
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DIFFSPARSE: ACCELERATING DIFFUSION TRANSFORM-
ERS WITH LEARNED TOKEN SPARSITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models demonstrate outstanding performance in image generation, but
their multi-step inference mechanism requires immense computational cost. Pre-
vious works accelerate inference by leveraging layer or token cache techniques
to reduce computational cost. However, these methods fail to achieve superior
acceleration performance in few-step diffusion transformer models due to inef-
ficient feature caching strategies, manually designed sparsity allocation, and the
practice of retaining complete forward computations in several steps in these token
cache methods. To tackle these challenges, we propose a differentiable layer-wise
sparsity optimization framework for diffusion transformer models, leveraging token
caching to reduce token computation costs and enhance acceleration. Our method
optimizes layer-wise sparsity allocation in an end-to-end manner through a learn-
able network combined with a dynamic programming solver. Additionally, our
proposed two-stage training strategy eliminates the need for full-step processing
in existing methods, further improving efficiency. We conducted extensive experi-
ments on a range of diffusion-transformer models, including DiT-XL/2, PixArt-α,
FLUX, and Wan2.1. Across these architectures, our method consistently improves
efficiency without degrading sample quality. For example, on PixArt-α with 20
sampling steps, we reduce computational cost by 54% while achieving generation
metrics that surpass those of the original model, substantially outperforming prior
approaches. These results demonstrate that our method delivers large efficiency
gains while often improving generation quality.

1 INTRODUCTION

In recent years, diffusion models have made remarkable progress in the field of image generation.
Among them, the Stable Diffusion series (Rombach et al., 2022; Podell et al., 2023; Tian et al., 2024;
Esser et al., 2024) has achieved significant success in controllable high-quality image generation. This
advancement is largely attributed to the effectiveness of diffusion probabilistic models (DPM) (Ho
et al., 2020) and the powerful U-Net (Ronneberger et al., 2015) architecture, which allows high
resolution synthesis with exceptional detail preservation. Additionally, some recent works (Peebles &
Xie, 2023b; Chen et al., 2024b; Tian et al., 2024) have explored the integration of diffusion models
with Transformer-based architectures, demonstrating outstanding performance. In particular, scaling
laws have been leveraged to expand the model size of Transformers (Vaswani et al., 2017), further
enhancing precision and generative quality, these large-scale models leverage improved expressivity
and enhanced generalization, pushing the boundaries of generative artificial intelligence.

However, despite these advances, the substantial computational cost associated with diffusion models
presents a significant challenge for real-world deployment. The inference of such large models
requires extensive computational resources, which can hinder practical applications. Addressing
this issue requires innovations in model acceleration techniques to enable broader accessibility and
usability of diffusion-based generative models. Existing methods of diffusion model acceleration
typically focus on sampler optimization (Song et al., 2020; Lu et al., 2022a), model pruning (Fang
et al., 2023b; Zhang et al., 2024; Fang et al., 2023a), distillation (Yin et al., 2024b; Luo et al., 2023;
Salimans & Ho, 2022), and feature caching (Selvaraju et al., 2024; Ma et al., 2024; Liu et al., 2025a;b).
Feature caching methods leverages temporal redundancy to reuse intermediate features, achieving
significant speedups. They become popular in the field of diffusion model acceleration due to non-
training diffusion model and easy integrating into the original inference pipeline. Previous methods

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

cache and reuse coarse-grained, layer-level features, whereas token cache methods (Zou et al., 2025;
2024; Zhang et al., 2025) reuse token-level features, achieving better acceleration performance.
However, these approaches require manual sparsity allocations and hand-crafted schedules that
preserve several full forward passes during denoising, which limits the acceleration potential of
token-level feature caching.

To address these challenges, we propose DiffSparse, a learnable framework for optimizing layer-wise
sparsity allocation in diffusion transformer models. Our approach dynamically determines the optimal
sparsity configuration across all layers and inference steps, ensuring that the overall pruning rate is
met in an end-to-end manner through a model-driven process. Moreover, DiffSparse eliminates the
need for complete forward computations in predefined steps required by existing methods, further
enhancing efficiency.

Specially, our approach formulates the token cache optimization as a dynamic programming-based
sparsity allocation problem. We innovatively design a learnable sparsity cost predictor, which predicts
a cost matrix that quantifies the sparsity costs associated with target sparsity rates for all layers across
every denoising step. Then we propose a dynamic programming approach to determine the optimal
sparsity configurations for all layers over the relevant denoising steps, minimizing the overall sparsity
cost while satisfying the required sparsity rate. Finally, we introduce a token selector that dynamically
selects a specific proportion of tokens for reuse, leveraging the learned sparsity ratio to accelerate
inference. To optimize the learnable sparsity cost predictor, we utilize a perceptual distillation loss
that minimizes the degradation in generation quality. Furthermore, we introduce a two-stage training
strategy that eliminates the need for complete forward computations in predefined steps required
by existing methods while also improving accuracy. We have conducted extensive experiments
on various transformer-based baselines, and the pruning results outperform other SOTA pruning
methods by a large margin. For example, pruning 54% of tokens yields an FID of 27.79, our method
substantially better than the state-of-the-art methods ToCa (28.35) and TaylorSeer (29.08), while
achieving a higher speedup (1.91×) on PixArt-α. These results underscore the practical effectiveness
of our method. Our contributions are summarized as follows:

• We propose DiffSparse, a differentiable approach to optimize layer-wise token sparsity
in diffusion models sampling process. By integrating a sparsity cost predictor, dynamic
programming solver, and adaptive token selector, it automates sparsity allocation and token
reuse without manual heuristics.

• We introduce a two-stage training strategy that eliminates the need for predefined complete
forward computations in several steps required by existing methods, fully unlocked the
acceleration potential of token-level feature caching.

• Extensive experiments on diverse foundation models prove that our method surpasses
existing SOTA methods by a large margin, setting new efficiency-accuracy benchmarks.

2 RELATED WORK

Diffusion Transformer Models. The integration of transformers into diffusion models has signif-
icantly advanced generative modeling, improving scalability and performance. Diffusion models,
which generate data by iteratively denoising from a noise distribution. Traditionally, diffusion models
relied on CNNs, but recent studies demonstrate the effectiveness of transformers (Peebles & Xie,
2023b; Chen et al., 2024b; Tian et al., 2024; Brooks et al., 2024; Chen et al., 2024a). Diffusion Trans-
former (DiT) (Peebles & Xie, 2023b) replaces the U-Net backbone with a transformer, leveraging
long-range dependencies and efficient scaling to achieve superior image generation. PixArt (Chen
et al., 2024b) builds on this by introducing a hierarchical transformer architecture and a novel
noise schedule, excelling in high-resolution and text-to-image synthesis. Although diffusion trans-
former models have achieved great success, the substantial computational overhead from the iterative
denoising process makes them inefficient for industrial deployment.

Acceleration of Diffusion Models. Diffusion acceleration is a critical research area focused on
reducing computational costs and improving inference efficiency while preserving high-quality
generation. Recent advancements can be categorized into sampler optimization (Song et al., 2021;
Lu et al., 2022a;b), model pruning (Fang et al., 2023b; Zhang et al., 2024), distillation (Salimans &

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Ho, 2022; Yin et al., 2024a), and feature caching (Li et al., 2023; Ma et al., 2024; Zhu et al., 2025).
Sampler optimization reduces the number of denoising steps during inference using deterministic
or adaptive strategies to approximate the denoising process efficiently. Model pruning removes
redundant parameters and achieving speedups with structured pruning (Fang et al., 2023a). Other
strategies, such as Rectified Flow (Liu et al., 2022) and knowledge distillation (Yin et al., 2024a)
accelerates inference by matching model outputs in fewer steps without quality loss.

Feature caching is particularly effective for DiT architectures. Methods such as FORA (Selvaraju et al.,
2024) and ∆-DiT Chen et al. (2024c) reuse attention and MLP representations, while DiTFastAttn
(Yuan et al., 2024) further reduces redundancies in self-attention. Dynamic strategies like TeaCache
(Liu et al., 2025a) estimate timestep-dependent differences, and TaylorSeer (Liu et al., 2025b)
introduced a “cache-then-forecast” paradigm that predicts and updates cached features, though its
advantage is most evident with long-range caching. SpeCa (Liu et al., 2025c) further enhance the
performance with speculative sampling. Complementary to these are token cache methods (Zou et al.,
2025; 2024; Zhang et al., 2025; You et al., 2025), which apply fine-grained, error-guided token-wise
caching to dynamically update features, achieving substantial acceleration without compromising
quality. More discussion with existing methods are presented in Appendix.

In this paper, we introduce DiffSparse, a feature-caching approach for accelerating diffusion trans-
former models. These models typically require only a few dozen sampling steps and have seen
growing adoption in industry. Unlike prior works (Zou et al., 2025; 2024), DiffSparse employs a
token-level cache within an end-to-end learning framework that casts model acceleration under a
fixed compression ratio as a layer-wise sparsity optimization problem across timesteps, eliminating
the need for manually tuned sparsity or acceleration parameters. To address inefficiencies in exist-
ing approaches, which depend on predefined full-step computation schedules, we also propose a
two-stage training protocol that adaptively allocates computation where it is most needed.

3 METHOD

In this section, we start with a brief introduction to the diffusion transformer model and the token
cache strategy. We then present the challenges of the existing token caching approaches. Finally,
we present our DiffSparse approach, which builds upon the token cache strategy for acceleration
and optimizes the layer-wise token sparsity of diffusion transformer model in a learnable manner,
enhancing accuracy while maintaining the sparsity requirement.

3.1 PRELIMINARY

Diffusion Models. Diffusion models are a class of generative models that construct a Markov chain
of latent variables by progressively adding Gaussian noise to data samples and then reversing this
process to synthesize new samples. Given an initial data sample x0, the forward diffusion process
transforms the data through a series of steps:

q(xt | xt−1) = N
(
xt;

√
1− βt xt−1, βtI

)
, (1)

where t is the time step, {βt}Tt=1 denotes a predefined variance schedule. After T steps, the data is
nearly transformed into an isotropic Gaussian distribution, i.e., q(xT) ≈ N (0, I).

The reverse process is parameterized by a noise prediction network, which aims to recover the original
data by iteratively removing the added noise, and is modeled as:

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t), Σθ(xt, t)) , (2)

where µθ and Σθ are learned functions. Because the network is applied at each timestep in the
multi-step denoising process, the repeated evaluations of the noise prediction network dominate the
computational cost, accounting for the majority of the model’s floating-point operations (FLOPs).

Diffusion Transformer. The Diffusion Transformer (Chen et al., 2024b) is a novel architecture that
synergizes the iterative refinement capabilities of diffusion processes with the representational power
of transformers. In this framework, the input is represented as a set of tokens X ∈ RN×D, where N
denotes the number of tokens and D their dimensionality. The network architecture is composed of L

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

stacked blocks, each integrating three key components: a self-attention (SA) layer, a cross-attention
(CA) layer, and a multi-layer perceptron (MLP) layer. The self-attention mechanism enables the
model to capture long-range dependencies among tokens. In parallel, the cross-attention module
facilitates the incorporation of conditioning information, enhancing the model’s ability to generate
contextually relevant outputs. The subsequent MLP further refines these token representations through
non-linear transformations.

A significant advantage of the Diffusion Transformer lies in its ability to iteratively refine token
representations during the denoising process, leading to improved sample quality. This layered
approach allows the model to effectively balance global context and local details, thereby offering
enhanced performance in complex generative tasks.

Token-Wise Feature Caching Approach. Prior work (Ma et al., 2024) has demonstrated that
features at adjacent timesteps exhibit high similarity, leading to significant redundancy. To exploit
this redundancy for computational efficiency, previous approaches (Ma et al., 2024; Wimbauer et al.,
2024) have introduced caching mechanisms that reuse features to accelerate processing. The token-
wise feature caching approach (Zou et al., 2025) operates at a finer granularity by caching features at
the individual token level, enabling more effective exploitation of the redundancy.

Token-wise feature caching mechanism begins by computing and storing the intermediate token
features X = {x̂0, x̂1, . . . , x̂N−1} from each self-attention, cross-attention, and MLP layer into a
cache C at the initial timestep t. In subsequent timesteps, a predefined cache ratio R determines
the proportion of tokens reused from the cache C for each layer at each timestep. The R selected
tokens based on token importance rank, denoted as ICache, will bypass re-computation by reusing
their cached values, while the remaining tokens ICompute = {x̂i}Ni=1 \ ICache are recomputed. For a
given layer f , the computation for each token x̂i is formulated as:

F (x̂i) = γif(x̂i) + (1− γi)C(x̂i), (3)

where γi = 0 for x̂i ∈ ICache and γi = 1 for x̂i ∈ ICompute. To mitigate error accumulation from
reused features, the cache is dynamically updated for tokens in ICompute via:

C(x̂i)← F (x̂i). (4)

This token-wise feature caching approach effectively reduces redundant computations by leveraging
the high similarity of features across adjacent timesteps, thus significantly accelerating the inference
process while maintaining robust feature representations.

Challenges in Existing Token Caching Approaches. While token caching methods (Zou et al.,
2025) have shown great promise in speeding up diffusion transformers, key limitations remain. First,
they require manually setting a reuse sparsity rate for each layer at every timestep, resulting in a
large, hard-to-tune parameter space. This manual process hampers performance and scalability. A
learnable or adaptive sparsity strategy could unlock further gains. Second, current methods still
depend on a full-step design (several steps without caching) to maintain generation quality. However,
this compromises the efficiency of token-based operations. Replacing this with dynamic caching
tailored to diffusion transformers can better balance quality and speed. In this paper, we propose an
intelligent framework that jointly learns optimal sparsity across layers and removes the reliance on
full-step computation, significantly improving both performance and flexibility.

3.2 DIFFSPARSE APPROACH

To automate per-layer sparsity selection and remove the reliance on full-step designs, we propose
DiffSparse, an efficient token caching framework for diffusion transformers. DiffSparse learns
layer-wise sparsity end-to-end by combining a learnable sparsity cost predictor with a dynamic
programming solver to find optimal sparsity configurations across layers and denoising steps. It also
adopts a two-stage training scheme that gradually replaces full computation steps with cache-based
ones, improving efficiency without sacrificing performance. As illustrated in Figure 1, DiffSparse
comprises three components: a token selector, a sparsity cost predictor, and a dynamic programming
solver. The cost predictor estimates a cost matrix representing the sparsity cost for various predefined
rates across all layers and denoising steps (excluding the first). The dynamic solver then identifies
the optimal sparsity pattern under a global sparsity constraint R. Based on this, the token selector

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

𝒙𝑻
LPIPS

Loss

B
lo

ck
 L

B
lo

ck
2

B
lo

ck
1

……… …… …

× (𝑻 − 𝟐)

DiT

Cost Matrix

(𝑻 × 𝑳) × |𝑺|

Candidate Masks
|𝑺| × 𝑵

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

Dynamic

Programming

Solver

⊗

𝒙𝟎

𝑹
Layer Sparsity

Token Cache

Compute Reuse

Tunable Frozen

Token

Selector

Token

Masks

……

DiT

Full Steps

Sampling
… …

STE

Sparsity

Cost

Predictor

𝒙𝟎
′

Predicted

Masks

(0,0,0,0, ···0,0)

(1,1,1,1, ···0,0)

(1,1,1,1, ···1,1)

…

Figure 1: DiffSparse uses a learnable sparsity-cost predictor and dynamic programming to learn
per-layer sparsity under target ratio R. We generate binary masks from the chosen sparsity maps and
candidate masks. A token selector reuses features from previous diffusion steps to skip unimportant
tokens and speed sampling. To enable gradient flow through the binary masks, we apply Straight-
Through Estimation (STE) and train our model using full-step sampling targets with LPIPS loss.

determines which tokens to reuse and which to recompute at each layer. Training is guided by a
perceptual distillation loss, integrated into a two-stage training pipeline for effective learning.

Token Selector. We employ a Token Selector that assigns each token x̂i an importance score used
to decide which tokens are freshly computed and which remain cached. The score is a composite,
layer-wise quantity of the form:

S(x̂i) = B
(Q∑

q=1

λq sq(x̂i)
)
, (5)

where each sq(x̂i) is a scalar signal capturing a different criterion (for example, self-attention influ-
ence, cross-attention focus, cache-reuse frequency, etc.), and {λq}Qq=1 are weighting hyperparameters
that balance these criteria. The operator B(·) is optional and denotes a spatial bonus operation that
promotes a spatially uniform coverage of selected tokens (implemented, e.g., by boosting tokens
that are local maxima within a k × k neighborhood). Other choices for B are possible (e.g. smooth
kernels or distance-based adjustments).

Given the per-token scores S(x̂i) in a layer with N tokens, we sort tokens by descending score
and select the top K tokens according to a predefined sparsity ratio R. We emphasize that our
contribution is orthogonal to any particular token-ranking heuristic: the choice of scoring components
(e.g. self-attention influence, cross-attention terms, spatial bonus) is optional and can be replaced
by alternative ranking methods. Detailed descriptions and comparisons of specific token-ranking
strategies are provided in the Appendix A.5.1. Empirically, our allocation scheme yields consistent
gains across different token-ranking methods (see Table 5).

Learnable Sparsity Cost Predictor. We propose a learnable sparsity cost predictor to adaptively
determine layer-wise sparsity in diffusion transformers (DiTs) while balancing inference efficiency
and computational cost. Given a DiT with L layers operating over T denoising timesteps, our goal
is to generate a binary mask M ∈ {0, 1}N for each layer l and timestep t that selects Kl,t tokens
for full computation and reuses features for the remaining N −Kl,t tokens. This is formalized as a
constrained optimization over a candidate sparsity set S, where |S| denotes the number of predefined
sparsity configurations. For a layer containing N tokens, let S denote the set of sparsity rates, each
a value between 0 and 1, at which we retain a corresponding fraction of tokens. For instance, if

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

N = 256 and we choose a step size of 32 tokens, we obtain S = {0, 0.25, 0.50, 0.75, 1.0}, which
corresponds to retaining {0, 64, 128, 192, 256} tokens, respectively. Our objective is to learn the
relative cost of applying different sparsity rates across layers. Our experimental results (Table 4)
demonstrate that the learned sparsity predictor generalizes across resolutions, so that a sparsity
allocation trained at low resolution remains effective at higher resolutions.

We implement the sparsity cost predictor using (T × L)× |S| learnable parameters, where T is the
number of timesteps, L is the number of layers, and |S| is the size of the candidate sparsity set. The
predictor outputs a normalized cost matrix C ∈ R(T×L)×|S|, where each entry C(t,l),s quantifies the
cost of applying sparsity configuration s ∈ S to layer l at timestep t. We minimize the cumulative
cost while ensuring the total sparsity meets a predefined overall pruning rate R. The sorted token set
X̄ ∈ RN×D enables efficient mask selection by prioritizing tokens with high scores.

Importantly, The cost predictor’s size depends only on T , L, and |S|, not on token-sequence length
N . Empirically, we found that simply increasing |S| beyond a moderate size yields diminishing or
negative returns (Table 7), and experiments show the learned cost predictor transfers across resolutions
(Table 4), demonstrating scalability to high resolutions and robustness to token-length variation.

Dynamic Programming Solver. To determine the optimal sparsity configuration while satisfying a
global sparsity constraint, we employ a dynamic programming approach to minimize the overall cost
across layers. Formally, we define the state function:

F (l̂, r) = min
{si}l̂

i=1

l̂∑
i=1

Ci,si , s.t.
l̂∑

i=1

si = r, (6)

where F (l̂, r) represents the minimum achievable cost when assigning sparsity levels to the first l̂
layers under a total sparsity constraint r. The recursive formulation is given by:

F (l̂, r) = min
s∈S,s≤r

(
F (l̂ − 1, r − s) + Cl̂,s

)
. (7)

Here, the transition considers all possible sparsity levels s that can be allocated to layer l̂, ensuring
that the total sparsity constraint is maintained. The algorithm iteratively computes F (l̂, r) for
l̂ = 1, . . . , L ·T and r = 0, . . . , R̂, followed by a backtracking step to reconstruct the optimal sparsity
allocation, where R̂ = R ·L · T . This approach operates with a time complexity of O((L · T)2 · |S|),
making it computationally feasible for practical deep learning scenarios. To reduce the number of
redundant state computations and lower overall complexity, we implement pre-pruning strategies.
For example, when target sparsity ratio R = 43%, |S| = 5, T = 20, and L = 28, it requires about
4 hours (including DP optimization and fine-tuning) of total training time. The DP solver runs in
approximately≈30 seconds for the configurations reported, but it is not executed at inference time. At
inference, the model only uses the precomputed masks. Since the direct conversion of the predicted
cost matrix C to a discrete mask M is non-differentiable, we utilize the Straight-Through Estimator
(STE) (Jang et al., 2016) to approximate the gradients of the discrete mask with respect to the cost
predictions. This approach facilitates end-to-end optimization of the sparsity cost predictor.

Training Loss. To guide the optimization of the pruned Diffusion Transformer, we employ the
Learned Perceptual Image Patch Similarity (LPIPS) loss (Zhang et al., 2018) as a perceptual dis-
tillation loss. In our framework, the original model prior to token pruning serves as the teacher
network, while the pruned model is treated as the student network. Both models generate outputs via
a multi-step sampling process inherent to diffusion models.

Let x0 and x′
0 denote the multi-step sampling outputs from the teacher and student networks,

respectively. The LPIPS loss is then defined as:

LLPIPS = LPIPS(x0, x
′
0), (8)

which measures the perceptual similarity between the outputs. During training, gradients are back-
propagated solely through the student network, as the teacher network’s parameters are detached (i.e.,
its gradients are not computed). This setup ensures that the student model is effectively distilled to
mimic the perceptual characteristics of the teacher model, thereby achieving acceleration through
token pruning while preserving output quality.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Two-Stage Training Strategy. We propose a two-stage training framework to optimize the cost
matrices for full-step positions and layer sparsity components. In the first stage,
we follow (Selvaraju et al., 2024; Zou et al., 2025) to preset Tf full-step positions and independently
optimize the step cost matrix Cf ∈ RT×2 encoding temporal sparsity decisions and the layer sparsity
cost matrix Cl ∈ R(L×T)×|S| governing token retention per layer. We first solve Cf via dynamic
programming to identify |Tf | optimal full-step positions with minimal cumulative cost. For these
selected steps, we warm-start layer sparsity optimization by subtracting δ from the predicted costs:

C
(t,l,s)
l ← C

(t,l,s)
l − δ ∀t ∈ Tf , l ∈ {1, ..., L}, s = N. (9)

This strategy preserves inter-layer cost ranking while leveraging full-step error correction capabilities.

In the second stage, we integrate step and layer costs by modifying layer sparsity entries using
Equation 9. The unified cost matrix is then fine-tuned to systematically redistribute FLOPs across
sampling steps. Unlike existing methods (Selvaraju et al., 2024; Zou et al., 2025) that rigidly
enforce full steps for noise correction, our approach dynamically optimizes sparsity patterns through
differentiable cost interaction. The pseudocode is provided in the supplementary materials.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Model Configurations. We conduct experiments on four widely used DiT-based models across
various generation tasks: (1) PixArt-α with 20 DPM Solver++ (Lu et al., 2022b) steps and FLUX.1-
schnell (Labs, 2024) with 4 steps for text-to-image generation and (2) DiT-XL/2 with 50 DDIM
(Song et al., 2021) steps for class-conditional image generation. (3) Wan2.1-1.3B (Wan et al., 2025)
with 25 flow-matching sampling steps for text-to-video generation. We define the candidate set S
as the range from 0 to 1 with an interval of 0.25, yielding |S| = 5 token sparsity candidates. More
details of the implementation are provided in the supplementary material.

Training. For PixArt-α (Chen et al., 2024b) and FLUX.1-schnell (Labs, 2024), we train the
learnable sparsity-cost predictor on 10,000 captions randomly sampled from the COCO (Lin et al.,
2014) train dataset. For DiT-XL/2 (Peebles & Xie, 2023a), we use 10,000 ImageNet (Deng et al.,
2009) train category indices, and for Wan2.1 we sample 10,000 captions from WebVid-10M (Bain
et al., 2021) for training. During training we use no image data, only captions or class-conditioning
information, which do not overlap with the evaluation set.

We leverage the layer sparsity configuration in the token-cache-based model (Zou et al., 2025) to
initialize our sparse router training. All the models are trained with AdamW optimizer. The sparsity
cost predictor is trained in two stages. For the first stage, the layer sparsity cost component is
optimized for 1 epoch with a learning rate of η = 1.0, while the step cost component is trained
separately using η = 0.01 to capture temporal patterns across denoising steps. For the second stage,
we integrate the step cost into the layer-wise costs with δ = 10 and then fine-tuned for 1 epoch with
η = 0.1 to optimize layer sparsity allocation. Training requires approximately 4-10 hours on 8 AMD
MI250 GPUs with 80GB memory per experiment.

Evaluation. For text-to-image generation, we evaluate on the COCO dataset (Lin et al., 2014)
using 30,000 samples at 256 × 256 resolution and PartiPrompts (Yu et al., 2022) with 1,632 samples.
Image quality is quantified by FID-30k (Heusel et al., 2017), which compares generated images
against originals, while text-image alignment is measured by two complementary metrics: CLIP-
Score (computed with CLIP-ViT-Large-14 (Hessel et al., 2021)) and Image Reward (Xu et al.,
2023), a metric shown to more accurately reflect human preferences. For class-conditional image
generation, 50,000 images at 256 × 256 resolution are generated from 1,000 ImageNet (Deng et al.,
2009) classes and evaluated using the FID-50k metric. We evaluate text-to-video generation using the
VBench framework on 950 prompts, generating 4,750 videos at 256 × 256 resolution, each lasting 2
seconds at 8 frames per second, and assess them across 16 metrics.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.2 MAIN RESULTS

Results on Text-to-Image Generation. We compare DiffSparse with existing methods under
identical sparsity budgets. FORA, DeepCache (CVPR’24) and TaylorSeer (ICCV’25) are evaluated
with cache interval N = 2, while DiCache, ToCa (ICLR’25) and DuCa are tested using their
respective optimal configurations. Table 1 shows that DiffSparse delivers both faster inference
and improved generation quality compared with existing methods. At roughly 1.74× speed-up,
existing methods suffer degraded image quality, while DiffSparse achieves a strong FID of 26.91 (vs.
TaylorSeer’s 29.08 and ToCa’s 28.35). This corresponds to a relative +5.1% improvement in FID of
DiffSparse over ToCa. Pushing further, DiffSparse attains 1.91× acceleration while producing an FID
that surpasses the original (full) model. This improvement stems from a learned sparsity schedule
that accelerates convergence of the generated image distribution and improves visual fidelity, while
preserving semantic alignment with the conditioning signal. We provide additional text-to-image
comparisons in Appendix A.6, and also present more qualitative visual comparison in Appendix A.7.

Table 1: Results of text-to-image generation on MS-COCO2017 with PixArt-α and 20 DPM++ steps.

Method MACs (T)↓ Speedup↑ FID-30k↓ CLIP↑
PixArt-α (Chen et al., 2024b) 2.86 1.00× 28.20 0.163

50% steps 1.43 1.74× 37.57 0.158
FORA (N = 2) (Selvaraju et al., 2024) 1.43 1.64× 29.67 0.164
DeepCache (N = 2) (Ma et al., 2024) 1.48 1.61× 29.61 0.163
DiCache (Bu et al., 2025) 1.63 1.77× 28.19 0.164
ToCa (Zou et al., 2025) 1.64 1.75× 28.35 0.164
DuCa (Zou et al., 2024) 1.63 1.78× 27.98 0.164
TaylorSeer (Liu et al., 2025b) 1.57 1.83× 29.08 0.163
DiffSparse (R = 43%) 1.64 1.74× 26.91 0.164
DiffSparse (R = 54%) 1.30 1.91× 27.79 0.164

Table 2: Results of class-conditional generation with DiT-XL/2 and 50 DDIM steps on ImageNet.

Method MACs (T) ↓ Speedup↑ FID↓ sFID ↓ Precision ↑ Recall ↑
DDIM-50 steps 11.44 1.00× 2.26 4.29 0.80 0.60
DDIM-40 steps 9.14 1.24× 2.39 4.28 0.80 0.59
DDIM-25 steps 5.73 1.96× 3.01 4.60 0.79 0.58
DDIM-20 steps 4.58 2.42× 3.48 4.64 0.79 0.56

FORA 4.13 2.12× 3.88 6.74 0.79 0.56
ToCa 4.97 2.09× 3.05 4.70 0.79 0.57
DuCa 4.94 2.10× 3.04 4.70 0.79 0.57
DiffSparse 4.97 2.07× 2.81 4.61 0.80 0.59

Results on Class-Conditional Image Generation. Table 2 compares faster sampler DDIM with
fewer steps, FORA, ToCa, DuCa and DiffSparse. Our method achieves a better speed–accuracy
balance by reallocating computation to the most important layers. At the same acceleration ratio,
DiffSparse improves the FID from 3.05 to 2.81, outperforming ToCa by 8% at 2.07× acceleration.
demonstrating its ability to preserve detail and improve image fidelity in diffusion model acceleration.

Table 3: Comparison in text-to-video generation for
Wan2.1-1.3B with 20 sampling steps on VBench.

Method MACs (T) ↓ Speedup ↑ VBench ↑
Wan 2.1 - 1.3B 43.866 1.00× 43.82
50% steps 21.933 1.86× 43.14
DuCa (R = 54%) 20.332 1.69× 43.56
DuCa (R = 59%) 18.124 1.68× 43.30
DiffSparse 18.124 2.05× 43.83

Table 4: Comparison on PixArt-α using
20 sampling steps at 512×512 resolution.

Method MACs (T) ↓ FID ↓ CLIP ↑
PixArt-α 10.851 21.95 0.164
50% steps 5.426 25.05 0.163
ToCa 5.993 23.02 0.165
DiffSparse 5.986 22.42 0.165

Results on Text-to-Video Generation. Table 3 presents a comparison between DiffSparse and
DuCa (Zou et al., 2024) on Wan2.1-1.3B (Wan et al., 2025) using 20 sampling steps. The methods
are comprehensively evaluated across 16 aspects defined in VBench (Huang et al., 2024). We adopt

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

DuCa’s norm-based token ranking compatible with FlashAttention (Dao et al., 2022) for faster
inference. DiffSparse achieves the highest VBench score while minimizing computational cost and
inference time. At the same compression ratio, it delivers greater speedup by skipping partial layers
with zero sparsity, and its adaptive, layer-wise sparsity allocation preserves model quality.

4.3 ABLATION STUDIES

Comparison of Two Stage Training. In this work, we adopt a two-stage training strategy. The
first stage independently trains cost matrices for full-step and layer sparsity. In the second stage,
the learned full-step cost is merged into the layer sparsity optimization, and the layer sparsity is
subsequently fine-tuned. This design enables the model to initially leverage the full-step to correct
errors and to learn layer sparsity cost values, followed by a gradual reduction of the full-step influence.
Results proved that two-stage approach achieves better performance, with an FID of 26.91 compared
to 27.40 from the single-stage baseline.

Comparison of Important Scores. Table 5 compares three importance scores: attention (Equation
10), cosine similarity and the ℓ2 norm. The cosine similarity is computed between the current input
token and cached tokens. The ℓ2 norm is the norm value of input tokens. The attention-based score
attains the best FID, followed by the similarity measure, which captures token redundancy effectively.
Norm-based scoring introduces noise and performs worst, confirming that accurate importance
estimation is critical for optimal token selection.

Table 5: Ablation study on token importance
metrics.

Method Base. w/ DiffSparse

Norm 29.05 28.89 (-0.16)
Similarity 29.00 28.07 (-0.93)
Attention 28.35 26.91 (-1.44)

Table 6: Ablation study on distillation loss func-
tions.

Method FID ↓ CLIP ↑
L2 27.68 0.164
SSIM 27.46 0.164
LPIPS 26.91 0.164

Table 7: Ablation study of sparse interval.

Interval |S| FID ↓ CLIP ↑
0.1 11 27.96 0.163
0.125 9 27.91 0.163
0.25 5 26.91 0.164
0.5 3 27.54 0.164
1.0 2 28.22 0.162

Table 8: Ablation of warm-start strength δ.

δ FID ↓ CLIP ↑
0 27.40 0.163
5 27.01 0.164
10 26.91 0.164
20 26.95 0.164

Comparison of Training Losses. We compare L2, SSIM (Wang et al., 2004), and LPIPS losses in
Table 6. LPIPS outperforms the others, yielding the best FID. L2 loss penalizes pixel-wise squared
errors and often produces overly smooth images that lack fine details. SSIM enforces local structural
similarity but may over-penalize perceptually good images that differ spatially from the original. By
measuring distances in a learned perceptual feature space, LPIPS avoids these pitfalls and better
preserves image quality during training.

Comparison of Sparse Intervals. We distribute sparsity uniformly across layers by token count and
evaluate different granularity settings in Table 7. A granularity of 0.125 yields minimal within-layer
variation, which hinders convergence, while 0.5 limits the range of sparsity choices. The optimal
granularity is 0.25, producing sparsity rates [0, 0.25, 0.50, 0.75, 1.0] (corresponding to candidate token
counts of [0, 64, 128, 192, 256] for a sequence length of 256) and delivering the best performance.

Generalization on Higher Resolution Models. As the token sequence length increases with
image resolution, peak memory usage during training grows substantially, even though the size
and computational cost of our cost matrix remain unchanged. This makes direct training at very
high resolutions impractical. To address this, we investigate whether a sparsity predictor trained at
lower resolution can be transferred to higher resolution without retraining. As shown in Table
4, the sparsity predictor learned at 256 × 256 resolution achieves a lower FID than ToCa on 512
× 512 images while maintaining a comparable CLIP-Score to the original PixArt model. These
results demonstrate that our method generalizes effectively to higher resolutions, enabling model
acceleration with limited memory and training cost.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Compared with GA Search. We compared DiffSparse against traditional search methods such as
random search and genetic algorithms and found that in the vast sparsity space they underperform.
After 1,000 iterations on 500 images, these methods yield FID scores of 28.34 and 27.94, respectively,
compared with 26.91 for DiffSparse. Moreover, they require about 16 hours, whereas DiffSparse
completes training in roughly 4 hours. These results show that our differentiable learning framework
discovers more effective layer-wise sparsity allocations and delivers superior acceleration.

Comparison of Warm-Start Constant δ. Algorithm 1 uses a warm-start constant δ = 10 for
the two-stage optimization. Intuitively, δ injects the Stage-1 prior (the timesteps selected to remain
full-step) into Stage 2 by lowering the cost of the “full” candidate at those timesteps. In effect, a larger
δ more strongly encourages preserving full computation at the Stage-1 selected steps. To quantify
this effect we evaluated δ ∈ {0, 5, 10, 20}. Table 8 reports the results on PixArt-α with T = 20. A
moderate warm-start (δ = 10) recovers most of the benefit, while δ = 0 (no warm-start) removes the
Stage-1 prior and yields noticeably worse performance.

4.4 QUALITATIVE ANALYSIS

Visualization of Generated Images. We provide detailed visual comparisons among our proposed
method, ToCa, and the original PixArt-α across various sparsity ratios. in Figure 2 reveals that
DiffSparse consistently maintains high fidelity, even under aggressive pruning conditions. Moreover,
our DiffSparse effectively preserves the semantic content of the text prompt, ensuring that the
generated images remain closely aligned with the original descriptions. In contrast, baseline methods
exhibit noticeable degradation in both visual quality and text-image alignment at higher pruning
ratios, further highlighting the strength and efficiency of DiffSparse.

Two people standing on the beach with a kite.

A guy standing in the grass is ready to throw something.

A goat with horns is standing in a grassy field.

Original ToCa 1.75 × DiffSparse 1.74 × DiffSparse 1.91 ×TaylorSeer 1.83 ×

Figure 2: Comparison of our method with the baseline (PixArt-α with DPM-Solver++ using 20 steps)
and existing methods under different acceleration rates.

5 CONCLUSION

We introduce a learnable token sparsity allocation framework to accelerate diffusion transformers.
By formulating sparsity allocation as a dynamic programming problem and employing a two stage
training strategy, our method substantially reduces computational cost while preserving generative
quality. Extensive experiments across various foundation models and datasets demonstrate improved
acceleration ratios without compromising image quality of our method.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zisserman. Frozen in time: A joint video and
image encoder for end-to-end retrieval. In IEEE International Conference on Computer Vision,
2021.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
generation models as world simulators. 2024. URL https://openai.com/research/
video-generation-models-as-world-simulators.

Jiazi Bu, Pengyang Ling, Yujie Zhou, Yibin Wang, Yuhang Zang, Dahua Lin, and Jiaqi Wang.
Dicache: Let diffusion model determine its own cache. arXiv preprint arXiv:2508.17356, 2025.

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang,
James Kwok, Ping Luo, Huchuan Lu, et al. Pixart-α: Fast training of diffusion transformer for
photorealistic text-to-image synthesis. arXiv preprint arXiv:2310.00426, 2023.

Junsong Chen, Yue Wu, Simian Luo, Enze Xie, Sayak Paul, Ping Luo, Hang Zhao, and Zhenguo Li.
Pixart-δ: Fast and controllable image generation with latent consistency models. 2024a.

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
Kwok, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-α: Fast training of diffusion transformer for
photorealistic text-to-image synthesis. In International Conference on Learning Representations,
2024b.

Pengtao Chen, Mingzhu Shen, Peng Ye, Jianjian Cao, Chongjun Tu, Christos-Savvas Bouganis, Yiren
Zhao, and Tao Chen. δ-dit: A training-free acceleration method tailored for diffusion transformers.
arXiv preprint arXiv:2406.01125, 2024c.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher R’e. Flashattention: Fast
and memory-efficient exact attention with io-awareness. ArXiv, abs/2205.14135, 2022. URL
https://api.semanticscholar.org/CorpusID:249151871.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In Forty-first international conference on machine learning, 2024.

Gongfan Fang, Xinyin Ma, and Xinchao Wang. Structural pruning for diffusion models. In Advances
in Neural Information Processing Systems, 2023a.

Gongfan Fang, Xinyin Ma, and Xinchao Wang. Structural pruning for diffusion models. arXiv
preprint arXiv:2305.10924, 2023b.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-
free evaluation metric for image captioning. arXiv preprint arXiv:2104.08718, 2021.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P.
Kingma, Ben Poole, Mohammad Norouzi, David J. Fleet, and Tim Salimans. Imagen video: High
definition video generation with diffusion models, 2022. URL https://arxiv.org/abs/
2210.02303.

11

https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators
https://api.semanticscholar.org/CorpusID:249151871
https://arxiv.org/abs/2210.02303
https://arxiv.org/abs/2210.02303

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing
Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for video
generative models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 21807–21818, 2024.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.

Senmao Li, Taihang Hu, Fahad Shahbaz Khan, Linxuan Li, Shiqi Yang, Yaxing Wang, Ming-Ming
Cheng, and Jian Yang. Faster diffusion: Rethinking the role of unet encoder in diffusion models.
arXiv preprint arXiv:2312.09608, 2023.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pp. 740–755. Springer, 2014.

Feng Liu, Shiwei Zhang, Xiaofeng Wang, Yujie Wei, Haonan Qiu, Yuzhong Zhao, Yingya Zhang,
Qixiang Ye, and Fang Wan. Timestep embedding tells: It’s time to cache for video diffusion model.
In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 7353–7363,
2025a.

Jiacheng Liu, Chang Zou, Yuanhuiyi Lyu, Junjie Chen, and Linfeng Zhang. From reusing to
forecasting: Accelerating diffusion models with taylorseers. arXiv preprint arXiv:2503.06923,
2025b.

Jiacheng Liu, Chang Zou, Yuanhuiyi Lyu, Fei Ren, Shaobo Wang, Kaixin Li, and Linfeng Zhang.
Speca: Accelerating diffusion transformers with speculative feature caching. arXiv preprint
arXiv:2509.11628, 2025c.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Ziming Liu, Yifan Yang, Chengruidong Zhang, Yiqi Zhang, Lili Qiu, Yang You, and Yuqing Yang.
Region-adaptive sampling for diffusion transformers. arXiv preprint arXiv:2502.10389, 2025d.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022a.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095,
2022b.

Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models:
Synthesizing high-resolution images with few-step inference. arXiv preprint arXiv:2310.04378,
2023.

Siwei Lyu. Deepfake detection: Current challenges and next steps. pp. 1–6, 2020.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for free.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
15762–15772, 2024.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023a.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023b.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

12

https://github.com/black-forest-labs/flux

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Junxiang Qiu, Shuo Wang, Jinda Lu, Lin Liu, Houcheng Jiang, Xingyu Zhu, and Yanbin Hao.
Accelerating diffusion transformer via error-optimized cache. arXiv preprint arXiv:2501.19243,
2025.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical image computing and computer-assisted intervention–MICCAI
2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III
18, pp. 234–241. Springer, 2015.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural information
processing systems, 35:36479–36494, 2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Pratheba Selvaraju, Tianyu Ding, Tianyi Chen, Ilya Zharkov, and Luming Liang. Fora: Fast-forward
caching in diffusion transformer acceleration. arXiv preprint arXiv:2407.01425, 2024.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021.

Wenzhang Sun, Qirui Hou, Donglin Di, Jiahui Yang, Yongjia Ma, and Jianxun Cui. Unicp: A unified
caching and pruning framework for efficient video generation. arXiv preprint arXiv:2502.04393,
2025.

Yuchuan Tian, Zhijun Tu, Hanting Chen, Jie Hu, Chao Xu, and Yunhe Wang. U-dits: Downsample
tokens in u-shaped diffusion transformers. arXiv preprint arXiv:2405.02730, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative models.
arXiv preprint arXiv:2503.20314, 2025.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612,
2004.

Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xiaoliang Dai, Ji Hou, Zijian He, Artsiom Sanakoyeu,
Peizhao Zhang, Sam Tsai, Jonas Kohler, et al. Cache me if you can: Accelerating diffusion models
through block caching. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 6211–6220, 2024.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
Dong. Imagereward: learning and evaluating human preferences for text-to-image generation. In
Proceedings of the 37th International Conference on Neural Information Processing Systems, pp.
15903–15935, 2023.

Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and
William T Freeman. Improved distribution matching distillation for fast image synthesis. In
NeurIPS, 2024a.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6613–6623, 2024b.

Haoran You, Connelly Barnes, Yuqian Zhou, Yan Kang, Zhenbang Du, Wei Zhou, Lingzhi Zhang,
Yotam Nitzan, Xiaoyang Liu, Zhe Lin, et al. Layer-and timestep-adaptive differentiable token
compression ratios for efficient diffusion transformers. In Proceedings of the Computer Vision and
Pattern Recognition Conference, pp. 18072–18082, 2025.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-
rich text-to-image generation. arXiv preprint arXiv:2206.10789, 2(3):5, 2022.

Zhihang Yuan, Hanling Zhang, Lu Pu, Xuefei Ning, Linfeng Zhang, Tianchen Zhao, Shengen Yan,
Guohao Dai, and Yu Wang. Ditfastattn: Attention compression for diffusion transformer models.
Advances in Neural Information Processing Systems, 37:1196–1219, 2024.

Dingkun Zhang, Sijia Li, Chen Chen, Qingsong Xie, and Haonan Lu. Laptop-diff: Layer pruning and
normalized distillation for compressing diffusion models. arXiv preprint arXiv:2404.11098, 2024.

Evelyn Zhang, Jiayi Tang, Xuefei Ning, and Linfeng Zhang. Training-free and hardware-friendly
acceleration for diffusion models via similarity-based token pruning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 39, pp. 9878–9886, 2025.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. 2018. URL https://arxiv.org/abs/
1801.03924.

Wangbo Zhao, Yizeng Han, Jiasheng Tang, Kai Wang, Yibing Song, Gao Huang, Fan Wang, and
Yang You. Dynamic diffusion transformer. arXiv preprint arXiv:2410.03456, 2024.

Haowei Zhu, Dehua Tang, Ji Liu, Mingjie Lu, Jintu Zheng, Jinzhang Peng, Dong Li, Yu Wang, Fan
Jiang, Lu Tian, et al. Dip-go: A diffusion pruner via few-step gradient optimization. Advances in
Neural Information Processing Systems, 37:92581–92604, 2025.

Chang Zou, Evelyn Zhang, Runlin Guo, Haohang Xu, Conghui He, Xuming Hu, and Linfeng Zhang.
Accelerating diffusion transformers with dual feature caching. arXiv preprint arXiv:2412.18911,
2024.

Chang Zou, Xuyang Liu, Ting Liu, Siteng Huang, and Linfeng Zhang. Accelerating diffusion trans-
formers with token-wise feature caching. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=yYZbZGo4ei.

14

https://arxiv.org/abs/1801.03924
https://arxiv.org/abs/1801.03924
https://openreview.net/forum?id=yYZbZGo4ei

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 ETHICAL STATEMENT

Generative models have shown impressive capabilities in content creation (Chen et al., 2023; Rombach
et al., 2022), but their high inference costs hinder rapid deployment. Our method offers an efficient
acceleration strategy for diffusion models, achieving near-lossless speedup without retraining and
maintaining compatibility with various architectures. This generalizability makes it well-suited for
fast deployment on mobile and edge devices.

However, generative models pretrained on large-scale internet data may reflect inherent social biases
and stereotypes. There is also potential for misuse, such as in DeepFake (Lyu, 2020) creation, which
can cause serious societal harm. As the cost of generation decreases, the risk of irresponsible use
increases. Therefore, it’s essential to establish regulations, foster a well-governed community, and
provide clear usage guidelines to ensure the responsible application of generative technologies.

A.2 REPRODUCIBILITY STATEMENT

To support reproducibility, we provide detailed pseudocode for the proposed method (Appendix
A.5.3), full training and evaluation protocols including all hyperparameters and optimizer settings
(Section 4.1 and Appendix A.5), dataset descriptions and preprocessing steps, and the computing
environment for experiments (Section 4.1). Where applicable, we report evaluation metrics and
include instructions sufficient to reproduce the experimental pipelines described in the main text and
appendices. We plan to release anonymized code, trained model checkpoints, and exact run scripts
upon paper acceptance to facilitate full replication.

A.3 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We did not rely on LLMs for research ideation, experiment design, data analysis, or the generation
of technical content. Any use of LLMs was limited to minor, general-purpose editorial assistance
(proofreading, grammar, phrasing, and formatting suggestions); all such suggestions were reviewed
and revised by the authors. The paper’s conceptual contributions, algorithms, experiments, results,
and conclusions were produced solely by the authors, and no LLM is credited as a contributor.

A.4 MORE DISCUSSION WITH EXISTING WORKS

A.4.1 MORE RELATED WORKS

Diffusion Transformer Models. Recent work has improved the efficiency and scalability of
transformer-based diffusion models. Hybrid CNN–transformer architectures (Saharia et al., 2022)
combine local inductive biases with global attention, and transformer-based video generation (Ho
et al., 2022) demonstrates strong temporal modeling. These results establish transformers as a versatile
backbone for diffusion, motivating efforts on optimization, faster inference, and stronger conditional
generation. Nevertheless, the iterative denoising loop still incurs substantial computational overhead
that limits industrial deployment.

Acceleration of Diffusion Models. Several recent methods target inference cost directly: EOC
leverages prior knowledge to improve caching (Qiu et al., 2025), while designs such as UniCP and
RAS further boost efficiency (Sun et al., 2025; Liu et al., 2025d). DyDiT (Zhao et al., 2024) accelerates
inference by skipping unimportant tokens and slimming per-layer width, whereas DiffSparse reduces
compute by reusing cached features. The two strategies are complementary and can be combined for
larger speedups. DiffSparse computes token importance with a training-free compositional-attention
score and learns a compact layer-wise predictor, leading to much faster convergence (on the order of
103 iterations versus DyDiT’s ∼ 2× 105 fine-tuning steps). Moreover, by optimizing a global T -step
objective with a dynamic-programming solver, DiffSparse coordinates sparsity across timesteps and
layers and is validated across multiple architectures and generation tasks.

Comparison with Search-based and Training-based Methods. In our main configurations, the
differentiable optimization requires ≈ 4 hours of training versus ≈ 16 hours for a genetic-algorithm

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

search baseline, DiffSparse attains better FID while using less optimization time. The learned sparsity
predictor is compact (size (T × L)× |S|) and often transfers from 256× 256 training to 512× 512
evaluation, reducing the need for retraining at higher resolutions. By contrast, distillation-based
pipelines can demand orders of magnitude more compute: reported distillation efforts (DMD2)
involve O(103–104) GPU·hours (e.g., SD1.5: 1,664 GPU·hr; SDXL: 8,192 GPU·hr), far exceeding
the cost of our method and frequently relying on private data. Importantly, DiffSparse also improves
some distilled models: for example, on a 4-step distilled model (FLUX.1-schnell) we observe a
1.81× speedup with no measurable quality drop (see Table 9).

A.5 MORE IMPLEMENTATION DETAILS

A.5.1 TOKEN SELECTOR

We rank tokens using a composite importance score that integrates four criteria: self-attention
influence, cross-attention influence, cache reuse frequency, and uniform spatial distribution. This
composite score, which has demonstrated effective in prior work (Zou et al., 2025), is defined for
each token x̂i as follows:

S(x̂i) = B
(
λ1 s1(x̂i) + λ2 s2(x̂i) + λ3 s3(x̂i)

)
, (10)

where s1(x̂i) =
∑N

j=1 αij quantifies the self-attention contribution of token x̂i, with αij being the
(i, j)-th element of the normalized self-attention matrix. A higher value indicates that the token exerts
significant influence on others, meaning error in its representation may easily propagate. The term
s2(x̂i) = −

∑N
j=1 oij log(oij) represents the entropy of the cross-attention weights oij , measuring

how the control signal influences token x̂i, with lower entropy indicating more focused guidance.
Additionally, s3(x̂i) = ni denotes the number of times token x̂i has been reused from the cache since
its last computation, where a higher ni suggests possible accumulated errors, thus necessitating a
fresh computation. The spatial bonus function B(·) promotes a uniform spatial distribution of the
selected tokens by adding a bonus value λ4 to the score of x̂i if it has the highest composite score
within its k × k neighborhood. For each layer, tokens are ranked in descending order based on S(x̂i),
and the top K tokens are selected for computation and cache updates according to a predefined
sparsity ratio R.

We adopt the hyperparameter settings recommended by ToCa (Zou et al., 2025) and DuCa Zou
et al. (2024) (which were shown to be optimal for that setup) and therefore do not include ablation
experiments for these parameters, since tuning them is not central to our contribution. Specifically,
for PixArt-α, we set λ1 = 0.0, λ2 = 1.0, λ3 = 0.25/3, λ4 = 0.4, and k = 4. For DiT, we use
λ1 = 1.0, λ2 = 0.0, λ3 = 0.25/3, λ4 = 0.6, and k = 2. For FLUX.1-schnell, we set λ1 = 0.0,
λ2 = 1.0, λ3 = 0.25/3, λ4 = 0.4, and k = 4.

Besides, for Wan2.1, we select tokens with smaller norms in their value matrix as substitutes for
those with high attention map scores, following a strategy shown to be effective in DuCa Zou et al.
(2024). Notably, our method does not introduce a new token-selector. Instead, it can be applied to
existing token-selection methods and uses a differentiable sparsity-cost matrix to assign the model an
optimal sparsity level. As shown in Table 5, across various token-importance metrics our approach
consistently yields substantial gains.

A.5.2 LAYER SPARSITY COST PREDICTOR

We define a sparsity router for each layer. For PixArt-α and Wan2.1 model, each transformer block
consists of a self-attention layer, a cross-attention layer, and an MLP layer, with each layer being
assigned an individual sparsity value. In contrast, the DiT model does not include a cross-attention
layer, thus the corresponding predictor for cross-attention layer is removed. Additionally, the FLUX
model contains an image MLP layer, a text MLP layer, and a standard MLP layer, each of which is
assigned its own sparsity value.

A.5.3 TWO-STAGE TRAINING

We present the pseudocode for our two-stage training algorithm in Algorithm 1, illustrating the
training details of our sparsity cost predictor.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 1 Two-Stage Training Strategy for Cost Matrix Optimization

Input: Step cost matrix Cf ∈ RT×2; Layer sparsity cost matrix Cl ∈ R(L×T)×|S|; Total steps T ;
Number of layers L; Candidate set S; Desired full-step count |Tf |; Mutation constant δ = 10.
Stage 1: Initialization and Warm-Starting
Solve Cf via dynamic programming to obtain optimal full-step set Tf .
Integrate Cf into the tuned Cl to form the unified cost matrix:
for each t ∈ Tf do

for l = 1 to L do
Update cost: C(t,l,N)

l ← C
(t,l,N)
l − δ.

end for
end for
Stage 2: Unified Cost Optimization
Fine-tune the integrated Cl using differentiable cost interactions to systematically redistribute
FLOPs across sampling steps.
Output: Optimized layer cost matrix Cl.

A.5.4 SEARCH-BASED APPROACHES

In this paper, we compare our method with search-based approaches. For the GA algorithm, we start
by initializing a population of 50 (T ∗ L) layer-sparsity vectors that satisfy the sparsity requirements.
Each candidate is evaluated using its FID value, which serves as the fitness score. In subsequent
iterations, we select the best-performing individuals as parents for crossover operations and introduce
mutations with a probability of 0.01 to maintain population diversity. This iterative process continues
until the individual with the highest fitness score is identified. Besides, the random search algorithm
generates a population of candidates that meet the sparsity requirements in a completely random
manner. Their fitness is also evaluated using the FID value, and the optimal solution is updated
iteratively until the maximum number of iterations is reached.

A.5.5 ABOUT THE RETRAINING REQUIREMENT

If you change the model architecture significantly (e.g., different number of layers L or a different
block structure), retraining or at least fine-tuning is required when the temporal or architectural
axes change (T or L) because its parameters are tied to (T, L, |S|), but not usually when only token
length (image resolution) increases. Given the modest one-time training cost (4–10 GPU-hours in our
experiments) and the measurable quality, speed improvements, we believe the overhead is justified
for deployed models where inference cost matters.

A.6 MORE EXPERIMENTS

A.6.1 COMPARISON ON DISTILLED MODEL

Feature caching leverages redundancy across timesteps but provides little benefit for distilled diffusion
models with only one or two steps. Nevertheless, we still evaluate DiffSparse on FLUX.1-schnell
(Labs, 2024) with 4 steps at 256×256 resolution on the PartiPrompts (Yu et al., 2022) dataset. As
Table 9 shows, DiffSparse attains the same acceleration rate as ToCa but yields a higher Image
Reward, confirming its effectiveness in reallocating computation to the most critical layers and
delivering lossless speedup.

Table 9: Comparison in text-to-image generation for FLUX.1-schnell on PartiPrompts.

Method MACs (T)↓ Image Reward↑
FLUX.1-schnell 13.247 1.064
75% Steps 9.936 1.063
ToCa 7.313 1.063
DiffSparse 7.316 1.184

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.6.2 ABLATIONS OF THE ATTENTION-BASED SCORE

Table 5 compares three importance metrics (attention-based score, cosine similarity, ℓ2 norm) and
shows the attention-based score performs best overall. In Table 10, we further remove one component
at a time (−s1, −s2, −s3, −B) to answer how much each term contributes independently.

Table 10: Ablations of the attention-based score in text-to-image generation for PixArt-α.

Variant FID↓ CLIP↑
DiffSparse 26.91 0.164
−s1 (self-attention influence) 27.11 0.164
−s2 (cross-attention focus) 27.48 0.163
−s3 (cache-reuse frequency) 27.23 0.164
−B (spatial bonus) 27.05 0.164

A.7 QUALITATIVE ANALYSIS

A.7.1 VISUALIZATION OF LAYER SPARSITY

Figure 3 shows the learned layer wise sparsity allocation for PixArt-α at 256×256 resolution with 20
sampling steps under 1.74× speedup, with the first step omitted because it is always fully computed
in cache-based acceleration methods. In the self attention layers, sparsity is higher (that is, the layers
are more cacheable) in early time steps and shallow layers, while in the cross attention layers sparsity
is lower in later time steps and deeper layers, suggesting that textual semantics are most important
in the initial layers. The MLP layers receive more computation in early steps and shallow layers,
with reduced sparsity in deep layers at early steps and in shallow layers at later steps. In addition,
Figure 3 demonstrates that our method can redistribute the computation across all steps, reducing the
dependence on fully computed steps. It shows that additional resources are allocated to MLP layer,
this might be attributed to its ability of correct errors introduced by caching.

7.5

10.0

15.0

12.5

17.5

0 5 2010 15
Network Layers (N)

25

64

32

0

Sparsity Visualization

o.o

2.5

5.0 -

(L)

sdgs
OEF

652

422

29

(9
Ln
N

6
二
①

>3

o

8

6

2

6119

(a) Self Attention layer.

Sparsity Visualization
256

o.o

-224
2.5-

- 192

5.0 -

160

7.5 -

128

10.0

96

12.5

64

15.0

32

17.5

20 2510 15
Network Layers (N)

(b) Cross Attention layer.

0.0

Sparsity Visualization

Network Layers (N)

96

64

32

0

256

-224

- 192

(9
Ln
N

6
二
①

>9
云

o

8

6

2

1

1

5

o

2.

5.

-

.oo.1

(1)
sd
Bs

OEF

(c) MLP layer.

Figure 3: Visualization of predicted layer sparsity of PixArt-α with 20 steps. In the figure, the x-axis
denotes different network layers, the y-axis denotes sampling time steps, and the color gradient from
blue to yellow indicates increasing sparsity.

A.7.2 MORE VISUALIZATION OF GENERATED IMAGES

Figures 4 and 5 present further visualizations, including additional comparison samples and higher-
resolution results. They confirm that our approach delivers markedly higher acceleration ratios
compared to the baseline, while preserving performance quality.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

a close up of a shirtless man wearing a neck tie.

A large piece of meat surrounded by vegetables.A girl looking a beautiful view of the Rockies.

A dog is wearing a baseball hat over it's eyes.

Original DiffSparse 1.74 × DiffSparse 1.91 ×Original DiffSparse 1.74 × DiffSparse 1.91 ×

Figure 4: Comparison of our method with the baseline (PixArt-α with DPM-Solver++ using 20 steps)
under different acceleration rates.

a man who appears to be herding sheep is closing two big fence doors.

A person sitting in bed with a dog on his lap.

Two men are in the water on a boat.

A woman holding a surfboard walking into the ocean toward a dog.

Sheep are running across a green field of grass.

A wooden bench sitting on top of a green grass covered ground.

Original ToCa DiffSparse Original ToCa DiffSparse

Figure 5: Comparison between our DiffSparse, and ToCa with the baseline (PixArt-α with DPM-
Solver++ using 20 steps under 512×512 resolution).

19

	Introduction
	Related Work
	Method
	Preliminary
	DiffSparse Approach

	Experiments
	Experiment Settings
	Main Results
	Ablation Studies
	Qualitative Analysis

	Conclusion
	Appendix
	Ethical Statement
	Reproducibility Statement
	The Use of Large Language Models (LLMs)
	More Discussion with Existing Works
	More Related Works

	More Implementation Details
	Token Selector
	Layer Sparsity Cost Predictor
	Two-Stage Training
	Search-based Approaches
	About the Retraining Requirement

	More Experiments
	Comparison on Distilled Model
	Ablations of the Attention-based Score

	Qualitative Analysis
	Visualization of Layer Sparsity
	More Visualization of Generated Images

