
Beyond The Rainbow: High Performance Deep Reinforcement Learning on a
Desktop PC

Tyler Clark 1 Mark Towers 1 Christine Evers 1 Jonathon Hare 1

Abstract

Rainbow Deep Q-Network (DQN) demonstrated
combining multiple independent enhancements
could significantly boost a reinforcement learn-
ing (RL) agent’s performance. In this paper,
we present “Beyond The Rainbow” (BTR), a
novel algorithm that integrates six improvements
from across the RL literature to Rainbow DQN,
establishing a new state-of-the-art for RL us-
ing a desktop PC, with a human-normalized in-
terquartile mean (IQM) of 7.4 on Atari-60. Be-
yond Atari, we demonstrate BTR’s capability to
handle complex 3D games, successfully train-
ing agents to play Super Mario Galaxy, Mario
Kart, and Mortal Kombat with minimal algo-
rithmic changes. Designing BTR with compu-
tational efficiency in mind, agents can be trained
using a high-end desktop PC on 200 million Atari
frames within 12 hours. Additionally, we con-
duct detailed ablation studies of each compo-
nent, analyzing the performance and impact us-
ing numerous measures. Code is available at
https://github.com/VIPTankz/BTR.

1. Introduction
Deep Reinforcement Learning (RL) has achieved nu-
merous successes in complex sequential decision-making
tasks, most rapidly since Mnih et al. (2015) proposed Deep
Q-Learning (DQN). With this success, RL has become in-
creasingly popular among smaller research labs, the hobby-
ist community, and even the general public. However, re-
cent state-of-the-art approaches (Schrittwieser et al., 2020;
Badia et al., 2020a; Hessel et al., 2021; Kapturowski et al.,
2023) are increasingly out of reach for those with more lim-

1School of Electronics and Computer Science, University Of
Southampton, Southampton, UK. Correspondence to: Tyler Clark
<tjc2g19@soton.ac.uk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

0 25 50 75 100 125 150 175
A100 Walltime (Hours)

0

2

4

6

8

10

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

Beyond The Rainbow (BTR)
Dreamer-v3

Rainbow
DQN (Nature)

Figure 1: Interquartile mean human-normalized perfor-
mance for BTR against other RL algorithms on the Atari
benchmark in terms of walltime performance (all results
use 200M frames). The results for DQN and Rainbow
DQN are those reported in RLiable (Agarwal et al., 2021),
and Dreamer-v3 refers to Hafner et al. (2023). Shaded ar-
eas show 95% bootstrapped confidence intervals, with BTR
using 4 seeds.

ited compute resources, either in terms of the required hard-
ware or the walltime necessary to train a single agent. This
is a unique issue in RL compared to natural language pro-
cessing or image recognition which have foundation mod-
els that can be efficiently fine-tuned for a new task or prob-
lem (Lv et al., 2024). Meanwhile, RL agents must be
trained afresh for each environment. Therefore, the de-
velopment of powerful RL algorithms that can be trained
quickly on inexpensive hardware is crucial for smaller re-
search labs and the hobbyist community.

These concerns are not new. Ceron & Castro (2021) high-
lighted that Rainbow DQN (Hessel et al., 2018) required
34,200 GPU hours (equivalent to 1435 days) of training,
making the research impossible for anyone except a few re-
search labs, with more recent algorithms exacerbating this
problem. Recurrent network architectures (Horgan et al.,
2018), high update to sample ratio (D’Oro et al., 2022),
and the use of world-models and search-based techniques
(Schrittwieser et al., 2020), all increase the computational
resources necessary to train agents. Many of these use dis-
tributed approaches requiring multiple CPUs and GPUs (or
TPUs), or requiring numerous days and weeks to train a
single agent, dramatically decreasing RL’s accessibility.

1

Beyond The Rainbow: High Performance Deep Reinforcement Learning on a Desktop PC

For this purpose, we develop “Beyond the Rainbow”
(BTR), taking the same principle as Rainbow DQN (Hes-
sel et al., 2018), selecting 6 previously independently eval-
uated improvements and combining them into a singular
algorithm (Section 3). These components were chosen for
their performance qualities or to reduce the computational
requirements for training an agent. As a result, BTR sets
a new state-of-the-art score for Atari-60 (Bellemare et al.,
2013) (excluding recurrent approaches) with an Interquar-
tile Mean (IQM) of 7.41 using a single desktop machine
in less than 12 hours, and outperforms Rainbow DQN on
Procgen (Cobbe et al., 2020) in less than a fifth of the wall-
time (Section 4.1). Further, we demonstrate BTR’s poten-
tial by training agents to solve three modern 3D games for
the first time, Mario Kart Wii, Super Mario Galaxy and
Mortal Kombat, that each contain complex mechanics and
graphics (Section 4.2). To verify the effectiveness and ef-
fect of the six improvements to BTR, in Section 5.1, we
conduct a thorough ablation of each component, plotting
their impact on the Atari-5 environments and in Section
5.2, we utilize seven different measures to analyse the com-
ponent’s impact on the agent’s policy and network weights.
This allows us to more precisely understand how the com-
ponents impact BTR beyond performance or walltime.

In summary, we make the following contributions to state-
of-the-art RL.

• High Performance (Section 4.1) - BTR outper-
forms the state-of-the-art for non-recurrent RL on the
Atari-60 benchmark, with an IQM of 7.4 (compared
to Rainbow DQN’s 1.9), outperforming humans on
52/60 games. Furthermore, BTR outperforms Rain-
bow DQN with Impala on the Procgen benchmark de-
spite using a smaller model and 80% less walltime.

• Modern Environments (Section 4.2) - Testing be-
yond Atari, we demonstrate BTR can train agents
for three modern games: Super Mario Galaxy (final
stage), Mario Kart Wii (Rainbow Road), and Mortal
Kombat (Endurance mode). These environments con-
tain 3D graphics and complex physics and have never
been solved using RL.

• Computationally Accessible (Figure 6) - Using a
high-end desktop PC, BTR trains Atari agents for 200
million frames in under 12 hours, significantly faster
than Rainbow DQN’s 35 hours. This increases RL
research’s accessibility for smaller research labs and
hobbyists without the need for GPU clusters or exces-
sive walltime.

1All reported IQM scores use the best single evaluation for
each environment throughout training as is standard, rather than
the agent’s score at 200 million, hence the discrepancy between
the overall score and Figure 1.

• Component Impact Analysis (Section 5) - We con-
duct thorough ablations of BTR without each compo-
nent, investigating performance and other measures.
We discover that BTR widens action gaps (reduc-
ing the effects of approximation errors), is robust
to observation noise, and reduces neuron dormancy
and weight matrix norm (shown to improve plasticity
throughout training).

2. Background
Before describing BTR’s extensions, we outline standard
RL mathematics, how DQN is implemented, and Rainbow
DQN’s extensions.

2.1. RL Problem Formulation

We adopt the standard formulation of RL (Sutton & Barto,
2018), described as a Markov Decision Process (MDP)
defined by the tuple (S,A,P,R), where S is the set of
states, A is the set of actions, P : S ×A →∆(S) is the
stochastic transition function, and R : S ×A →R is the
reward function. The agent’s objective is to learn a policy
π : S → ∆(A) that maximizes the expected sum of dis-
counted rewards Eπ[

∑∞
t=0 γ

tr(st, at)], where γ ∈ [0, 1) is
the discount rate.

2.2. Deep Q-Learning (DQN)

One popular method for solving MDPs is Q-Learning
(Watkins & Dayan, 1992) where an agent learns to predict
the expected sum of discounted future rewards for a given
state-action pair. To allow agents to generalize over states
and thus be applied to problems with larger state spaces,
Mnih et al. (2013) successfully combined Q-Learning with
neural networks. To do this, training minimizes the error
between the predictions from a parameterized network Qθ

and a target defined by

rt + γmax
a∈A

Qθ′ (st+1, a) , (1)

where Qθ′ is an earlier version of the network referred to
as the target network, which is periodically updated from
the online network Qθ. The data used to perform updates
is gathered by sampling from an Experience Replay Buffer
(Lin, 1992), which stores states, actions, rewards, and next
states experienced by the agent while interacting with the
environment. To effectively explore the environment, ϵ-
greedy exploration is used, where each observation has a ϵ

1
probability of choosing a random action.

2.3. Rainbow DQN and Improvements to DQN

In collecting 6 different improvements to DQN, Rain-
bow DQN (Hessel et al., 2018) proved cumulatively that
these improvements could achieve a greater performance

2

Beyond The Rainbow: High Performance Deep Reinforcement Learning on a Desktop PC

than any individually. We briefly explain the individual
improvements, ordered by performance impact, most of
which are preserved within BTR (see Table 1). For more
detail, we refer readers to the extension’s respective papers:

1. Prioritized Experience Replay - To select training
examples, DQN sampled uniformly from an Experi-
ence Replay Buffer, assuming that all examples are
equally important to train with. Schaul et al. (2015)
proposed sampling training examples proportionally
to their last seen absolute temporal difference error,
increasing training on samples for which the network
most inaccurately predicts their future rewards.

2. N-Step - Q-learning utilizes bootstrapping to mini-
mize the difference between the predicted value and
the resultant reward plus the maximum value of the
next state (Eq. 1). N-step (Sutton et al., 1998) reduces
the reliance on this bootstrapped next value by con-
sidering the next n rewards and the observation in n
timesteps (Rainbow DQN used n = 3).

3. Distributional RL - Due to the stochastic nature of
RL environments and agent policies, Bellemare et al.
(2017) proposed learning the return distribution rather
than scalar expectation. This was done through mod-
eling the return distributions using probability masses
and the Kullbeck-Leibler divergence loss function.

4. Noisy Networks - Agents can often insufficiently ex-
plore their environment resulting in sub-optimal poli-
cies. Fortunato et al. (2018) added parametric noise
to the network weights, causing the model’s outputs
to be randomly perturbed, increasing exploration dur-
ing training, particularly for states where the agent has
less confidence.

5. Dueling DQN - The agent’s Q-value can be rewritten
as the sum of state-value and advantage (Q(s, a) =
V (s) + A(s, a)). Looking to improve action general-
ization, Wang et al. (2016) split the hidden layers into
two separate streams for the value and advantage, re-
combining them with Q(s, a) = V (s) + (A(s, a) −
1

|A|
∑

a′ A(s, a′)).

6. Double DQN - Selecting a target Q-value with the
maximum Q-value from the next observation (Eq. 1)
can frequently cause overestimation, negatively af-
fecting agent performance. To reduce this overesti-
mation, Van Hasselt et al. (2016) propose utilizing the
online network rather than the target network to select
the next action when forming targets, defined as:

rt + γQθ′ (st+1, argmax
a∈A

Qθ(st+1, a)) . (2)

3. Beyond the Rainbow - Extensions and
Improvements

Building on Rainbow DQN (Hessel et al., 2018), BTR in-
cludes 6 more improvements undiscovered in 2018.2 Ad-
ditionally, as hyperparameters are critical to agent perfor-
mance, Section 3.2 discusses key hyperparameters and our
choices. In the appendices, we include a table of hyper-
parameters, a figure of the network architecture and the
agent’s loss function (Appendices D.2, E and E.2). Finally,
the source code using Gymnasium (Towers et al., 2024) is
included within the supplementary material to help future
work build upon or utilize BTR.

3.1. Extensions

Impala Architecture + Adaptive Maxpooling - Espe-
holt et al. (2018) proposed a convolutional residual neu-
ral network architecture based on He et al. (2016), featur-
ing three residual blocks3, substantially increasing perfor-
mance over DQN’s three-layer convolutional network. Fol-
lowing Cobbe et al. (2020), we scale the width of the con-
volutional layers by 2 to improve performance. We include
an additional 6x6 adaptive max pooling layer after the con-
volutional layers (Schmidt & Schmied, 2021), which was
found to speed up learning and support different input reso-
lutions. The adaptive maxpooling is identical to a standard
2D maxpooling layer, but can be used with any input reso-
lution as it automatically adjusts the stride and kernel size
to fit a specified output size.

Spectral Normalization (SN) - To help stabilize the train-
ing of discriminators in Generative Adversarial Networks
(GANs), Miyato et al. (2018) proposed Spectral Normal-
ization to help control the Lipschitz constant of convolu-
tional layers. SN works to normalize the weight matrices of
each layer in the network by their largest singular value, en-
suring that the transformation applied by the weights does
not distort the input data excessively, which can lead to in-
stability during training. Bjorck et al. (2021) and Gogianu
et al. (2021) found that SN could improve performance in
RL, especially for larger networks and Schmidt & Schmied
(2021) found SN reduced the number of updates required
before initial progress is made.

Implicit Quantile Networks (IQN) - Dabney et al. (2018)
improved upon Bellemare et al. (2017), used in Rainbow
DQN, learning the return distribution over the probability
space rather than probability distribution over return val-

2After the completion of our work, we additionally found
Layer Normalization applied after the stem of each residual block
and between dense layers to be beneficial (see Appendix H for a
discussion)

3The network architecture is referred to as Impala due to the
accompanying training algorithm IMPALA proposed in Espeholt
et al. (2018)

3

Beyond The Rainbow: High Performance Deep Reinforcement Learning on a Desktop PC

Table 1: A comparison of components between Rainbow DQN (Hessel et al., 2018) and BTR.

Added To Rainbow DQN Same As Rainbow DQN Removed From Rainbow DQN

Impala (Scale=2) N-Step TD Learning Double (N/A with Munchausen)
Adaptive Maxpooling (6x6) Prioritized Experience Replay C51 (Upgraded to IQN)

Spectral Normalization Dueling
Implicit Quantile Networks Noisy Networks

Munchausen
Vectorized Environments

ues. This removes the limit on the range of Q-values that
can be expressed, and enables learning the expected return
at every probability.

Munchausen RL - Bootstrapping is a core aspect of RL;
used to calculate target values (Eq. 1) with most algorithms
using the reward, rt, and the optimal Q-value of the next
state, Q∗. However, since in practice the optimal policy is
not known, the current policy π is used. Munchausen RL
(Vieillard et al., 2020) leverages an additional estimate in
the bootstrapping process by adding the scaled-log policy
to the loss function (Eq. 3 where α ∈ [0, 1] is a scaling
factor, σ is the softmax function, and τ is the softmax tem-
perature). This assumes a stochastic policy, therefore DQN
is converted to Soft-DQN with πθ′ = σ(Qθ′

τ). As Mun-
chausen does not use argmax over the next state, Double
DQN is obsolete. Munchausen RL’s update rule is

Qθ(st, at) = rt + ατ lnπθ′(at|st)+

γ
∑
a′∈A

πθ′(a′|st+1)(Qθ′(st+1, a
′)− τ ln(πθ′(a′|st+1)) .

(3)

Vectorization - RL agents typically take multiple steps in
a single environment, followed by a gradient update with a
small batch size (Rainbow DQN took 4 environment steps,
followed by a batch of 32). However, taking multiple
steps in parallel and performing updates on larger batches
can significantly reduce walltime. We follow Schmidt &
Schmied (2021), taking 1 step in 64 parallel environments
with one gradient update with batch size 256 (Schmidt &
Schmied (2021) took two gradient updates). This results
in a replay ratio (ratio of gradient updates to environment
steps) of 1

64 . Higher replay ratios have been shown to im-
prove performance (D’Oro et al., 2022), however we opt to
keep this value low to reduce walltime.

3.2. Hyperparameters

Hyperparameters have repeatedly shown to have a very
large impact on performance in RL (Ceron et al., 2024),
thus we perform a small amount of tuning to improve per-

formance. Firstly, how frequently the target network is up-
dated is closely intertwined with batch size and replay ra-
tio. We found that updating the target network every 500
gradient steps4 performed best. Given our high batch size,
we additionally performed minor hyperparameter tests us-
ing different learning rates finding that a slightly higher
learning rate of 1× 10−4 performed best, compared to
6.25×10−5 in Rainbow DQN. In Appendix D.2, we clarify
the meaning of the terms frames, steps and transitions.

For many years, RL algorithms have used a discount rate
of 0.99, however, when reaching high performance, lower
discount rates alter the optimal policy, causing even opti-
mally performing agents to not collect the maximum cu-
mulative rewards. To prevent this, we follow MuZero Re-
analyse (Schrittwieser et al., 2021) using γ = 0.997. For
our Prioritized Experience Replay, we use the lower value
of α = 0.2, the parameter used to determine sample prior-
ity, recommended by Toromanoff et al. (2019) when using
IQN. Lastly, many previous experiments used only noisy
networks or ϵ-greedy exploration, however, we opt to use
both until 100M frames, then set ϵ to zero, effectively dis-
abling it. We elaborate on this decision in Appendix F.

4. Evaluation
To assess BTR, we test on two standard RL benchmarks,
Atari (Bellemare et al., 2013) and Procgen (Cobbe et al.,
2020) in Section 4.1. Secondly, we train agents for three
modern games (Super Mario Galaxy, Mario Kart Wii, and
Mortal Kombat) with complex 3D graphics and physics in
Section 4.2, never before shown to be trainable with RL.

4.1. Atari and Procgen Performance

We evaluate BTR on the Atari-60 benchmark following
(Machado et al., 2018) and without life information (see
Appendix I for the impact), evaluating every million frames
on 100 episodes. Figure 1 plots BTR against DQN, Rain-
bow DQN and Dreamer-v3, showing BTR’s competitive
performance despite using significantly less walltime. Fig-

4This equates to 32,000 environment steps (128,000 frames),
compared to Rainbow DQN’s 8,000 steps.

4

Beyond The Rainbow: High Performance Deep Reinforcement Learning on a Desktop PC

2 4 6 8
DQN (200M, 48 Hours, A100)

Rainbow (200M, 70 Hours, A100)
BTR (200M, 22 Hours, A100)

Dreamer-v3 (200M, 185 Hours, A100)
MEME (200M, 274 Hours, 2xTPU-v4)

Median

2.5 5.0 7.5 10.0

IQM

8 16 24 32

Mean

0.08 0.16 0.24

Optimality Gap

Human Normalized Score

4 8 12
BBF (100K, 7 Hours, A100)

EZV2 (100K, 2.7 Hours, 4xRTX3090)
DQN (200M, 48 Hours, A100)

Rainbow (200M, 70 Hours, A100)
BTR (200M, 22 Hours, A100)

Dreamer-v3 (200M, 185 Hours, A100)
MEME (200M, 274 Hours, 2xTPU-v4)

Median

5 10 15 20

IQM

15 30 45

Mean

0.1 0.2 0.3

Optimality Gap

Human Normalized Score

Figure 2: Box plot performance of BTR (4 seeds) against other popular algorithms such as MEME (Kapturowski et al.,
2023), Dreamer v3 (Hafner et al., 2023), Bigger, Better, Faster (BBF) (Schwarzer et al., 2023) and EfficientZero-v2 (EZV2)
(Wang et al., 2024). Brackets show the number of frames the algorithms use, the number of walltime hours and the hardware
used respectively. Shaded areas show 95% confidence intervals. Top: Atari 55 game benchmark - we used the overlapping
games 55 between the popular Atari-57 benchmark, and the 60 games used in RLiable (Agarwal et al., 2021). Bottom:
Atari-26 benchmark, commonly used for testing sample-efficient algorithms.

0 50 100 150 200
Number of Frames (Millions)

0.0

0.2

0.4

0.6

M
in

-M
ax

 N
or

m
al

ize
d

IQ
M

Beyond The Rainbow (8 Hours)
Rainbow DQN + Impala x4 (41 Hours)

Figure 3: BTR compared to Rainbow DQN + Impala
(width x4) (Cobbe et al., 2020) after 200M frames on the
Procgen benchmark. Shaded areas show 95% CIs, with re-
sults averaged over 5 seeds.

ure 2 shows a box plot comparison of final performance.
In comparison to human expert performance, BTR equals
or exceeds them in 52 of 60. Importantly, we find that
BTR appears to continue increasing performance beyond
200 million frames, indicating that higher performance is
still possible with more time and data. Results tables and
graphs can be found in Appendices A and B, respectively.

To further confirm BTR’s performance, we benchmark on
Procgen (Cobbe et al., 2020), a procedurally generated set
of environments aiming to prevent overfitting to specific
tasks, a prevalent problem in RL (Justesen et al., 2018; Ju-
liani et al., 2019). The results are shown in Figure 3 with
individual games in Appendix B. BTR is able to exceed
Rainbow DQN + Impala’s performance, despite using sig-

nificantly fewer convolutional filters (which Cobbe et al.
(2020) found to significantly improve performance) and us-
ing 8 hours of walltime compared to 41. While BTR pro-
vides an improvement over Rainbow DQN in Procgen, we
did not target procedurally generated environments thus it
does not currently compete with the state-of-the-art (Cobbe
et al., 2021; Hafner et al., 2023). There are numerous
ways performance can be improved (Jesson & Jiang, 2024;
Cobbe et al., 2020) which we leave to future work.

4.2. Applying BTR to Modern Games

To demonstrate BTR’s capabilities beyond standard RL
benchmarks, we utilized Dolphin (Dolphin-Emulator,
2024), a Nintendo Wii emulator, to train agents for a range
of modern 3D games: Super Mario Galaxy, Mario Kart Wii
and Mortal Kombat. Using a desktop PC, we were able
to train the agent to complete some of the most difficult
tasks within each game. Namely, the final level in Super
Mario Galaxy, Rainbow Road (a notoriously difficult track
in Mario Kart Wii), and defeating all opponents in Mortal
Kombat Endurance mode. For details about the environ-
ments and setup, see Appendix J. To achieve this, BTR re-
quired minimal adjustments: changing the input image res-
olution to 140x114 (from Atari’s 84x84) due to the game’s
higher resolution and aspect ratio, and to reduce the number
of vectorized environments to 4 due to the games’ memory
and CPU requirements.

BTR was able to solve all three games, including consis-
tently finishing first place in Mario Kart. In contrast, Rain-
bow DQN’s performance plateaued before completing any
of the games. We provide videos of our agent playing all

5

Beyond The Rainbow: High Performance Deep Reinforcement Learning on a Desktop PC

Figure 4: BTR being used to play Super Mario Galaxy (final level), Mario Kart Wii (Rainbow Road) and Mortal Kombat:
Armageddon (Endurance Mode) respectively. Consistent completion is defined as over 90%.

three Wii games and all games in the Atari-5 benchmark 5.

5. Analysis
Given BTR’s performance demonstrated in Section 4, in
this section, we ablate each component to evaluate their
performance impact (Section 5.1). Using the ablated
agents, we measure numerous attributes during and after
training to assess each component’s impact (Section 5.2).

5https://www.youtube.com/playlist?list=
PL4geUsKi0NN-sjbuZP_fU28AmAPQunLoI

5.1. Ablations Studies

BTR amalgamates independently evaluated components
into a single algorithm. To understand and verify each com-
ponent’s contribution, Figure 5 plots BTR’s performance
without each component on the Atari-5 benchmark.6

We find that Impala had the largest effect on performance
(+142% IQM), with the other components generally caus-
ing a less significant effect. Despite this, simply using
Rainbow with Impala does not produce similar results
(6.3 IQM compared to 7.7 on Atari-5). Munchausen and
IQN have a strong impact on environments requiring fine-

6Due to the resources required to evaluate on all environments,
Aitchison et al. (2023) proposes a subset of 5 games that closely
correlate with the performance across all of them.

0 50 100 150 200
Number of Frames (in millions)

0

1

2

3

4

5

6

7

At
ar

i-5
7

Pr
ed

ict
ed

 M
ed

ia
n

Fr
om

 A
ta

ri-
5

0 50 100 150 200
Number of Frames (in millions)

0

1

2

3

4

5

6

7

8

At
ar

i-5
 IQ

M

Beyond The Rainbow (BTR)
no Impala

no IQN
no Maxpool

no Munchausen
no Spectral

Rainbow + Impala

Figure 5: BTR’s human-normalized scores without different components, with shaded areas showing 95% bootstrapped
confidence intervals averaged over 4 seeds. Left: Predicted Atari-57 median score using the regression procedure defined
in Aitchison et al. (2023). However, we find the prediction does not match the true median (see Appendix K). Right:
Interquartile mean across the 5 games. For individual game graphs and additional ablations, see Appendices B and C.

6

https://www.youtube.com/playlist?list=PL4geUsKi0NN-sjbuZP_fU28AmAPQunLoI
https://www.youtube.com/playlist?list=PL4geUsKi0NN-sjbuZP_fU28AmAPQunLoI

Beyond The Rainbow: High Performance Deep Reinforcement Learning on a Desktop PC

grained control such as Phoenix, as explored in Section 5.2.

For vectorization and maxpooling, while their inclusion re-
duces performance, we find their secondary effects crucial
to keep BTR computationally accessible. Omitting vector-
ization increases walltime by 328% (Figure 6) by process-
ing environment steps in parallel and taking fewer gradi-
ent steps (781,000 compared to Rainbow DQN’s 12.5 mil-
lion).7 We find that maxpooling decreases the model’s pa-
rameters by 77%, and makes using wider convolutional lay-
ers possible without causing the total number of parameters
to increase drastically.

0 10 20 30 40 50
Training Hours on a Single Desktop PC (Atari 200M)

BTR w/o Vectorization
Rainbow

FERainbow
BTR w/o Maxpooling

BTR
BTR w/o Spectral

BTR w/o Munchausen
BTR w/o IQN

BTR w/o IMPALA

48 +328%
35 +215%

17 +49%
12 +7%
11 +0%
11 -0%
10 -8%
10 -8%
6 -50%

Figure 6: Walltime of BTR on a desktop PC with com-
ponents removed, compared with Hessel et al. (2018) and
Schmidt & Schmied (2021). For hardware details, see Ap-
pendix G.

5.2. What are the effects of BTR’s components?

To help interpret the results in Section 5.1, Table 2 mea-
sures seven different attributes of the agent either during or
after training: action gaps and action swaps (linked to caus-
ing approximation errors (Bellemare et al., 2016)); policy
churn (which can cause excessive off-policyness and insta-
bility (Schaul et al., 2022)) and score with additional noise
(indicating robustness of the policies).

While it is clear that Impala strongly contributes to per-
formance, we find that without BTR’s other components
the learned policy is highly noisy and unstable. Table 2,
demonstrates that without IQN and Munchausen the agent
experiences very low action gaps (absolute Q-value differ-
ence between the highest two valued actions), causing the
agent to swap its argmax action almost every other step.
This is likely to result in approximation errors altering the
policy and causing a high degree of off-policyness in the
replay buffer. This is particularly detrimental in games
requiring fine-grained control, such as Phoenix where the
agent needs to narrowly dodge many projectiles, reflected
in BTR’s performance without these components.

7A result of removing vectorization is using smaller batches,
which Obando Ceron et al. (2024) finds improves exploration.

Figure 7: Plot showing % of dormant neurons (Sokar et al.,
2023), SRank with δ = 0.01 (Kumar et al., 2021) and L2
norm of network weights, for details see Appendix E.3. Re-
sults are averaged over 3 seeds and 5 tasks (Atari-5). Shad-
ing shows 95% confidence intervals.

Furthermore, we find that maxpooling produces a more
robust policy. To test this, we evaluate the performance
of BTR’s ablations when taking different quantities of ϵ-
actions and with altered observations and find maxpooling
alleviates some of the performance loss (Table 2). Lastly,
we find Munchausen and IQN to have a significant impact
on Policy Churn (Schaul et al., 2022), with Munchausen
reducing it by 6.4% and IQN increasing it by 3.3%. As a
result, when these components are used together, they ap-
pear to reach a level of churn which does not harm learning
and potentially provides some exploratory benefits.

Lastly, Figure 7 shows an analysis of the trained model
weights across the Atari-5 benchmark. We find little dif-
ference between trained models other than when removing
Impala, which decreases dormant neurons and increases the
L2 Norm of different layers, which have been linked with
plasticity loss (Lyle et al., 2024).

6. Related Work
The most similar work to BTR, developing a
computationally-limited non-distributed RL algorithm, is
“Fast and Efficient Rainbow” (Schmidt & Schmied, 2021).
They optimized Rainbow DQN to maximize performance
for 10 million frames through parallelizing the envi-
ronments and dropping C51 along with hyperparameter
optimizations. This differs from our goals of producing

7

Beyond The Rainbow: High Performance Deep Reinforcement Learning on a Desktop PC

Table 2: Comparison of policy churn, action gaps, actions swaps and evaluation performance with different quantities of
ϵ-actions and color jitter (both only applied for evaluation). All measurements use the final agent, trained on 200 million
frames, for Atari Phoenix, averaged over 3 seeds. Action Gap is the average absolute Q-value difference between the
highest two valued actions. % Actions Swap is the percentage of times the agent’s argmax action has changed from the last
timestep. Policy churn is the percentage of states in which the agent’s argmax action has changed after a single gradient
step. Color jitter applies a random 10% change to the brightness, saturation and hue of each frame. For associated errors
with these values, please see Appendix E.3.

Category BTR w/o Munchausen w/o IQN w/o SN w/o Impala w/o Maxpool

Action Gap 0.282 0.055 0.180 0.274 0.215 0.264
% Action Swaps 36.6% 47.7% 42.2% 40.3% 41.1% 39.3%

Policy Churn 3.8% 11.0% 0.5% 3.3% 4.5% 4.2%
Score ColorJitter 212k 85k 110k 187k 19k 187k
Score ϵ = 0.03 94k 42k 62k 75k 10k 86k
Score ϵ = 0.01 194k 70k 110k 132k 13k 171k

Score ϵ = 0 330k 184k 187k 296k 21k 406k

an algorithm that scales across training regimes (up to
200 million frames) and domains (Atari, Procgen, Super
Mario Galaxy, Mario Kart and Mortal Kombat), resulting
in different design decisions.

For less computation-limited approaches, Ape-X (Horgan
et al., 2018) was the first to explore highly distributed train-
ing, allowing agents to be trained on a billion frames in 120
hours through using > 100 CPUs. Following this, Kaptur-
owski et al. (2018) proposed R2D2 using a recurrent neu-
ral network, increasing sample efficiency but slowing down
gradient updates by 38%. Agent57 (Badia et al., 2020a)
was the first RL agent to achieve superhuman performance
across 57 Atari games, though required 90 billion frames.
MEME (Kapturowski et al., 2023), Agent57’s successor,
focused on achieving superhuman performance within the
standard 200 million frames limit, achieved by using a
significantly higher replay ratio and larger network archi-
tecture. Most recently, Dreamer-v3 (Hafner et al., 2023)
used a 200 million parameter model requiring over a week
of training, achieving similar results as MEME. We detail
some key differences between BTR, MEME and Dreamer-
v3 in Table 3. While these approaches perform equally or

better than BTR, all are inaccessible to smaller research
labs or hobbyists due to their required computational re-
sources and walltime. Therefore, while these algorithms
have important research value demonstrating the possible
performance of RL agents, performative algorithms with a
lower cost of entry, like BTR, are necessary for RL to be-
come widely applicable and accessible.

7. Conclusions
We have demonstrated that, once again, independent im-
provements from across Deep Reinforcement Learning can
be combined into a single algorithm capable of pushing the
state-of-the-art far beyond what any single improvement is
capable of. Importantly, we find that this can be accom-
plished on desktop PCs, increasing the accessibility of RL
for smaller research labs and hobbyists.

We acknowledge there exists many more promising im-
provements we could not include in BTR, leaving room
for more future work to create stronger integrated agents
in a few years. For example, BTR does not add an explicit
exploration component, resulting in it struggling in hard-

Table 3: Comparison of performance, walltime, observations and complexity of different algorithms.

Category BTR MEME Dreamer-v3

A100 GPU Days 0.9 Not Reported 7.7
Recurrent? No (4 stacked frames) Yes Yes

Learns from? Single Transitions Trajectories (length 160) Trajectories (length 64)
World Model No No Yes
Parameters 2.9M Not Reported (≈>20M) 200M

Observation Shape 84x84 210x160 64x64
Gradient Steps 781K 3.75M 1.5M
Atari-60 IQM 7.4 9.6 9.6

8

Beyond The Rainbow: High Performance Deep Reinforcement Learning on a Desktop PC

exploration tasks such as Montezuma’s Revenge; therefore,
mechanisms used in Never Give Up (Badia et al., 2020b),
etc may prove useful. Section 5.1 found that the neural
network’s core architecture, Impala, had the largest impact
on performance, an area we believe is generally underap-
preciated in RL. Previous work (Kapturowski et al., 2018)
has incorporated recurrent models enhancing performance,
though we are uncertain how this can be incorporated into
BTR without affecting its computational accessibility, a
question which warrants future research.

Impact Statement
This paper presents work whose goal is to advance the field
of Reinforcement Learning, particularly to improve acces-
sibility to those with limited computational resources. As
with any work increasing accessibility, this has potential
for misuse by bad actors. However, we believe these con-
cerns are offset by the field’s potential to tackle key societal
problems.

Acknowledgments
This work was supported by the UK Research and In-
novation (UKRI) Centre for Doctoral Training in Ma-
chine Intelligence for Nano-electronic Devices and Sys-
tems [EP/S024298/1] and the Engineering and Physical
Sciences Research Council (EPSRC) ActivATOR project
[EP/W017466/1]. The authors acknowledge the use of the
IRIDIS X High Performance Computing Facility, and the
Southampton-Wolfson AI Research Machine (SWARM)
GPU cluster generously funded by the Wolfson Founda-
tion, together with the associated support services at the
University of Southampton in the completion of this work.
The authors dedicate this work to the memory of George
Morton-Fallows, whose passion for computer science in-
spired this research.

9

Beyond The Rainbow: High Performance Deep Reinforcement Learning on a Desktop PC

References
Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A. C.,

and Bellemare, M. Deep reinforcement learning at the
edge of the statistical precipice. Advances in neural in-
formation processing systems, 34:29304–29320, 2021.

Aitchison, M., Sweetser, P., and Hutter, M. Atari-5: Distill-
ing the arcade learning environment down to five games.
In International Conference on Machine Learning, pp.
421–438. PMLR, 2023.

Badia, A. P., Piot, B., Kapturowski, S., Sprechmann, P.,
Vitvitskyi, A., Guo, Z. D., and Blundell, C. Agent57:
Outperforming the atari human benchmark. In Inter-
national conference on machine learning, pp. 507–517.
PMLR, 2020a.

Badia, A. P., Sprechmann, P., Vitvitskyi, A., Guo, D., Piot,
B., Kapturowski, S., Tieleman, O., Arjovsky, M., Pritzel,
A., Bolt, A., et al. Never give up: Learning directed
exploration strategies. In International Conference on
Learning Representations, 2020b.

Ball, P. J., Smith, L., Kostrikov, I., and Levine, S. Efficient
online reinforcement learning with offline data. In Inter-
national Conference on Machine Learning, pp. 1577–
1594. PMLR, 2023.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

Bellemare, M. G., Ostrovski, G., Guez, A., Thomas, P.,
and Munos, R. Increasing the action gap: New operators
for reinforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 30, 2016.

Bellemare, M. G., Dabney, W., and Munos, R. A distri-
butional perspective on reinforcement learning. In Inter-
national conference on machine learning, pp. 449–458.
PMLR, 2017.

Bjorck, N., Gomes, C. P., and Weinberger, K. Q. Towards
deeper deep reinforcement learning with spectral nor-
malization. Advances in neural information processing
systems, 34:8242–8255, 2021.

Ceron, J. S. O. and Castro, P. S. Revisiting rainbow: Pro-
moting more insightful and inclusive deep reinforcement
learning research. In International Conference on Ma-
chine Learning, pp. 1373–1383. PMLR, 2021.

Ceron, J. S. O., Araújo, J. G. M., Courville, A., and Castro,
P. S. On the consistency of hyper-parameter selection in
value-based deep reinforcement learning. In Reinforce-
ment Learning Conference, 2024.

Cobbe, K., Hesse, C., Hilton, J., and Schulman, J. Leverag-
ing procedural generation to benchmark reinforcement
learning. In International conference on machine learn-
ing, pp. 2048–2056. PMLR, 2020.

Cobbe, K. W., Hilton, J., Klimov, O., and Schulman, J.
Phasic policy gradient. In International Conference on
Machine Learning, pp. 2020–2027. PMLR, 2021.

Dabney, W., Ostrovski, G., Silver, D., and Munos, R. Im-
plicit quantile networks for distributional reinforcement
learning. In International conference on machine learn-
ing, pp. 1096–1105. PMLR, 2018.

Dolphin-Emulator. Dolphin emulator. https://
github.com/dolphin-emu/dolphin, 2024. Ac-
cessed: 2024-09-30.

D’Oro, P., Schwarzer, M., Nikishin, E., Bacon, P.-L., Belle-
mare, M. G., and Courville, A. Sample-efficient rein-
forcement learning by breaking the replay ratio barrier.
In Deep Reinforcement Learning Workshop NeurIPS
2022, 2022.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,
V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning,
I., et al. Impala: Scalable distributed deep-rl with impor-
tance weighted actor-learner architectures. In Interna-
tional conference on machine learning, pp. 1407–1416.
PMLR, 2018.

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Hessel,
M., Osband, I., Graves, A., Mnih, V., Munos, R., Hass-
abis, D., et al. Noisy networks for exploration. In Inter-
national Conference on Learning Representations, 2018.

Gallici, M., Fellows, M., Ellis, B., Pou, B., Mas-
mitja, I., Foerster, J. N., and Martin, M. Simplify-
ing deep temporal difference learning. arXiv preprint
arXiv:2407.04811, 2024.

Gogianu, F., Berariu, T., Rosca, M. C., Clopath, C., Bu-
soniu, L., and Pascanu, R. Spectral normalisation for
deep reinforcement learning: an optimisation perspec-
tive. In International Conference on Machine Learning,
pp. 3734–3744. PMLR, 2021.

Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. Master-
ing diverse domains through world models, 2023. URL
https://arxiv. org/abs/2301.04104, 2023.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostro-
vski, G., Dabney, W., Horgan, D., Piot, B., Azar, M., and

10

https://github.com/dolphin-emu/dolphin
https://github.com/dolphin-emu/dolphin

Beyond The Rainbow: High Performance Deep Reinforcement Learning on a Desktop PC

Silver, D. Rainbow: Combining improvements in deep
reinforcement learning. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 32, 2018.

Hessel, M., Danihelka, I., Viola, F., Guez, A., Schmitt,
S., Sifre, L., Weber, T., Silver, D., and Van Hasselt, H.
Muesli: Combining improvements in policy optimiza-
tion. In International conference on machine learning,
pp. 4214–4226. PMLR, 2021.

Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hes-
sel, M., van Hasselt, H., and Silver, D. Distributed prior-
itized experience replay. In International Conference on
Learning Representations, 2018.

Jesson, A. and Jiang, Y. Improving generalization on the
procgen benchmark with simple architectural changes
and scale. arXiv preprint arXiv:2410.10905, 2024.

Juliani, A., Khalifa, A., Berges, V.-P., Harper, J., Teng, E.,
Henry, H., Crespi, A., Togelius, J., and Lange, D. Ob-
stacle tower: A generalization challenge in vision, con-
trol, and planning. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence,
2019.

Justesen, N., Rodriguez Torrado, R., Bontrager, P., Khalifa,
A., Togelius, J., and Risi, S. Illuminating generalization
in deep reinforcement learning through procedural level
generation. In NeurIPS Workshop on Deep Reinforce-
ment Learning, 2018.

Kapturowski, S., Ostrovski, G., Quan, J., Munos, R., and
Dabney, W. Recurrent experience replay in distributed
reinforcement learning. In International conference on
learning representations, 2018.

Kapturowski, S., Campos, V., Jiang, R., Rakicevic, N., van
Hasselt, H., Blundell, C., and Badia, A. P. Human-level
atari 200x faster. In The Eleventh International Confer-
ence on Learning Representations, 2023.

Kumar, A., Agarwal, R., Ghosh, D., and Levine, S. Im-
plicit under-parameterization inhibits data-efficient deep
reinforcement learning. In International Conference on
Learning Representations, 2021.

Lin, L.-J. Self-improving reactive agents based on rein-
forcement learning, planning and teaching. Machine
learning, 8:293–321, 1992.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. In International Conference on Learning Rep-
resentations, 2019.

Lv, K., Yang, Y., Liu, T., Guo, Q., and Qiu, X. Full param-
eter fine-tuning for large language models with limited
resources. In ACL (1), 2024.

Lyle, C., Zheng, Z., Khetarpal, K., van Hasselt, H., Pas-
canu, R., Martens, J., and Dabney, W. Disentangling
the causes of plasticity loss in neural networks. arXiv
preprint arXiv:2402.18762, 2024.

Machado, M. C., Bellemare, M. G., Talvitie, E., Veness,
J., Hausknecht, M., and Bowling, M. Revisiting the
arcade learning environment: Evaluation protocols and
open problems for general agents. Journal of Artificial
Intelligence Research, 61:523–562, 2018.

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y.
Spectral normalization for generative adversarial net-
works. In International Conference on Learning Rep-
resentations, 2018.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., et al. Human-level con-
trol through deep reinforcement learning. nature, 518
(7540):529–533, 2015.

Obando Ceron, J., Bellemare, M., and Castro, P. S. Small
batch deep reinforcement learning. Advances in Neural
Information Processing Systems, 36, 2024.

Schaul, T., Quan, J., Antonoglou, I., and Silver,
D. Prioritized experience replay. arXiv preprint
arXiv:1511.05952, 2015.

Schaul, T., Barreto, A., Quan, J., and Ostrovski, G. The
phenomenon of policy churn. Advances in Neural Infor-
mation Processing Systems, 35:2537–2549, 2022.

Schmidt, D. and Schmied, T. Fast and data-efficient train-
ing of rainbow: an experimental study on atari. In Deep
RL Workshop NeurIPS 2021, 2021.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., et al. Mastering atari, go, chess and
shogi by planning with a learned model. Nature, 588
(7839):604–609, 2020.

Schrittwieser, J., Hubert, T., Mandhane, A., Barekatain,
M., Antonoglou, I., and Silver, D. Online and offline re-
inforcement learning by planning with a learned model.
Advances in Neural Information Processing Systems, 34:
27580–27591, 2021.

Schwarzer, M., Ceron, J. S. O., Courville, A., Bellemare,
M. G., Agarwal, R., and Castro, P. S. Bigger, better,
faster: Human-level atari with human-level efficiency.

11

Beyond The Rainbow: High Performance Deep Reinforcement Learning on a Desktop PC

In International Conference on Machine Learning, pp.
30365–30380. PMLR, 2023.

Sokar, G., Agarwal, R., Castro, P. S., and Evci, U. The dor-
mant neuron phenomenon in deep reinforcement learn-
ing. In International Conference on Machine Learning,
pp. 32145–32168. PMLR, 2023.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Sutton, R. S., Barto, A. G., et al. Introduction to rein-
forcement learning, volume 135. MIT press Cambridge,
1998.

Toromanoff, M., Wirbel, E., and Moutarde, F. Is deep rein-
forcement learning really superhuman on atari? In Deep
Reinforcement Learning Workshop of 39th Conference
on Neural Information Processing Systems (Neurips’
2019), 2019.

Towers, M., Kwiatkowski, A., Terry, J., Balis, J. U.,
De Cola, G., Deleu, T., Goulão, M., Kallinteris, A.,
Krimmel, M., KG, A., et al. Gymnasium: A standard in-
terface for reinforcement learning environments. arXiv
preprint arXiv:2407.17032, 2024.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double q-learning. In Proceedings
of the AAAI conference on artificial intelligence, vol-
ume 30, 2016.

Vieillard, N., Pietquin, O., and Geist, M. Munchausen re-
inforcement learning. Advances in Neural Information
Processing Systems, 33:4235–4246, 2020.

Wang, S., Liu, S., Ye, W., You, J., and Gao, Y. Effi-
cientzero v2: Mastering discrete and continuous control
with limited data. In International Conference on Ma-
chine Learning, pp. 51041–51062. PMLR, 2024.

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M.,
and Freitas, N. Dueling network architectures for deep
reinforcement learning. In International conference on
machine learning, pp. 1995–2003. PMLR, 2016.

Watkins, C. J. and Dayan, P. Q-learning. Machine learning,
8:279–292, 1992.

12

Beyond The Rainbow: High Performance Deep Reinforcement Learning on a Desktop PC

A. Full Results Tables

Table A1: Maximum scores obtained during training (averaged over 100 episodes and all performed using random seeds)
after 200M Frames on the Atari-60 benchmark. Fast & Efficient Rainbow DQN and Munchausen-IQN refer to Schmidt &
Schmied (2021) and (Vieillard et al., 2020) respectively. FE-Rainbow uses Life Information (See Appendix I), only 10M
frames, and has missing games, so metrics are based on existing games.

Game Random Human DQN (Nature) Rainbow M-IQN FE-Rainbow BTR

AirRaid 400 1000 7523 12472 19111 51719
Alien 227 7127 2354 3610 4249 12508 18999

Amidar 5 1719 1268 2390 1653 2071 14027
Assault 222 742 1526 3490 6014 10709 19064
Asterix 210 8503 2803 16547 42615 346758 608829

Asteroids 719 47388 846 1494 1666 12345 153589
Atlantis 12850 29028 843372 791393 866810 812825 891773

BankHeist 14 753 560 1070 1305 1411 1482
BattleZone 2360 37187 18425 40316 50501 112652 168340
BeamRider 363 16926 5203 6084 12322 26398 110415

Berzerk 123 2630 467 832 719 3388 11417
Bowling 23 160 30 43 23 40 63
Boxing 0 12 79 98 99 99 100

Breakout 1 30 92 109 241 537 682
Carnival 380 4000 5111 4523 5588 6284

Centipede 2090 12017 2378 6595 4425 8368 64242
ChopperCommand 811 7387 2722 13029 551 4208 956870

CrazyClimber 10780 35829 103549 146262 146419 140712 140927
DemonAttack 152 1971 5437 17411 63143 131657 135626
DoubleDunk -18 -16 -5 22 21 -1 23

ElevatorAction 0 3000 408 79372 89237 76941
Enduro 0 860 642 2165 2247 2266 2358

FishingDerby -91 -38 -1 42 54 42 58
Freeway 0 29 26 33 33 34 34
Frostbite 65 4334 482 8309 9419 5282 15158
Gopher 257 2412 5440 9987 23310 25606 97879
Gravitar 173 3351 209 1249 1105 2107 4253

Hero 1027 30826 15766 46290 25555 15377 25371
IceHockey -11 0 -6 0 11 6 44
Jamesbond 29 302 671 995 1526 59991

JourneyEscape -18000 -1000 -3300 -1096 -806 2841
Kangaroo 52 3035 10744 13005 10704 11498 14300

Krull 1598 2665 6029 4368 10309 10324 11268
KungFuMaster 258 22736 22397 27066 25588 27444 53302

MontezumaRevenge 0 4753 0 500 0 0 0
MsPacman 307 6951 3431 3989 5630 5981 13200

NameThisGame 2292 8049 7549 8900 12440 19819 27917
Phoenix 761 7242 4993 8800 5315 60954 427481
Pitfall -229 6463 -45 -27 -32 -1 0
Pong -20 14 16 20 19 21 21

Pooyan 500 1000 3452 4344 13096 22003
PrivateEye 24 69571 1113 21353 100 253 100

Qbert 163 13455 9801 18332 13159 25712 42927
Riverraid 1338 17118 9725 20675 16143 25192

RoadRunner 11 7845 38430 55104 60370 81831 579800
Robotank 2 11 59 67 71 70 83
Seaquest 68 42054 2416 9590 23885 63724 428263
Skiing -17098 -4336 -16281 -29268 -10404 -22076 -7938
Solaris 1236 12326 1478 1686 1835 2877 6301

SpaceInvaders 148 1668 1797 4455 10810 28098 54262
StarGunner 664 10250 48498 57255 64875 310403 577547

Tennis -23 -8 -3 0 0 15 24
TimePilot 3568 5229 3704 11959 14600 31333 113801

Tutankham 11 167 103 244 205 167 297
UpNDown 533 11693 8797 37936 197043 391439

Venture 0 1187 13 1537 978 437 1
VideoPinball 0 17667 38720 460245 508012 269619 573774
WizardOfWor 563 4756 1473 7952 11352 15518 47314
YarsRevenge 3092 54576 23963 46456 106929 98908 209499

Zaxxon 32 9173 4471 14983 14286 18832 52619

IQM (↑) 0.000 1.000 0.771 1.852 2.181 ≈ 2.769 7.361
Median (↑) 0.000 1.000 0.731 1.506 1.559 ≈ 1.906 4.690
Mean (↑) 0.000 1.000 2.261 4.152 5.260 ≈ 7.700 21.574

Optimality Gap (↓) 0.000 1.000 0.407 0.200 0.224 ≈ 0.180 0.098
Best - - 0 3 3 2 54

>Human - - 22 43 34 38 52

Surround 7 -10 10
Defender 2875 18689 169929 461380

13

Beyond The Rainbow: High Performance Deep Reinforcement Learning on a Desktop PC

Table A2: Maximum scores obtained during training (averaged over 100 episodes and all performed 3 random seeds) after
200M Frames on the Atari-5 Environment, compared against other non-recurrent non-distributed algorithms. FE-Rainbow
refers to Fast and Efficient Rainbow DQN (Schmidt & Schmied, 2021), and M-IQN refers to Munchausen-IQN (Vieillard
et al., 2020). Metrics do not use the recommended regression procedure, as explained in Appendix K.

Game Random Human Rainbow DQN Rainbow DQN M-IQN FE-Rainbow BTR
(Dopamine) (Full)

BattleZone 2360 37188 40895 62010 52517 112652 168340
DoubleDunk -19 -16 22 0 22 -1 23

NameThisGame 2292 8049 9229 13136 12761 19819 27917
Phoenix 761 7243 8605 108529 5327 60955 427481
QBert 164 13455 18503 33818 14739 25712 42927

IQM 0.000 1.000 1.265 3.583 1.452 4.070 7.739
Median 0.000 1.000 1.21 2.532 1.44 3.167 4.766
Mean 0.000 1.000 3.714 5.817 3.745 4.684 18.453

Table A3: Comparison of performance and walltime against PQN (Gallici et al., 2024). PQN only reports results at 400M
frames and includes life information, which greatly affects performance (see Appendix I). To provide a fairer comparison,
we also report our results using life information but only use 200M frames. Below are Atari-5 IQM and per-game Scores,
with BTR averaged over 3 seeds. Human-Normalized scores are reported for individual games, with the raw score in
brackets.

Game BTR (with life info, 200M frames) PQN (with life info, 400M frames)

Inter-Quartile Mean 12.18 3.86

BattleZone 12.73 (445,827) 1.51 (54,791)
DoubleDunk 14 (23.0) 6.03 (-0.92)

NameThisGame 4.51 (28,834) 3.18 (20,603)
Phoenix 90.85 (589,662) 38.79 (252,173)
QBert 9.79 (130,348) 2.37 (31,716)

Walltime (A100) 22 Hours 2 Hours
Backend (PyTorch (non-compiled) + gymnasium async) (JAX + envpool)

14

Beyond The Rainbow: High Performance Deep Reinforcement Learning on a Desktop PC

B. Full Results Graphs

0

10

AirRaid

0

2

Alien

0

5

Amidar

0

20

Assault

0

50

Asterix

0

2

Asteroids

0

50
Atlantis

0

2
BankHeist

0

5
BattleZone

0

5

BeamRider

0

5

Berzerk

0.00

0.25

Bowling

0
5

Boxing

0

20
Breakout

0

1

Carnival

0

5

Centipede

0

100

ChopperCommand

0

5
CrazyClimber

0

50

DemonAttack

0

20
DoubleDunk

0

20

ElevatorAction

0

2

Enduro

0

2

FishingDerby

0

1
Freeway

0.0

2.5

Frostbite

0

25

Gopher

0

1

Gravitar

0

1

Hero

0

5
IceHockey

0

200
Jamesbond

0

1

JourneyEscape

0

5
Kangaroo

0

5

Krull

0

2

KungFuMaster

0.0

0.2

MontezumaRevenge

0

2
MsPacman

0.0

2.5

NameThisGame

0

50

Phoenix

0.000

0.025

Pitfall

0

1
Pong

0

25

Pooyan

0.0

0.5
PrivateEye

0

2

Qbert

0

1

Riverraid

0

50

RoadRunner

0

5

Robotank

0

10
Seaquest

1

0

Skiing

0.0

0.5

Solaris

0

20

SpaceInvaders

0

50
StarGunner

0

2

Tennis

0

50

TimePilot

0

2
Tutankham

0

20

UpNDown

0

1

Venture

0

20

VideoPinball

0

10
WizardOfWor

0

5
YarsRevenge

0

5

Zaxxon

Number of Frames (0 - 200 Million)

Hu
m

an
 N

or
m

al
ize

d
Sc

or
e

Beyond The Rainbow (BTR) Rainbow DQN (Nature)

Figure B1: Performance of BTR (4 Seeds) on each individual game in all 60 Atari games. Shaded areas show 95%
confidence intervals over different seeds. 15

Beyond The Rainbow: High Performance Deep Reinforcement Learning on a Desktop PC

0 2 4 6 8
Human Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>
Score Distributions: ALE

0.0 0.5 1.0 2.0 4.0 8.0
Human Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

Score Distributions with Non Linear Scaling

DQN (Nature)
DQN (Adam)

C51
REM

IQN
Rainbow

M-IQN
DreamerV2

BTR

Figure B2: Final performance of BTR on Atari-60 (as used in RLiable (Agarwal et al., 2021)), against other popular
algorithms. The plot displays performance profiles, with 95% confidence intervals and 4 seeds for BTR.

0 50 100 150 200
0

2

4

6

8

Hu
m

an
 N

or
m

al
ize

d
Sc

or
e

Atari-5 IQM

0 50 100 150 200
0

2

4

BattleZone

0 50 100 150 200

0

5

10

DoubleDunk

0 50 100 150 200
Number of Frames (millions)

0

2

4

Hu
m

an
 N

or
m

al
ize

d
Sc

or
e

NameThisGame

0 50 100 150 200
Number of Frames (millions)

0

20

40

60

Phoenix

0 50 100 150 200
Number of Frames (millions)

0

1

2

3

Qbert

Beyond The Rainbow (BTR)
no Impala

no IQN
no Maxpool

no Munchausen
no Spectral

Rainbow + Impala

Figure B3: Performance of BTR with different components removed on individual games, and interquartile mean in the
top left. Results are averaged over 4 seeds, with shaded areas showing 95% bootstrapped confidence intervals.

16

Beyond The Rainbow: High Performance Deep Reinforcement Learning on a Desktop PC

0 25 50 75 100 125 150 175 200
Number of Frames (in millions)

0

2

4

6

8
IQ

M
 H

um
an

 N
or

m
al

ize
d

Sc
or

e
Beyond The Rainbow (BTR)
PPO + IMPALA

Figure B4: Figure shows BTR against PPO on Atari 57 (PPO’s Atari 60 scores have not been reported). PPO uses the
results provided by DreamerV3 (Hafner et al., 2023), which additionally uses vectorization and the impala algorithm.
Shaded areas show 95% confidence intervals with BTR using 4 seeds.

0 100 200
0.0

0.5

bigfish

0 100 200
0.0

0.5

1.0 bossfight

0 100 200

0.0

0.5

caveflyer

0 100 200
0.0

0.2

0.4
chaser

0 100 200
0.0

0.5

climber

0 100 200
1.0

0.5

0.0

coinrun

0 100 200
0.0

0.5

dodgeball

0 100 200
0.0

0.5

fruitbot

0 100 200

0.2

0.0

heist

0 100 200
0.0

0.5

jumper

0 100 200

0.0

0.5

1.0
leaper

0 100 200
0.5

0.0

0.5
maze

0 100 200

0.00

0.25

0.50
miner

0 100 200

0.00

0.25

0.50
ninja

0 100 200

0.0

0.5

plunder

0 100 200
0.0

0.5

1.0
starpilot

Number of Frames (millions)

M
in

-M
ax

 N
or

m
al

ize
d

Sc
or

e

Beyond The Rainbow (8 Hours) Rainbow DQN + Impala x4 (41 Hours)

Figure B5: Performance of BTR on each individual game in the Procgen benchmark. Shaded areas show 95% confidence
intervals. The red dotted line shows the performance of Rainbow DQN + Impala with 4x scaled Impala blocks (Cobbe
et al., 2020), after 200M frames.

17

Beyond The Rainbow: High Performance Deep Reinforcement Learning on a Desktop PC

C. Additional Ablations

0 25 50 75 100 125 150 175 200
Number of Frames (in millions)

0

1

2

3

4

5

6

At
ar

i-5
7

Pr
ed

ict
ed

 M
ed

ia
n

Fr
om

 A
ta

ri-
5

0 25 50 75 100 125 150 175 200
Number of Frames (in millions)

0

2

4

6

8

At
ar

i-5
 IQ

M

Beyond The Rainbow (BTR)
BTR - Vectorization

Rainbow + Vectorization
Rainbow + Impala

Figure C6: Figures show BTR’s human-normalized scores without different components, with shaded areas showing 95%
bootstrapped confidence intervals averaged over 4 seeds. Left: Predicted Atari-60 median score using the regression
procedure defined in Aitchison et al. (2023). However, we find the predicted median does not match the true median (see
Appendix K). Right: Interquartile mean across the 5 games.

D. Hyperparameters
D.1. Environment Details

Table D4: Environment Details for Atari Experiments.

Hyperparameter Value

Grey-Scaling True
Observation down-sampling 84x84

Frames Stacked 4
Reward Clipping [-1, 1]

Terminal on loss of life False
Life Information False

Max frames per episode 108K
Sticky Actions True

18

Beyond The Rainbow: High Performance Deep Reinforcement Learning on a Desktop PC

Table D5: Environment Details for Procgen Experiments.

Hyperparameter Value

Grey-Scaling False
Observation Size 64x64
Frames Stacked 1
Reward Clipping False

Max frames per episode 108K
Distribution Mode Hard

Number of Unique Levels (Train & Test) Unlimited

19

Beyond The Rainbow: High Performance Deep Reinforcement Learning on a Desktop PC

D.2. Algorithm Hyperparameters

Table D6: Table showing the hyperparameters used in the BTR algorithm.

Hyperparameter Value

Learning Rate 1e-4
Discount Rate 0.997

N-Step 3

IQN Taus 8
IQN Number Cos’ 64

Huber Loss κ 1.0
Gradient Clipping Max Norm 10

Parallel Environments 64
Gradient Step Every 64 Environment Steps (1 Vectorized Environment Step)

Replace Target Network Frequency (C) 500 Gradient Steps (32K Environment Steps)
Batch Size 256

Total Replay Ratio 1
64

Impala Width Scale 2
Spectral Normalization All Convolutional Residual Layers

Adaptive Maxpooling Size 6x6
Linear Size (Per Dueling Layer) 512

Noisy Networks σ 0.5
Activation Function ReLu

ϵ-greedy Start 1.0
ϵ-greedy Decay 8M Frames
ϵ-greedy End 0.01

ϵ-greedy Disabled 100M Frames

Replay Buffer Size 1,048,576 Transitions (220)
Minimum Replay Size for Sampling 200K Transitions

PER Alpha 0.2

Optimizer Adam
Adam Epsilon Parameter 1.95e-5 (equal to 0.005

batchsize)
Adam β1 0.9
Adam β2 0.999

Munchausen Temperature τ 0.03
Munchausen Scaling Term α 0.9

Munchausen Clipping Value (l0) -1.0

Evaluation Epsilon 0.01 until 125M frames, then 0
Evaluation Episodes 100

Evaluation Every 1M Environment Frames (250K Environment Steps)

D.3. Clarity of the terms Frames, Steps and Transitions

Throughout the Arcade Learning Environment’s history (ALE) (Bellemare et al., 2013; Machado et al., 2018), there have
been many ambiguities around the terms: frames, steps and transitions, which are sometimes used interchangeably. Frames
refer to the number of individual frames the agent plays, including those within repeated actions (also called frame skip-
ping). This is notably different from the number of steps the agent takes, which does not include these skipped frames.
When using the standard Atari wrapper, training for 200M frames is equivalent to training for 50M steps. Lastly, transitions
refer to the standard tuple (st, at, rt, st+1), where the timestep t refers to a steps, not frames. We encourage researchers to
make this clear when publishing work, including when mentioning the values of different hyperparameters.

20

Beyond The Rainbow: High Performance Deep Reinforcement Learning on a Desktop PC

E. Beyond The Rainbow Architecture & Loss Function
E.1. Architecture

Figure E7 shows the neural network architecture of the BTR algorithm. The architecture is highly similar to the Impala
architecture (Espeholt et al., 2018), with notable exceptions:

(0-255), 4x84x84,
Greyscale

/ 255

Impala CNN Block
(32 Channels)

Impala CNN Block
(64 Channels)

Impala CNN Block
(64 Channels)

Adaptive Maxpooling
6x6

Generate 8 Random
Taus [0, 1]

Cosine(Taus * pi)

Linear Layer
6x6x64

(IQN Cos Embedding)

ReLu

Hadamard Product

Relu Relu

Noisy Linear
(1)

Noisy Linear
(Num Actions)

Value
Stream

Advantage
Stream

+

Q-Values

Conv 3x3, Stride 1

MaxPool, Stride 2

ReLu

Conv 3x3, Stride 1

ReLu

Conv 3x3, Stride 1

+

Spectral
Normalization

Spectral
Normalization

layer - layer.mean

IQN
Samples

NoisyLinear (512)

ReLu

Conv 3x3, Stride 1

ReLu

Conv 3x3, Stride 1

+

Spectral
Normalization

Spectral
Normalization

NoisyLinear(512)

Figure E7: Architectural diagram of the BTR algorithm’s neural network. The model contains a total of 2.91 million
parameters, 2.52 million of which are within linear layers.

• Spectral Normalization Within each Impala CNN block, each residual layer (containing two Conv 3x3 + ReLu) has
spectral normalization applied, as discussed in Section 3.1.

• Maxpooling Following the CNN blocks, a 6x6 adaptive maxpooling layer is added.

21

Beyond The Rainbow: High Performance Deep Reinforcement Learning on a Desktop PC

• IQN In order to use IQN, it is required to draw Tau samples, which are multiplied by the output of the CNN layers, as
shown by the section ‘IQN Samples’ in figure E7.

• Dueling Dueling (as included in the original Rainbow DQN) splits the fully connected layers into value and advantage
streams, where the advantage stream output has a mean of 0, and is then added to the value stream.

• Noisy Networks As included in Rainbow DQN, Noisy Networks replace the linear layers with noisy layers.

Lastly, the sizes of many of the layers given in Figure E7 are dependent upon the Impala width scale, of which we use the
value 2. For example, the Impala CNN blocks have [16×width, 32×width, 32×width] channels respectively. The output
size of the convolutional layers (including the maxpooling layer) is 6×6×32×width, as a 6x6 maxpooling layer is used.
Lastly, the cos embedding layer, after generating IQN samples, requires the same size as the output of the convolutional
layers. Hence, the size is selected accordingly. Another benefit of the 6x6 maxpooling layer is following the product of the
convolutional layers and IQN samples, the number of parameters is fixed, regardless of the input size. Figure E8 shows the
number of parameters the ablated versions of BTR have.

0 2 4 6 8
Total Parameters (Millions)

no Maxpooling
BTR

no IQN
no IMPALA

8.8M
 +203%2.9M +0%

2.8M -3%
1.9M -34%

Figure E8: Total number of parameters in BTR with different components removed. Those not included in the graph
(Munchausen and Spectral Normalization) used the same number of parameters as BTR.

E.2. Loss Function

The resulting loss function for the BTR algorithm remains the same as that defined in the appendix of the Munchausen
paper, which gave a loss function for Munchausen-IQN. As the other components in BTR do not affect the loss, the
resulting temporal-difference loss function is the same. For self-containment, we include this loss function below:

TDBTR = rt + α[τ lnπ(at|st)]0l0 + γ
∑
a∈A

π(a|st+1)(zσ′ (st+1, a)− τ lnπ(a|st+1))− zσ(st, at) (E1)

with π(·|s) = sm(q̃(s,·)τ) (that is, the policy is softmax with q˜, the quantity with respect to which the original policy of IQN
is greedy). It is also worth noting here that due to the character conflict of both Munchausen and IQN using τ (Munchausen
as a temperature parameter, and IQN for drawing samples), we replace IQN’s τ with σ. l0, τ and α are hyperparameters
set by Munchausen. We use the same values in BTR, also shown in our hyperparameter table in Appendix D.2.

E.3. Analysis Confidence Intervals

Due to space constraints, we was unable to include confidence intervals for Table 2 in the main paper. A repeat of the main
paper Table can be found in Table E7, with the associated confidence intervals in Table E8.

F. BTR with and without Epsilon Greedy
One of the first observations we made early in the testing process was that the inclusion of using ϵ-greedy in addition to
NoisyNetworks benefited some environments but not others. Specifically, performance was reduced on BattleZone and
Phoenix, both games where the agent reached very high levels of performance with extremely precise control. However,
DoubleDunk performed significantly worse, only reaching a score of 0, rather than the score of 23 the final BTR algorithm
achieved. Similar findings were also found in the full version of Rainbow DQN, which used only NoisyNetworks, which

22

Beyond The Rainbow: High Performance Deep Reinforcement Learning on a Desktop PC

Table E7: Repeat of the main paper’s Table 2 for reference against the table of 95% confidence intervals below. Comparison
of policy churn, action gaps, actions swaps and evaluation performance with different quantities of ϵ-actions and color jitter
(both only applied for evaluation). All measurements use the final agent, trained on 200 million frames, for Atari Phoenix,
averaged over 3 seeds. Action Gap is the average absolute Q-value difference between the highest two valued actions. %
Actions Swap is the percentage of times the agent’s argmax action has changed from the last timestep. Policy churn is
the percentage of states which the agent’s argmax action has changed on after a single gradient step. Color jitter applies a
random 10% change to the brightness, saturation and hue of each frame. For associated error with these values, please see
Appendix E.3.

Category BTR w/o Munchausen w/o IQN w/o SN w/o Impala w/o Maxpool

Action Gap 0.282 0.055 0.180 0.274 0.215 0.264
% Action Swaps 36.6% 47.7% 42.2% 40.3% 41.1% 39.3%

Policy Churn 3.8% 11.0% 0.5% 3.3% 4.5% 4.2%
Score ColorJitter 212k 85k 110k 187k 19k 187k
Score ϵ = 0.03 94k 42k 62k 75k 10k 86k
Score ϵ = 0.01 194k 70k 110k 132k 13k 171k

Score ϵ = 0 330k 184k 187k 296k 21k 406k

Table E8: 95% confidence intervals for the main paper Table 2, calculated using 6 seeds. A repeat of the original table is
shown above in Table E7.

Category BTR w/o Munchausen w/o IQN w/o SN w/o Impala w/o Maxpool

Action Gap [0.25, 0.31] [0.05, 0.06] [0.17, 0.19] [0.25, 0.3] [0.1, 0.33] [0.23, 0.3]
% Action Swaps [33.6, 39.6] [45.8, 49.7] [41.0, 43.3] [38.5, 42.2] [31.4, 50.8] [38.2, 40.4]

Policy Churn [3.3, 4.2] [10.2, 11.7] [0.5, 0.5] [2.9, 3.6] [3.9, 5.0] [3.7, 4.7]
Score ColorJitter [204k, 218k] [77k, 92k] [90k, 128k] [173k, 201k] [0k, 40k] [158k, 215k]
Score ϵ = 0.03 [88k, 99k] [38k, 46k] [52k, 72k] [68k, 82k] [2k, 18k] [74k, 97k]
Score ϵ = 0.01 [177k, 211k] [62k, 77k] [97k, 122k] [139k, 176k] [0k, 52k] [143k, 199k]

Score ϵ = 0 [282k, 377k] [116k, 251k] [163k, 209k] [244k, 348k] [0k, 43k] [332k, 479k]

achieved a best score of -0.3 (Dopamine’s “compact” Rainbow DQN, however, which did not use NoisyNetworks achieved
22). From this, we conclude that NoisyNetworks alone failed to sufficiently explore the environment, whereas ϵ-greedy
did not. From these results, we eventually decided to use both methods, but disable ϵ-greedy halfway through training to
reap the best of both techniques.

G. Experiment Compute Resources
G.1. Our Compute Resources

For running our experiments, we used a mixture of desktop computers and internal clusters. The desktop PCs used an
GPU Nvidia RTX4090, CPU intel i9-14900k and 64GB of DDR5 6000mhz RAM. When using internal clusters, we used
a mixture of GPUs, including Nvidia A100s, Nvidia Volta V100 and Nvidia Quadro RTX 8000. As for CPUs, we used 2
x 2.4 GHz Intel(R) Xeon(R) Gold 6336Y, 48 Cores. Lastly, we saved the models used to produce our analysis, totalling
around 300gb across all of our ablations on the Atari-5 benchmark, saving a model every 1 million frames.

As most of our experiments were performed on desktop PC, in the main body of our paper we reference these speeds. We
found that desktop PCs actually outperformed internal clusters, likely due to desktop CPUs being more suited to performing
environment steps, outlined in the next subsection.

When testing ideas originally (those mentioned in Appendix H), we only tested them using a single run of the games
BattleZone, NameThisGame and Phoenix unless otherwise stated. Whilst this method of evaluation is not statistically
significant, for preliminary purposes with computational restrictions, we deemed this the best option.

23

Beyond The Rainbow: High Performance Deep Reinforcement Learning on a Desktop PC

G.2. BTR with Different Hardware

In this work, we look to make high-performance RL more accessible to those with fewer computing resources, especially
those only with access to desktop computers. Most of our experiments were performed with an RTX4090, we also provide
some walltimes for 200M Atari frames for lower-end machines and provide a brief comparison of desktop PCs against
internal clusters:

Desktops:

Original: RTX 4090, Intel i9-13900k (2023), 64GB RAM - 11.5 Hours

RTX 3070, Ryzen 9 3900X (2019), 64GB RAM - 52 Hours

RTX 2080 ti, Intel(R) Xeon(R) Silver 4112 CPU @ 2.60GHz (2018), 128GB RAM - 32 Hours

Internal Clusters:

Nvidia H100, 48 Core Intel(R) Xeon(R) Platinum 8468 (2023), 2TB RAM - 15 Hours

Nvidia A100, 24 Core Intel(R) Xeon(R) Gold 6336Y (2021), 512GB RAM - 22 Hours

We note that there is significant variability in hardware (processors, memory bus speeds, etc), but the results still show
reasonable times compared to not using BTR. Overall, we found that training BTR was very capable of running on lower
end machines, with the agent (excluding the environments) using around 15GB of RAM. The main performance bottleneck
was running the environment in parallel, making the number of CPU cores and processor speed most important. BTR also
provides strong performance long before 200M frames, thus providing practical utility for lower-end machines.

H. Other Things We Tried
Throughout the development of the BTR algorithm, we experimented with many different components and hyperparame-
ters. A brief list of ideas we tried that performed worse or equivalent to the final algorithm includes:

• Using Exponential Moving Average networks rather than using fixed target networks (this was both computationally
slower and performed worse).

• Varying the frequency of updating the target network (we tested 250, 500 and 1000, finding 500 to perform best).

• Changing the size of maxpool layer following the convolutional layers (we tested 4 and 8, however 6 performed
significantly better).

• Decaying the learning rate from 1× 10−4 to 0 over the course of training (this made no significant difference).

• Different learning rates, finding 1× 10−4 to perform best, however 5× 10−5 also performed similarly as was used in
Implicit Quantile Networks (IQN).

• Using the AdamW optimizer(Loshchilov & Hutter, 2019) which uses weight decay with the decay parameter 1e− 4,
however found this made no significant difference.

• Using the GeLu activation instead of ReLu, which drastically reduced performance.

Only testing on a single environment (BattleZone), we also tried:

• Annealing the discount rate from 0.97 to 0.997 throughout training, but found no significant difference.

• Applying spectral normalization to the linear layers (dramatically worse performance).

• Increasing the number of cos’ from IQN (no significant difference on performance).

• Using Dopamine’s Prioritized Experience Replay buffer which doesn’t include a α value (moderately worse perfor-
mance).

• As discussed in F, we also tried not using ϵ-greedy when using noisy nets.

24

Beyond The Rainbow: High Performance Deep Reinforcement Learning on a Desktop PC

Lastly we also tried removing some of the original components from Rainbow DQN on Atari BattleZone, including Duel-
ing, Prioritized Experience Replay and Noisy Networks. Prioritized Experience Replay and Noisy Networks both proved
beneficial, so were kept in the algorithm. Dueling did not seem to make any significant difference, however we did not
choose to remove it for a clearer continuation of Rainbow DQN, in addition to potentially being useful in other Atari
environments.

Shortly after the submission of this work, we tested BTR with addition of Layer Normalization, and found positive results.
Layer Normalization can improve the robustness to a variety of pathologies that cause loss of plasticity (Lyle et al., 2024),
and helps to improve the conditioning of the network’s gradients in RL (Ball et al., 2023). Below in Figure H9 we show
the impact of including layer normalization into BTR.

0 50 100 150 200
Number of Frames (in millions)

0

1

2

3

4

5

6

7

At
ar

i-5
7

Pr
ed

ict
ed

 M
ed

ia
n

Fr
om

 A
ta

ri-
5

0 50 100 150 200
Number of Frames (in millions)

0

1

2

3

4

5

6

7

8

At
ar

i-5
 IQ

M

Beyond The Rainbow (BTR) BTR + LayerNorm

Figure H9: Graph shows Atari-5 performance with and without layer normalization using Inter-quartile mean and Atari-
60 predicted median from Aitchison et al. (2023). Layer normalization uses 3 seeds, with shaded areas showing 95%
confidence intervals.

Table H9: Maximum scores obtained during training (averaged over 100 episodes and all performed random seeds) after
200M Frames on the Atari-5 Environment, compared to BTR with Layer Normalization.

Game Random Human BTR + Layer Normalization BTR

BattleZone 2360 37188 183240 168340
DoubleDunk -19 -16 23 23

NameThisGame 2292 8049 33258 27917
Phoenix 761 7243 493762 427481
QBert 164 13455 47384 42927

IQM 0.000 1.000 8.191 7.739
Median 0.000 1.000 5.379 4.766
Mean 0.000 1.000 20.836 18.453

I. Altered Atari Environment Settings
In order to investigate the impact of the environmental sticky actions parameter and to compare against other works, we
include results for it on the Atari-5 benchmark in Figure I10.

25

Beyond The Rainbow: High Performance Deep Reinforcement Learning on a Desktop PC

0 25 50 75 100 125 150 175
Number of Frames (in millions)

0

1

2

3

4

5

6

At
ar

i-5
7

Pr
ed

ict
ed

 M
ed

ia
n

Fr
om

 A
ta

ri-
5

0 25 50 75 100 125 150 175
Number of Frames (in millions)

0

1

2

3

4

5

6

7

At
ar

i-5
 IQ

M

Beyond The Rainbow (BTR) BTR no Sticky Actions

Figure I10: Graph shows Atari-5 performance with and without sticky actions (sticky actions is the default) using Inter-
quartile mean and Atari-60 predicted median from Aitchison et al. (2023). No Sticky Actions uses a single seed, so this
result should be used with caution.

Some prior works choose to pass life information to the agent (Schmidt & Schmied, 2021). To clarify, this is different to
terminal on loss of life. Life information does not reset the episode upon losing a life, but does pass a terminal to the buffer,
allowing the agent to experience further into episodes while also giving the agent a negative signal for losing a life. This
setting is not recommended in Machado et al. (2018), and works which use it are not comparable to those which don’t. To
emphasize this point, we take the three games from the Atari-5 and perform a comparison.

0 50 100 150 200
Number of Frames (in millions)

0

2

4

6

8

10

At
ar

i-5
7

Pr
ed

ict
ed

 M
ed

ia
n

Fr
om

 A
ta

ri-
5

0 50 100 150
Number of Frames (in millions)

0

2

4

6

8

10

12

At
ar

i-5
 IQ

M

Beyond The Rainbow (BTR) BTR + Life Info

Figure I11: Graph shows Atari-5 performance with and without life information using Inter-quartile mean and Atari-60
predicted median from Aitchison et al. (2023). Life Information uses 3 seeds, with shaded areas showing 95% confidence
intervals. From this we conclude results using life information are invalid for comparison.

J. BTR for Wii Games
BTR interfaces with different Wii Games via the Dolphin Emulator. Specifically, we use a forked repository of Dolphin
Emulator to allow Python scripts to interact with the emulator. This includes loading savestates (used to reset episodes),

26

Beyond The Rainbow: High Performance Deep Reinforcement Learning on a Desktop PC

grabbing the screen as a PIL image at the Wii’s internal resolution of 480p (downsampled to 140x114 and grey-scaled,
used for all observations), reading the Wii’s RAM (used for reward functions and termination conditions) and allowed
programmatic input into the emulator (for setting actions). Using Dolphin’s portable setting, we are able to run multiple
Dolphin Emulators simultaneously on the same machine. Each instance runs as a unique process, and communicates with
the agent via Python’s multiprocessing library. Similarly to the Atari benchmark, for all games we used a frameskip of 4.

J.1. Super Mario Galaxy

This environment used Super Mario Galaxy’s final level, The Center of the Universe, and had to make it to the final fight
at the end of the game. The agent had 6 actions, including None, moving in each direction and jumping. Additionally, if
the jump action was performed following a movement, the agent would continue to move in that direction.

Rewards were given via finding many values in the Wii’s memory that resembled progress in the level. The agent was then
rewarded for this progress value increasing from the last frame. If the agent’s position entered a set region, the progress
variable would be moved. Additionally, the game uses a life system, where the player has a maximum of 3 lives and can
lose or gain lives in many different ways. The agent was given a reward of +1 for gaining a life, and -1 for losing a life.
Lastly, episode termination occurred if the agent reached 0 lives, or if the agent made it to the end of the level. For this
task, we also allowed the agent to start episodes at many points throughout the level, which rapidly sped up training since
the agent could easily experience different areas of the level.

Whilst a difficult task, once the agent first completed the level, it did not take long to start consistently completing it due to
the deterministic nature of the game.

J.2. Mario Kart Wii

The Mario Kart Wii environment had the agent play against the game’s internal opponents (on hard mode, with 12 racers
including the agent), on the course Rainbow Road (with items on the 150cc speed setting). The agent had to complete 4
laps of the course to finish the race. The agent had just 4 action, including accelerate, drifting left or right, and using its
item. While this limited the agent’s potential actions substantially, we found using fewer actions to dramatically accelerate
training.

Rewards of +1 were given via reaching checkpoints that were scattered throughout the course (100 in total per lap).
Additionally, if the agent’s speed dropped below a set threshold (65 km/h), the agent would receive a reward of -0.01 per
frame. The agent would be terminated with a reward of -10 if its speed dropped below the threshold for over 80 frames, or
with a reward of +10 for finishing the race, with a bonus based on the position the agent finished in. Lastly, the agent was
rewarded with a +1 for using its item. Without this reward, we found the agent to often neglect using its item, likely due to
many of the items only providing rewards in the long term, such as slowing down other racers or blocking incoming items
far in the future. Similarly to Super Mario Galaxy, we had the agent start the episode in multiple positions around the first
lap, allowing it to experience the whole track early in training.

This agent took the longest to train, taking around 160M frames to reach consistent completion. In particular, the agent
took a long time to consistently complete the race due to the other racers and randomized items making the environment
highly stochastic, with many rare scenarios which could cause the episode to terminate.

J.3. Mortal Kombat

The Mortal Kombat environment put the agent in the game’s endurance mode, where the agent would sequentially fight
15 different opponents, but keep retain its health between fights, and only gain health after defeating every 3 opponents.
We provided the agent with 14 actions, including: None, Left, Right, Up, Down, Axe Kick, Punch, Snap Kick, Grab,
Block, Toggle Weapon, Jump Left, Jump Right, and Crouch. These actions were far from the game’s total action space,
and limited the agent’s ability to perform some of the combos within the game. We limited the agent’s actions as the full
action space is extremely large.

The agent was positively rewarded for damaging the opponent, and negatively rewarded for taking damage, with one taking
one tenth of the health bar equating to +1 reward respectively. The episode was terminated with a reward of -10 for reaching
0 health, and +10 for defeating the 15th and final enemy.

The Mortal Kombat agent learned considerably faster than Super Mario Galaxy and Mario Kart Wii, first completing the

27

Beyond The Rainbow: High Performance Deep Reinforcement Learning on a Desktop PC

environment in 50M frames, and getting progressively more consistent until training was stopped at 90M frames. The
agent quickly learned how to dodge enemy hits, and relied heavily upon this strategy.

K. Atari-5 Regression Procedure
In our main paper ablation figure (Figure 5), we used the regression procedure recommended in Atari-5 (Aitchison et al.,
2023). This procedure is typically used to predict the Median score across the entire 57 game Atari suite, while only
needing to use 5 games. While we believe this procedure produces a valid and useful plot, we find that BTR did differ
significantly from the predicted value. We opted to use both the predicted median and the IQM across the 5 games to give
two easy to interpret averages. Figure K12 shows the 57 game suite’s true median, compared to the median predicted by
Atari-5.

0 25 50 75 100 125 150 175 200
Number of Frames (Millions)

0

1

2

3

4

5

M
ed

ia
n

Hu
m

an
 N

or
m

al
ize

d
Sc

or
e

BTR 57 Games
Rainbow DQN
DQN
BTR-Regressed

Figure K12: BTR’s 60 game median against that predicted by Atari-5 using the regression procedure from Aitchison et al.
(2023). Shaded areas show 95% confidence intervals using 4 seeds.

28

	Introduction
	Background
	RL Problem Formulation
	Deep Q-Learning (DQN)
	Rainbow DQN and Improvements to DQN

	Beyond the Rainbow - Extensions and Improvements
	Extensions
	Hyperparameters

	Evaluation
	Atari and Procgen Performance
	Applying BTR to Modern Games

	Analysis
	Ablations Studies
	What are the effects of BTR's components?

	Related Work
	Conclusions
	Full Results Tables
	Full Results Graphs
	Additional Ablations
	Hyperparameters
	Environment Details
	Algorithm Hyperparameters
	Clarity of the terms Frames, Steps and Transitions

	Beyond The Rainbow Architecture & Loss Function
	Architecture
	Loss Function
	Analysis Confidence Intervals

	BTR with and without Epsilon Greedy
	Experiment Compute Resources
	Our Compute Resources
	BTR with Different Hardware

	Other Things We Tried
	Altered Atari Environment Settings
	BTR for Wii Games
	Super Mario Galaxy
	Mario Kart Wii
	Mortal Kombat

	Atari-5 Regression Procedure

