dropout and QuantaTask Optimization: Check the available energy
using DynAgent. If energy is below a threshold, increase the dropout rate to ensure the inference can
be completed within the energy budget. Otherwise, maintain or reduce the dropout rate to improve
accuracy. Perform the forward pass with the updated dropout mask to obtain the output Y. This
approach ensures that the network is robust to varying energy conditions by incorporating dynamic
dropout influenced by the L2 norm of the weights, along with the QuantaTask optimization to handle
energy constraints.

D.2 OPTIMAL BRAIN DAMAGE DROPOUT WITH QUANTATASK OPTIMIZATION

Optimal Brain Damage Dropout leverages a simplified version of the Optimal Brain Damage pruning
method to adjust dropout rates, combined with the QuantaTask optimization to handle energy
constraints in intermittent systems.

Mathematical Formulation: Let W be the weight matrix of a layer. The sensitivity of each weight
Wij is calculated using the second-order Taylor expansion of the loss function L:

∆L ≈ 1

2

∑
i,j

∂2L
∂W 2

ij

(Wij)
2

where ∂2L
∂W 2

ij
is the second-order derivative (Hessian) of the loss with respect to the weights.

Define the dropout probability pi for neuron i based on the sensitivity of its corresponding weights.
The idea is to use the sensitivity to determine the probability:

pi =
β
∑

j
∂2L
∂W 2

ij
(Wij)

2

max
(∑

j
∂2L
∂W 2

ij
(Wij)2

)
+ ϵ

where β is a scaling factor to adjust the overall dropout rate, and ϵ is a small constant to avoid division
by zero.

Define a binary dropout mask m = [m1,m2, . . . ,mn] where mi ∈ {0, 1}. Each element of the mask
is determined by sampling from a Bernoulli distribution with probability 1− pi:

mi ∼ Bernoulli(1− pi)

Apply the dropout mask during the forward pass. Let ai denote the activation of neuron i:

adropout
i = ai ·mi

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Training with Optimal Brain Damage Dropout and QuantaTask Optimization: Initialize the
network parameters W, dropout mask m, and scaling factor β. Define the energy budget Eb for a
single quanta and for the entire inference. Initialize the loop iteration parameters l.

Compute the activations a and apply the dropout mask:

adropout
i = ai ·mi

Compute the loss L(Y, Ŷ) where Y is the output of the network and Ŷ is the target output.

Calculate the gradients and Hessians of the loss with respect to the weights:

∂L
∂Wij

,
∂2L
∂W 2

ij

For each layer L and loop i within the layer, estimate the energy Ei required for the current quanta
size li:

Ei ← DynAgent.estimateEnergy(L, i, li)

If Ei > Eb, fuse tasks to reduce the overhead:

FuseTasks(L, i, li, Eb)

Update Ei after task fusion:

Ei ← DynAgent.estimateEnergy(L, i, li)

Update the dropout mask m based on the sensitivities:

pi =
β
∑

j
∂2L
∂W 2

ij
(Wij)

2

max
(∑

j
∂2L
∂W 2

ij
(Wij)2

)
+ ϵ

mi =

{
0 if Bernoulli(1− pi) = 0

1 otherwise

Perform the backward pass to update the network weights, considering the dropout mask:

W←W − η
∂L
∂W

⊙m

where η is the learning rate and ⊙ denotes element-wise multiplication.

Inference with Optimal Brain Damage Dropout and QuantaTask Optimization: Check the
available energy using DynAgent. If energy is below a threshold, increase the dropout rate to ensure
the inference can be completed within the energy budget. Otherwise, maintain or reduce the dropout
rate to improve accuracy. Perform the forward pass with the updated dropout mask to obtain the output
Y. This approach ensures that the network is robust to varying energy conditions by incorporating
dynamic dropout influenced by the sensitivity of the weights, along with the QuantaTask optimization
to handle energy constraints.

D.3 FEATURE MAP RECONSTRUCTION ERROR DROPOUT WITH QUANTATASK OPTIMIZATION

Feature Map Reconstruction Error Dropout leverages the reconstruction error of feature maps to
adjust dropout rates, combined with the QuantaTask optimization to handle energy constraints in
intermittent systems.

Mathematical Formulation: Let W be the weight matrix of a layer and F be the feature maps
produced by the layer. The reconstruction error of a feature map Fi is calculated as:

REi = ∥Fi − F̂i∥2

where F̂i is the reconstructed feature map, and ∥ · ∥2 denotes the L2 norm.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Define the dropout probability pi for neuron i based on the reconstruction error of its corresponding
feature map. The idea is to use the reconstruction error to determine the probability:

pi =
γ REi

max(RE) + ϵ

where γ is a scaling factor to adjust the overall dropout rate, and ϵ is a small constant to avoid division
by zero.

Define a binary dropout mask m = [m1,m2, . . . ,mn] where mi ∈ {0, 1}. Each element of the mask
is determined by sampling from a Bernoulli distribution with probability 1− pi:

mi ∼ Bernoulli(1− pi)

Apply the dropout mask during the forward pass. Let ai denote the activation of neuron i:

adropout
i = ai ·mi

Training with Feature Map Reconstruction Error Dropout and QuantaTask Optimization:
Initialize the network parameters W, dropout mask m, and scaling factor γ. Define the energy budget
Eb for a single quanta and for the entire inference. Initialize the loop iteration parameters l.

Compute the activations a and apply the dropout mask:

adropout
i = ai ·mi

Compute the loss L(Y, Ŷ) where Y is the output of the network and Ŷ is the target output.

Calculate the gradients of the loss with respect to the weights:

∂L
∂Wij

For each layer L and loop i within the layer, estimate the energy Ei required for the current quanta
size li:

Ei ← DynAgent.estimateEnergy(L, i, li)
If Ei > Eb, fuse tasks to reduce the overhead:

FuseTasks(L, i, li, Eb)

Update Ei after task fusion:

Ei ← DynAgent.estimateEnergy(L, i, li)

Update the dropout mask m based on the reconstruction error of the feature maps:

pi =
γ REi

max(RE) + ϵ

mi =

{
0 if Bernoulli(1− pi) = 0

1 otherwise

Perform the backward pass to update the network weights, considering the dropout mask:

W←W − η
∂L
∂W

⊙m

where η is the learning rate and ⊙ denotes element-wise multiplication.

Inference with Feature Map Reconstruction Error Dropout and QuantaTask Optimization:
Check the available energy using DynAgent. If energy is below a threshold, increase the dropout rate
to ensure the inference can be completed within the energy budget. Otherwise, maintain or reduce
the dropout rate to improve accuracy. Perform the forward pass with the updated dropout mask to
obtain the output Y. This approach ensures that the network is robust to varying energy conditions
by incorporating dynamic dropout influenced by the reconstruction error of the feature maps, along
with the QuantaTask optimization to handle energy constraints.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D.4 LEARNING SPARSE MASKS DROPOUT WITH QUANTATASK OPTIMIZATION

Learning Sparse Masks Dropout adapts dropout masks as learnable parameters within the network,
inspired by Wen et al. (2016), combined with the QuantaTask optimization to handle energy
constraints in intermittent systems.

Mathematical Formulation: Let W be the weight matrix of a layer. Define a binary dropout mask
m = [m1,m2, . . . ,mn] where mi ∈ {0, 1}. In Learning Sparse Masks Dropout, the dropout masks
are treated as learnable parameters. The mask values are determined using a sigmoid function to
ensure they lie between 0 and 1:

mi = σ(zi)

where zi are learnable parameters and σ(·) is the sigmoid function.

Apply the dropout mask during the forward pass. Let ai denote the activation of neuron i:

adropout
i = ai ·mi

Compute the loss L(Y, Ŷ) where Y is the output of the network and Ŷ is the target output.

DynFit integrates closely with DynAgent, which serves as a repository of EH profiles and hardware
characteristics. Let Q represent the set of execution quanta, where each quanta q ∈ Q is defined by a
tuple (l, e):

q = (l, e)

Here, l is the number of loop iterations and e is the estimated energy required for these iterations.
The goal is to optimize the loop iteration parameter l such that the energy consumption Eq for each
quanta q is within the energy budget Eb:

minimize
∑
q∈Q

Eq subject to Eq ≤ Eb

Training with Learning Sparse Masks Dropout and QuantaTask Optimization: Initialize the
network parameters W, dropout mask parameters z, and scaling factor α. Define the energy budget
Eb for a single quanta and for the entire inference. Initialize the loop iteration parameters l.

Compute the activations a and apply the dropout mask:

mi = σ(zi)

adropout
i = ai ·mi

Compute the loss L(Y, Ŷ). Calculate the gradients of the loss with respect to the weights and
dropout mask parameters:

∂L
∂Wij

,
∂L
∂zi

For each layer L and loop i within the layer, estimate the energy Ei required for the current quanta
size li:

Ei ← DynAgent.estimateEnergy(L, i, li)
If Ei > Eb, fuse tasks to reduce the overhead:

FuseTasks(L, i, li, Eb)

Update Ei after task fusion:

Ei ← DynAgent.estimateEnergy(L, i, li)

Update the dropout mask parameters z based on the gradients:

zi ← zi − η
∂L
∂zi

Perform the backward pass to update the network weights, considering the dropout mask:

W←W − η
∂L
∂W

⊙m

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

where η is the learning rate and ⊙ denotes element-wise multiplication.

Inference with Learning Sparse Masks Dropout and QuantaTask Optimization: Check the
available energy using DynAgent. If energy is below a threshold, increase the dropout rate to ensure
the inference can be completed within the energy budget. Otherwise, maintain or reduce the dropout
rate to improve accuracy. Perform the forward pass with the updated dropout mask to obtain the output
Y. This approach ensures that the network is robust to varying energy conditions by incorporating
dynamic dropout with learnable mask parameters, along with the QuantaTask optimization to handle
energy constraints.

D.5 NEURON SHAPLEY VALUE DROPOUT WITH QUANTATASK OPTIMIZATION

Neuron Shapley Value Dropout applies the concept of Shapley values from game theory (Aas et
al., 2021) to assess neuron importance for dropout, combined with the QuantaTask optimization to
handle energy constraints in intermittent systems.

Mathematical Formulation: The Shapley value ϕi of neuron i is a measure of its contribution to
the overall network performance. It is calculated by considering all possible subsets of neurons and
computing the marginal contribution of neuron i to the network’s output:

ϕi =
1

|N |!
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |
[L(S ∪ {i})− L(S)]

where N is the set of all neurons, S is a subset of neurons not containing i, and L(·) denotes the loss
function.

Define the dropout probability pi for neuron i based on its Shapley value. Neurons with lower Shapley
values are more likely to be dropped:

pi =
δ

ϕi + ϵ

where δ is a scaling factor to adjust the overall dropout rate, and ϵ is a small constant to avoid division
by zero.

Define a binary dropout mask m = [m1,m2, . . . ,mn] where mi ∈ {0, 1}. Each element of the mask
is determined by sampling from a Bernoulli distribution with probability 1− pi:

mi ∼ Bernoulli(1− pi)

Apply the dropout mask during the forward pass. Let ai denote the activation of neuron i:

adropout
i = ai ·mi

Training with Neuron Shapley Value Dropout and QuantaTask Optimization: Initialize the
network parameters W, dropout mask m, and scaling factor δ. Define the energy budget Eb for a
single quanta and for the entire inference. Initialize the loop iteration parameters l.

Compute the activations a and apply the dropout mask:

adropout
i = ai ·mi

Compute the loss L(Y, Ŷ) where Y is the output of the network and Ŷ is the target output.

Calculate the Shapley values ϕi for each neuron based on their contribution to the network’s perfor-
mance.

For each layer L and loop i within the layer, estimate the energy Ei required for the current quanta
size li:

Ei ← DynAgent.estimateEnergy(L, i, li)

If Ei > Eb, fuse tasks to reduce the overhead:

FuseTasks(L, i, li, Eb)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Update Ei after task fusion:

Ei ← DynAgent.estimateEnergy(L, i, li)

Update the dropout mask m based on the Shapley values:

pi =
δ

ϕi + ϵ

mi =

{
0 if Bernoulli(1− pi) = 0

1 otherwise

Perform the backward pass to update the network weights, considering the dropout mask:

W←W − η
∂L
∂W

⊙m

where η is the learning rate and ⊙ denotes element-wise multiplication.

Inference with Neuron Shapley Value Dropout and QuantaTask Optimization: Check the
available energy using DynAgent. If energy is below a threshold, increase the dropout rate to
ensure the inference can be completed within the energy budget. Otherwise, maintain or reduce
the dropout rate to improve accuracy. Perform the forward pass with the updated dropout mask to
obtain the output Y. This approach ensures that the network is robust to varying energy conditions
by incorporating dynamic dropout influenced by the Shapley values of the neurons, along with the
QuantaTask optimization to handle energy constraints.

D.6 TAYLOR EXPANSION DROPOUT WITH QUANTATASK OPTIMIZATION

Taylor Expansion Dropout uses Taylor expansion (Li et al., 2016) to evaluate the impact of neurons
on loss for dropout adjustments, combined with the QuantaTask optimization to handle energy
constraints in intermittent systems.

Mathematical Formulation: Let W be the weight matrix of a layer. The impact of neuron i on the
loss function L can be approximated using the first-order Taylor expansion:

∆Li ≈
∣∣∣∣ ∂L∂ai ai

∣∣∣∣
where ai is the activation of neuron i, and ∂L

∂ai
is the gradient of the loss with respect to the activation.

Define the dropout probability pi for neuron i based on the Taylor expansion approximation of its
impact on the loss:

pi =
λ∣∣∣ ∂L∂ai
ai

∣∣∣+ ϵ

where λ is a scaling factor to adjust the overall dropout rate, and ϵ is a small constant to avoid division
by zero.

Define a binary dropout mask m = [m1,m2, . . . ,mn] where mi ∈ {0, 1}. Each element of the mask
is determined by sampling from a Bernoulli distribution with probability 1− pi:

mi ∼ Bernoulli(1− pi)

Apply the dropout mask during the forward pass. Let ai denote the activation of neuron i:

adropout
i = ai ·mi

Training with Taylor Expansion Dropout and QuantaTask Optimization: Initialize the network
parameters W, dropout mask m, and scaling factor λ. Define the energy budget Eb for a single
quanta and for the entire inference. Initialize the loop iteration parameters l.

Compute the activations a and apply the dropout mask:

adropout
i = ai ·mi

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Compute the loss L(Y, Ŷ) where Y is the output of the network and Ŷ is the target output.

Calculate the gradients of the loss with respect to the activations:

∂L
∂ai

For each layer L and loop i within the layer, estimate the energy Ei required for the current quanta
size li:

Ei ← DynAgent.estimateEnergy(L, i, li)
If Ei > Eb, fuse tasks to reduce the overhead:

FuseTasks(L, i, li, Eb)

Update Ei after task fusion:

Ei ← DynAgent.estimateEnergy(L, i, li)

Update the dropout mask m based on the Taylor expansion approximation:

pi =
λ∣∣∣ ∂L∂ai
ai

∣∣∣+ ϵ

mi =

{
0 if Bernoulli(1− pi) = 0

1 otherwise

Perform the backward pass to update the network weights, considering the dropout mask:

W←W − η
∂L
∂W

⊙m

where η is the learning rate and ⊙ denotes element-wise multiplication.

Inference with Taylor Expansion Dropout and QuantaTask Optimization: Check the available
energy using DynAgent. If energy is below a threshold, increase the dropout rate to ensure the
inference can be completed within the energy budget. Otherwise, maintain or reduce the dropout rate
to improve accuracy. Perform the forward pass with the updated dropout mask to obtain the output
Y. This approach ensures that the network is robust to varying energy conditions by incorporating
dynamic dropout influenced by the Taylor expansion approximation of the neurons’ impact on the
loss, along with the QuantaTask optimization to handle energy constraints.

E WORKINGS OF RE-RAM CROSSBAR

E.1 RE-RAM CROSS-BAR FOR DNN INFERENCE:

ReRAM x-bars are an emerging class of computing devices that leverage resistive random-access
memory (ReRAM) technology for efficient and low-power computing. These devices can perform
multiplication and addition operations in a single operation, making them ideal for many signal pro-
cessing and machine learning applications. Moreover, these devices can also be used for performing
convolution operations, which are widely used in image and signal processing applications.

E.1.1 SIMPLE SINGLE CELL EXAMPLE:

consider a simple example of a ReRAM crossbar array with two cells, where V1 and V2 are the
input voltages, G1 and G2 are the conductance values of the ReRAM devices, and I1 and I2 are the
resulting output currents. To perform multiplication-addition, we first apply the input voltages V1
and V2 to the rows of the crossbar array. The conductance values G1 and G2 of the ReRAM devices
are set to the corresponding weight values for the multiplication operation. The output currents I1
and I2 are then computed as follows:

I = I1 + I2

= G1× V 1 +G2× V 2

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

(a) Re-RAM Cell (b) A Full Re-RAM tile

Figure 5: DNN computation using ReRAM xBAR.

Here, the output currents I1 and I2 are the result of the multiplication of the input voltages V1 and
V2 by their respective weight values, which are summed together using the crossbar wires. Please
refer to Figure 5a for more details. As we can see, the input voltages V1 and V2 are applied to the
rows of the crossbar array, while the conductance values G1 and G2 are applied to the columns. The
output currents I1 and I2 are the result of the multiplication-addition operation, and are obtained by
summing the currents flowing through the ReRAM devices.

In practice, ReRAM crossbar arrays can have many more cells, and can be used to perform more
complex multiplication-addition and convolution operations. However, the basic principle remains
the same, where the input signals are applied to the rows, the weights are applied to the columns, and
the output signals are obtained by summing the currents flowing through the ReRAM devices.

E.1.2 EXTENDING TO COMPLEX COMPUTE:

In order to perform multiplication-addition in ReRAM x-bars, two arrays of weights and inputs are
used. The inputs are fed to the x-bar, which is a two-dimensional array of ReRAM crossbar arrays.
The crossbar arrays are composed of a set of row and column wires that intersect at a set of ReRAM
devices (refer Figure 5b). The ReRAM devices are programmed to have different resistance values,
which are used to store the weights.

During the multiplication-addition operation, the input signals are applied to the rows of the x-bar,
and the weights are applied to the columns. The output of each ReRAM device is the product of the
input and weight signals, which are added together using the crossbar wires. This results in a single
output signal that represents the sum of the weighted inputs.

To perform convolution, ReRAM x-bars use a similar approach, but with a more complex circuit.
The input signal is applied to the x-bar in the same way, but the weights are now applied in a
more structured way. Specifically, the weights are arranged in a way that mimics the convolution
operation, such that each weight corresponds to a specific location in the input signal. To perform the
convolution operation, the input signal is applied to the rows of the x-bar, and the weights are applied
to the columns in a structured way. The output signal is obtained by summing the weighted input
signals over a sliding window, which moves across the input signal to compute the convolution.

At the circuit level, the ReRAM x-bar for multiplication-addition typically includes several com-
ponents, such as digital-to-analog converters (DACs), analog-to-digital converters (ADCs), shift
registers, and hold capacitors. The DACs and ADCs are used to convert the digital input and weight
signals into analog signals that can be applied to the rows and columns of the x-bar. The shift registers
are used to apply the weight signals in a structured way, and the hold capacitors are used to store the
analog signals during the multiplication-addition operation. Similarly, for performing convolution,
the ReRAM x-bar typically includes additional components, such as delay lines and adders. The
delay lines are used to implement the sliding window for the convolution operation, while the adders
are used to sum the weighted input signals over the sliding window.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

F PSEUDO CODES

F.1 DEPTH-WISE SEPARABLE CONVOLUTION 2D USING TI LEA

Depth-wise separable convolution is an efficient form of convolution that reduces the computational
cost compared to standard convolution. Here we describe the implementation of depth-wise sep-
arable convolution 2D using the Low Energy Accelerator (LEA) in Texas Instruments’ MSP430
microcontrollers.

F.1.1 DEPTH-WISE SEPARABLE CONVOLUTION 2D USING CONV1D

The pseudo code described in Algorithm 1 implements a depth-wise separable convolution 2D
(DWSConv2D) using a 1D convolution primitive function (conv1D). The DWSConv2D function takes
four inputs: an input matrix, depth-wise kernels (DWsKernels), point-wise kernels (PtWsKernel), and
an output matrix. The depth-wise separable convolution is performed in two main steps: depth-wise
convolution and point-wise convolution.

Algorithm 1 Implementing Depth-wise Separable Convolution - DWSConv2D() using CONV1D ()

1: Function DWSepConv2D(inputMatrix, DWsKernels, PtWsKernel, outputMatrix):
2: Initialize DWsOutput with zero values, same shape as inputMatrix
3: # Depth-wise Separable (DWs) convolution
4: for c← 0 to channels(inputMatrix)− 1:
5: # Apply 1D convolution along rows
6: for i← 0 to rows(inputMatrix[c])− 1:
7: conv1D(inputMatrix[c][i, :], DWsKernels[c][0, :], DWsOutput[c][i, :])
8: # Apply 1D convolution along columns
9: for j ← 0 to cols(DWsOutput[c])− 1:

10: conv1D(DWsOutput[c][:, j], DWsKernels[c][:, 0], DWsOutput[c][:, j])
11: # Point-wise (PtWs) convolution
12: Initialize finalOutput with zero values, with shape [rows(DWsOutput),

cols(DWsOutput), channels(PtWsKernel)]
13: for i← 0 to rows(DWsOutput)− 1:
14: for j ← 0 to cols(DWsOutput)− 1:
15: for k ← 0 to channels(PtWsKernel)− 1:
16: Initialize PtWsSum← 0
17: for c← 0 to channels(DWsOutput)− 1:
18: PtWsSum← PtWsSum+DWsOutput[c][i][j]× PtWsKernel[c][k]
19: finalOutput[i][j][k]← PtWsSum
20: return finalOutput

F.1.2 PSEUDOCODE WITH MICRO-CONTROLLER PRIMITIVES

The following pseudocode describes the steps to implement depth-wise separable convolution using
LEA primitives from TI’s DSP Library.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Algorithm 2 depth-wise Separable Convolution 2D Using TI LEA

1: function DWSEPCONV2D(inputMatrix, DWsKernels, PtWsKernel, outputMatrix)
2: Initialize tempMatrix1 and tempMatrix2 with zero values, same shape as inputMatrix
3: // Depth-wise convolution
4: for c← 0 to channels(inputMatrix)− 1 do
5: // Apply 1D convolution along rows
6: for i← 0 to rows(inputMatrix[c])− 1 do
7: MSP_CONV_IQ31(inputMatrix[c][i, :], DWsKernels[c][0, :],

tempMatrix1[c][i, :], cols(inputMatrix), FILTER_SIZE)
8: end for
9: // Apply 1D convolution along columns

10: for j ← 0 to cols(tempMatrix1[c])− 1 do
11: MSP_CONV_IQ31(tempMatrix1[c][:, j], DWsKernels[c][:, 0],

tempMatrix2[c][:, j], rows(tempMatrix1), FILTER_SIZE)
12: end for
13: end for
14: // Point-wise convolution
15: Initialize finalOutput with zero values, shape [rows(tempMatrix2), cols(tempMatrix2),

channels(PtWsKernel)]
16: for i← 0 to rows(tempMatrix2)− 1 do
17: for j ← 0 to cols(tempMatrix2)− 1 do
18: for k ← 0 to channels(PtWsKernel)− 1 do
19: Initialize PtWsSum← 0
20: for c← 0 to channels(tempMatrix2)− 1 do
21: PtWsSum← PtWsSum+ tempMatrix2[c][i][j]× PtWsKernel[c][k]
22: end for
23: finalOutput[i][j][k]← PtWsSum
24: end for
25: end for
26: end for
27: return finalOutput
28: end function

F.1.3 IMPLEMENTATION CODE

C code that implements the pseudo-code using TI’s LEA (Instruments, 2024b) functions.

#include <msp430.h>
#include "DSPLib.h"

#define ROWS 64
#define COLS 64
#define CHANNELS 3
#define FILTER_SIZE 3

// Initialize your input, depth-wise kernels, point-wise kernels,
// and output matrices appropriately
_q31 inputMatrix[CHANNELS][ROWS][COLS];
_q31 DWsKernels[CHANNELS][FILTER_SIZE][FILTER_SIZE];
_q31 PtWsKernel[CHANNELS][CHANNELS];
_q31 tempMatrix1[CHANNELS][ROWS][COLS];
_q31 tempMatrix2[CHANNELS][ROWS][COLS];
_q31 finalOutput[ROWS][COLS][CHANNELS];

void DWSepConv2D() {
// Depth-wise convolution
for (int c = 0; c < CHANNELS; c++) {

// Apply 1D convolution along rows

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

for (int i = 0; i < ROWS; i++) {
msp_conv_iq31(&inputMatrix[c][i][0], DWsKernels[c][0],
&tempMatrix1[c][i][0], COLS, FILTER_SIZE);

}
// Apply 1D convolution along columns
for (int j = 0; j < COLS; j++) {

msp_conv_iq31(&tempMatrix1[c][0][j], DWsKernels[c][0],
&tempMatrix2[c][0][j], ROWS, FILTER_SIZE);

}
}

// Point-wise convolution
for (int i = 0; i < ROWS; i++) {

for (int j = 0; j < COLS; j++) {
for (int k = 0; k < CHANNELS; k++) {

_q31 PtWsSum = 0;
for (int c = 0; c < CHANNELS; c++) {

PtWsSum += tempMatrix2[c][i][j] * PtWsKernel[c][k];
}
finalOutput[i][j][k] = PtWsSum;

}
}

}
}

F.2 TASK-BASED CONV2D

Here we describe the implementation of a task-based ‘CONV2D‘ function using the Low Energy
Accelerator (LEA) in Texas Instruments’ MSP430 microcontrollers. The function is designed to
handle energy constraints by decomposing the convolution loops into smaller quanta tasks. Foloowing
are the outline of the requirements:

1. Define ‘QuantaTask‘ as the minimum iterations that can run.
2. Decomposable loops: Each ‘QuantaTask‘ runs a certain part of the loop.
3. Check for sufficient energy before launching a ‘QuantaTask‘.
4. Fuse multiple ‘QuantaTask‘s to minimize load/store operations.
5. Check for power loss after each ‘QuantaTask‘ or fused ‘QuantaTask‘ and checkpoint if

necessary.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Algorithm 3 Task-Based CONV2D Using TI LEA
1: Define QuantaTask as the minimum iterations we can run
2: function TASKBASEDCONV2D(inputMatrix, kernel, outputMatrix)
3: Initialize tempMatrix with zero values, same shape as inputMatrix
4: rows← rows of inputMatrix
5: cols← cols of inputMatrix
6: kernelSize← size of kernel
7: i← 0
8: while i < rows do
9: j ← 0

10: while j < cols do
11: remainingEnergy ← CHECKENERGY(QuantaTask)
12: if remainingEnergy is sufficient then
13: EXECUTEQUANTATASK(i, j, inputMatrix, kernel, tempMatrix)
14: UPDATEPROGRESS(i, j, QuantaTask)
15: if POWERLOSSDETECTED then
16: CHECKPOINT(i, j, tempMatrix)
17: break
18: end if
19: else
20: wait for energy to replenish
21: end if
22: end while
23: end while
24: FUSETASKS
25: return outputMatrix
26: end function
27: function EXECUTEQUANTATASK(i, j, inputMatrix, kernel, tempMatrix)
28: for ki← 0 to kernelSize− 1 do
29: for kj ← 0 to kernelSize− 1 do
30: MSP_CONV_IQ31(inputMatrix[i + ki][j + kj], kernel[ki][kj], tempMatrix[i][j], cols,

kernelSize)
31: end for
32: end for
33: end function
34: function FUSETASKS
35: remainingEnergy ← CHECKENERGY(multiple_QuantaTask)
36: while remainingEnergy is sufficient do
37: EXECUTEQUANTATASK(i, j, inputMatrix, kernel, tempMatrix)
38: UPDATEPROGRESS(i, j,multiple_QuantaTask)
39: remainingEnergy ← CHECKENERGY(multiple_QuantaTask)
40: if POWERLOSSDETECTED then
41: CHECKPOINT(i, j, tempMatrix) break
42: end if
43: end while
44: end function
45: function CHECKENERGY(QuantaTask)
46: # Check if there is enough energy to run the quanta task
47: return remainingEnergy
48: end function
49: function POWERLOSSDETECTED
50: # Check if power loss is detected
51: return powerLoss
52: end function
53: function CHECKPOINT(i, j, tempMatrix)
54: # Save the current state to non-volatile memory
55: end function
56: function UPDATEPROGRESS(i, j, QuantaTask)
57: # Update loop indices based on the quanta task executed
58: j ← j +QuantaTask
59: if j ≥ cols then
60: j ← 0
61: i← i+QuantaTask
62: end if
63: end function

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

F.2.1 IMPLEMENTATION CODE

#include <msp430.h>
#include "DSPLib.h"

#define ROWS 64
#define COLS 64
#define KERNEL_SIZE 3
#define QuantaTask 8

// Define the FeRAM addresses for storing the checkpoint data
#define FERAM_ADDR_I 0xF000
#define FERAM_ADDR_J 0xF002
#define FERAM_ADDR_TEMPMATRIX 0xF004

_q31 inputMatrix[ROWS][COLS];
_q31 kernel[KERNEL_SIZE][KERNEL_SIZE];
_q31 tempMatrix[ROWS][COLS];
_q31 outputMatrix[ROWS][COLS];

void TaskBasedCONV2D() {
int rows = ROWS;
int cols = COLS;
int kernelSize = KERNEL_SIZE;
int i = 0;

while (i < rows) {
int j = 0;
while (j < cols) {

int remainingEnergy = CheckEnergy(QuantaTask);
if (remainingEnergy > 0) {

ExecuteQuantaTask(i, j, inputMatrix, kernel, tempMatrix);
UpdateProgress(&i, &j, QuantaTask);
if (PowerLossDetected()) {

Checkpoint(i, j, tempMatrix);
break;

}
} else {

// Wait for energy to replenish
}

}
}

FuseTasks();
}

void ExecuteQuantaTask(int i, int j, _q31 inputMatrix[][COLS],
_q31 kernel[][KERNEL_SIZE], _q31 tempMatrix[][COLS]) {
for (int ki = 0; ki < KERNEL_SIZE; ki++) {

for (int kj = 0; kj < KERNEL_SIZE; kj++) {
msp_conv_iq31(&inputMatrix[i + ki][j + kj],

&kernel[ki][kj], &tempMatrix[i][j], COLS, KERNEL_SIZE);
}

}
}

void FuseTasks() {
int remainingEnergy = CheckEnergy(QuantaTask);
while (remainingEnergy > 0) {

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

ExecuteQuantaTask(i, j, inputMatrix, kernel, tempMatrix);
UpdateProgress(&i, &j, QuantaTask);
remainingEnergy = CheckEnergy(QuantaTask);
if (PowerLossDetected()) {

Checkpoint(i, j, tempMatrix);
break;

}
}

}

int CheckEnergy(int QuantaTask) {
// Energy checking - HW interrupt
return 1;

}

int PowerLossDetected() {
// ower loss detection - HW interrupt logic
return 0;

}

void Checkpoint(int i, int j, _q31 tempMatrix[][COLS]) {
// Disable interrupts to prevent corruption during the write process
__disable_interrupt();

// Save the indices i and j to FeRAM
((volatile int)FERAM_ADDR_I) = i;
((volatile int)FERAM_ADDR_J) = j;

// Save the current state of tempMatrix to FeRAM
// Assuming tempMatrix is a 2D array of dimensions [ROWS][COLS]
for (int row = 0; row < ROWS; row++) {

for (int col = 0; col < COLS; col++) {
((volatile _q31*)FERAM_ADDR_TEMPMATRIX)[row * COLS + col]

= tempMatrix[row][col];
}

}

// Re-enable interrupts
__enable_interrupt();

}

void RestoreCheckpoint(int *i, int *j, _q31 tempMatrix[][COLS]) {
// Disable interrupts
__disable_interrupt();

// Restore the indices i and j from FeRAM
*i = *((volatile int*)FERAM_ADDR_I);
*j = *((volatile int*)FERAM_ADDR_J);

// Restore the state of tempMatrix from FeRAM
for (int row = 0; row < ROWS; row++) {

for (int col = 0; col < COLS; col++) {
tempMatrix[row][col] = ((volatile _q31*)

FERAM_ADDR_TEMPMATRIX)[row * COLS + col];
}

}

// Re-enable interrupts
__enable_interrupt();

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

}

void UpdateProgress(int *i, int *j, int QuantaTask) {
*j += QuantaTask;
if (*j >= COLS) {

*j = 0;
*i += QuantaTask;

}
}

31

	Introduction
	Background and Related Work
	NExUME Framework
	DynFit: Intermittency-Aware Learning
	Adaptive Regularization Strategy

	DynInfer: Intermittency-Aware Inference Scheduling

	Experimental Results
	Development and Profiling of NExUME
	NExUME on Publicly Available Datasets
	NExUME on Machine Status Monitoring [Our New Dataset]
	Sensitivity and Ablation Studies of NExUME
	Limitations and Discussion

	Conclusions
	More Results on Other Platforms and EH Sources
	Details on Energy Harvesting
	Intermittent Computing and Check-pointing
	Intermittency-Aware General Matrix Multiplication (GeMM)
	Algorithm Overview
	Function Definitions
	Loop Tiling
	Check-pointing Mechanism
	Resumption Mechanism

	Formulation of Dynamic Dropouts:
	L2 Dynamic Dropout with QuantaTask Optimization
	Optimal Brain Damage Dropout with QuantaTask Optimization
	Feature Map Reconstruction Error Dropout with QuantaTask Optimization
	Learning Sparse Masks Dropout with QuantaTask Optimization
	Neuron Shapley Value Dropout with QuantaTask Optimization
	Taylor Expansion Dropout with QuantaTask Optimization

	Workings of Re-RAM Crossbar
	Re-RAM cross-bar for DNN inference:
	Simple Single Cell Example:
	Extending to Complex Compute:

	Pseudo Codes
	Depth-wise Separable Convolution 2D Using TI LEA
	depth-wise Separable Convolution 2D Using Conv1D
	Pseudocode with micro-controller primitives
	Implementation Code

	Task-Based Conv2D
	Implementation Code

