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ABSTRACT

Diffusion models demonstrate outstanding performance in image generation, but
their multi-step inference mechanism requires immense computational cost. Pre-
vious works accelerate inference by leveraging layer or token cache techniques
to reduce computational cost. However, these methods fail to achieve superior
acceleration performance in few-step diffusion transformer models due to inef-
ficient feature caching strategies, manually designed sparsity allocation, and the
practice of retaining complete forward computations in several steps in these token
cache methods. To tackle these challenges, we propose a differentiable layer-wise
sparsity optimization framework for diffusion transformer models, leveraging token
caching to reduce token computation costs and enhance acceleration. Our method
optimizes layer-wise sparsity allocation in an end-to-end manner through a learn-
able network combined with a dynamic programming solver. Additionally, our
proposed two-stage training strategy eliminates the need for full-step processing
in existing methods, further improving efficiency. We conducted extensive experi-
ments on a range of diffusion-transformer models, including DiT-XL/2, PixArt-α,
FLUX, and Wan2.1. Across these architectures, our method consistently improves
efficiency without degrading sample quality. For example, on PixArt-α with 20
sampling steps, we reduce computational cost by 54% while achieving generation
metrics that surpass those of the original model, substantially outperforming prior
approaches. These results demonstrate that our method delivers large efficiency
gains while often improving generation quality.

1 INTRODUCTION

In recent years, diffusion models have made remarkable progress in the field of image generation.
Among them, the Stable Diffusion series (Rombach et al., 2022; Podell et al., 2023; Tian et al., 2024;
Esser et al., 2024) has achieved significant success in controllable high-quality image generation. This
advancement is largely attributed to the effectiveness of diffusion probabilistic models (DPM) (Ho
et al., 2020) and the powerful U-Net (Ronneberger et al., 2015) architecture, which allows high
resolution synthesis with exceptional detail preservation. Additionally, some recent works (Peebles &
Xie, 2023b; Chen et al., 2024b; Tian et al., 2024) have explored the integration of diffusion models
with Transformer-based architectures, demonstrating outstanding performance. In particular, scaling
laws have been leveraged to expand the model size of Transformers (Vaswani et al., 2017), further
enhancing precision and generative quality, these large-scale models leverage improved expressivity
and enhanced generalization, pushing the boundaries of generative artificial intelligence.

However, despite these advances, the substantial computational cost associated with diffusion models
presents a significant challenge for real-world deployment. The inference of such large models
requires extensive computational resources, which can hinder practical applications. Addressing
this issue requires innovations in model acceleration techniques to enable broader accessibility and
usability of diffusion-based generative models. Existing methods of diffusion model acceleration
typically focus on sampler optimization (Song et al., 2020; Lu et al., 2022a), model pruning (Fang
et al., 2023b; Zhang et al., 2024; Fang et al., 2023a), distillation (Yin et al., 2024b; Luo et al., 2023;
Salimans & Ho, 2022), and feature caching (Selvaraju et al., 2024; Ma et al., 2024; Liu et al., 2025a;b).
Feature caching methods leverages temporal redundancy to reuse intermediate features, achieving
significant speedups. They become popular in the field of diffusion model acceleration due to non-
training diffusion model and easy integrating into the original inference pipeline. Previous methods
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cache and reuse coarse-grained, layer-level features, whereas token cache methods (Zou et al., 2025;
2024; Zhang et al., 2025) reuse token-level features, achieving better acceleration performance.
However, these approaches require manual sparsity allocations and hand-crafted schedules that
preserve several full forward passes during denoising, which limits the acceleration potential of
token-level feature caching.

To address these challenges, we propose DiffSparse, a learnable framework for optimizing layer-wise
sparsity allocation in diffusion transformer models. Our approach dynamically determines the optimal
sparsity configuration across all layers and inference steps, ensuring that the overall pruning rate is
met in an end-to-end manner through a model-driven process. Moreover, DiffSparse eliminates the
need for complete forward computations in predefined steps required by existing methods, further
enhancing efficiency.

Specially, our approach formulates the token cache optimization as a dynamic programming-based
sparsity allocation problem. We innovatively design a learnable sparsity cost predictor, which predicts
a cost matrix that quantifies the sparsity costs associated with target sparsity rates for all layers across
every denoising step. Then we propose a dynamic programming approach to determine the optimal
sparsity configurations for all layers over the relevant denoising steps, minimizing the overall sparsity
cost while satisfying the required sparsity rate. Finally, we introduce a token selector that dynamically
selects a specific proportion of tokens for reuse, leveraging the learned sparsity ratio to accelerate
inference. To optimize the learnable sparsity cost predictor, we utilize a perceptual distillation loss
that minimizes the degradation in generation quality. Furthermore, we introduce a two-stage training
strategy that eliminates the need for complete forward computations in predefined steps required
by existing methods while also improving accuracy. We have conducted extensive experiments
on various transformer-based baselines, and the pruning results outperform other SOTA pruning
methods by a large margin. For example, pruning 54% of tokens yields an FID of 27.79, our method
substantially better than the state-of-the-art methods ToCa (28.35) and TaylorSeer (29.08), while
achieving a higher speedup (1.91×) on PixArt-α. These results underscore the practical effectiveness
of our method. Our contributions are summarized as follows:

• We propose DiffSparse, a differentiable approach to optimize layer-wise token sparsity
in diffusion models sampling process. By integrating a sparsity cost predictor, dynamic
programming solver, and adaptive token selector, it automates sparsity allocation and token
reuse without manual heuristics.

• We introduce a two-stage training strategy that eliminates the need for predefined complete
forward computations in several steps required by existing methods, fully unlocked the
acceleration potential of token-level feature caching.

• Extensive experiments on diverse foundation models prove that our method surpasses
existing SOTA methods by a large margin, setting new efficiency-accuracy benchmarks.

2 RELATED WORK

Diffusion Transformer Models. The integration of transformers into diffusion models has signif-
icantly advanced generative modeling, improving scalability and performance. Diffusion models,
which generate data by iteratively denoising from a noise distribution. Traditionally, diffusion models
relied on CNNs, but recent studies demonstrate the effectiveness of transformers (Peebles & Xie,
2023b; Chen et al., 2024b; Tian et al., 2024; Brooks et al., 2024; Chen et al., 2024a). Diffusion Trans-
former (DiT) (Peebles & Xie, 2023b) replaces the U-Net backbone with a transformer, leveraging
long-range dependencies and efficient scaling to achieve superior image generation. PixArt (Chen
et al., 2024b) builds on this by introducing a hierarchical transformer architecture and a novel
noise schedule, excelling in high-resolution and text-to-image synthesis. Although diffusion trans-
former models have achieved great success, the substantial computational overhead from the iterative
denoising process makes them inefficient for industrial deployment.

Acceleration of Diffusion Models. Diffusion acceleration is a critical research area focused on
reducing computational costs and improving inference efficiency while preserving high-quality
generation. Recent advancements can be categorized into sampler optimization (Song et al., 2021;
Lu et al., 2022a;b), model pruning (Fang et al., 2023b; Zhang et al., 2024), distillation (Salimans &
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Ho, 2022; Yin et al., 2024a), and feature caching (Li et al., 2023; Ma et al., 2024; Zhu et al., 2025).
Sampler optimization reduces the number of denoising steps during inference using deterministic
or adaptive strategies to approximate the denoising process efficiently. Model pruning removes
redundant parameters and achieving speedups with structured pruning (Fang et al., 2023a). Other
strategies, such as Rectified Flow (Liu et al., 2022) and knowledge distillation (Yin et al., 2024a)
accelerates inference by matching model outputs in fewer steps without quality loss.

Feature caching is particularly effective for DiT architectures. Methods such as FORA (Selvaraju et al.,
2024) and ∆-DiT Chen et al. (2024c) reuse attention and MLP representations, while DiTFastAttn
(Yuan et al., 2024) further reduces redundancies in self-attention. Dynamic strategies like TeaCache
(Liu et al., 2025a) estimate timestep-dependent differences, and TaylorSeer (Liu et al., 2025b)
introduced a “cache-then-forecast” paradigm that predicts and updates cached features, though its
advantage is most evident with long-range caching. SpeCa (Liu et al., 2025c) further enhance the
performance with speculative sampling. Complementary to these are token cache methods (Zou et al.,
2025; 2024; Zhang et al., 2025; You et al., 2025), which apply fine-grained, error-guided token-wise
caching to dynamically update features, achieving substantial acceleration without compromising
quality. More discussion with existing methods are presented in Appendix.

In this paper, we introduce DiffSparse, a feature-caching approach for accelerating diffusion trans-
former models. These models typically require only a few dozen sampling steps and have seen
growing adoption in industry. Unlike prior works (Zou et al., 2025; 2024), DiffSparse employs a
token-level cache within an end-to-end learning framework that casts model acceleration under a
fixed compression ratio as a layer-wise sparsity optimization problem across timesteps, eliminating
the need for manually tuned sparsity or acceleration parameters. To address inefficiencies in exist-
ing approaches, which depend on predefined full-step computation schedules, we also propose a
two-stage training protocol that adaptively allocates computation where it is most needed.

3 METHOD

In this section, we start with a brief introduction to the diffusion transformer model and the token
cache strategy. We then present the challenges of the existing token caching approaches. Finally,
we present our DiffSparse approach, which builds upon the token cache strategy for acceleration
and optimizes the layer-wise token sparsity of diffusion transformer model in a learnable manner,
enhancing accuracy while maintaining the sparsity requirement.

3.1 PRELIMINARY

Diffusion Models. Diffusion models are a class of generative models that construct a Markov chain
of latent variables by progressively adding Gaussian noise to data samples and then reversing this
process to synthesize new samples. Given an initial data sample x0, the forward diffusion process
transforms the data through a series of steps:

q(xt | xt−1) = N
(
xt;

√
1− βt xt−1, βtI

)
, (1)

where t is the time step, {βt}Tt=1 denotes a predefined variance schedule. After T steps, the data is
nearly transformed into an isotropic Gaussian distribution, i.e., q(xT ) ≈ N (0, I).

The reverse process is parameterized by a noise prediction network, which aims to recover the original
data by iteratively removing the added noise, and is modeled as:

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t), Σθ(xt, t)) , (2)

where µθ and Σθ are learned functions. Because the network is applied at each timestep in the
multi-step denoising process, the repeated evaluations of the noise prediction network dominate the
computational cost, accounting for the majority of the model’s floating-point operations (FLOPs).

Diffusion Transformer. The Diffusion Transformer (Chen et al., 2024b) is a novel architecture that
synergizes the iterative refinement capabilities of diffusion processes with the representational power
of transformers. In this framework, the input is represented as a set of tokens X ∈ RN×D, where N
denotes the number of tokens and D their dimensionality. The network architecture is composed of L
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stacked blocks, each integrating three key components: a self-attention (SA) layer, a cross-attention
(CA) layer, and a multi-layer perceptron (MLP) layer. The self-attention mechanism enables the
model to capture long-range dependencies among tokens. In parallel, the cross-attention module
facilitates the incorporation of conditioning information, enhancing the model’s ability to generate
contextually relevant outputs. The subsequent MLP further refines these token representations through
non-linear transformations.

A significant advantage of the Diffusion Transformer lies in its ability to iteratively refine token
representations during the denoising process, leading to improved sample quality. This layered
approach allows the model to effectively balance global context and local details, thereby offering
enhanced performance in complex generative tasks.

Token-Wise Feature Caching Approach. Prior work (Ma et al., 2024) has demonstrated that
features at adjacent timesteps exhibit high similarity, leading to significant redundancy. To exploit
this redundancy for computational efficiency, previous approaches (Ma et al., 2024; Wimbauer et al.,
2024) have introduced caching mechanisms that reuse features to accelerate processing. The token-
wise feature caching approach (Zou et al., 2025) operates at a finer granularity by caching features at
the individual token level, enabling more effective exploitation of the redundancy.

Token-wise feature caching mechanism begins by computing and storing the intermediate token
features X = {x̂0, x̂1, . . . , x̂N−1} from each self-attention, cross-attention, and MLP layer into a
cache C at the initial timestep t. In subsequent timesteps, a predefined cache ratio R determines
the proportion of tokens reused from the cache C for each layer at each timestep. The R selected
tokens based on token importance rank, denoted as ICache, will bypass re-computation by reusing
their cached values, while the remaining tokens ICompute = {x̂i}Ni=1 \ ICache are recomputed. For a
given layer f , the computation for each token x̂i is formulated as:

F (x̂i) = γif(x̂i) + (1− γi)C(x̂i), (3)

where γi = 0 for x̂i ∈ ICache and γi = 1 for x̂i ∈ ICompute. To mitigate error accumulation from
reused features, the cache is dynamically updated for tokens in ICompute via:

C(x̂i)← F (x̂i). (4)

This token-wise feature caching approach effectively reduces redundant computations by leveraging
the high similarity of features across adjacent timesteps, thus significantly accelerating the inference
process while maintaining robust feature representations.

Challenges in Existing Token Caching Approaches. While token caching methods (Zou et al.,
2025) have shown great promise in speeding up diffusion transformers, key limitations remain. First,
they require manually setting a reuse sparsity rate for each layer at every timestep, resulting in a
large, hard-to-tune parameter space. This manual process hampers performance and scalability. A
learnable or adaptive sparsity strategy could unlock further gains. Second, current methods still
depend on a full-step design (several steps without caching) to maintain generation quality. However,
this compromises the efficiency of token-based operations. Replacing this with dynamic caching
tailored to diffusion transformers can better balance quality and speed. In this paper, we propose an
intelligent framework that jointly learns optimal sparsity across layers and removes the reliance on
full-step computation, significantly improving both performance and flexibility.

3.2 DIFFSPARSE APPROACH

To automate per-layer sparsity selection and remove the reliance on full-step designs, we propose
DiffSparse, an efficient token caching framework for diffusion transformers. DiffSparse learns
layer-wise sparsity end-to-end by combining a learnable sparsity cost predictor with a dynamic
programming solver to find optimal sparsity configurations across layers and denoising steps. It also
adopts a two-stage training scheme that gradually replaces full computation steps with cache-based
ones, improving efficiency without sacrificing performance. As illustrated in Figure 1, DiffSparse
comprises three components: a token selector, a sparsity cost predictor, and a dynamic programming
solver. The cost predictor estimates a cost matrix representing the sparsity cost for various predefined
rates across all layers and denoising steps (excluding the first). The dynamic solver then identifies
the optimal sparsity pattern under a global sparsity constraint R. Based on this, the token selector
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Figure 1: DiffSparse uses a learnable sparsity-cost predictor and dynamic programming to learn
per-layer sparsity under target ratio R. We generate binary masks from the chosen sparsity maps and
candidate masks. A token selector reuses features from previous diffusion steps to skip unimportant
tokens and speed sampling. To enable gradient flow through the binary masks, we apply Straight-
Through Estimation (STE) and train our model using full-step sampling targets with LPIPS loss.

determines which tokens to reuse and which to recompute at each layer. Training is guided by a
perceptual distillation loss, integrated into a two-stage training pipeline for effective learning.

Token Selector. We employ a Token Selector that assigns each token x̂i an importance score used
to decide which tokens are freshly computed and which remain cached. The score is a composite,
layer-wise quantity of the form:

S(x̂i) = B
( Q∑

q=1

λq sq(x̂i)
)
, (5)

where each sq(x̂i) is a scalar signal capturing a different criterion (for example, self-attention influ-
ence, cross-attention focus, cache-reuse frequency, etc.), and {λq}Qq=1 are weighting hyperparameters
that balance these criteria. The operator B(·) is optional and denotes a spatial bonus operation that
promotes a spatially uniform coverage of selected tokens (implemented, e.g., by boosting tokens
that are local maxima within a k × k neighborhood). Other choices for B are possible (e.g. smooth
kernels or distance-based adjustments).

Given the per-token scores S(x̂i) in a layer with N tokens, we sort tokens by descending score
and select the top K tokens according to a predefined sparsity ratio R. We emphasize that our
contribution is orthogonal to any particular token-ranking heuristic: the choice of scoring components
(e.g. self-attention influence, cross-attention terms, spatial bonus) is optional and can be replaced
by alternative ranking methods. Detailed descriptions and comparisons of specific token-ranking
strategies are provided in the Appendix A.5.1. Empirically, our allocation scheme yields consistent
gains across different token-ranking methods (see Table 5).

Learnable Sparsity Cost Predictor. We propose a learnable sparsity cost predictor to adaptively
determine layer-wise sparsity in diffusion transformers (DiTs) while balancing inference efficiency
and computational cost. Given a DiT with L layers operating over T denoising timesteps, our goal
is to generate a binary mask M ∈ {0, 1}N for each layer l and timestep t that selects Kl,t tokens
for full computation and reuses features for the remaining N −Kl,t tokens. This is formalized as a
constrained optimization over a candidate sparsity set S, where |S| denotes the number of predefined
sparsity configurations. For a layer containing N tokens, let S denote the set of sparsity rates, each
a value between 0 and 1, at which we retain a corresponding fraction of tokens. For instance, if
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N = 256 and we choose a step size of 32 tokens, we obtain S = {0, 0.25, 0.50, 0.75, 1.0}, which
corresponds to retaining {0, 64, 128, 192, 256} tokens, respectively. Our objective is to learn the
relative cost of applying different sparsity rates across layers. Our experimental results (Table 4)
demonstrate that the learned sparsity predictor generalizes across resolutions, so that a sparsity
allocation trained at low resolution remains effective at higher resolutions.

We implement the sparsity cost predictor using (T × L)× |S| learnable parameters, where T is the
number of timesteps, L is the number of layers, and |S| is the size of the candidate sparsity set. The
predictor outputs a normalized cost matrix C ∈ R(T×L)×|S|, where each entry C(t,l),s quantifies the
cost of applying sparsity configuration s ∈ S to layer l at timestep t. We minimize the cumulative
cost while ensuring the total sparsity meets a predefined overall pruning rate R. The sorted token set
X̄ ∈ RN×D enables efficient mask selection by prioritizing tokens with high scores.

Importantly, The cost predictor’s size depends only on T , L, and |S|, not on token-sequence length
N . Empirically, we found that simply increasing |S| beyond a moderate size yields diminishing or
negative returns (Table 7), and experiments show the learned cost predictor transfers across resolutions
(Table 4), demonstrating scalability to high resolutions and robustness to token-length variation.

Dynamic Programming Solver. To determine the optimal sparsity configuration while satisfying a
global sparsity constraint, we employ a dynamic programming approach to minimize the overall cost
across layers. Formally, we define the state function:

F (l̂, r) = min
{si}l̂

i=1

l̂∑
i=1

Ci,si , s.t.
l̂∑

i=1

si = r, (6)

where F (l̂, r) represents the minimum achievable cost when assigning sparsity levels to the first l̂
layers under a total sparsity constraint r. The recursive formulation is given by:

F (l̂, r) = min
s∈S,s≤r

(
F (l̂ − 1, r − s) + Cl̂,s

)
. (7)

Here, the transition considers all possible sparsity levels s that can be allocated to layer l̂, ensuring
that the total sparsity constraint is maintained. The algorithm iteratively computes F (l̂, r) for
l̂ = 1, . . . , L ·T and r = 0, . . . , R̂, followed by a backtracking step to reconstruct the optimal sparsity
allocation, where R̂ = R ·L · T . This approach operates with a time complexity of O((L · T )2 · |S|),
making it computationally feasible for practical deep learning scenarios. To reduce the number of
redundant state computations and lower overall complexity, we implement pre-pruning strategies.
For example, when target sparsity ratio R = 43%, |S| = 5, T = 20, and L = 28, it requires about
4 hours (including DP optimization and fine-tuning) of total training time. The DP solver runs in
approximately≈30 seconds for the configurations reported, but it is not executed at inference time. At
inference, the model only uses the precomputed masks. Since the direct conversion of the predicted
cost matrix C to a discrete mask M is non-differentiable, we utilize the Straight-Through Estimator
(STE) (Jang et al., 2016) to approximate the gradients of the discrete mask with respect to the cost
predictions. This approach facilitates end-to-end optimization of the sparsity cost predictor.

Training Loss. To guide the optimization of the pruned Diffusion Transformer, we employ the
Learned Perceptual Image Patch Similarity (LPIPS) loss (Zhang et al., 2018) as a perceptual dis-
tillation loss. In our framework, the original model prior to token pruning serves as the teacher
network, while the pruned model is treated as the student network. Both models generate outputs via
a multi-step sampling process inherent to diffusion models.

Let x0 and x′
0 denote the multi-step sampling outputs from the teacher and student networks,

respectively. The LPIPS loss is then defined as:

LLPIPS = LPIPS(x0, x
′
0), (8)

which measures the perceptual similarity between the outputs. During training, gradients are back-
propagated solely through the student network, as the teacher network’s parameters are detached (i.e.,
its gradients are not computed). This setup ensures that the student model is effectively distilled to
mimic the perceptual characteristics of the teacher model, thereby achieving acceleration through
token pruning while preserving output quality.
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Two-Stage Training Strategy. We propose a two-stage training framework to optimize the cost
matrices for full-step positions and layer sparsity components. In the first stage,
we follow (Selvaraju et al., 2024; Zou et al., 2025) to preset Tf full-step positions and independently
optimize the step cost matrix Cf ∈ RT×2 encoding temporal sparsity decisions and the layer sparsity
cost matrix Cl ∈ R(L×T )×|S| governing token retention per layer. We first solve Cf via dynamic
programming to identify |Tf | optimal full-step positions with minimal cumulative cost. For these
selected steps, we warm-start layer sparsity optimization by subtracting δ from the predicted costs:

C
(t,l,s)
l ← C

(t,l,s)
l − δ ∀t ∈ Tf , l ∈ {1, ..., L}, s = N. (9)

This strategy preserves inter-layer cost ranking while leveraging full-step error correction capabilities.

In the second stage, we integrate step and layer costs by modifying layer sparsity entries using
Equation 9. The unified cost matrix is then fine-tuned to systematically redistribute FLOPs across
sampling steps. Unlike existing methods (Selvaraju et al., 2024; Zou et al., 2025) that rigidly
enforce full steps for noise correction, our approach dynamically optimizes sparsity patterns through
differentiable cost interaction. The pseudocode is provided in the supplementary materials.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Model Configurations. We conduct experiments on four widely used DiT-based models across
various generation tasks: (1) PixArt-α with 20 DPM Solver++ (Lu et al., 2022b) steps and FLUX.1-
schnell (Labs, 2024) with 4 steps for text-to-image generation and (2) DiT-XL/2 with 50 DDIM
(Song et al., 2021) steps for class-conditional image generation. (3) Wan2.1-1.3B (Wan et al., 2025)
with 25 flow-matching sampling steps for text-to-video generation. We define the candidate set S
as the range from 0 to 1 with an interval of 0.25, yielding |S| = 5 token sparsity candidates. More
details of the implementation are provided in the supplementary material.

Training. For PixArt-α (Chen et al., 2024b) and FLUX.1-schnell (Labs, 2024), we train the
learnable sparsity-cost predictor on 10,000 captions randomly sampled from the COCO (Lin et al.,
2014) train dataset. For DiT-XL/2 (Peebles & Xie, 2023a), we use 10,000 ImageNet (Deng et al.,
2009) train category indices, and for Wan2.1 we sample 10,000 captions from WebVid-10M (Bain
et al., 2021) for training. During training we use no image data, only captions or class-conditioning
information, which do not overlap with the evaluation set.

We leverage the layer sparsity configuration in the token-cache-based model (Zou et al., 2025) to
initialize our sparse router training. All the models are trained with AdamW optimizer. The sparsity
cost predictor is trained in two stages. For the first stage, the layer sparsity cost component is
optimized for 1 epoch with a learning rate of η = 1.0, while the step cost component is trained
separately using η = 0.01 to capture temporal patterns across denoising steps. For the second stage,
we integrate the step cost into the layer-wise costs with δ = 10 and then fine-tuned for 1 epoch with
η = 0.1 to optimize layer sparsity allocation. Training requires approximately 4-10 hours on 8 AMD
MI250 GPUs with 80GB memory per experiment.

Evaluation. For text-to-image generation, we evaluate on the COCO dataset (Lin et al., 2014)
using 30,000 samples at 256 × 256 resolution and PartiPrompts (Yu et al., 2022) with 1,632 samples.
Image quality is quantified by FID-30k (Heusel et al., 2017), which compares generated images
against originals, while text-image alignment is measured by two complementary metrics: CLIP-
Score (computed with CLIP-ViT-Large-14 (Hessel et al., 2021)) and Image Reward (Xu et al.,
2023), a metric shown to more accurately reflect human preferences. For class-conditional image
generation, 50,000 images at 256 × 256 resolution are generated from 1,000 ImageNet (Deng et al.,
2009) classes and evaluated using the FID-50k metric. We evaluate text-to-video generation using the
VBench framework on 950 prompts, generating 4,750 videos at 256 × 256 resolution, each lasting 2
seconds at 8 frames per second, and assess them across 16 metrics.
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4.2 MAIN RESULTS

Results on Text-to-Image Generation. We compare DiffSparse with existing methods under
identical sparsity budgets. FORA, DeepCache (CVPR’24) and TaylorSeer (ICCV’25) are evaluated
with cache interval N = 2, while DiCache, ToCa (ICLR’25) and DuCa are tested using their
respective optimal configurations. Table 1 shows that DiffSparse delivers both faster inference
and improved generation quality compared with existing methods. At roughly 1.74× speed-up,
existing methods suffer degraded image quality, while DiffSparse achieves a strong FID of 26.91 (vs.
TaylorSeer’s 29.08 and ToCa’s 28.35). This corresponds to a relative +5.1% improvement in FID of
DiffSparse over ToCa. Pushing further, DiffSparse attains 1.91× acceleration while producing an FID
that surpasses the original (full) model. This improvement stems from a learned sparsity schedule
that accelerates convergence of the generated image distribution and improves visual fidelity, while
preserving semantic alignment with the conditioning signal. We provide additional text-to-image
comparisons in Appendix A.6, and also present more qualitative visual comparison in Appendix A.7.

Table 1: Results of text-to-image generation on MS-COCO2017 with PixArt-α and 20 DPM++ steps.

Method MACs (T)↓ Speedup↑ FID-30k↓ CLIP↑
PixArt-α (Chen et al., 2024b) 2.86 1.00× 28.20 0.163

50% steps 1.43 1.74× 37.57 0.158
FORA (N = 2) (Selvaraju et al., 2024) 1.43 1.64× 29.67 0.164
DeepCache (N = 2) (Ma et al., 2024) 1.48 1.61× 29.61 0.163
DiCache (Bu et al., 2025) 1.63 1.77× 28.19 0.164
ToCa (Zou et al., 2025) 1.64 1.75× 28.35 0.164
DuCa (Zou et al., 2024) 1.63 1.78× 27.98 0.164
TaylorSeer (Liu et al., 2025b) 1.57 1.83× 29.08 0.163
DiffSparse (R = 43%) 1.64 1.74× 26.91 0.164
DiffSparse (R = 54%) 1.30 1.91× 27.79 0.164

Table 2: Results of class-conditional generation with DiT-XL/2 and 50 DDIM steps on ImageNet.

Method MACs (T) ↓ Speedup↑ FID↓ sFID ↓ Precision ↑ Recall ↑
DDIM-50 steps 11.44 1.00× 2.26 4.29 0.80 0.60
DDIM-40 steps 9.14 1.24× 2.39 4.28 0.80 0.59
DDIM-25 steps 5.73 1.96× 3.01 4.60 0.79 0.58
DDIM-20 steps 4.58 2.42× 3.48 4.64 0.79 0.56

FORA 4.13 2.12× 3.88 6.74 0.79 0.56
ToCa 4.97 2.09× 3.05 4.70 0.79 0.57
DuCa 4.94 2.10× 3.04 4.70 0.79 0.57
DiffSparse 4.97 2.07× 2.81 4.61 0.80 0.59

Results on Class-Conditional Image Generation. Table 2 compares faster sampler DDIM with
fewer steps, FORA, ToCa, DuCa and DiffSparse. Our method achieves a better speed–accuracy
balance by reallocating computation to the most important layers. At the same acceleration ratio,
DiffSparse improves the FID from 3.05 to 2.81, outperforming ToCa by 8% at 2.07× acceleration.
demonstrating its ability to preserve detail and improve image fidelity in diffusion model acceleration.

Table 3: Comparison in text-to-video generation for
Wan2.1-1.3B with 20 sampling steps on VBench.

Method MACs (T) ↓ Speedup ↑ VBench ↑
Wan 2.1 - 1.3B 43.866 1.00× 43.82
50% steps 21.933 1.86× 43.14
DuCa (R = 54%) 20.332 1.69× 43.56
DuCa (R = 59%) 18.124 1.68× 43.30
DiffSparse 18.124 2.05× 43.83

Table 4: Comparison on PixArt-α using
20 sampling steps at 512×512 resolution.

Method MACs (T) ↓ FID ↓ CLIP ↑
PixArt-α 10.851 21.95 0.164
50% steps 5.426 25.05 0.163
ToCa 5.993 23.02 0.165
DiffSparse 5.986 22.42 0.165

Results on Text-to-Video Generation. Table 3 presents a comparison between DiffSparse and
DuCa (Zou et al., 2024) on Wan2.1-1.3B (Wan et al., 2025) using 20 sampling steps. The methods
are comprehensively evaluated across 16 aspects defined in VBench (Huang et al., 2024). We adopt
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DuCa’s norm-based token ranking compatible with FlashAttention (Dao et al., 2022) for faster
inference. DiffSparse achieves the highest VBench score while minimizing computational cost and
inference time. At the same compression ratio, it delivers greater speedup by skipping partial layers
with zero sparsity, and its adaptive, layer-wise sparsity allocation preserves model quality.

4.3 ABLATION STUDIES

Comparison of Two Stage Training. In this work, we adopt a two-stage training strategy. The
first stage independently trains cost matrices for full-step and layer sparsity. In the second stage,
the learned full-step cost is merged into the layer sparsity optimization, and the layer sparsity is
subsequently fine-tuned. This design enables the model to initially leverage the full-step to correct
errors and to learn layer sparsity cost values, followed by a gradual reduction of the full-step influence.
Results proved that two-stage approach achieves better performance, with an FID of 26.91 compared
to 27.40 from the single-stage baseline.

Comparison of Important Scores. Table 5 compares three importance scores: attention (Equation
10), cosine similarity and the ℓ2 norm. The cosine similarity is computed between the current input
token and cached tokens. The ℓ2 norm is the norm value of input tokens. The attention-based score
attains the best FID, followed by the similarity measure, which captures token redundancy effectively.
Norm-based scoring introduces noise and performs worst, confirming that accurate importance
estimation is critical for optimal token selection.

Table 5: Ablation study on token importance
metrics.

Method Base. w/ DiffSparse

Norm 29.05 28.89 (-0.16)
Similarity 29.00 28.07 (-0.93)
Attention 28.35 26.91 (-1.44)

Table 6: Ablation study on distillation loss func-
tions.

Method FID ↓ CLIP ↑
L2 27.68 0.164
SSIM 27.46 0.164
LPIPS 26.91 0.164

Table 7: Ablation study of sparse interval.

Interval |S| FID ↓ CLIP ↑
0.1 11 27.96 0.163
0.125 9 27.91 0.163
0.25 5 26.91 0.164
0.5 3 27.54 0.164
1.0 2 28.22 0.162

Table 8: Ablation of warm-start strength δ.

δ FID ↓ CLIP ↑
0 27.40 0.163
5 27.01 0.164
10 26.91 0.164
20 26.95 0.164

Comparison of Training Losses. We compare L2, SSIM (Wang et al., 2004), and LPIPS losses in
Table 6. LPIPS outperforms the others, yielding the best FID. L2 loss penalizes pixel-wise squared
errors and often produces overly smooth images that lack fine details. SSIM enforces local structural
similarity but may over-penalize perceptually good images that differ spatially from the original. By
measuring distances in a learned perceptual feature space, LPIPS avoids these pitfalls and better
preserves image quality during training.

Comparison of Sparse Intervals. We distribute sparsity uniformly across layers by token count and
evaluate different granularity settings in Table 7. A granularity of 0.125 yields minimal within-layer
variation, which hinders convergence, while 0.5 limits the range of sparsity choices. The optimal
granularity is 0.25, producing sparsity rates [0, 0.25, 0.50, 0.75, 1.0] (corresponding to candidate token
counts of [0, 64, 128, 192, 256] for a sequence length of 256) and delivering the best performance.

Generalization on Higher Resolution Models. As the token sequence length increases with
image resolution, peak memory usage during training grows substantially, even though the size
and computational cost of our cost matrix remain unchanged. This makes direct training at very
high resolutions impractical. To address this, we investigate whether a sparsity predictor trained at
lower resolution can be transferred to higher resolution without retraining. As shown in Table
4, the sparsity predictor learned at 256 × 256 resolution achieves a lower FID than ToCa on 512
× 512 images while maintaining a comparable CLIP-Score to the original PixArt model. These
results demonstrate that our method generalizes effectively to higher resolutions, enabling model
acceleration with limited memory and training cost.
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Compared with GA Search. We compared DiffSparse against traditional search methods such as
random search and genetic algorithms and found that in the vast sparsity space they underperform.
After 1,000 iterations on 500 images, these methods yield FID scores of 28.34 and 27.94, respectively,
compared with 26.91 for DiffSparse. Moreover, they require about 16 hours, whereas DiffSparse
completes training in roughly 4 hours. These results show that our differentiable learning framework
discovers more effective layer-wise sparsity allocations and delivers superior acceleration.

Comparison of Warm-Start Constant δ. Algorithm 1 uses a warm-start constant δ = 10 for
the two-stage optimization. Intuitively, δ injects the Stage-1 prior (the timesteps selected to remain
full-step) into Stage 2 by lowering the cost of the “full” candidate at those timesteps. In effect, a larger
δ more strongly encourages preserving full computation at the Stage-1 selected steps. To quantify
this effect we evaluated δ ∈ {0, 5, 10, 20}. Table 8 reports the results on PixArt-α with T = 20. A
moderate warm-start (δ = 10) recovers most of the benefit, while δ = 0 (no warm-start) removes the
Stage-1 prior and yields noticeably worse performance.

4.4 QUALITATIVE ANALYSIS

Visualization of Generated Images. We provide detailed visual comparisons among our proposed
method, ToCa, and the original PixArt-α across various sparsity ratios. in Figure 2 reveals that
DiffSparse consistently maintains high fidelity, even under aggressive pruning conditions. Moreover,
our DiffSparse effectively preserves the semantic content of the text prompt, ensuring that the
generated images remain closely aligned with the original descriptions. In contrast, baseline methods
exhibit noticeable degradation in both visual quality and text-image alignment at higher pruning
ratios, further highlighting the strength and efficiency of DiffSparse.

Two people standing on the beach with a kite.

A guy standing in the grass is ready to throw something.

A goat with horns is standing in a grassy field.

Original ToCa 1.75 × DiffSparse 1.74 × DiffSparse 1.91 ×TaylorSeer 1.83 ×

Figure 2: Comparison of our method with the baseline (PixArt-α with DPM-Solver++ using 20 steps)
and existing methods under different acceleration rates.

5 CONCLUSION

We introduce a learnable token sparsity allocation framework to accelerate diffusion transformers.
By formulating sparsity allocation as a dynamic programming problem and employing a two stage
training strategy, our method substantially reduces computational cost while preserving generative
quality. Extensive experiments across various foundation models and datasets demonstrate improved
acceleration ratios without compromising image quality of our method.
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A APPENDIX

A.1 ETHICAL STATEMENT

Generative models have shown impressive capabilities in content creation (Chen et al., 2023; Rombach
et al., 2022), but their high inference costs hinder rapid deployment. Our method offers an efficient
acceleration strategy for diffusion models, achieving near-lossless speedup without retraining and
maintaining compatibility with various architectures. This generalizability makes it well-suited for
fast deployment on mobile and edge devices.

However, generative models pretrained on large-scale internet data may reflect inherent social biases
and stereotypes. There is also potential for misuse, such as in DeepFake (Lyu, 2020) creation, which
can cause serious societal harm. As the cost of generation decreases, the risk of irresponsible use
increases. Therefore, it’s essential to establish regulations, foster a well-governed community, and
provide clear usage guidelines to ensure the responsible application of generative technologies.

A.2 REPRODUCIBILITY STATEMENT

To support reproducibility, we provide detailed pseudocode for the proposed method (Appendix
A.5.3), full training and evaluation protocols including all hyperparameters and optimizer settings
(Section 4.1 and Appendix A.5), dataset descriptions and preprocessing steps, and the computing
environment for experiments (Section 4.1). Where applicable, we report evaluation metrics and
include instructions sufficient to reproduce the experimental pipelines described in the main text and
appendices. We plan to release anonymized code, trained model checkpoints, and exact run scripts
upon paper acceptance to facilitate full replication.

A.3 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We did not rely on LLMs for research ideation, experiment design, data analysis, or the generation
of technical content. Any use of LLMs was limited to minor, general-purpose editorial assistance
(proofreading, grammar, phrasing, and formatting suggestions); all such suggestions were reviewed
and revised by the authors. The paper’s conceptual contributions, algorithms, experiments, results,
and conclusions were produced solely by the authors, and no LLM is credited as a contributor.

A.4 MORE DISCUSSION WITH EXISTING WORKS

A.4.1 MORE RELATED WORKS

Diffusion Transformer Models. Recent work has improved the efficiency and scalability of
transformer-based diffusion models. Hybrid CNN–transformer architectures (Saharia et al., 2022)
combine local inductive biases with global attention, and transformer-based video generation (Ho
et al., 2022) demonstrates strong temporal modeling. These results establish transformers as a versatile
backbone for diffusion, motivating efforts on optimization, faster inference, and stronger conditional
generation. Nevertheless, the iterative denoising loop still incurs substantial computational overhead
that limits industrial deployment.

Acceleration of Diffusion Models. Several recent methods target inference cost directly: EOC
leverages prior knowledge to improve caching (Qiu et al., 2025), while designs such as UniCP and
RAS further boost efficiency (Sun et al., 2025; Liu et al., 2025d). DyDiT (Zhao et al., 2024) accelerates
inference by skipping unimportant tokens and slimming per-layer width, whereas DiffSparse reduces
compute by reusing cached features. The two strategies are complementary and can be combined for
larger speedups. DiffSparse computes token importance with a training-free compositional-attention
score and learns a compact layer-wise predictor, leading to much faster convergence (on the order of
103 iterations versus DyDiT’s ∼ 2× 105 fine-tuning steps). Moreover, by optimizing a global T -step
objective with a dynamic-programming solver, DiffSparse coordinates sparsity across timesteps and
layers and is validated across multiple architectures and generation tasks.

Comparison with Search-based and Training-based Methods. In our main configurations, the
differentiable optimization requires ≈ 4 hours of training versus ≈ 16 hours for a genetic-algorithm
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search baseline, DiffSparse attains better FID while using less optimization time. The learned sparsity
predictor is compact (size (T × L)× |S|) and often transfers from 256× 256 training to 512× 512
evaluation, reducing the need for retraining at higher resolutions. By contrast, distillation-based
pipelines can demand orders of magnitude more compute: reported distillation efforts (DMD2)
involve O(103–104) GPU·hours (e.g., SD1.5: 1,664 GPU·hr; SDXL: 8,192 GPU·hr), far exceeding
the cost of our method and frequently relying on private data. Importantly, DiffSparse also improves
some distilled models: for example, on a 4-step distilled model (FLUX.1-schnell) we observe a
1.81× speedup with no measurable quality drop (see Table 9).

A.5 MORE IMPLEMENTATION DETAILS

A.5.1 TOKEN SELECTOR

We rank tokens using a composite importance score that integrates four criteria: self-attention
influence, cross-attention influence, cache reuse frequency, and uniform spatial distribution. This
composite score, which has demonstrated effective in prior work (Zou et al., 2025), is defined for
each token x̂i as follows:

S(x̂i) = B
(
λ1 s1(x̂i) + λ2 s2(x̂i) + λ3 s3(x̂i)

)
, (10)

where s1(x̂i) =
∑N

j=1 αij quantifies the self-attention contribution of token x̂i, with αij being the
(i, j)-th element of the normalized self-attention matrix. A higher value indicates that the token exerts
significant influence on others, meaning error in its representation may easily propagate. The term
s2(x̂i) = −

∑N
j=1 oij log(oij) represents the entropy of the cross-attention weights oij , measuring

how the control signal influences token x̂i, with lower entropy indicating more focused guidance.
Additionally, s3(x̂i) = ni denotes the number of times token x̂i has been reused from the cache since
its last computation, where a higher ni suggests possible accumulated errors, thus necessitating a
fresh computation. The spatial bonus function B(·) promotes a uniform spatial distribution of the
selected tokens by adding a bonus value λ4 to the score of x̂i if it has the highest composite score
within its k × k neighborhood. For each layer, tokens are ranked in descending order based on S(x̂i),
and the top K tokens are selected for computation and cache updates according to a predefined
sparsity ratio R.

We adopt the hyperparameter settings recommended by ToCa (Zou et al., 2025) and DuCa Zou
et al. (2024) (which were shown to be optimal for that setup) and therefore do not include ablation
experiments for these parameters, since tuning them is not central to our contribution. Specifically,
for PixArt-α, we set λ1 = 0.0, λ2 = 1.0, λ3 = 0.25/3, λ4 = 0.4, and k = 4. For DiT, we use
λ1 = 1.0, λ2 = 0.0, λ3 = 0.25/3, λ4 = 0.6, and k = 2. For FLUX.1-schnell, we set λ1 = 0.0,
λ2 = 1.0, λ3 = 0.25/3, λ4 = 0.4, and k = 4.

Besides, for Wan2.1, we select tokens with smaller norms in their value matrix as substitutes for
those with high attention map scores, following a strategy shown to be effective in DuCa Zou et al.
(2024). Notably, our method does not introduce a new token-selector. Instead, it can be applied to
existing token-selection methods and uses a differentiable sparsity-cost matrix to assign the model an
optimal sparsity level. As shown in Table 5, across various token-importance metrics our approach
consistently yields substantial gains.

A.5.2 LAYER SPARSITY COST PREDICTOR

We define a sparsity router for each layer. For PixArt-α and Wan2.1 model, each transformer block
consists of a self-attention layer, a cross-attention layer, and an MLP layer, with each layer being
assigned an individual sparsity value. In contrast, the DiT model does not include a cross-attention
layer, thus the corresponding predictor for cross-attention layer is removed. Additionally, the FLUX
model contains an image MLP layer, a text MLP layer, and a standard MLP layer, each of which is
assigned its own sparsity value.

A.5.3 TWO-STAGE TRAINING

We present the pseudocode for our two-stage training algorithm in Algorithm 1, illustrating the
training details of our sparsity cost predictor.
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Algorithm 1 Two-Stage Training Strategy for Cost Matrix Optimization

Input: Step cost matrix Cf ∈ RT×2; Layer sparsity cost matrix Cl ∈ R(L×T )×|S|; Total steps T ;
Number of layers L; Candidate set S; Desired full-step count |Tf |; Mutation constant δ = 10.
Stage 1: Initialization and Warm-Starting
Solve Cf via dynamic programming to obtain optimal full-step set Tf .
Integrate Cf into the tuned Cl to form the unified cost matrix:
for each t ∈ Tf do

for l = 1 to L do
Update cost: C(t,l,N)

l ← C
(t,l,N)
l − δ.

end for
end for
Stage 2: Unified Cost Optimization
Fine-tune the integrated Cl using differentiable cost interactions to systematically redistribute
FLOPs across sampling steps.
Output: Optimized layer cost matrix Cl.

A.5.4 SEARCH-BASED APPROACHES

In this paper, we compare our method with search-based approaches. For the GA algorithm, we start
by initializing a population of 50 (T ∗ L) layer-sparsity vectors that satisfy the sparsity requirements.
Each candidate is evaluated using its FID value, which serves as the fitness score. In subsequent
iterations, we select the best-performing individuals as parents for crossover operations and introduce
mutations with a probability of 0.01 to maintain population diversity. This iterative process continues
until the individual with the highest fitness score is identified. Besides, the random search algorithm
generates a population of candidates that meet the sparsity requirements in a completely random
manner. Their fitness is also evaluated using the FID value, and the optimal solution is updated
iteratively until the maximum number of iterations is reached.

A.5.5 ABOUT THE RETRAINING REQUIREMENT

If you change the model architecture significantly (e.g., different number of layers L or a different
block structure), retraining or at least fine-tuning is required when the temporal or architectural
axes change (T or L) because its parameters are tied to (T, L, |S|), but not usually when only token
length (image resolution) increases. Given the modest one-time training cost (4–10 GPU-hours in our
experiments) and the measurable quality, speed improvements, we believe the overhead is justified
for deployed models where inference cost matters.

A.6 MORE EXPERIMENTS

A.6.1 COMPARISON ON DISTILLED MODEL

Feature caching leverages redundancy across timesteps but provides little benefit for distilled diffusion
models with only one or two steps. Nevertheless, we still evaluate DiffSparse on FLUX.1-schnell
(Labs, 2024) with 4 steps at 256×256 resolution on the PartiPrompts (Yu et al., 2022) dataset. As
Table 9 shows, DiffSparse attains the same acceleration rate as ToCa but yields a higher Image
Reward, confirming its effectiveness in reallocating computation to the most critical layers and
delivering lossless speedup.

Table 9: Comparison in text-to-image generation for FLUX.1-schnell on PartiPrompts.

Method MACs (T)↓ Image Reward↑
FLUX.1-schnell 13.247 1.064
75% Steps 9.936 1.063
ToCa 7.313 1.063
DiffSparse 7.316 1.184
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A.6.2 ABLATIONS OF THE ATTENTION-BASED SCORE

Table 5 compares three importance metrics (attention-based score, cosine similarity, ℓ2 norm) and
shows the attention-based score performs best overall. In Table 10, we further remove one component
at a time (−s1, −s2, −s3, −B) to answer how much each term contributes independently.

Table 10: Ablations of the attention-based score in text-to-image generation for PixArt-α.

Variant FID↓ CLIP↑
DiffSparse 26.91 0.164
−s1 (self-attention influence) 27.11 0.164
−s2 (cross-attention focus) 27.48 0.163
−s3 (cache-reuse frequency) 27.23 0.164
−B (spatial bonus) 27.05 0.164

A.7 QUALITATIVE ANALYSIS

A.7.1 VISUALIZATION OF LAYER SPARSITY

Figure 3 shows the learned layer wise sparsity allocation for PixArt-α at 256×256 resolution with 20
sampling steps under 1.74× speedup, with the first step omitted because it is always fully computed
in cache-based acceleration methods. In the self attention layers, sparsity is higher (that is, the layers
are more cacheable) in early time steps and shallow layers, while in the cross attention layers sparsity
is lower in later time steps and deeper layers, suggesting that textual semantics are most important
in the initial layers. The MLP layers receive more computation in early steps and shallow layers,
with reduced sparsity in deep layers at early steps and in shallow layers at later steps. In addition,
Figure 3 demonstrates that our method can redistribute the computation across all steps, reducing the
dependence on fully computed steps. It shows that additional resources are allocated to MLP layer,
this might be attributed to its ability of correct errors introduced by caching.
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Figure 3: Visualization of predicted layer sparsity of PixArt-α with 20 steps. In the figure, the x-axis
denotes different network layers, the y-axis denotes sampling time steps, and the color gradient from
blue to yellow indicates increasing sparsity.

A.7.2 MORE VISUALIZATION OF GENERATED IMAGES

Figures 4 and 5 present further visualizations, including additional comparison samples and higher-
resolution results. They confirm that our approach delivers markedly higher acceleration ratios
compared to the baseline, while preserving performance quality.
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a close up of a shirtless man wearing a neck tie.

A large piece of meat surrounded by vegetables.A girl looking a  beautiful view of the Rockies.

A dog is wearing a baseball hat over it's eyes.

Original DiffSparse 1.74 × DiffSparse 1.91 ×Original DiffSparse 1.74 × DiffSparse 1.91 ×

Figure 4: Comparison of our method with the baseline (PixArt-α with DPM-Solver++ using 20 steps)
under different acceleration rates.

a man who appears to be herding sheep is closing two big fence doors.

A person sitting in bed with a dog on his lap.

Two men are in the water on a boat.

A woman holding a surfboard walking into the ocean toward a dog.

Sheep are running across a green field of grass.

A wooden bench sitting on top of a green grass covered ground.

Original ToCa DiffSparse Original ToCa DiffSparse

Figure 5: Comparison between our DiffSparse, and ToCa with the baseline (PixArt-α with DPM-
Solver++ using 20 steps under 512×512 resolution).
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