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Abstract: Adversarial Imitation Learning (AIL) is a class of popular state-of-the-
art Imitation Learning algorithms commonly used in robotics. In AIL, an artificial
adversary’s misclassification is used as a reward signal that is optimized by any
standard Reinforcement Learning (RL) algorithm. Unlike most RL settings, the
reward in AIL is differentiable but current model-free RL algorithms do not make
use of this property to train a policy. The reward is AIL is also shaped since it
comes from an adversary. We leverage the differentiability property of the shaped
AIL reward function and formulate a class of Actor Residual Critic (ARC) RL
algorithms. ARC algorithms draw a parallel to the standard Actor-Critic (AC) al-
gorithms in RL literature and uses a residual critic, C function (instead of the stan-
dard Q function) to approximate only the discounted future return (excluding the
immediate reward). ARC algorithms have similar convergence properties as the
standard AC algorithms with the additional advantage that the gradient through
the immediate reward is exact. For the discrete (tabular) case with finite states,
actions, and known dynamics, we prove that policy iteration with C function con-
verges to an optimal policy. In the continuous case with function approximation
and unknown dynamics, we experimentally show that ARC aided AIL outper-
forms standard AIL in simulated continuous-control and real robotic manipulation
tasks. ARC algorithms are simple to implement and can be incorporated into any
existing AIL implementation with an AC algorithm. Video and link to code are
available at: sites.google.com/view/actor-residual-critic.

Keywords: Adversarial Imitation Learning (AIL), Actor-Critic (AC), Actor
Residual Critic (ARC)

1 Introduction
Although Reinforcement Learning (RL) allows us to train agents to perform complex tasks without
manually designing controllers [1, 2, 3], it is often tedious to hand-craft a dense reward function
that captures the task objective in robotic tasks [4, 5, 6]. Imitation Learning (IL) or Learning from
Demonstration (LfD) is a popular choice in such situations [4, 5, 6, 7]. Common approaches to IL
are Behavior Cloning (BC) [8] and Inverse Reinforcement Learning (IRL) [9].

Within IRL, recent Adversarial Imitation Learning (AIL) algorithms have shown state-of-the-art
performance, especially in continuous control tasks which make them relevant to real-world robotics
problems. AIL methods cast the IL problem as an adversarial game between a policy and a learned
adversary (discriminator). The adversary aims to classify between agent and expert trajectories and
the policy is trained using the adversary’s mis-classification as the reward function. This encourages
the policy to imitate the expert. Popular AIL algorithms include Generative Adversarial Imitation
Learning (GAIL) [10], Adversarial Inverse Reinforcement Learning (AIRL) [11] and f -MAX [12].

The agent in AIL is trained with any standard RL algorithm. There are two popular categories
of RL algorithms: (i) on-policy algorithms such as TRPO [13], PPO [2], GAE [14] based on the
policy gradient theorem [15, 16]; and (ii) off-policy Actor-Critic (AC) algorithms such as DDPG
[17], TD3 [18], SAC [3] that compute the policy gradient through a critic (Q function). These
standard RL algorithms were designed for arbitrary scalar reward functions; and they compute an
approximate gradient for updating the policy. Practical on-policy algorithms based on the policy
gradient theorem use several approximations to the true gradient [13, 2, 14] and off-policy AC
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algorithms first approximate policy return with a critic (Q function) and subsequently compute the
gradient through this critic [17, 18, 3]. Even if the Q function is approximated very accurately, the
error in its gradient can be arbitrarily large, Appendix A.1.

Our insight is that the reward function in AIL has 2 special properties: (i) it is differentiable which
means we can compute the exact gradient through the reward function instead of approximating
it and (ii) it is dense/shaped as it comes from an adversary. As we will see in section 3, naively
computing the gradient through reward function would lead to a short-sighted sub-optimal policy.
To address this issue, we formulate a class of Actor Residual Critic (ARC) RL algorithms that use a
residual critic, C function (instead of the standard Q function) to approximate only the discounted
future return (excluding immediate reward).

The contribution of this paper is the introduction of ARC, which can be easily incorporated to
replace the AC algorithm in any existing AIL algorithm for continuous-control and helps boost the
asymptotic performance by computing the exact gradient through the shaped reward function.

2 Related Work
Algorithm Minimized f -Divergence

r(s, a)Name Expression

GAIL [10] Jensen-Shannon 1
2

{
Eρexp log 2ρexp

ρexp+ρπ
+ Eρπ log 2ρπ

ρexp+ρπ

}
logD(s, a)

AIRL [11], Reverse KL Eρπ log ρπ

ρexp log D(s,a)
1−D(s,a)f -MAX-RKL [12]

Table 1: Popular AIL algorithms, f -divergence metrics they minimize and their reward functions.
The simplest approach to imitation learning is Behavior Cloning [8] where an agent policy directly
regresses on expert actions (but not states) using supervised learning. This leads to distribution shift
and poor performance at test time [19, 10]. Methods such as DAgger [19] and Dart [20] eliminate
this issue but assume an interactive access to an expert policy, which is often impractical.

Inverse Reinforcement Learning (IRL) approaches recover a reward function which can be used to
train an agent using RL [9, 21] and have been more successful than BC. Within IRL, recent Ad-
versarial Imitation Learning (AIL) methods inspired by Generative Adversarial Networks (GANs)
[22] have been extremely successful. GAIL [10] showed state-of-the-art results in imitation learn-
ing tasks following which several extensions have been proposed [23, 24]. AIRL [11] imitates an
expert as well as recovers a robust reward function. [25] and [12] presented a unifying view on AIL
methods by showing that they minimize different divergence metrics between expert and agent state-
action distributions but are otherwise similar. [12] also presented a generalized AIL method f -MAX
which can minimize any specified f -divergence metric [26] between expert and agent state-action
distributions thereby imitating the expert. Choosing different divergence metrics leads to different
AIL algorithms, e.g. choosing Jensen-Shannon divergence leads to GAIL [10]. [27] proposed a
method that automatically learns a f -divergence metric to minimize. Our proposed Actor Residual
Critic (ARC) can be augmented with any of these AIL algorithms to leverage the reward gradient.

Some recent methods have leveraged the differentiable property of reward in certain scenarios but
they have used this property in very different settings. [28] used the gradient of the reward to improve
the reward function but not to optimize the policy. We on the other hand explicitly use the gradient
of the reward to optimize the policy. [29] used the gradient through the reward to optimize the policy
but operated in the model-based setting. If we have access to a differentiable dynamics model, we
can directly obtain the gradient of the expected return (policy objective) w.r.t. the policy parameters,
Appendix E.5. Since we can directly obtain the objective’s gradient, we do not necessarily need
to use either a critic (Q) as in standard Actor Critic (AC) algorithms or a residual critic (C) as in
our proposed Actor Residual Critic (ARC) algorithms. Differentiable cost (negative reward) has
also been leveraged in control literature for a long time to compute a policy, e.g. in LQR [30] and
its extensions; but they assume access to a known dynamics model. We on the other hand present
a model-free method with unknown dynamics that uses the gradient of the reward to optimize the
policy with the help of a new class of RL algorithms called Actor Residual Critic (ARC).

3 Background
Objective Our goal is to imitate an expert from one or more demonstrated trajectories (state-action
sequences) in a continuous-control task (state and action spaces are continuous). Given any Adver-
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sarial Imitation Learning (AIL) algorithm that uses an off-policy Actor-Critic algorithm RL algo-
rithm, we wish to use our insight on the availability of a differentiable reward function to improve
the imitation learning algorithm.

Notation The environment is modeled as a Markov Decision Process (MDP) represented as a
tuple (S,A,P, r, ρ0, γ) with state space S, action space A, transition dynamics P : S × A ×
S → [0, 1], reward function r(s, a), initial state distribution ρ0(s), and discount factor γ. π(.|s),
πexp (.|s) denote policies and ρπ, ρexp : S × A → [0, 1] denote state-action occupancy distributions
for agent and expert respectively. T = {s1, a1, s2, a2, . . . , sT , aT } denotes a trajectory or episode
and (s, a, s′, a′) denotes a continuous segment in a trajectory. A discriminator or adversary D(s, a)
tries to determine whether the particular (s, a) pair belongs to an expert trajectory or agent trajectory,
i.e. D(s, a) = P (expert|s, a). The optimal discriminator is D(s, a) = ρexp(s,a)

ρexp(s,a)+ρπ(s,a) [22].

Adversarial Imitation Learning (AIL) In AIL, the discriminator and agent are alternately
trained. The discriminator is trained to maximize the likelihood of correctly classifying expert
and agent data using supervised learning, (1) and the agent is trained to maximize the expected
discounted return, (2).

max
D

{
Es,a∼ρexp [logD(s, a)] + Es,a∼ρπ [log(1−D(s, a))]

}
(1)

max
π

{
Es,a∼ρ0,π,P

∑
t≥0

γtr(st, at)
}

(2)

Here, reward rψ(s, a) = h(Dψ(s, a)) is a function of the discriminator which varies between differ-
ent AIL algorithms. Different AIL algorithms minimize different f -divergence metrics between ex-
pert and agent state-action distribution. Defining a f -divergence metric instantiates different reward
functions [12]. Some popular divergence choices are Jensen-Shannon in GAIL [10] and Reverse
Kullback-Leibler in f -MAX-RKL [12] and AIRL [11] as shown in Table 1.

Any RL algorithm could be used to optimize (2) and popular choices are off-policy Actor-Critic
algorithms such as DDPG [17], TD3 [18], SAC [3] and on-policy algorithms such as TRPO [13],
PPO [2], GAE [14] which are based on the policy gradient theorem [15, 16]. We focus on off-policy
Actor-Critic algorithms as they are usually more sample efficient and stable than on-policy policy
gradient algorithms [18, 3].

Continuous-control using off-policy Actor-Critic The objective in off-policy RL algorithms is
to maximize expected Q function of the policy, Qπ averaged over the state distribution of a dataset
D (typically past states stored in buffer) and the action distribution of the policy π [31]:

max
π

Es∼D,a∼πQπ(s, a) (3)

where, Qπ(s, a) = Es,a∼ρ0,π,P
[∑
k≥0

γkrt+k

∣∣∣∣st = s, at = a

]
(4)

The critic and the policy denoted by Q, π respectively are approximated by function approximators
such as neural networks with parameters φ and θ respectively. There is an additional target Qφtarg

function parameterized by φtarg. There are two alternating optimization steps:

1. Policy evaluation: Fit critic (Qφ function) by minimizing Bellman Backup error.

min
φ

Es,a,s′∼D {Qφ(s, a)− y(s, a)}2 (5)

where, y(s, a) = r(s, a) + γQφtarg(s
′, a′) and a′ ∼ πθ(.|s′) (6)

Qφ is updated with gradient descent without passing gradient through the target y(s, a).

2. Policy improvement: Update policy with gradient ascent over RL objective.

Es∼D
[
∇θQφ(s, a ∼ πθ(.|s))

]
(7)

All off-policy Actor Critic algorithms follow the core idea above ((5) and (7)) along with additional
details such as the use of a deterministic policy and target network in DDPG [17], double Q networks
and delayed updates in TD3 [18], entropy regularization and reparameterization trick in SAC [3].
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Naive-Diff and why it won’t work Realizing that the reward in AIL is differentiable and shaped,
we can formulate a Naive-Diff RL algorithm that updates the policy by differentiating the RL objec-
tive (2) with respect to the policy parameters θ.

ET ∼D
[
∇θr(s1, a1) + γ∇θr(s2, a2) + γ2∇θr(s3, a3) + . . .

]
(8)

T = {s1, a1, s2, a2 . . . } is a sampled trajectory in D. Using standard autodiff packages such as
Pytorch [32] or Tensorflow [33] to naively compute the gradients in (8) would produce incorrect
gradients. Apart from the immediate reward r(s1, a1), all the terms depend on the transition dynam-
ics of the environment P(st+1|st, at), which is unknown and we cannot differentiate through it. So,
autodiff will calculate the gradient of only immediate reward correctly and calculate the rest as 0’s.
This will produce a short-sighted sub-optimal policy that maximizes only the immediate reward.

4 Method

r1 r2 r3 rT

Q - Approximates return

C - Approximates future return (residue)
Immediate

reward
Figure 1: Visual illustration of approximating reward via Q function or C function.

The main lesson we learnt from Naive-Diff is that while we can obtain the gradient of immediate
reward, we cannot directly obtain the gradient of future return due to unknown environment dynam-
ics. This directly motivates our formulation of Actor Residual Critic (ARC). Standard Actor Critic
algorithms use Q function to approximate the return as described in Eq. 4. However, since we can
directly obtain the gradient of the reward, we needn’t approximate it with a Q function. We, there-
fore, propose to use C function to approximate only the future return, leaving out the immediate
reward. This is the core idea behind Actor Residual Critic (ARC) and is highlighted in Fig. 1. The
word “Residual” refers to the amount of return that remains after subtracting the immediate reward
from the return. As we will see in Section 4.3, segregating the immediate reward from future return
will allow ARC algorithms to leverage the exact gradient of the shaped reward. We now formally
describe Residual Critic (C function) and its relation to the standard critic (Q function).

4.1 Definition of Residual Critic (C function)
The Q function under a policy π, Qπ(s, a), is defined as the expected discounted return from state s
taking action a, (9). TheC function under a policy π,Cπ(s, a), is defined as the expected discounted
future return, excluding the immediate reward (10). Note that the summation in (10) starts from 1
instead of 0. Q function can be expressed in terms of C function as shown in (11).

Qπ(s, a) = Es,a∼ρ0,π,P
[∑
k≥0

γkrt+k

∣∣∣∣st = s, at = a

]
(9)

Cπ(s, a) = Es,a∼ρ0,π,P
[∑
k≥1

γkrt+k

∣∣∣∣st = s, at = a

]
(10)

Qπ(s, a) = r(s, a) + Cπ(s, a) (11)
4.2 Policy Iteration using C function

Algorithm 1: Policy Iteration with C function
Initialize C0(s, a)∀s, a;
while π not converged do

// Policy evaluation
for n=1,2,. . . until Ck converges do

Cn+1(s, a)← γ
∑
s′ P (s′|s, a)

∑
a′ π(a

′|s′) (r(s′, a′) + Cn(s′, a′)) ∀s, a
// Policy improvement

π(s, a)←

{
1, if a = argmaxa′ (r(s, a

′) + C(s, a′))

0, otherwise
∀s, a

Using C function, we can formulate a Policy Iteration algorithm as shown in Algorithm 1, which is
guaranteed to converge to an optimal policy (Theorem 1), similar to the case of Policy Iteration with
Q or V function [16]. Other properties of C function and proofs are presented in Appendix B.
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4.3 Continuous-control using Actor Residual Critic
We can easily extend the policy iteration algorithm with C function (Algorithm 1) for continuous-
control tasks using function approximators instead of discreteC values and a discrete policy (similar
to the case of Q function [16]). We call any RL algorithm that uses a policy, π and a residual critic,
C function as an Actor Residual Critic (ARC) algorithm. Using the specific details of different
existing Actor Critic algorithms, we can formulate analogous ARC algorithms. For example, using
a deterministic policy and target network as in [17] we can get ARC-DDPG. Using double C net-
works (instead of Q networks) and delayed updates as in [18] we can get ARC-TD3. Using entropy
regularization and reparameterization trick as in [3] we can get ARC-SAC or SARC (Soft Actor
Residual Critic).

4.4 ARC aided Adversarial Imitation Learning
To incorporate ARC in any Adversarial Imitation Learning algorithm, we simply replace the Ac-
tor Critic RL algorithm with an ARC RL algorithm without altering anything else in the pipeline.
For example, we can replace SAC [3] with SARC to get SARC-AIL as shown in Algorithm 2.
Implementation-wise this is extremely simple and doesn’t require any additional functional parts
in the algorithm. The same neural network that approximated Q function can be now be used to
approximate C function.

Algorithm 2: SARC-AIL: Soft Actor Residual Critic Adversarial Imitation Learning
Intialization: Environment (env), Discriminator parameters ψ, Policy parameters θ, C-function

parameters φ1, φ2, dataset of expert demonstrations Dexp, replay buffer D, Target parameters
φtarg1 ← φ1, φtarg2 ← φ2, Entropy regularization coefficient α;

while Max no. of environment interactions is not reached do
a ∼ πθ(.|s);
s′, r, d = env.step(a); d = 1 if s′ is terminal state, 0 otherwise
Store (s, a, s′, d) in replay buffer D;
if Update interval reached then

for no. of update steps do
Sample batch B = (s, a, s′, d) ∼ D;
Sample batch of expert demonstrations Bexp = (s, a) ∼ Dexp;
Update Discriminator parameters (ψ) with gradient ascent.
∇ψ
{∑

(s,a)∈Bexp [logDψ(s, a)] +
∑

(s,a,s′,d)∈B [log(1−Dψ(s, a))]
}

;

Compute C targets ∀(s, a, s′, d) ∈ B
y(s, a, d) = γ

(
rψ(s

′, ã′) + mini=1,2 Cφtargi(s
′, ã′)− α log πθ(ã

′|s′)
)
, ã′ ∼

πθ(.|s′), rψ(s′, ã′) = h(Dψ(s,
′ , ã′))

Update C-functions parameters (φ1, φ2) with gradient descent.
∇φi 1

|B|
∑

(s,a,s′,d)∈B (Cφi(s, a)− y(s, a, d))
2 , for i = 1, 2

Update policy parameters (θ) with gradient ascent.

∇θ 1
|B|
∑
s∈B

(
rψ(s, ã) + mini=1,2 Cφi(s, ã)− α log πθ(ã|s)

)
, ã ∼

πθ(.|s), rψ(s, ã) = h(Dψ(s, ã))
Update target networks.

φtargi ← ζφtargi + (1− ζ)φi, for i = 1, 2; ζ controls polyak averaging

4.5 Why choose ARC over Actor-Critic in Adversarial Imitation Learning?
The advantage of using an ARC algorithm over an Actor-Critic (AC) algorithm is that we can lever-
age the exact gradient of the reward. Standard AC algorithms use Qφ to approximate the immediate
reward + future return and then compute the gradient of the policy parameters through the Qφ func-
tion (12). This is an approximate gradient with no bound on the error in gradient, since the Qφ
function is an estimated value, Appendix A.1. On the other hand, ARC algorithms segregate the
immediate reward (which is known in Adversarial Imitation Learning) from the future return (which
needs to be estimated). ARC algorithms then compute the gradient of policy parameters through the
immediate reward (which is exact) and the C function (which is approximate) separately (13).

Standard AC Es∼D
[
∇θQφ(s, a)

]
, a ∼ πθ(.|s) (12)

ARC (Our) Es∼D
[
∇θr(s, a) +∇θCφ(s, a)

]
, a ∼ πθ(.|s) (13)

In Appendix A.2, we derive the conditions under which ARC is likely to outperform AC by per-
forming a (Signal to Noise Ratio) SNR analysis similar to [34]. Intuitively, favourable conditions
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for ARC are (i) Error in gradient due to function approximation being similar or smaller for C as
compared to Q (ii) the gradient of the immediate reward not having a high negative correlation with
the gradient of C (E [∇ar(s, a)∇aC(s, a)] is not highly negative). Under these conditions, ARC
would produce a higher SNR estimate of the gradient to train the policy. We believe that AIL is
likely to present favourable conditions for ARC since the reward is shaped.

ARC would under-perform AC if the error in gradient due to function approximation of C network
is significantly higher than that of Q network. In the general RL setting, immediate reward might be
misleading (i.e. E [∇ar(s, a)∇aC(s, a)] might be negative) which might hurt the performance of
ARC. However, we propose using ARC for AIL where the adversary reward measures how closely
the agent imitates the expert. In AIL, the adversary reward is dense/shaped making ARC likely to
be useful in this scenario, as experimentally verified in the following section.

5 Results
In Theorem 1, we proved that Policy Iteration withC function converges to an optimal policy. In Fig.
2, we experimentally validate this on an example grid world. The complete details are presented in
Appendix E.1. In the following sections (5.2, 5.3 and 5.4) we show the effectiveness of ARC aided
AIL in Mujoco continuous-control tasks, and simulated and real robotic manipulation tasks. In
Appendix D.2, we experimentally illustrate that ARC produces more accurate gradients than AC
using a simple 1D driving environment. The results are discussed in more detail in Appendix F.

5.1 Policy Iteration on a Grid World

G
(a) π∗
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(c) C∗
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0.59

(d)Q∗ = r∗ + C∗

Figure 2: On a Grid World, the results of running two Policy Iteration (PI) algorithms - PI with C function
(Algorithm 1) and the standard PI withQ function (Appendix C.1 Algorithm 3). Both algorithms converge in 7
policy improvement steps to the same optimal policy π∗ as shown in a. The optimal policy gets the immediate
reward shown shown b. The C values c at the convergence of PI with C function and the Q values d at the
convergence of PI with Q function are consistent with their relation Q∗ = r∗ + C∗ (11). Details are in E.1.

5.2 Imitation Learning in Mujoco continuous-control tasks
We used 4 Mujoco continuous-control environments from OpenAI Gym [35], as shown in Fig.
3. Expert trajectories were obtained by training a policy with SAC [3]. We evaluated the benefit
of using ARC with two popular Adversarial Imitation Learning (AIL) algorithms, f -MAX-RKL
[12] and GAIL [10]. For each of these algorithms, we evaluated the performance of standard AIL
algorithms (f -MAX-RKL, GAIL), ARC aided AIL algorithms (ARC-f -MAX-RKL, ARC-GAIL)
and Naive-Diff algorithm described in Section 3 (Naive-Diff-f -MAX-RKL, Naive-Diff-GAIL). We
also evaluated the performance of Behavior Cloning (BC). For standard AIL algorithms (GAIL
and f -MAX-RKL) and BC, we used the implementation of [28]. Further experimental details are
presented in Appendix E.

5.3 Imitation Learning in robotic manipulation tasks
We used simplified 2D versions of FetchReach (Fig. 5a) and FetchPush (Fig. 5b) robotic manipu-
lation tasks from OpenAI Gym [35] which have a simulated Fetch robot, [36]. In the FetchReach
task, the robot needs to take it’s end-effector to the goal (virtual red sphere) as quickly as possible.
In the FetchPush task, the robot’s needs to push the block to the goal as quickly as possible. We used
hand-coded proportional controller to generate expert trajectories for these tasks. Further details are
presented in Appendix E.3.

Fig. 4 shows the training plots and Table 2 shows the final performance of the different algorithms.
Across all environments and across both the AIL algorithms, incorporating ARC shows consistent
improvement over standard AIL algorithms (Table 2). BC suffers from distribution shift at test
time [19, 10] and performs very poorly. As we predicted in Section 3, Naive-Diff algorithms don’t
perform well as naively using autodiff doesn’t compute the gradients correctly.
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(a) Ant-v2 (b) Walker-v2 (c) HalfCheetah-v2 (d) Hopper-v2
Figure 3: OpenAI Gym’s [35] Mujoco continuous-control environments used for evaluation.
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Figure 4: Episode return versus number of environment interaction steps for different Imitation Learning algo-
rithms on Mujoco continuous-control environments.

Method Ant Walker2d HalfCheetah Hopper

Expert return 5926.18± 124.56 5344.21± 84.45 12427.49± 486.38 3592.63± 19.21

ARC-f -Max-RKL (Our) 6306.25± 95.91 4753.63± 88.89 12930.51± 340.02 3433.45± 49.48
f -Max-RKL 5949.81± 98.75 4069.14± 52.14 11970.47± 145.65 3417.29± 19.8

Naive-Diff f -Max-RKL 998.27± 3.63 294.36± 31.38 357.05± 732.39 154.57± 34.7

ARC-GAIL (Our) 6090.19± 99.72 3971.25± 70.11 11527.76± 537.13 3392.45± 10.32
GAIL 5907.98± 44.12 3373.26± 98.18 11075.31± 255.69 3153.84± 53.61

Naive-Diff GAIL 998.17± 2.22 99.26± 76.11 277.12± 523.77 105.3± 48.01

BC 615.71± 109.9 81.04± 119.68 -392.78± 74.12 282.44± 110.7

Table 2: Policy return on Mujoco environments using different Imitation Learning algorithms. Each algorithm
is run with 10 random seeds. Each seed is evaluated for 20 episodes.

Fig. 6a shows the training plots and Table 3 under the heading ‘Simulation’ shows the final per-
formance of the different algorithms. In both the FetchReach and FetchPush tasks, ARC aided
AIL algorithms consistently outperformed the standard AIL algorithms. Fig. 6b shows the magni-
tude of the 2nd action dimension vs. time-step in one episode for different algorithms. The expert
initially executed large actions when the end-effector/block was far away from the goal. As the
end-effector/block approached the goal, the expert executed small actions. ARC aided AIL algo-
rithms (ARC-f -Max-RKL and ARC-GAIL) showed a similar trend while standard AIL algorithms
(f -Max-RKL and GAIL) learnt a nearly constant action. Thus, ARC aided AIL algorithms were
able to better imitate the expert than standard AIL algorithms.

5.4 Sim-to-real transfer of robotic manipulation policies
For testing the sim-to-real transfer of the different trained AIL manipulation policies, we setup
JacoReach (Fig. 5c) and JacoPush (Fig. 5d) tasks with a Kinova Jaco Gen 2 arm, similar to the
FetchReach and FetchPush tasks in the previous section. The details are presented in Appendix E.4.

Table 3 under the heading ‘Real Robot’ shows the performance of the different AIL algorithms in the
real robotic manipulation tasks. The real robot evaluations showed a similar trend as in the simulated
tasks. ARC aided AIL consistently outperformed the standard AIL algorithms. Appendix D Fig. 9
visualizes the policies in the JacoPush task showing that ARC aided AIL algorithms were able to
push the block closer to the goal as compared to the standard AIL algorithms. Supplementary slide
shows videos of the same. Since we didn’t tune hyper-parameters for these tasks (both our methods
and the baselines, details in Appendix E.3), it is likely that the performances would improve with
further parameter tuning. Without fine-tuning hyper-parameters for these tasks, ARC algorithms
showed higher performance than the baselines. This shows that ARC algorithms are parameter
robust and applicable to real robot tasks without much fine tuning.
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(a) FetchReach (b) FetchPush (c) JacoReach (d) JacoPush
Figure 5: Simulated and real robotic manipulation tasks used for evaluation. Simplified 2D versions of the
FetchReach a and FetchPush b tasks from OpenAI Gym, [35] with a Fetch robot, [36]. Corresponding JacoRe-
ach c and JacoPush d tasks with a real Kinova Jaco Gen 2 arm, [37].
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(b) Action vs. time step

Figure 6: a Episode return vs. number of environment interaction steps for different Adversarial Imitation
Learning algorithms on FetchPush and FetchReach tasks. b Magnitude of the 2nd action dimension versus
time step in a single episode for different algorithms.

Simulation Real Robot
Method FetchReach FetchPush JacoReach JacoPush

Expert return -0.58± 0 -1.18± 0.04 -0.14± 0.01 -0.77± 0.01

ARC-f -Max-RKL (Our) -1.43± 0.08 -2.91± 0.25 -0.38± 0.02 -1.25± 0.06
f -Max-RKL -2.22± 0.09 -3.38± 0.15 -0.8± 0.05 -2.03± 0.06

ARC-GAIL (Our) -1.53± 0.06 -2.64± 0.07 -0.46± 0.01 -1.56± 0.08
GAIL -2.78± 0.09 -4.53± 0.01 -1.05± 0.06 -2.35± 0.06

Table 3: Policy return on simulated (FetchReach, FetchPush) and real (JacoReach, JacoPush) robotic ma-
nipulation tasks using different AIL algorithms. The reward at each time step is negative distance between
end-effector & goal for reach tasks and block & goal for push tasks. The reward in the real and simulated tasks
are on different scales due to implementation details described in Appendix E.4.

6 Limitations
Three main limitations in our work are: (1) While many AIL algorithms can be trained using expert
‘states’ only, ARC-AIL can only be trained with ‘state-action’ (s, a) pairs. There are several scenar-
ios where obtaining (s, a) pairs is challenging (e.g. kinesthetic teaching). In such scenarios, ARC is
not directly applicable. People often use tricks to mitigate this issue and using (s, a) pairs to train a
policy is a popular choice [38, 39, 40, 41, 42]. (2) ARC-AIL can only work with continuous action
space. Most real world robotic tasks have or can be modified to have a continuous action space. (3)
We haven’t explored how the agent-adversary interaction in AIL affects the accuracy of the reward
gradient and leave that for future work.

7 Conclusion
We highlighted that the reward in popular Adversarial Imitation Learning (AIL) algorithms are dif-
ferentiable but this property has not been leveraged by existing model-free RL algorithms to train
a policy. Further, they are usually shaped. We also showed that naively differentiating the policy
through this reward function does not perform well. To solve this issue, we proposed a class of
Actor Residual Critic (ARC) RL algorithms that use a C function as an alternative to standard Actor
Critic (AC) algorithms which use a Q function. An ARC algorithm can replace the AC algorithm in
any existing AIL algorithm. We formally proved that Policy Iteration using C function converges to
an optimum policy in tabular environments. For continuous-control tasks, using ARC can compute
the exact gradient of the policy through the reward function which helps improve the performance
of the AIL algorithms in simulated continuous-control and simulated & real robotic manipulation
tasks. Future work can explore the applicability of ARC algorithm to other scenarios which have a
differentiable reward function.
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