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Abstract

Decoding visual stimuli from neural population activity is crucial for understand-
ing the brain and for applications in brain-machine interfaces. However, such
biological data is often scarce, particularly in primates or humans, where high-
throughput recording techniques, such as two-photon imaging, remain challenging
or impossible to apply. This, in turn, poses a challenge for deep learning de-
coding techniques. To overcome this, we introduce MElcoder, a biologically
informed decoding method that leverages neuron-specific most exciting inputs
(MEIs), a structural similarity index measure loss, and adversarial training. ME-
Icoder achieves state-of-the-art performance in reconstructing visual stimuli from
single-cell activity in primary visual cortex (V1), especially excelling on small
datasets with fewer recorded neurons. Using ablation studies, we demonstrate that
METIs are the main drivers of the performance, and in scaling experiments, we show
that MEIcoder can reconstruct high-fidelity natural-looking images from as few as
1,000-2,500 neurons and less than 1,000 training data points. We also propose a
unified benchmark with over 160,000 samples to foster future research. Our results
demonstrate the feasibility of reliable decoding in early visual system and provide
practical insights for neuroscience and neuroengineering applications.

1 Introduction

Recent progress in machine learning (ML), together with advances in collecting single-cell brain
activity data, has enabled powerful data-driven approaches to model the brain. The dominant approach
is to use ML models to characterize the stimulus-response function, i.e., to predict brain activity in
response to external variables (encoding), such as visual stimuli [2,|9, 24} 27} 28| 46]. The inverse
problem of decoding high-fidelity stimuli from brain activity started to garner attention only relatively
recently [6} 8, [18}123] 33} 137]]. One of the main reasons for this is the inherent difficulty of decoding
high-information content, such as images, from a small number of neurons that provide a highly
compressed and noisy version of the original stimulus [21]. This inverse problem is exaggerated
by the scarcity of single-subject data, which is necessary to accurately capture the unique response-
stimulus mapping of the subject’s visual system. Therefore, there is a need for decoding techniques
that can learn from limited training examples and from a small number of recorded neurons.

However, training machine learning models from scratch on such scarce single-subject data tends to
yield low-fidelity image reconstructions that lack sufficient detail [[18] 33, 151]]. Conversely, leveraging
pre-trained models, particularly those from the field of Generative Al (GenAl), provides high-
resolution but unreliable reconstructions, often containing hallucinated content |31 35, 137]]. Indeed,
as [39]] and our results in[subsection 4.5|show, prior decoding methods employing (text-guided) GenAl
are heavily biased toward their pre-training distribution of semantically rich images. This leads
to deceptively realistic, yet often pixel-level inaccurate, image reconstructions that do not capture
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the true fine spatial characteristics of the visual stimulus (and occasionally outright hallucinations),
hindering the reliability of these methods and limiting their scope of application [21]].

To remedy these problems, we develop an end-to-end trained decoding method called MElIcoder,
which utilizes prior knowledge from computational neuroscience and adversarial objectives to outper-
form previous methods on three difficult datasets. MEIcoder achieves high-fidelity reconstructions by
(1) utilizing a strong computational prior in the form of neuron-specific most exciting inputs (MEIs),
(2) a novel training loss based on the structural similarity index measure (SSIM), (3) an auxiliary
adversarial training objective that pushes reconstructions toward a manifold of natural-looking im-
ages, and (4) a parameter-efficient architecture that allows training on multiple distinct datasets. In
summary, the main contributions of this paper are as follows:

1. We develop a method that achieves state-of-the-art performance in decoding visual stimuli
from neural population activity in V1. This result demonstrates that decoding high-fidelity
reconstructions is feasible with the currently available single-subject data.

2. To understand the scaling behavior of our model, we analyze the relationship between
performance, the number of available recorded neurons, and the amount of training data.

3. To stimulate further developments in this area, we aggregate datasets from multiple sources
into a decoding benchmark with over 160,000 samples.

2 Related work

Most previous work on decoding brain signals has been done with magnetoencephalography (MEG)
and functional magnetic resonance imaging (fMRI) data. For example, [6] leveraged pre-trained
image embeddings and a pre-trained image generator to perform real-time decoding of MEG signals
into images. [30,135,136,137,/41]] used GenAl techniques, such as pre-trained diffusion models [19}40],
to decode images from fMRI. Their techniques were able to reconstruct the semantic information
in the visual stimuli, such as object categories, but were unable to capture low-level features of the
images. Furthermore, a study by [39] provided formal analysis to demonstrate that prior decoding
approaches based on diffusion models suffer from so-called “output dimension collapse”, which
restricts their decodable features. Their study, as well as our results in[subsection 4.4] also show that
prior GenAl-based decoding techniques tend to hallucinate, leading to untrustworthy and spatially
inaccurate reconstruction of novel images. These findings highlight the importance of choosing an
appropriate prior and carefully balancing it with the neural data to achieve reliable reconstructions.

One of the first studies investigating decoding from neuron-level data leveraged known retinotopy
to reconstruct simple visual stimuli and mental imagery [43]]. Later, using Generative Adversarial
Networks (GANSs) [[17] and other deep learning approaches, a series of works [18} 25} 31} [33} [51]]
showed promising initial results in decoding more complex stimuli from higher-order areas of
the visual system, such as V4 and the inferior temporal cortex. For example, [25] incorporated
known biological properties of neurons in the visual system into their brain-inspired architecture
to reconstruct images from sequences of spikes. More recently, [23] introduced a homeomorphic
decoder with learned inverse retinotopic mapping to reconstruct naturalistic images from macaque
brain signals. As we evaluate their method in[subsection 4.4} we find that its fully end-to-end trained
retinal embeddings are incapable of reconstructing high-fidelity images from our limited mouse data.
Moreover, their architecture is not designed to work with multiple distinct datasets, which prevents it
from integrating learning signals from data across different subjects.

Instead of training to decode images directly, the novel approach from [11]] pre-trains a CNN encoder
and, at inference time, performs an iterative encoder inversion procedure. It begins by (randomly)
initializing the pixels of the reconstructed image and then takes gradient steps on the image pixels
to minimize the difference between the ground-truth responses and the responses predicted by the
encoder from the reconstructed image. In addition to the computational burden at inference time,
this approach does not directly optimize for reconstruction quality at the pixel level, but rather for
reconstruction in the space of neuronal responses predicted by the encoding model. This can lead to
image artifacts and potentially limit its ability to accurately reconstruct target images.

Lastly, similarly as for the fMRI data, [31]] leveraged a pre-trained diffusion model and a CNN encoder
to decode neural population activity. More specifically, their method, Energy Guided Diffusion, guided
the inversion of a CNN encoder using a frozen diffusion model. This approach enabled sharper
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Figure 1: Architecture of MEIcoder. First, individual neural responses r; and their corresponding
neuron embeddings e; get projected by a feed-forward network into context representations C; (left).
The context representations are then pointwise-multiplied with MEIs and passed through a pointwise
convolution layer (center). Finally, the output of the convolution layer is used by the CNN core to
reconstruct the final image (right).

reconstructions by introducing a strong bias toward the image statistics of the pre-trained diffusion
model, but still optimized for reconstruction quality in the neural activity space as captured by the
encoding model, rather than in the image pixel space. In turn, the resulting reconstructions from
neuronal responses often contained spurious features that were not present in the original images,
which we also confirm in our experiments (subsection 4.4). Overall, these challenges highlight the
need for a new decoding approach that mitigates hallucination, preserves fine-grained visual details,
and more effectively balances neural evidence with generative priors.

3 MElcoder

To overcome the limitations of previous methods, we introduce MElcoder. It consists of two
components: a single core module and one or more readin modules. Each readin is trained separately
for its respective single-subject dataset and acts as an embedding function of the neural activity into
the core’s latent space. The core, on the other hand, is shared across all possibly heterogeneous multi-
subject datasets and maps from its latent space into images. The purpose is to reuse learning signals
across recordings from different subjects, even when their number of neurons and response-stimulus
mappings differ.

Core. To keep MEIcoder parameter-efficient and suitable for low-data regimes, we build the core as
a six-layer convolutional neural network (CNN) with batch normalization, ReLU activation function,

and dropout. Further details and hyperparameters can be found in

Readin. One of our main contributions comes in the readin module. While prior work in this area
used simple feed-forward neural networks to translate the raw brain signals into the latent space
[35136], we found it to be highly suboptimal as it quickly overfits and does not generalize well. This
motivated us to introduce a novel readin module, where we inject additional prior knowledge and
regularization into the decoder in the form of most exciting inputs (MEIs). In the context of visual
processing, MEIs are images that maximize the response of a given neuron in the visual system, thus
being highly informative about the coding properties of individual neurons [4}132,45]]. They are easily
obtainable from the training data, and their generation needs to be done only once (subsection A.4)).

The intuition behind MEIcoder stems from the fact that MEIs contain information about the receptive
fields of neuronf]—the spatial patterns that most strongly stimulate them. This suggests a straightfor-
ward linear decoding approach: overlay the MEIs of all neurons on top of each other, weighted by
their respective neural responses, to reconstruct the image. This intuition is the primary building block
of our method. However, in our method, since coding in V1 is not linear, we leave the combination
of MEIs onto the nonlinear blocks in the MEIcoder’s core. Furthermore, to provide greater flexibility
to the decoding process, we add learnable neuron embeddings that can encode additional properties
of the neural code. We show the MEIcoder pipeline in and describe it more formally below.

*In case of linear neurons, MEIs are equivalent to the receptive fields.



Let r € R™ be the vector of responses of n neurons, and ,w be the height and width of the
images to decode. The first step of our readin is to independently embed individual neural responses
r; together with their corresponding learnable neuron embeddings e; € {e; € Rd}?zl using a
one-layer neural network g, : R'*? — RM¥ into context representations C € R™"*. The
second step is to pointwise-multiply the precomputed MEIs M € R™"-" with the reshaped context
representations C € R™"% to obtain neural maps H = M ® C. Lastly, to obtain a constant number
of output channels for readins operating with possibly different numbers of neurons, we apply a
pointwise convolution to transform the neural maps of shape n x h X w into compressed neural maps
H, € R%"® which form the input to the core module of the decoder.

3.1 Training

Unless stated otherwise, we train the decoder end-to-end from random initialization. The full training
objective consists of two terms: (1) SSIM-based reconstruction loss, and (2) adversarial loss. We
combine the two using weighting coefficients Agsspy = 0.9 and Aapy = 0.1.

SSIM-based reconstruction loss. Given that the images for reconstruction are encoded by natural
vision, we employ a modification of the Structural Similarity Index Measure (SSIM) [47] to steer the
decoder toward perceptually important image features. Specifically, we use the negative log-SSIM

loss defined as: SSIM(y.§) + 1
. y) +
Lssm(y,y) = —log (y2y + 6), e))

where y,y € R%"™ are the ground-truth and reconstructed image, respectively, and ¢ = 1079 is
introduced for numerical stability. As later shown in with ablation studies, we found
this training objective more effective at producing perceptually accurate reconstructions compared to
standard objectives such as the mean squared error (MSE). Unlike perceptual loss functions based
on embeddings from pre-trained models, which we found to be unstable in training and produced
high-frequency artifacts, the SSIM objective required no further tuning and led to consistent results.

Adversarial training. The limited amount of data may not give the decoder enough training signal
to learn to reconstruct high-fidelity natural-looking images, and may potentially lead to overfitting.
To counteract this, we use an auxiliary adversarial objective similar to that used in GANﬂ More
specifically, we train a secondary CNN to classify whether a given input image is a reconstruction
from our decoder or a reference (ground-truth) image from the dataset (see[subsection A.3|for details).
Given this discriminator Dy : R%"% — [0, 1], we add the following loss for training the decoder:

Laov(¥) = (Ds(3) - 1)°. ®)

Note that unlike standard GANS, our decoder is not trained generatively and is conditioned only on
neuronal responses. Moreover, its objective directly optimizes for spatially accurate reconstruction,
and its priors are more aligned with the biological vision through the MEIs. These factors make
MEIcoder more reliable and faithful to the true response-stimulus function that it is trying to capture.

We train MEIcoder for 300 epochs using the AdamW optimizer [26] with a learning rate and weight
decay found using hyperparameter search and the validation dataset. Similar to early stopping [29],
we pick the best model from training based on the Alex(5) score measured on the validation dataset.

4 Experiments

We compare MEIcoder to state-of-the-art baselines on three datasets, two of which represent data-
and neuron-constrained settings. Given that there are currently no unified benchmarks for visual
decoding from neural population activity with sufficient heterogeneity, we propose our own as an
aggregation of previously published data sources.

4.1 Data

Brainreader dataset. The BRAINREADERE] data comes from mouse V1 and was originally introduced
by [11]. For our experiments, we use data from a single mouse, where recorded spike traces

3Previous work has also found adversarial objectives effective for reconstructing visual stimuli [18] 23] 38].
“This name, not used by the original authors, is chosen to differentiate this dataset.



were aggregated and averaged over a 500 ms time window following the presentation of grayscale
images. We divide the dataset into training, validation, and test sets of 4,500, 500, and 100 samples,
respectively. Each data point consists of a 36 x 64 px grayscale image sampled from ImageNet [12],
along with evoked neuronal responses of 8,587 neurons. For one of our experiments, we use data
from 8 mice, where the number of recorded neurons varies between the individual mouse datasets.
We refer the reader to [subsection A.2lfor additional details.

SENSORIUM 2022 dataset. We repurpose the mouse dataset published by the SENSORIUM 2022
competition [48]] for our decoding task. Specifically, the dataset used in our experiments contains
time-binned recordings of responses from 8,372 neurons for 4,984 images, which we split into training
and validation sets. For final evaluation, we use a testing set of 100 images with corresponding
10-trial averaged neural responses. For one of our experiments, we pre-train on data from 5 mice
available in the SENSORIUM 2022 data corpus and fine-tune on a single-mouse data.

Synthetic cat V1 dataset. Lastly, since most of the currently publicly available datasets suitable for
decoding in V1 are greatly data-constrained and limited to mouse or monkey data, we leverage a
highly biologically realistic spiking model of cat V1 from [3] to generate a large synthetic dataset.
This spiking model has been extensively validated in a series of studies, demonstrating a wide range
of accurately replicated properties of V1 coding [3} 42, 144]]. For data generation, we sample 50,250
grayscale images from ImageNet and encode them into responses of 46,875 neurons using the spiking
model. We split this additional synthetically generated dataset into training (45,000), validation
(5,000), and test (250) sets. Additional details can be found in[subsection A2}

4.2 Evaluation metrics

For robust evaluation, we follow previous studies [22| [23) 36] and use (1) SSIM, (2) Pearson
correlation between the pixel values of the reference and the reconstructed image, and (3) feature
correlation with two-way identification using a pre-trained AlexNet. For the feature correlation, we
follow [136] and extract feature representations at the second and fifth layers of ImageNet-pretrained
AlexNet to evaluate the two-way identification ability. This identification score refers to the percentage
of correct comparisons assessing if the reference image embedding is more similar to the reconstructed
image embedding or to a randomly selected image embedding. We use the implementation of the
two-way identification from [36]. For additional experimental details, please refer to

4.3 Baselines

We compare MElcoder with five baseline methods, four of which were developed on population
recordings of single-cell activity, and one of which was originally designed on fMRI. The first
two baselines are the Inverted Encoder (InvEnc) [[L1] and Energy Guided Diffusion (EGG) [31]] as
described in[section 2] InvEnc showed state-of-the-art performance on the BRAINREADER dataset,
and both methods are representative of a class of decoding methods that invert pre-trained encoder
models for image reconstruction, minimizing errors in response space.

The third baseline is the homeomorphic decoder MonkeySee [23]]. It employs the U-Net architecture,
feature representations from a pre-trained CNN, and is trained end-to-end with VGG feature loss,
L1 reconstruction loss, and an adversarial objective. Another baseline similar to MonkeySee is the
CAE decoder [10], which employs a series of fully-connected layers followed by downsampling
and upsampling convolutional blocks. Both methods showed improvements over the previous
best-performing approaches, and we consider them strong representatives of direct pixel decoding.

The last baseline to which we compare is MindEye2 [36], which combines multiple pre-trained
models from the field of GenAl with end-to-end trained networks. It demonstrated high-fidelity
reconstruction on the fMRI Natural Scenes Dataset [1]], outperforming all previous methods.

For all five baselines, we use the code provided by the original authors. To find the optimal hyperpa-
rameters, we use the same procedure as for our method: we perform a hyperparameter search using
only the training and validation datasets, and pick the best model checkpoint from training based on
the performance on the validation data.



Table 1: Results on the test sets from the BRAINREADER and SENSORIUM 2022 datasets. Best
results are highlighted red and second-best in bold. All values are means over three random seeds;
standard deviations and results for higher-level metrics are available in TablesEl and respectively.

Method BRAINREADER SENSORIUM 2022
etho
SSIM  PixCorr  Alex(2)  Alex(5) ‘ SSIM  PixCorr  Alex(2)  Alex(5)
InvEnc 321 611 .989 .896 288 453 915 720
EGG 256 495 758 .659 256 .365 177 755
MonkeySee 232 .565 967 .826 185 338 .564 523
CAE 256 .638 930 730 287 539 .656 .549
MindEye2 277 .560 946 .878 210 471 877 762
MindEye2 (FT) 234 516 920 .836 243 499 918 799
MElIcoder 400 679 998 990 331 503 988 .896
MElIcoder (FT) 424 .706 999 977 318 486 975 908
Target InvEnc EGG MonkeySee CAE MindEye2 MindEye2 (FT) MElcoder  MElcoder (FT)

Brainreader

SENSORIUM 2022
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Figure 2: Reconstructions on the BRAINREADER (top) and SENSORIUM 2022 (bottom) datasets.

4.4 Results and discussion

Tables [T]and 2] show that MEIcoder outperforms all baselines in decoding visual stimuli on all three
datasets (considered as an aggregate over the metrics). Furthermore, we can see that the improvements
are most significant in the biological data-scarce and neuron-scarce settings (BRAINREADER and
SENSORIUM 2022 datasets), highlighting the suitability of MEIcoder for such cases. Closer
qualitative evaluation in[Figure 2] further confirms that MEIcoder handles the low-data regime well,
producing more detailed and faithful reconstructions compared to other methods. For example,
while the MindEye2 reconstructions on the BRAINREADER dataset are relatively sharp but spatially
inaccurate, and MonkeySee reconstructions are the opposite, MEIcoder achieves both at the same
time. This result can be explained by the difference in prior knowledge injected into these three
decoders. Namely, MindEye?2 reconstructions are steered toward natural-looking, semantically rich
images due to its GenAl components, and MonkeySee employs a weak prior in the form of frozen
feature embeddings from a pre-trained CNN. MElcoder, by contrast, leverages MEIs as a prior that is
more closely aligned with the neurons from which it is actually decoding.

We also test how well MEIcoder handles multi—subjecﬂ pre-training and subsequent single-subject
fine-tuning (FT). Comparing the FT version against others in [Table 1]and [Figure 2] we can see that
the split of the architecture into a core and subject-specific readins allows MEIcoder to work well in
this more heterogeneous training regime, outperforming the single-subject training in some cases.

Combined data from 8 and 5 mice from BRAINREADER and SENSORIUM 2022 datasets, respectively.



Table 2: Results on the test set of the SYN-
THETIC CAT V1 dataset. Best results are high-
lighted in red and second-best in bold. All val-
ues are means over three random seeds; standard
deviations are available in [Table 4]

SYNTHETIC CAT V1

Target InvEnc EGG MonkeySee CAE MindEye2 MElcoder

Method
SSIM  PixCorr  Alex(2)  Alex(5)
InvEnc 771 833 986 978
EGG .640 .667 936 906
. . MonkeySee .607 723 982 958
Figure 3: SYNTHETIC CAT V1 reconstructions. See  CAE 637 792 927 776
for more examples. MindEye2  .559 757 977 939
MElIcoder 774 171 994 987
MEls X v X X v v
Neuron embeddings X X V4 X v/ X v
SSIM loss X X X v X v v
£ o ..—- |
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o
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g -30 EEE§ ssiv  [EBA PixCorr [BXB] Alex(2) [EER Alex(5)

Figure 4: Ablation study on sub-components of MEIcoder. The percentage (y-axis) is calculated with
respect to a setting with no ablations. Reported values are the average across the three datasets.

4.5 Further analysis

Ablation study. We conduct ablation studies to quantify the importance of individual components
of MEIcoder. Specifically, we evaluate performance after removing MEIs from the readin module
by using only the context representations C as the neural maps H (3). Similarly, we evaluate the
metrics after removing the neuron embeddings e; from the input of the neural network g,,, and after
substituting the standard MSE training objective in place of the SSIM-based reconstruction loss. We
report the average over the three datasets.

The results in show that MEIs have == MElcoder mm MindEye2
the most significant positive influence on the Brainreader SENSORIUM 2022 Synthetic Cat V1
state-of-the-art performance of MElcoder. In- |/~ _
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Figure 7: Relationship between MEIcoder’s performance and the number of training data points.
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Figure 8: Relationship between MEIcoder’s performance and the number of neurons.

Amount of training data. To quantify the scaling behavior of MEIcoder, we train it on varying
sizes of the training set and evaluate it using the full test set. As we can see in[Figure 7} MEIcoder’s
reconstructions start to capture ground-truth images after training with 1,000 or fewer training data
points. Moreover, if we look at the Alex(2) performance of the second-best method from [Table T}
which was trained on all data, we see that MEIcoder outperforms it already at 1,000 training data
points, demonstrating its data efficiency. Lastly, it is worth noting that while the quantitative measures
start to plateau, the qualitative (visual) results keep steadily improving, indicating limitations of the
currently widely used metrics, such as PixCorr and two-way identification scores.

Number of neurons. Another challenge in reconstructing visual stimuli from neural population
activity comes in the form of information scarcity, which results from the difficulty of (invasively)
recording many cells in parallel and from neuronal noise [13]]. This problem manifests when decoding
methods need to successfully invert the brain’s unique stimulus-encoding process using only a small
subset of neurons, which might not carry sufficient information to fully decode the original stimulus.
To balance the reconstruction quality with the costs of brain recordings, it is therefore paramount
to understand how the decoder’s performance scales with the number of neurons. [Figure 8|shows
this relationship, and we can see that MEIcoder reaches more than 95% two-way identification
ability (Alex(2)) on all three datasets with just around 1,000 neurons and can accurately distinguish
digits with around 2,500 neurons. Interestingly, the pixel correlation keeps increasing for both
BRAINREADER and SYNTHETIC CAT V1 datasets, indicating that the performance does not saturate



even with the 46,875 neurons available in the synthetic cat dataset, which is several-fold more than
what most current biological datasets can provide in a single animal.

The scaling experiments above reveal several insights. Firstly,
the similar scaling behavior of biological and SYNTHETIC Taraer | Mostexcited - Combined

CAT V1 data highlights the potential of high-fidelity spik- pus = M
ing models, which capture detailed visual cortex dynamics ; ‘
and provide abundant data for developing and benchmarking
decoding methods. Second, the number of available neu- n“un
rons seems to be more limiting than the size of the training

dataset, as can be seen by the steady qualitative improvement u-

of reconstructions and unsaturated metrics with an increasing

number of available neurons. Finally, our analysis indicates
that recording between 1,000 and 2,500 neurons from mouse
V1 is enough for fine-grained reconstructions with the power
to discriminate between handwritten digits.

Reconstructing artificial patterns. In[Figure 9] we provide
an additional demonstration of how MElcoder successfully
generalizes to out-of-distribution data using its strong MEI  Figure 9: Reconstructing artificial
prior. Specifically, we create images with artificial patterns for patterns using MEISs (center) and ME-
which we predict neuronal responses from CNN encoder pre- Icoder (right). Shown are only the
trained on the BRAINREADER dataset, and then decode the middle image regions for better visi-
original images back using these encoded responses. As we  bility of MEIs.

can see, MEIcoder captures exact shapes well, even though it

has never encountered such artificial patterns in its training data. This demonstrates its generalization
and reliability, which might be crucial for certain applications. In addition, we illustrate the underlying
intuition behind our method: approximating the original images by summing the MEIs of all neurons,
weighted by their corresponding neuronal responses (“Combined MEIs”). Additionally, we also
show the MEI corresponding to the neuron with the highest predicted response (“Most excited MEI”).
The fact that even these simple linear MEI-based reconstructions already capture some of the basic
characteristics of the original images further motivates the main building block of MEIcoder.

Concept-based analysis. Finally, we analyze the learned decoding process of MEIcoder, aiming
to provide scientific insights into computations in V1. Specifically, we implement a concept-based
analysis that combines (1) non-negative matrix factorization (NMF) to learn a dictionary of 32 feature
bases (“visual concepts”) from the feature maps at different layers of the MEIcoder’s core module,
with (2) a sensitivity analysis to observe how manipulating the response of a single neuron changes
the activation of these concepts. Intuitively, if the increased neuron activation increases the activation
of certain concepts in our decoder, this would mean that in the brain, these visual concepts are likely
to be driving that particular neuron. We make the following observations from this analysis:

1. For the majority of neurons, the high-intensity (bright) areas of the most active concepts
become smaller and more focused as we traverse through the decoder’s layers. This suggests
the model learns a hierarchy, starting with coarse features and progressively refining them
into more detailed structures, with the final location remaining in most cases consistent with
the neuron’s original MEIL. An example of this for two neurons can be seen in

2. Many of the neurons’ top three feature bases include a concept that encodes the brightness
of the image border (Figure T0). Together with finding (1), this suggests that many neurons
encode the global lighting condition, and at the same time specialize in encoding smaller
local structures at different places in the visual field (as supported by MEIs). This might hint
at how, through lateral cortical processing, the cortex fills in information where it is missing.

3. We identify a few neurons for which incrementally increasing the response results in an
incremental shift of a dark object in the reconstructed image (two examples in [Figure 12)).
This highlights neurons whose responses drastically affect the decoder’s learned reconstruc-
tion process. Interestingly, this emergent MEIcoder’s property mirrors key findings about
functional asymmetries in the visual cortex. Namely, a study by [49] found a significant
over-representation of “black-dominant” (OFF) neurons in the corticocortical output layers
2/3 of macaque V1. As the authors of [49] pointed out, their results suggested that the
human perceptual preference for black over white is generated or greatly amplified in V1.



Figure 10: Input images, MEIs, and visual concepts with the highest activation gain for two example
neurons from the BRAINREADER dataset. For each MEIcoder core layer and neuron, the top three
concepts (NMF features) are shown, ordered by the increase in the corresponding feature coefficient
between a forward pass with the neuron’s response set to zero and one with it set to 10 - p g9, where
P.99 denotes the neuron’s 99th activation percentile in the dataset.

This analysis showcases MEIcoder’s potential as a tool for scientific discovery, revealing how it
combines individual neuron contributions into a coherent reconstruction. This demonstrates its utility
for studying visual neural codes, and we believe further interpretability analysis represents an exciting
avenue for future work. A more detailed discussion of the visual features reconstructed by MEIcoder

and how our analysis compares with existing work can be found in [subsection A.10

S5 Concluding remarks

Limitations. Motivated by applications in brain-machine interfaces and neuroprosthetics for individu-
als with acquired blindness, we focused primarily on data from V1, which encodes low-level features
of visual stimuli. Although we showed state-of-the-art performance on three V1 datasets from two
different species, which we would argue is still a remarkable feat, we did not test our method on
higher-order areas such as V4. However, despite the increased complexity of receptive fields of
neurons in these areas, MEIcoder can combine MEIs in a highly nonlinear fashion thanks to its
core, and is able to learn additional coding properties of neurons in its learnable neuron embeddings.
Another limitation of this study and room for additional investigation lies in the transfer learning
capability of MEIcoder (i.e., pre-training on multi-subject data). Empirically, we found performance
gains from transfer on the BRAINREADER dataset, but not on the SENSORIUM 2022 data.

Conclusion. We introduced MElcoder, a novel decoding method that achieves state-of-the-art
performance in reconstructing visual stimuli from neural population activity in V1. Leveraging
MEIs, SSIM-based training objective, and adversarial training, MEIcoder outperforms all baselines
on three difficult datasets, especially excelling in data- and neuron-scarce settings. Compared to
GenAl techniques that gained popularity in decoding, MEIcoder better captures low-level features of
images and does not suffer from high variance of reconstruction accuracy, making it more suitable
for applications ranging from brain machine interfaces to uncovering brain information content. Our
additional investigations also offer practical insights for neuroscience: We showed for the first time
that MEIs are a powerful tool not only for understanding tuning properties of individual neurons,
but also for reconstructing stimuli. Additionally, our scaling experiments demonstrate that it is
feasible to achieve high-fidelity image reconstructions with as few as 1,000 to 2,500 neurons and
limited single-subject training data. Finally, we showed the promise of accurate spiking models for
developing decoding methods and presented an integrated benchmark pipeline that provides access to
more than 160,000 samples to support future research in this area.
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A Technical Appendices and Supplementary Material

A.1 Experimental details

We conducted the main experiments reported in Table(T]
seeds; the resulting standard deviations are reported in [Ta

and Table[2]

€

three times with different random

and[Table 4] Each of our experiments

used one NVIDIA Tesla V100 GPU and required less than 32 GB of VRAM. The longest training
run of our method (training with data from multiple subjects) took approximately four days, whereas
the longest training run of the baselines took six days.

The code for our experiments and instructions on obtaining the data are available in our public
repository at https://github.com/Johnny1188/meicoder.

Table 3: Quantitative results on the test sets from the BRAINREADER and SENSORIUM 2022

datasets. Best results are highlighted in red, and second-best in bold.

Method BRAINREADER SENSORIUM 2022
etho
SSIM PixCorr Alex(2) Alex(5) \ SSIM PixCorr Alex(2) Alex(5)
InvEnc 321 611 989 896 288 453 915 720
+.001 +.006 +.002 +.011 +.005  +£.005 +.010 +.012
EGG 256 495 758 659 256 365 777 755
+.006  =+.001 +.015 +.021 +£.009  =£.020 +.007 +.024
MonkevSee 232 565 967 826 185 338 564 523
y +.008  £.007 +.006 +024 | £.006  +.009 +.014 +.004
CAE 256 638 1930 730 287 539 656 549
+.010  +.003 +.004 +.007 | £.006  =£.008 +.005 +.002
MindEved 277 560 946 878 210 AT1 877 762
Y +.039  £.027 +.020 +.027 | +£.028  +.036 +.037 +.048
. 234 516 920 836 243 499 918 799
MindEye2 (FD {045 £.038  £.043  £.067 ‘ £006  +£008 4013 4013
R— 400 679 998 990 331 503 988 896
code +.022 +.010 +.002 +.006 +.004 +.013 +.004 +.006
424 7706 999 977 318 486 975 908
wlelEsar (B +.012 +.002 +.010 ‘ +.003 +.011 +.004 +.003
A.2 Data

Each data point consists of a z-scored image
and associated neuronal responses (neural ac-
tivity accumulated during £500 ms time win-
dow after image stimulus onset). All images,
except the hand-selected ones in the test sets
of BRAINREADER and SENSORIUM 2022,
were randomly sampled from ImageNet. The
final sizes of the grayscale-mapped stimuli
were: 36 X 64 px (BRAINREADER), 22 x 36
px (SENSORIUM 2022), and 20 x 20 px
(SYNTHETIC CAT V1). Additionally, to ad-
dress the substantial variability of firing rates
between different neurons, which could be
detrimental to training, we rescale individ-
ual neuronal responses by the inverse of the
standard deviation estimated for each neuron.
All z-scoring statistics are obtained from the
training sets. For further details on data col-
lection of the biological datasets, please re-
fer to the original works ([[L1] and [48] for
BRAINREADER and SENSORIUM 2022,
respectively).

Table 4: Quantitative results on the test set of the SYN-
THETIC CAT V1 dataset. Best results are highlighted

in red, and second-best in bold.

SYNTHETIC CAT V1

Method
SSIM PixCorr  Alex(2)  Alex(5)
IvEnc a1 833 986 978
£.002 4002 4003 +.001
640 667 936 906
EGG £.022  +.027 4007  +.013
607 723 982 958
MonkeySee g1 4019 4009  +.021
637 793 929 775
CAE £.006  +£.005  +£.004  +.006
, 559 757 977 939
MindEye2 611 4016 4.006  +.014
774 777 994 987
MElcoder /606 1009  4.000  +.002
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Synthetic Cat V1 dataset. We generated the SYNTHETIC CAT V1 dataset using the biologically
realistic spiking model from [3]], which represents cortical layers 4 and 2/3, corresponding toa 5 x 5
mm patch of cat V1. When generating the samples, we first presented this encoding model with
an image stimulus and then measured the evoked mean firing rates of 46,875 neurons in layer 2/3
over the following 560 ms time window. As for the other datasets, the image stimuli were sampled
from ImageNet, converted to grayscale, downsampled, and then cropped to a size of 50 x 50 px.
When we subsequently used the data to train and evaluate the decoding models, we only considered
the central 20 x 20 px patch of the images. The reason is that the neurons in the encoding model
have overlapping receptive fields that do not cover the whole visual field; therefore, their induced
responses contain information only about the central patch of the presented images. To reduce the
impact of noise on our evaluation, we created the test set by presenting the image stimuli 100 times
and then averaging the corresponding neural responses to obtain the final neural activity.

Combining the three datasets into a single data corpus results in a benchmark pipeline consisting of:

1. BRAINREADER dataset: Data from V1 of 22 mice, where each single-subject dataset contains
around 5,000 data points, and the average/min/max number of neurons is 8,116/6,721/9,395.
Data for each mouse was split into training, validation, and test sets by the original au-
thors [[L1]]. The test sets contain 40 repeated trials for each stimulus.

2. SENSORIUM 2022 dataset: Data from V1 of 5 mice (using only the training recordings
from the SENSORIUM 2022 competition), where each single-subject dataset contains
around 5,000 data points, and the average/min/max number of neurons is 7,851/7,334/8,372.
We split the dataset from each mouse into a training (4,500) and a validation (500) set. The
test sets are provided separately by the original authors [48]] and contain 10 repeated trials
for each stimulus.

3. SYNTHETIC CAT V1 dataset: Synthetic data from the spiking model of cat V1 (single-
subject) containing 50,250 data points of neuronal responses of 46,875 neurons. We split
this data corpus into a training (45,000), validation (5,000), and test (250) sets. The test set
contains 100 repeated trials for each stimulus.

A.3 MElcoder details

Hyperparameters. We provide hyperparameters of MEIcoder used for the final experiments in
Additional settings that we kept the same across all datasets include:

* Number of compressed neural map channels d. (readin): 480

¢ Number of CNN channels (core): 480, 256, 256, 128, 64, 1

e Kernel sizes (core): 7,5,5,3,3,3

» Padding (core): 3,2,2,1, 1, 1

e Stride (core): 1,1,1,1,1,1

* Dropout probability (core): 0.35

Table 5: Hyperparameter search space for MEIcoder, with final selected values underlined.

Dataset Learning rate Weight decay Dimension of neuron embeddings
BRAINREADER {le-3, le-4,3e-5}  {3e-1, 8e-2, 3e-3} {16, 32, 64}
SENSORIUM 2022  {le-3, le-4,3e-5}  {3e-1, 8e-2, 3e-3} {16, 32, 64}
SYNTHETIC CAT V1 {le-3, le-4,3e-5}  {3e-1, 8e-2, 3e-3} {16, 32, 64}

Discriminator. The discriminator used for the auxiliary adversarial objective is implemented as a
CNN with five layers of convolution, batch normalization, ReLU activation function, and dropout
(p = 0.3). The output of the last layer is flattened into a one-dimensional vector and transformed by
a linear layer followed by the sigmoid activation function. The result is a predicted probability that
the given discriminator’s input is a reference image from the dataset (i.e., not a reconstruction from
the decoder).
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We train the discriminator simultaneously with the decoding model using the AdamW optimizer [26]
with the same learning rate and weight decay as the decoding model. The training objective is as
follows: Let Agr € R be the loss weighting factor, egr € [0,égr € Ry],er € [0,&r € R ] be the
target noising components, and y and y denote the reference (ground-truth) and reconstructed image,
respectively. Then, our implementation of the discriminator loss £y, is the following:

Lo(y,9) = Aot~ (Dg(y) =1 —ear)” + (1= Aa1) - (Dg(3) — er)”. A3)

The target noising component egr for the reference image part is sampled from a uniform distribution
between 0 and {gr, while the noising component eg comes from a uniform distribution between 0
and £g. We found that by introducing noise into the discriminator training, we were able to better
balance the decoder and the discriminator, and thereby stabilize the training. We note that this is
reminiscent of one-sided label smoothing as introduced in [34], where the discriminator’s positive
targets are smoothed from 1 to 0.9, making its task harder. The specific hyperparameters we used for
the final experiments are given below:

¢ Number of channels: 256, 256, 128, 64, 64
e Kernel sizes: 7,5,3,3,3

e Padding: 2,1, 1,1, 1

e Stride: 2,2,1,1, 1

e {or =& = 0.05

e A\gr=0.5

Overall, the selection of architecture and hyperparameters makes MEIcoder more parameter-efficient.
Namely, the CNN architecture achieves efficiency by parameter-sharing and by allowing only local
connections. Furthermore, MEIcoder reuses the core module (backbone) across datasets from
different subjects (e.g., different mice) and only trains new readin modules. By sharing the core
module, MEIcoder reduces the number of parameters threefold.

A.4 Most exciting inputs

Motivation. The two main reasons why we decided to use a computational prior in the form of
METIs are the following. First, strong priors help guide learning and prevent overfitting in data-limited
regimes like our neural recording dataset [5[7]. Second, many neurons exhibit sparse firing, which
can make it difficult for the decoder to learn the stimulus-response mapping for a neuron that was
active for only a handful of images in the training set. To combat this, the MEI provides a powerful
“head-start” by giving the decoder a dense, explicit template of each neuron’s preferred stimulus, even
for rarely firing neurons. This is visually demonstrated in [Figure 9] where simply weighting MEIs by
neural responses already forms a coarse but recognizable reconstruction, highlighting the power of
this prior.

Generation. We follow previous work [4} 32} [45]] to generate MEIs of all neurons in the given
single-subject dataset. More specifically, we train a CNN-based encoding model on the given dataset,
randomly initialize an MEI image with zero mean and standard deviation of 0.15, and then iteratively
optimize its pixel values using gradient ascent to maximize the encoder’s prediction for the target
neuron. After each optimization step, we normalize the image back to zero mean and a standard
deviation of 0.15 and clip pixel values that have an absolute value larger than one. Since there are
more than 7,000 neurons in each dataset, we accelerate this MEI generation procedure by initializing
and then optimizing MEIs of multiple neurons in parallel (batching inputs to the encoder). Note that
this whole optimization procedure needs to be done only once for each dataset.

While the entire MEI generation, including encoder training, took approximately 70 minutes (15
minutes training, 55 minutes generation) in our experiments, the decoder training required 11 hours
on one NVIDIA Tesla V100 GPU. This shows that the computational overhead of MEI generation is
small compared to the decoder training itself.

For all use cases of CNN-based encoding model (MEIs, InvEnc, and EGG), we use the Gaus-
sian readout architecture introduced by [27]. More specifically, we use the implementation and
hyperparameters provided by [48]].
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A.5 Sensitivity to quality of most exciting inputs

To understand the sensitivity of ME- o
Icoder’s performance to the quality Table 6: Quantitative results on the test set of the BRAIN-

of generated MEISs, we re-ran train- READER dataset. Standard deviation (std) corresponds to the
ing and evaluation on the BRAIN- Gaussian noise added to MEIcoder’s MEIs.

READER dataset with MEIs with

. . . BRAINREADER

varying levels of Gaussian noise. As Method .

shown in the performance SSIM  PixCorr  Alex(2)  Alex(5)

degrades relatively slowly. In fact, MElIcoder (no noise) 400 679 998 .990

even with highly noisy MEIs (std=1 MElIcoder (std=0.2) 402 675 997 .982

and std=3 for MEIs with initial pixel MEIcoder (std=0.5) -390 670 990 938

values between -1 and 1), the perfor- MEIcoder (std=1) 332 .625 990 937
MElIcoder (std=3) 287 .568 .984 .943

mance remains on par or better than

that of the baselines (Table ).

A.6 Comparison to gradient-based linear receptive fields of neurons

METIs can be seen as a nonlinear counterpart to traditional linear receptive fields of neurons. To
compare these neural characterizations for decoding, we replaced MEIs in MEIcoder with gradient-
based linear receptive fields (LRFs) obtained from regularized regression trained on neural responses
from the BRAINREADER dataset. As shown in|Table 7] this leads to degraded performance, but not
as severe as with a complete removal of neural characterization as done in the initial ablation study
in This demonstrates the importance of biologically informed computational prior,
METIs in particular, for the decoder’s performance.

Table 7: Quantitative results on the test set of the BRAINREADER dataset with different neural
characterizations in MEIcoder’s readin.

BRAINREADER
Method
SSIM PixCorr Alex(2) Alex(5)
MEIcoder (MEIs) 400 .679 .998 990

MEIlcoder (LRFs) 364 (-9%)  .663 (-2.4%)  .998 (-0%)  .949 (-4.1%)

A.7 MElIcoder for highly non-linear neurons

To demonstrate that the state-of-the-art performance of MEIcoder does not severely degrade when
trying to decode from highly non-linear neurons, such as those found in higher visual areas of the
brain, we conducted the following comparative experiment.

First, for each neuron in the BRAINREADER dataset, we calculated the so-called non-linearity index
(NLI), which estimates how non-linear individual neurons are [2]]. It is calculated as the ratio between
the prediction power of a linear encoding model fitted to the data and the prediction power of a
state-of-the-art non-linear encoding model fitted to the data. Second, we trained and evaluated
MEIcoder only on subsets of the most linear and most non-linear neurons. As can be seen in
MElIcoder’s ability to decode images from the more non-linear neurons is very similar to its ability to
decode from more linear neurons, suggesting that MEIcoder can handle non-linearity of the code
very well, at least within the context of V1.

Table 8: Quantitative results on the test set of the BRAINREADER dataset when MEIcoder is trained
and evaluated only with subsets of neurons.

BRAINREADER
SSIM  PixCorr  Alex(2)  Alex(5)

Selection of neurons

3,000 most non-linear neurons 321 .630 .999 958
3,000 least non-linear neurons 324 .653 .996 939
3,000 least non-linear neurons (nonzero NLI) .345 .663 .999 .979
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Table 9: Quantitative results on the test sets from the BRAINREADER and SENSORIUM 2022
datasets (higher-level metrics). Best results are highlighted in red, and second-best in bold.

Method BRAINREADER SENSORIUM 2022
Incept CLIPT Effl SwAV ] ‘ Incept CLIPT Effl SwAV ]
InvEnc .627 .636 .606 448 .600 564 492 243
EGG 749 .610 .652 497 .673 .579 449 232
MonkeySee .655 547 .653 486 614 513 551 301
CAE 592 541 .628 612 542 .535 .684 737
MindEye2 72 .636 571 415 .643 590 440 235
MindEye2 (FT) 725 .652 584 465 .650 595 443 219
MEIcoder 799 679 .586 489 727 .590 440 276
MElIcoder (FT) 817 702 520 408 746 .620 419 216

A.8 Evaluation on higher-level metrics

Using the implementation from Mind-

Eye2 [360], we evaluated all methods on Taple 10: Quantitative results on the test set of the
higher-level (semantic) metrics. Specifically, SyNTHETIC CAT V1 dataset as measured on higher-

we measured the two-way identification ac- Jeve] metrics. We highlight the best score in red and
curacy with InceptionV3 (“Incep”) and CLIP  the second-best score in bold.

(ViT-L/14) embeddings, as well as the av-

erage correlation distance in the embedding SYNTHETIC CAT V1
space of EfficientNet-B1 (“Eff”’) and SwAV- Method Incepl CLIPT Eff| SwAV |
ResNet50 (“SwAV”).

InvEnc 884 827 326 196
As can be seen in[Table 9)and [Table 10} ME- EGG 766 675 283 214
Icoder remains highly competitive even on MonkeySee 796 760 272 193
these semantic metrics (Incep and CLIP: the CAE 657 622 442 573
higher the better, Eff and SWAV: the lower ~ MindEye2 798 780 274 -208
the better). On both the BRAINREADER and ~_ MElcoder 898 Jer .2m 181

SENSORIUM 2022 datasets, MEIcoder

achieves the best performance, while on the

SYNTHETIC CAT V1 data, it outperforms the other baselines on two out of four metrics, remaining
on par on the other two performance measures. We can also see that the MEIcoder fine-tuned (“FT")
from multi-subject to single-subject data performs the best on the biological datasets. This further
demonstrates MEIcoder’s ability to generalize across data from different subjects.

A.9 Reconstructing higher-resolution images

Here, we demonstrate the scalability of MEIcoder to higher-resolution visual stimuli. Specifically, us-
ing the MEIs generated for the original resolution, we train and test MEIcoder on the BRAINREADER
dataset with a two-times higher image resolution of 72 x 128 pixels.

As shown in MElIcoder’s per-

formance is maintained at this image res-  Table 11: Quantitative results of MEIcoder on the test set
olution. In fact, although the task of re- f the BRAINREADER dataset.

constructing larger images is inherently

more difficult, the higher-resolution ME- ) BRAINREADER
Icoder still outperforms the best alter- ~ 1mage resolution SSIM_ PixCorr  Alex(2)  Alex(5)
native baseline from the low-resolution P — 200 = 998 990
setting (Table 1). This demonstrates x L% px : : : ‘

& 72 x 128 px 340 646 997 980

that MEIcoder is not limited to low-
resolution stimuli and can effectively
scale to more detailed visual inputs.
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Figure 11: Reconstructions of images from the BRAINREADER dataset with MEIcoder trained and
evaluated on 72 x 128 px images.
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Figure 12: Reconstructions of images from the BRAINREADER dataset as we vary the response level
of neurons 150 (top) and 1450 (bottom).

A.10 MElcoder interpretability

Our analysis in shares methodological tools with methods like CRAFT [[14]], particu-
larly the use of NMF and sensitivity analysis. The main difference between CRAFT and our analysis
is that we employ sensitivity analysis to derive the importance of inputs (neuronal responses) on
intermediate features (coefficients for combining NMF concepts). CRAFT, on the other hand, uses
sensitivity analysis to assess the importance of intermediate features (coefficients for combining NMF
concepts) on the final output of the network. To measure the importance of inputs on the intermediate
features, CRAFT employs implicit differentiation and gradient-based attribution maps.

Other techniques, such as ACE [16], ICE [50], and sparse autoencoders (SAEs) have explored
similar ideas but on different tasks and with different methodologies. ACE, for example, considered
discovering visual features by segmenting images from the same semantically meaningful class and
clustering these segments in an embedding space of a CNN. Then, akin to our sensitivity analysis,
ACE perturbed the hidden states to evaluate the importance of individual segment clusters on the final
prediction of the CNN classifier.

Reconstructed visual features. Analyzing which visual features are reconstructed with high fidelity
can tell us which of them are well-encoded in the neural population of V1. Here, we find two key
patterns.

First, MEIcoder’s reconstruction performance directly reflects the known tuning properties of V1
neurons: it consistently reconstructs distinct, high-contrast features like corners and edges with high
fidelity, while struggling with low-frequency information such as gradual changes in shading (see, for
example, figures[2]and [T35). This is a reflection of the V1 code, which is dominated by edge-detecting
neurons that provide a sparse signal for uniform surfaces.

Second, we see a more global failure mode where images containing dense, high-frequency textures
across a relatively small area of the image lead to a globally degraded reconstruction, an effect
especially pronounced in the SENSORIUM 2022 dataset (Figures [2]and [T4)). This suggests that
while V1 robustly encodes local details, the decoder can be “overwhelmed” when trying to synthesize
a coherent global percept from a highly complex population signal, hinting at why the brain requires
hierarchical processing.

A.11 Broader impacts

Our work advances neural decoding by enabling high-fidelity image reconstruction from limited V1
neural activity, offering insights into visual processing and potential applications in brain-machine
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interfaces. With its data- and neuron-efficiency, MEIcoder lowers the requirements on invasive brain
recordings, which we believe is of great importance for practical neuroengineering applications.

However, translating our findings to human applications requires caution, as models trained on
constrained and multi-subject datasets may inherit biases, potentially limiting generalization across
diverse populations. Therefore, future work should incorporate broader, more inclusive datasets and
rigorous clinical validation to ensure high performance, balancing scientific progress with ethical
responsibility.
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Figure 13: Additional reconstructed images from the BRAINREADER dataset.
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Figure 14: Additional reconstructed images from the SENSORIUM 2022 dataset.
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Figure 15: Additional reconstructed images from the SYNTHETIC CAT V1 dataset.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide evidence for our contributions in the experiments section (), and
describe the scope and context of the work in the abstract, introduction @), and related
work (2)) sections.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in [section 3|
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This work is supported by empirical findings.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe our method in|section 3|and [subsection A.3| and provide experi-
mental details in [section 4] [subsection A.I| and[subsection A.2|

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code for our experiments and instructions on obtaining the data are
available at https://github. com/Johnny1188/meicoder.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all details in [section 3| and [section 4] and provide additional
information in

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For the main experiments (Table[[]and Table[2)), we report metrics averaged
over three runs with different random seeds, with standard deviations shown in[Table 3|and
to capture variability from initialization and data sampling. Additional runs would
be too computationally expensive and would not impact the demonstrated functionality of
the method, which can also be assessed by qualitative inspection.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We discuss compute resources in
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We have carefully reviewed and adhere to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss potential broader impacts in[subsection A.TT]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

27


https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not pose such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The biological datasets are publicly available and properly referenced and
credited, while the synthetic dataset was generated by the authors using a properly referenced

spiking model (see [subsection 4.T). The models are original work or properly credited.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code and related assets are available at https://github.com/
Johnny1188/meicoder,

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development does not involve LLMs as any important,
original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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