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Abstract

Schrödinger-Föllmer sampler (SFS) (Huang et al., 2021) is a novel and efficient approach
for sampling from possibly unnormalized distributions without ergodicity. SFS is based on
the Euler-Maruyama discretization of Schrödinger-Föllmer diffusion process

dXt = −∇U (Xt, t) dt + dBt, t ∈ [0, 1], X0 = 0

on the unit interval, which transports the degenerate distribution at time zero to the target
distribution at time one. In Huang et al. (2021), the consistency of SFS is established
under a restricted assumption that the potential U(x, t) is uniformly (on t) strongly convex
(on x). In this paper we provide a non-asymptotic error bound of SFS in Wasserstein-2
distance under some smooth and bounded conditions on the density ratio of the target
distribution over the standard normal distribution, but without requiring strong convexity
of the potential.

1 Introduction

Sampling from possibly unnormalized distributions is an important task in Bayesian statistics and machine
learning. Ever since the Metropolis-Hastings (MH) algorithm (Metropolis et al., 1953; Hastings, 1970) was
introduced, various random sampling methods were proposed, including Gibbs sampler, random walk sam-
pler, independent sampler, Langevin sampler, bouncy particle sampler, zig-zag sampler (Geman & Geman,
1984; Gelfand & Smith, 1990; Tierney, 1994; Liu, 2008; Robert et al., 2010; Bouchard-Côté et al., 2018;
Bierkens et al., 2019), among others, see Brooks et al. (2011); Dunson & Johndrow (2020) and the references
therein. The above mentioned sampling algorithms generate random samples by running an ergodic Markov
chain whose stationary distribution is the target distribution.

In Huang et al. (2021), the Schrödinger-Föllmer sampler (SFS), a novel sampling approach without requiring
the property of ergodicity is proposed. SFS is based on the Schrödinger-Föllmer diffusion process, defined
as

dXt = b (Xt, t) dt + dBt, t ∈ [0, 1], X0 = 0, (1)

where the drift function

b(x, t) = −∇U(x, t) =
EZ∼N(0,Ip)[∇f(x +

√
1 − tZ)]

EZ∼N(0,Ip)[f(x +
√

1 − tZ)]
: Rp × [0, 1] → R1

with f(·) = dµ
dN(0,Ip) (·). Here, we assume that f(·) is twice differentiable. According to Léonard (2014)

and Eldan et al. (2020), the process {Xt}t∈[0,1] in (1) was first formulated by Föllmer (Föllmer, 1985; 1986;
1988) when studying the Schrödinger bridge problem (Schrödinger, 1932). The main feature of the above
Schrödinger-Föllmer process is that it interpolates δ0 and the target µ in time [0, 1], i.e., X1 ∼ µ, see
Proposition 2.1. SFS samples from µ via the following Euler-Maruyama discretization of (1),

Ytk+1 = Ytk
+ sb (Ytk

, tk) +
√

sϵk+1, Yt0 = 0, k = 0, 1, . . . , K − 1, (2)
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where s = 1/K is the step size, tk = sk, and {ϵk}K
k=1 are independent and identically distributed from

N(0, Ip). If the expectations in the drift term b(x, t) do not have analytical forms, one can use Monte Carlo
method to evaluate b (Ytk

, tk) approximately, i.e., one can sample from µ according

Ỹtk+1 = Ỹtk
+ sb̃m

(
Ỹtk

, tk

)
+

√
sϵk+1, Ỹt0 = 0, k = 0, 1, . . . , K − 1,

where b̃m(Ỹtk
, tk) =

1
m

∑m

j=1
[∇f(Ỹtk

+
√

1−tkZj)]
1
m

∑m

j=1
[f(Ỹtk

+
√

1−tkZj)]
with Z1, . . . , Zm i.i.d N(0, Ip). The numerical simulations in

Huang et al. (2021) demonstrate that SFS outperforms the existing samplers based on ergodicity including
Langevin-based samplers, see (Huang et al., 2021, Section 3) for a detailed discussion on the comparison
with Langevin-based samplers.

In Section 4.2 of Huang et al. (2021), they prove that

W2(Law(ỸtK
), µ) → 0, as s → 0, m → ∞

under a restricted assumption that the potential U(x, t) is uniformly strongly convex in x, i.e.,

U(x, t) − U(y, t) − ∇U(y, t)⊤(x − y) ≥ (M/2) ∥x − y∥2
2 , ∀x, y ∈ Rp, ∀t ∈ [0, 1], (3)

where M is a positive constant. In this paper we provide a new analysis of the above SFS iteration. We
establish a non-asymptotic error bound on W2(Law(ỸtK

), µ) under the condition that f and ∇f are Lipschitz
continuous and f has positive lower bound, but without using the uniform strong convexity requirement
(3).

The rest of this paper is organized as follows. In Section 2, we recall the SFS method. In Section 3, we
present our theoretical analysis. We conclude in Section 4. Proofs for all the theorems are provided in
Appendix.

2 Schrödinger-Föllmer sampler

In this section we recall the Schrödinger-Föllmer sampler briefly. More background on the Schrödinger-
Föllmer diffusion process please see Dai Pra (1991); Léonard (2014); Chen et al. (2021); Huang et al. (2021).

Let µ ∈ P (Rp) be the target distribution and absolutely continuous with respect to the p-dimensional
standard normal measure G = N(0, Ip), where P(Rd) refers to the probability measures defined on the Borel
space (Rd, B(Rd)). Let

f(x) = dµ

dG
(x).

We assume that

(A1) f, ∇f are Lipschitz continuous with constant γ,

(A2) There exists ξ > 0 such that f ≥ ξ.

Define the heat semigroup Qt, t ∈ [0, 1] as

Qtf(x) = EZ∼G[f(x +
√

tZ)].

Proposition 2.1. Define a drift function

b(x, t) = ∇ log Q1−tf(x).

If f satisfies assumptions (A1) and (A2), then the Schrödinger-Föllmer diffusion

dXt = b (Xt, t) dt + dBt, t ∈ [0, 1], X0 = 0, (4)

has a unique strong solution and X1 ∼ µ.
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Remark 2.1.

(i) (A1) and (A2) directly follow from Assumption 1 of Tzen & Raginsky (2019), Definition 5 and Lemma
6 of Lehec (2013).

(ii) From the definition of b(x, t) in Proposition 2.1, it follows that U(x, t) = − log Q1−tf(x).

(iii) If the target distribution is µ(dx) = exp(−V (x))dx/C with the normalized constant C, then f(x) =
(√

2π)p

C exp
(

−V (x) + ∥x∥2
2

2

)
. If V (x) is twice differentiable and

lim
R→∞

sup
∥x∥2≥R

exp
(
−V (x) + ∥x∥2

2/2
)

∥x − ∇V (x)∥2 < ∞,

lim
R→∞

sup
∥x∥2≥R

exp
(
−V (x) + ∥x∥2

2/2
)

∥Ip − ∇2V (x)∥2 < ∞,

then both f and ∇f are Lipschitz continuous, i.e., (A1) holds. (A2) is equivalent to the growth condition
on the potential that V (x) ≤ ∥x∥2

2 − log ξ + constant. In this case, any potential V taking in the quadratic
form can be considered to satisfy conditions (A1) and (A2), since its corresponding random variable can be
transformed into the standard Gaussian random variable by scaling.

(iv) Under (A1) and (A2), some calculation shows that

sup
x∈Rp

∥∇f(x)∥2 ≤ γ, sup
x∈Rp

∥∇2f(x)∥2 ≤ γ,

and
sup

x∈Rp,t∈[0,1]
∥∇Q1−tf(x)∥2 ≤ γ, sup

x∈Rp,t∈[0,1]
∥∇2(Q1−tf(x))∥2 ≤ γ,

and

b(x, t) = ∇Q1−tf(x)
Q1−tf(x) , ∇b(x, t) = ∇2(Q1−tf(x))

Q1−tf(x) − b(x, t)b(x, t)⊤.

We conclude that

sup
x∈Rp,t∈[0,1]

∥b(x, t)∥2 ≤ γ

ξ
, sup

x∈Rp,t∈[0,1]
∥∇b(x, t)∥2 ≤ γ

ξ
+ γ2

ξ2 .

Proposition 2.1 shows that the Schrödinger-Föllmer diffusion will transport δ0 to the target µ on the unite
time interval. Since the drift term b(x, t) is scale-invariant with respect to f in the sense that b(x, t) =
∇ log Q1−tCf(x), ∀C > 0. Therefore, the Schrödinger-Föllmer diffusion can be used for sampling from
µ(dx) = exp(−V (x))dx/C, where the normalizing constant of C may not be known. In that case, we use
the Euler-Maruyama method to discretize the Schrödinger-Föllmer diffusion (4). Let

tk = k · s, k = 0, 1, . . . , K, with s = 1/K, Yt0 = 0,

the Euler-Maruyama scheme reads (2), among which the drift term is explicitly expressed as

b(Ytk
, tk) = EZ [∇f(Ytk

+
√

1 − tkZ)]
EZ [f(Ytk

+
√

1 − tkZ)]
= EZ [Zf(Ytk

+
√

1 − tkZ)]
EZ [f(Ytk

+
√

1 − tkZ)]
√

1 − tk
. (5)

In (5), the second equality follows from Stein’s lemma (Stein et al., 1972; Stein, 1986; Landsman & Nešlehová,
2008). From the definition of b(Ytk

, tk) in (5), we may not get its explicit expression. Here, we can get one
estimator b̃m of b by replacing EZ in b with m-sample mean, i.e.,

b̃m(Ytk
, tk) =

1
m

∑m
j=1[∇f(Ytk

+
√

1 − tkZj)]
1
m

∑m
j=1[f(Ytk

+
√

1 − tkZj)]
, k = 0, . . . , K − 1, (6)
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or

b̃m(Ytk
, tk) =

1
m

∑m
j=1[Zjf(Ytk

+
√

1 − tkZj)]
1
m

∑m
j=1[f(Ytk

+
√

1 − tkZj)] ·
√

1 − tk

, k = 0, . . . , K − 1, (7)

where Z1, . . . , Zm are i.i.d. N(0, Ip). The detailed description of SFS is summarized in following Algorithm
1 below, which is Algorithm 2 in Huang et al. (2021).

Algorithm 1 SFS for µ = exp(−V (x))/C with Monte Carlo estimation of the drift term
Input: m, K. Initialize s = 1/K, Ỹt0 = 0.
for k = 0, 1, . . . , K − 1 do

Sample ϵk+1 ∼ N(0, Ip).

Sample Zi, i, . . . , m, from N(0, Ip).

Compute b̃m according to (6) or (7).

Ỹtk+1 = Ỹtk
+ sb̃m

(
Ỹtk

, tk

)
+

√
sϵk+1.

end for
Output: {Ỹtk

}K
k=1.

In Section 4.2 of Huang et al. (2021), they proved that

W2(Law(ỸtK
), µ) → 0, as s → 0, m → ∞

under the uniform strong convexity assumption (3). However, (3) is not easy to verify. In the next section,
we establish a nonasymptotic bound on the Wasserstein-2 distance between the law of ỸtK

generated by
SFS (Algorithm 1) and the target µ under smooth and bounded conditions (A1) and (A2) but without
using (3).

3 Bound on W2(Law(ỸtK
), µ) without convexity

Under conditions (A1) and (A2), one can easily deduce the growth condition and Lipschitz/Hölder continuity
of the drift term b(x, t) (Huang et al., 2021, Remark 4.1), i.e.,

∥b(x, t)∥2
2 ≤ C0(1 + ∥x∥2

2), (C1)

and

∥b(x, t) − b(y, t)∥2 ≤ C1∥x − y∥2, (C2)

and

∥b(x, t) − b(y, s)∥2 ≤ C1

(
∥x − y∥2 + |t − s| 1

2

)
, (C3)

where C0 and C1 are two positive constants. See Section A.3 in Huang et al. (2021) for the detailed derivations
of (C1)-(C3).
Remark 3.1. (C1) and (C2) are the essentially sufficient conditions such that the Schrödinger-Föllmer
SDE (4) admits a unique strong solution. (C3) has been introduced in Theorem 4.1 of Tzen & Raginsky
(2019), and it is also similar to the condition H2 of Chau et al. (2021) and Assumption 3.2 of Barkhagen
et al. (2021). Obviously, (C3) implies (C1) and (C2) hold if the drift term b(x, t) is bounded over Rp × [0, 1].
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Let D(ν1, ν2) be the collection of coupling probability measures on
(
R2p, B(R2p)

)
such that its respective

marginal distributions are ν1 and ν2. The Wasserstein-2 distance with which we measure the discrepancy
between Law(ỸtK

) and µ is defined as

W2(ν1, ν2) = inf
ν∈D(ν1,ν2)

(∫
Rp

∫
Rp

∥θ1 − θ2∥2
2 dν (θ1, θ2)

)1/2
.

Theorem 3.1. Assume (A1) and (A2) hold, then

W2(Law(ỸtK
), µ) ≤ O(√ps) + O

(√
p

log(m)

)
,

where s = 1/K is the step size.
Remark 3.2. This theorem provides some guidance on the selection of s and m. To ensure convergence of the
distribution of ỸtK

, we should set the step size s = o(1/p) and m = exp(p/o(1)). In high-dimensional models
with a large p, we need to generate a large number of random vectors from N(0, Ip) to obtain an accurate
estimate of the drift term b. If we assume that f is bounded above we can improve the nonasymptotic error
bound, in which O

(√
p/ log(m)

)
can be improved to be O

(√
p/m

)
.

Theorem 3.2. Assume that, in addition to the conditions of Theorem 3.1, f has a finite upper bound, then

W2(Law(ỸtK
), µ) ≤ O(√ps) + O

(√
p

m

)
,

where s = 1/K is the step size.
Remark 3.3. With the boundedness condition on f , to ensure convergence of the sampling distribution, we
can set the step size s = o(1/p) and m = p/o(1). Note that the sample size requirement for approximating
the drift term is significantly less stringent than that in Theorem 3.1.
Remark 3.4. Langevin sampling method has been studied under the (strongly) convex potential assumption
(Durmus & Moulines, 2019; 2016; 2017; Dalalyan, 2017a;b; Cheng & Bartlett, 2018; Dalalyan & Karagulyan,
2019); the dissipativity condition for the drift term (Raginsky et al., 2017; Mou et al., 2022; Zhang et al.,
2019); the local convexity condition for the potential function outside a ball (Durmus & Moulines, 2017;
Cheng et al., 2018; Ma et al., 2019; Bou-Rabee et al., 2020). Moreover, the constant in the log Sobolev
inequality depends on the dimensionality exponentially (Wang et al., 2009; Hale, 2010; Menz et al., 2014;
Raginsky et al., 2017), implying that the Langevin samplers suffers from the curse of dimensionality. SFS
does not require the underlying Markov process to be ergodic, therefore, our results in Theorems 3.1-3.2
are established under the smooth and bounded assumptions (A1) and (A2) on f but do not need the above
mentioned conditions used in the analysis of Langevin samplers.

In Theorems 3.1-3.2, we use (A2), i.e, f has positive lower bound, however, (A2) may not hold if the target
distribution admits compact support. To circumvent this difficulty, we consider the regularized probability
measure

µε = (1 − ε)µ + εG, ε ∈ (0, 1).

The corresponding density ratio is
fε = dµε

dG
= (1 − ε)f + ε.

Obviously, fε satisfies (A1) and (A2) if f and ∇f are Lipschitz continuous. Since µε can approximate to
µ well if we set ε small enough, then we consider sampling from µε by running SFS (Algorithm 1) with f

being replaced by fε. We use Ỹ ε
tK

to denote the last iteration of SFS.

Theorem 3.3. Assume (A1) holds and ε = (log(m))−1/5, then

W2(Law(Ỹ ε
tK

), µ) ≤ O(√ps) + C̃p · O
(

1
(log(m))1/10

)
,
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where s = 1/K is the step size, C̃p is a constant depending on p. Moreover, if f has a finite upper bound
and ε = (log(m))−1/5, then

W2(Law(Ỹ ε
tK

), µ) ≤ O(√ps) + C̃p · O
(

1
m1/10

)
.

4 Conclusion

In Huang et al. (2021), Schrödinger-Föllmer sampler (SFS) was proposed for sampling from possibly unnor-
malized distributions. The key feature of SFS is that it does not need ergodicity as its theoretical basis. The
consistency of SFS proved in Huang et al. (2021) relies on a restricted assumption that the potential function
is uniformly strongly convex. In this paper we provide a new convergence analysis of the SFS without the
strongly convexity condition on the potential. We establish a non-asymptotic error bound on Wasserstein-2
distance between the law of the output of SFS and the target distribution under smooth and bounded
assumptions on the density ratio of the target distribution over the standard normal distribution.
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A Appendix

In this appendix, we prove Proposition 2.1 and Theorems 3.1-3.3.

A.1 Proof of Proposition 2.1

Proof. This is a known result, see Dai Pra (1991); Lehec (2013) for details.

A.2 Preliminary lemmas for Theorems 3.1-3.2

First, recall that the Schrödinger-Föllmer diffusion in (4) is defined as

dXt = b (Xt, t) dt + dBt, t ∈ [0, 1], X0 = 0, X1 ∼ µ.

Then we introduce Lemmas A.1-A.5 in preparing for the proofs of Theorems 3.1-3.2.
Lemma A.1. Assume (A1) and (A2) hold, then

E[∥Xt∥2
2] ≤ 2(C0 + p) exp(2C0t).

Proof. From the definition of Xt in (4), we have ∥Xt∥2 ≤
∫ t

0 ∥b(Xu, u)∥2du + ∥Bt∥2. Then, we can get

∥Xt∥2
2 ≤ 2

(∫ t

0
∥b(Xu, u)∥2du

)2

+ 2∥Bt∥2
2

≤ 2t

∫ t

0
∥b(Xu, u)∥2

2du + 2∥Bt∥2
2

≤ 2t

∫ t

0
C0[∥Xu∥2

2 + 1]du + 2∥Bt∥2
2,
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where the first inequality holds by the inequality (a+b)2 ≤ 2a2 +2b2, the second inequality holds by Jensen’s
inequality, and the last inequality holds by (C1). Thus,

E∥Xt∥2
2 ≤ 2t

∫ t

0
C0(E∥Xu∥2

2 + 1)du + 2E∥Bt∥2
2

≤ 2C0

∫ t

0
E∥Xu∥2

2du + 2(C0 + p).

By Bellman-Gronwall inequality, we have

E∥Xt∥2
2 ≤ 2(C0 + p) exp(2C0t).

Lemma A.2. Assume (A1) and (A2) hold, then for any 0 ≤ t1 ≤ t2 ≤ 1,

E[∥Xt2 − Xt1∥2
2] ≤ 4C0 exp(2C0)(C0 + p)(t2 − t1)2 + 2C0(t2 − t1)2 + 2p(t2 − t1).

Proof. From the definition of Xt in (4), we have

∥Xt2 − Xt1∥2 ≤
∫ t2

t1

∥b(Xu, u)∥2du + ∥Bt2 − Bt1∥2.

Then, we can get

∥Xt2 − Xt1∥2
2 ≤ 2

(∫ t2

t1

∥b(Xu, u)∥2du

)2

+ 2∥Bt2 − Bt1∥2
2

≤ 2(t2 − t1)
∫ t2

t1

∥b(Xu, u)∥2
2du + 2∥Bt2 − Bt1∥2

2

≤ 2(t2 − t1)
∫ t2

t1

C0[∥Xu∥2
2 + 1]du + 2∥Bt2 − Bt1∥2

2,

where the last inequality holds by (C1). Hence,

E∥Xt2 − Xt1∥2
2 ≤ 2(t2 − t1)

∫ t2

t1

C0(E∥Xu∥2
2 + 1)du + 2E∥Bt2 − Bt1∥2

2

≤ 4C0 exp(2C0)(C0 + p)(t2 − t1)2 + 2C0(t2 − t1)2 + 2p(t2 − t1),

where the last inequality holds by Lemma A.1.

Lemma A.3. Assume (A1) and (A2) hold, then for any R > 0,

sup
∥x∥2≤R,t∈[0,1]

E
[
∥b(x, t) − b̃m(x, t)∥2

2
]

≤ O
(

p exp(R2)
m

)
.

Moreover, if f has a finite upper bound, then

sup
x∈Rp,t∈[0,1]

E
[
∥b(x, t) − b̃m(t, x)∥2

2
]

≤ O
( p

m

)
.

Proof. Denote two independent sets of independent copies of Z ∼ N(0, Ip), that is, Z = {Z1, . . . , Zm} and
Z′ = {Z ′

1, . . . , Z ′
m}. For notation convenience, we denote

d = EZ∇f(x +
√

1 − tZ), dm =
∑m

i=1 ∇f(x +
√

1 − tZi)
m

,

e = EZf(x +
√

1 − tZ), em =
∑m

i=1 f(x +
√

1 − tZi)
m

,

d′
m =

∑m
i=1 ∇f(x +

√
1 − tZ ′

i)
m

, e′
m =

∑m
i=1 f(x +

√
1 − tZ ′

i)
m

.

9
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Due to d − dm = E [d′
m − dm|Z], then ∥d − dm∥2

2 ≤ E
[
∥d′

m − dm∥2
2|Z
]
. Then,

E∥d − dm∥2 ≤ E
[
E[∥d′

m − dm∥2
2|Z]

]
= E∥d′

m − dm∥2
2

=
EZ1,Z′

1

∥∥∇f(x +
√

1 − tZ1) − ∇f(x +
√

1 − tZ ′
1)
∥∥2

2
m

≤ (1 − t)γ2

m
EZ1,Z′

1
∥Z1 − Z ′

1∥2
2

≤ 2pγ2

m
, (8)

where the second inequality holds by (A1). Similarly, we also have

E|e − em|2 ≤ E|e′
m − em|2

=
EZ1,Z′

1

∣∣f(x +
√

1 − tZ1) − f(x +
√

1 − tZ ′
1)
∣∣2

m

≤ (1 − t)γ2

m
EZ1,Z′

1
∥Z1 − Z ′

1∥2
2

≤ 2pγ2

m
, (9)

where the second inequality holds due to (A1). Thus, by (8) and (9), it follows that

sup
x∈Rp,t∈[0,1]

E ∥d − dm∥2
2 ≤ 2pγ2

m
, (10)

sup
x∈Rp,t∈[0,1]

E|e − em|2 ≤ 2pγ2

m
. (11)

Then, by (A1) and (A2), through some simple calculation, it follows that

∥b(x, t) − b̃m(x, t)∥2 =
∥∥∥∥d

e
− dm

em

∥∥∥∥
2

≤ ∥d∥2|em − e| + ∥d − dm∥2|e|
|eem|

≤ γ|em − e| + ∥d − dm∥2|e|
ξ2 . (12)

Let R > 0, then

sup
∥x∥2≤R

f(x) ≤ O
(
exp(R2/2)

)
. (13)

Therefore, by (10)-(13), it can be concluded that

sup
∥x∥2≤R,t∈[0,1]

E
[
∥b(x, t) − b̃m(x, t)∥2

2
]

≤ O
(

p exp(R2)
m

)
.

Moreover, if f has a finite upper bound, that is, there exists a positive constant ζ such that f ≤ ζ. Then,
similar to (12), it follows that for all x ∈ Rp and t ∈ [0, 1],

∥b(x, t) − b̃m(x, t)∥2
2 ≤ 2γ2|em − e|2 + ζ2∥d − dm∥2

2
ξ4 . (14)

Then, by (10)-(11) and (14), it follows that

sup
x∈Rp,t∈[0,1]

E
[
∥b(x, t) − b̃m(t, x)∥2

2
]

≤ O
( p

m

)
.

10
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Lemma A.4. Assume (A1) and (A2) hold, then for k = 0, 1, . . . , K,

E[∥Ỹtk
∥2

2] ≤ 6γ2

ξ2 + 3p.

Proof. Define Θk,t = Ỹtk
+ (t − tk)b̃m(Ỹtk

, tk) and Ỹt = Θk,t + Bt − Btk
, where tk ≤ t ≤ tk+1 with k =

0, 1, . . . , K − 1. By (A1) and (A2), it follows that for all x ∈ Rp and t ∈ [0, 1],

∥b(x, t)∥2
2 ≤ γ2

ξ2 , ∥b̃m(x, t)∥2
2 ≤ γ2

ξ2 . (15)

Then, by (15), we have

∥Θk,t∥2
2 = ∥Ỹtk

∥2
2 + (t − tk)2∥b̃m(Ỹtk

, tk)∥2
2 + 2(t − tk)Ỹ ⊤

tk
b̃m(Ỹtk

, tk)

≤ (1 + s)∥Ỹtk
∥2

2 + (s + s2)γ2

ξ2 ,

where the inequality by using (a + b)2 ≤ 2a2 + 2b2. Further, we can get

E[∥Ỹt∥2
2|Ỹtk

] = E[∥Θk,t∥2
2|Ỹtk

] + (t − tk)p

≤ (1 + s)E∥Ỹtk
∥2

2 + (s + s2)γ2

ξ2 + sp.

Therefore,

E[∥Ỹtk+1∥2
2] ≤ (1 + s)E∥Ỹtk

∥2
2 + (s + s2)γ2

ξ2 + sp.

Since Ỹt0 = 0, then by induction, we have

E[∥Ỹtk+1∥2
2] ≤ (1 + s)2E[∥Ỹtk−1∥2

2] + (1 + s)
[

(s + s2)γ2

ξ2 + sp

]
+ (s + s2)γ2

ξ2 + sp

. . . . . .

≤ ((1 + s)k + (1 + s)k−1 + . . . + 1)
[

(s + s2)γ2

ξ2 + sp

]
≤ 6γ2

ξ2 + 3p.

Lemma A.5. Assume (A1) and (A2) hold, then for k = 0, 1, . . . , K,

E
∥∥∥b(Ỹtk

, tk) − b̃m(Ỹtk
, tk)

∥∥∥2

2
≤ O

(
p

log(m)

)
.

Moreover, if f has a finite upper bound, then

E
∥∥∥b(Ỹtk

, tk) − b̃m(Ỹtk
, tk)

∥∥∥2

2
≤ O

( p

m

)
.

Proof. Let R > 0, then

E
∥∥∥b(Ỹtk

, tk) − b̃m(Ỹtk
, tk)

∥∥∥2

2
= E

Ỹtk

EZ

[∥∥∥b(Ỹtk
, tk) − b̃m(Ỹtk

, tk)
∥∥∥2

2
1(∥Ỹtk

∥2 ≤ R)
]

+ E
Ỹtk

EZ

[∥∥∥b(Ỹtk
, tk) − b̃m(Ỹtk

, tk)
∥∥∥2

2
1(∥Ỹtk

∥2 > R)
]

.

(16)

11
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Next, we need to bound the two terms of (16). First, by Lemma A.3, we have

E
Ỹtk

EZ

[∥∥∥b(Ỹtk
, tk) − b̃m(Ỹtk

, tk)
∥∥∥2

2
1(∥Ỹtk

∥2 ≤ R)
]

≤ O
(

p exp(R2)
m

)
.

Secondly, combining (15) and Lemma A.4 with Markov inequality, it follows that

E
Ỹtk

EZ

[∥∥∥b(Ỹtk
, tk) − b̃m(Ỹtk

, tk)
∥∥∥2

2
1(∥Ỹtk

∥2 > R)
]

≤ O
(
p/R2) .

Thence

E
∥∥∥b(Ỹtk

, tk) − b̃m(Ỹtk
, tk)

∥∥∥2

2
≤ O

(
p exp(R2)

m

)
+ O

(
p/R2) . (17)

Set R =
(

log(m)
2

)1/2
in (17), then we have

E
∥∥∥b(Ỹtk

, tk) − b̃m(Ỹtk
, tk)

∥∥∥2

2
≤ O

(
p

log(m)

)
.

Moreover, if f has a finite upper bound, then by Lemma A.3, we can similarly get

E
∥∥∥b(Ỹtk

, tk) − b̃m(Ỹtk
, tk)

∥∥∥2

2
= E

Ỹtk

EZ

[∥∥∥b(Ỹtk
, tk) − b̃m(Ỹtk

, tk)
∥∥∥2

2

]
≤ O

( p

m

)
.

This completes the proof.

A.3 Proof of Theorem 3.1

Proof. From the definition of Ỹtk
and Xtk

, we have

∥Ỹtk
− Xtk

∥2
2

≤ ∥Ỹtk−1 − Xtk−1∥2
2 +

(∫ tk

tk−1

∥b(Xu, u) − b̃m(Ỹtk−1 , tk−1)∥2du

)2

+ 2∥Ỹtk−1 − Xtk−1∥2

(∫ tk

tk−1

∥b(Xu, u) − b̃m(Ỹtk−1 , tk−1)∥2du

)

≤ (1 + s)∥Ỹtk−1 − Xtk−1∥2
2 + (1 + s)

∫ tk

tk−1

∥b(Xu, u) − b̃m(Ỹtk−1 , tk−1)∥2
2du

≤ (1 + s)∥Ỹtk−1 − Xtk−1∥2
2 + 2(1 + s)

∫ tk

tk−1

∥b(Xu, u) − b(Ỹtk−1 , tk−1)∥2
2du

+ 2s(1 + s)∥b(Ỹtk−1 , tk−1) − b̃m(Ỹtk−1 , tk−1)∥2
2

≤ (1 + s)∥Ỹtk−1 − Xtk−1∥2
2 + 4C2

1 (1 + s)
∫ tk

tk−1

[∥Xu − Ỹtk−1∥2
2 + |u − tk−1|]du

+ 2s(1 + s)∥b(Ỹtk−1 , tk−1) − b̃m(Ỹtk−1 , tk−1)∥2
2

≤ (1 + s)∥Ỹtk−1 − Xtk−1∥2
2 + 8C2

1 (1 + s)
∫ tk

tk−1

∥Xu − Xtk−1∥2
2du

+ 8C2
1 s(1 + s)∥Xtk−1 − Ỹtk−1∥2

2 + 4C2
1 (1 + s)s2

+ 2s(1 + s)∥b(Ỹtk−1 , tk−1) − b̃m(Ỹtk−1 , tk−1)∥2
2

≤ (1 + s + 8C2
1 (s + s2))∥Ỹtk−1 − Xtk−1∥2

2 + 8C2
1 (1 + s)

∫ tk

tk−1

∥Xu − Xtk−1∥2
2du

+ 4C2
1 (1 + s)s2 + 2s(1 + s)∥b(Ỹtk−1 , tk−1) − b̃m(Ỹtk−1 , tk−1)∥2

2,

12
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where the second inequality holds due to 2ab ≤ sa2 + b2

s with a = ∥Ỹtk−1 −Xtk−1∥2 and b =
∫ tk

tk−1
∥b(Xu, u)−

b̃m(Ỹtk−1 , tk−1)∥2du and b2 ≤ s ·
∫ tk

tk−1
∥b(Xu, u) − b̃m(Ỹtk−1 , tk−1)∥2

2du , the fourth inequality holds by (C3).
Then,

E∥Ỹtk
− Xtk

∥2
2 ≤ (1 + s + 8C2

1 (s + s2))E∥Ỹtk−1 − Xtk−1∥2
2

+ 8C2
1 (1 + s)

∫ tk

tk−1

E∥Xu − Xtk−1∥2
2du + 4C2

1 (s2 + s3)

+ 2s(1 + s)E[∥b(Ỹtk−1 , tk−1) − b̃m(Ỹtk−1 , tk−1)∥2
2]

≤ (1 + s + 8C2
1 (s + s2))E∥Ỹtk−1 − Xtk−1∥2

2 + h(s)

+ 4C2
1 (s2 + s3) + 2s(1 + s)E[∥b(Ỹtk−1 , tk−1) − b̃m(Ỹtk−1 , tk−1)∥2

2]

≤ (1 + s + 8C2
1 (s + s2))E∥Ỹtk−1 − Xtk−1∥2

2 + h(s)

+ 4C2
1 (s2 + s3) + 2s(1 + s)O

(
p

log(m)

)
, (18)

where h(s) = 8C2
1 (s + s2)[4C0 exp(2C0)(C0 + p)s2 + 2C0s2 + 2ps], and the last inequality holds by Lemma

A.5. Owing to Ỹt0 = Xt0 = 0, we can conclude that

E∥ỸtK
− XtK

∥2
2

≤ (1 + s + 8C2
1 (s + s2))K − 1

s + 8C2
1 (s + s2)

[
h(s) + 4C2

1 (s2 + s3) + 2(s + s2)O
(

p

log(m)

)]
≤ O(ps) + O

(
p

log(m)

)
.

Therefore,

W2(Law(ỸtK
), µ) ≤ O(√ps) + O

(√
p

log(m)

)
.

A.4 Proof of Theorem 3.2

Proof. This proof is same as that of Theorem 3.1. Similar to (18), by Lemma A.5, it follows that

E∥Ỹtk
− Xtk

∥2
2 ≤ (1 + s + 8C2

1 (s + s2))E∥Ỹtk−1 − Xtk−1∥2
2 + h(s)

+ 4C2
1 (s2 + s3) + 2s(1 + s)O

( p

m

)
,

where s = 1
K is the step size and tk = ks. Then, we also have

E∥ỸtK
− XtK

∥2
2

≤ (1 + s + 8C2
1 (s + s2))K − 1

s + 8C2
1 (s + s2)

[
h(s) + 4C2

1 (s2 + s3) + 2(s + s2)O
(

1
m

)]
≤ O(ps) + O

( p

m

)
.

Hence, it follows that

W2(Law(ỸtK
), µ) ≤ O(√ps) + O

(√
p

m

)
.

13
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A.5 Preliminary lemmas for Theorem 3.3

To prove Theorem 3.3, we first prove the Lemmas A.6-A.8.
Lemma A.6. Assume (A1) holds, then for any R > 0,

sup
∥x∥2≤R,t∈[0,1]

E
[
∥b(x, t) − b̃m(x, t)∥2

2
]

≤ O
(

p exp(R2)(Cp)4

mε4

)
+ O

(
p(Cp)2

mε2

)
,

where Cp = (2π)p/2C−1. Moreover, if f has a finite upper bound, then

sup
x∈Rp,t∈[0,1]

E
[
∥b(x, t) − b̃m(t, x)∥2

2
]

≤ O
(

p(Cp)4

mε4

)
+ O

(
p(Cp)2

mε2

)
.

Proof. Denote two independent sets of independent copies of Z ∼ N(0, Ip) by Z = {Z1, . . . , Zm} and
Z′ = {Z ′

1, . . . , Z ′
m}. For notation convenience, we denote

d = EZ∇g(x +
√

1 − tZ), dm =
∑m

i=1 ∇g(x +
√

1 − tZi)
m

,

e = EZ

[
g(x +

√
1 − tZ) + ε

Cp(1 − ε)

]
, em =

∑m
i=1 g(x +

√
1 − tZi)

m
+ ε

Cp(1 − ε) ,

d′
m =

∑m
i=1 ∇g(x +

√
1 − tZ ′

i)
m

, e′
m =

∑m
i=1 g(x +

√
1 − tZ ′

i)
m

+ ε

Cp(1 − ε) ,

where g(x) = exp(∥x∥2
2/2 − V (x)). Since d − dm = E [d′

m − dm|Z], we have ∥d − dm∥2
2 ≤ E

[
∥d′

m − dm∥2
2|Z
]
.

By (A1), it follows that g and ∇g are Lipschitz continuous. Thus there exists a positive constant γ such
that for all x, y ∈ Rp,

|g(x) − g(y)| ≤ γ∥x − y∥2, (19)

∥∇g(x) − ∇g(y)∥2 ≤ γ∥x − y∥2. (20)

Therefore,

E∥d − dm∥2 ≤ E
[
E[∥d′

m − dm∥2
2|Z]

]
= E∥d′

m − dm∥2
2

=
EZ1,Z′

1

∥∥∇g(x +
√

1 − tZ1) − ∇g(x +
√

1 − tZ ′
1)
∥∥2

2
m

≤ (1 − t)γ2

m
EZ1,Z′

1
∥Z1 − Z ′

1∥2
2

≤ 2pγ2

m
, (21)

where the second inequality follows from (20). Similarly, we also have

E|e − em|2 ≤ E|e′
m − em|2

=
EZ1,Z′

1

∣∣g(x +
√

1 − tZ1) − g(x +
√

1 − tZ ′
1)
∣∣2

m

≤ (1 − t)γ2

m
EZ1,Z′

1
∥Z1 − Z ′

1∥2
2

≤ 2pγ2

m
, (22)

where the second inequality follows from (19).Hence, by (21) and (22), we have

sup
x∈Rp,t∈[0,1]

E ∥d − dm∥2
2 ≤ 2pγ2

m
, (23)

14
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sup
x∈Rp,t∈[0,1]

E|e − em|2 ≤ 2pγ2

m
. (24)

Then, by (19) and (20), through some simple calculation, it follows that

∥b(x, t) − b̃m(x, t)∥2 =
∥∥∥∥d

e
− dm

em

∥∥∥∥
2

≤ ∥d∥2|em − e| + ∥d − dm∥2|e|
|eem|

≤ γ|em − e| + ∥d − dm∥2|e|
(ε/(Cp − Cpε))2 . (25)

Let R > 0, then

sup
∥x∥2≤R

g(x) ≤ O
(
exp(R2/2)

)
. (26)

Therefore, by (23)-(26), it can be concluded that

sup
∥x∥2≤R,t∈[0,1]

E
[
∥b(x, t) − b̃m(x, t)∥2

2
]

≤ O
(

p exp(R2)
m(ε/(Cp − Cpε))4

)
+ O

(
p

m(ε/(Cp − Cpε))2

)
≤ O

(
p exp(R2)(Cp)4

mε4

)
+ O

(
p(Cp)2

mε2

)
.

Moreover, f has a finite upper bound so does g. Then there exists a positive constant ζ such that g ≤ ζ.
Similar to (25), it follows that for all x ∈ Rp and t ∈ [0, 1],

∥b(x, t) − b̃m(x, t)∥2
2 ≤ 2γ2|em − e|2 + (ζ + ε/(Cp − Cpε))2∥d − dm∥2

2
(ε/(Cp − Cpε))4 . (27)

Then, by (23)-(24) and (27), it follows that

sup
x∈Rp,t∈[0,1]

E
[
∥b(x, t) − b̃m(t, x)∥2

2
]

≤ O
(

p

m(ε/(Cp − Cpε))4

)
+ O

(
p

m(ε/(Cp − Cpε))2

)
≤ O

(
p(Cp)4

mε4

)
+ O

(
p(Cp)2

mε2

)
.

Lemma A.7. Assume (A1) holds, then for k = 0, 1, . . . , K,

E[∥Ỹ ε
tk

∥2
2] ≤ O

(
(Cp)2

ε2

)
+ O (p) ,

where Cp = (2π)p/2C−1.

Proof. Define Θε
k,t = Ỹ ε

tk
+ (t − tk)b̃m(Ỹ ε

tk
, tk) and Ỹ ε

t = Θε
k,t + Bt − Btk

, where tk ≤ t ≤ tk+1 with
k = 0, 1, . . . , K − 1. By (A1), then there exists a positive constant γ such that g is γ-Lipschitz continuous.
Then, for all x ∈ Rp and t ∈ [0, 1], we have

∥b(x, t)∥2
2 ≤ γ2

(ε/(Cp − Cpε))2 , ∥b̃m(x, t)∥2
2 ≤ γ2

(ε/(Cp − Cpε))2 . (28)

By (28), we have

∥Θε
k,t∥2

2 = ∥Ỹ ε
tk

∥2
2 + (t − tk)2∥b̃m(Ỹ ε

tk
, tk)∥2

2 + 2(t − tk)(Ỹ ε
tk

)⊤b̃m(Ỹ ε
tk

, tk)

≤ (1 + s)∥Ỹ ε
tk

∥2
2 + (s + s2)γ2

(ε/(Cp − Cpε))2 .

15
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Furthermore, it can be shown that

E[∥Ỹ ε
t ∥2

2|Ỹ ε
tk

] = E[∥Θε
k,t∥2

2|Ỹ ε
tk

] + (t − tk)p

≤ (1 + s)E∥Ỹ ε
tk

∥2
2 + (s + s2)γ2

(ε/(Cp − Cpε))2 + sp.

Therefore,

E[∥Ỹ ε
tk+1

∥2
2] ≤ (1 + s)E[∥Ỹ ε

tk
∥2

2] + (s + s2)γ2

(ε/(Cp − Cpε))2 + sp.

Since Ỹ ε
t0

= 0, then by induction, we have

E[∥Ỹ ε
tk+1

∥2
2] ≤ 6γ2

(ε/(Cp − Cpε))2 + 3p ≤ O
(

(Cp)2

ε2

)
+ O (p) .

Lemma A.8. Assume (A1) holds, then for k = 0, 1, . . . , K and t ∈ [0, 1],

E
∥∥∥b(Ỹ ε

tk
, tk) − b̃m(Ỹ ε

tk
, tk)

∥∥∥2

2
≤ O

(
p(Cp)4
√

mε4

)
+ O

(
(Cp)4

log(m)ε4

)
+ O

(
p(Cp)2

log(m)ε2

)
,

where Cp = (2π)p/2C−1. Moreover, if f has a finite upper bound, then

E
∥∥∥b(Ỹ ε

tk
, tk) − b̃m(Ỹ ε

tk
, tk)

∥∥∥2

2
≤ O

(
p(Cp)4

mε4

)
+ O

(
p(Cp)2

mε2

)
.

Proof. Let R > 0, then

E
∥∥∥b(Ỹ ε

tk
, tk) − b̃m(Ỹ ε

tk
, tk)

∥∥∥2

2
= E

Ỹ ε
tk

EZ

[∥∥∥b(Ỹ ε
tk

, tk) − b̃m(Ỹ ε
tk

, tk)
∥∥∥2

2
1(∥Ỹ ε

tk
∥2 ≤ R)

]
+ E

Ỹ ε
tk

EZ

[∥∥∥b(Ỹ ε
tk

, tk) − b̃m(Ỹ ε
tk

, tk)
∥∥∥2

2
1(∥Ỹ ε

tk
∥2 > R)

]
.

(29)

Next, we need to bound the two terms on the right hand of (29). First, by Lemma A.6, we have

E
Ỹ ε

tk

EZ

[∥∥∥b(Ỹ ε
tk

, tk) − b̃m(Ỹ ε
tk

, tk)
∥∥∥2

2
1(∥Ỹ ε

tk
∥2 ≤ R)

]
≤ O

(
p exp(R2)(Cp)4

mε4

)
+ O

(
p(Cp)2

mε2

)
.

Second, by combining (28) and Lemma A.7 with the Markov inequality, we have

E
Ỹ ε

tk

EZ

[∥∥∥b(Ỹ ε
tk

, tk) − b̃m(Ỹ ε
tk

, tk)
∥∥∥2

2
1(∥Ỹ ε

tk
∥2 > R)

]
≤ O

(
(Cp)4

R2ε4

)
+ O

(
p(Cp)2

R2ε2

)
.

Therefore,

E
∥∥∥b(Ỹ ε

tk
, tk) − b̃m(Ỹ ε

tk
, tk)

∥∥∥2

2
≤ O

(
p exp(R2)(Cp)4

mε4

)
+ O

(
p(Cp)2

mε2

)
+ O

(
(Cp)4

R2ε4

)
+ O

(
p(Cp)2

R2ε2

)
. (30)

Setting R =
(

log(m)
2

)1/2
in (30), we have

E
∥∥∥b(Ỹ ε

tk
, tk) − b̃m(Ỹ ε

tk
, tk)

∥∥∥2

2
≤ O

(
p(Cp)4
√

mε4

)
+ O

(
(Cp)4

log(m)ε4

)
+ O

(
p(Cp)2

log(m)ε2

)
.
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Moreover, if f has a finite upper bound, then by Lemma A.6, we can similarly get

E
∥∥∥b(Ỹ ε

tk
, tk) − b̃m(Ỹ ε

tk
, tk)

∥∥∥2

2
= E

Ỹ ε
tk

EZ

[∥∥∥b(Ỹ ε
tk

, tk) − b̃m(Ỹ ε
tk

, tk)
∥∥∥2

2

]
≤ O

(
p(Cp)4

mε4

)
+ O

(
p(Cp)2

mε2

)
.

This completes the proof.

A.6 Proof of Theorem 3.3

Proof. By triangle inequality, we have W2(Law(Ỹ ε
tK

), µ) ≤ W2(Law(Ỹ ε
tK

), µε) + W2(µ, µε), then we obtain
the upper bound of two terms on the right hand of this inequality, respectively.

First, similar to the proof of Theorem 3.1, by Lemma A.8 and Ỹ ε
t0

= Xt0 = 0 and through some calculation,
we can conclude that

W2(Law(Ỹ ε
tK

), µε) ≤ O(√ps) + O
(√

p(Cp)2

m1/4ε2

)
+ O

(
(Cp)2√
log(m)ε2

)
+ O

( √
pCp√

log(m)ε

)
. (31)

Second, we need to get the upper bound of W2(µ, µε). Let Y ∼ µ and Z ∼ N(0, Ip), θ is one Bernoulli
random variable satisfying P (θ = 1) = 1 − ε and P (θ = 0) = ε. Assume Y , Z and θ are independent of each
other. Then (Y, (1 − θ)Z + θY ) is one coupling of (µ, µε), and denote its joint distribution by π. Therefore,
we have ∫

Rp×Rp

∥x − y∥2
2dπ = E ∥Y − ((1 − θ)Z + θY )∥2

2

= E
[
E
[
∥Y − ((1 − θ)Z + θY )∥2

2|θ
]]

= E
[
E
[
∥Y − ((1 − θ)Z + θY )∥2

2|θ = 1
]]

P (θ = 1)
+ E

[
E
[
∥Y − ((1 − θ)Z + θY )∥2

2|θ = 0
]]

P (θ = 0)
= E[∥Y − Z∥2

2|θ = 0]P (θ = 0)
= εE∥Y − Z∥2

2

≤ O(pε).

Then we have

W2(µ, µε) ≤ O(√pε). (32)

Combining (31) with (32), it follows that

W2(Law(Ỹ ε
tK

), µ)

≤ O(√pε) + O(√ps) + O
(√

p(Cp)2

m1/4ε2

)
+ O

(
(Cp)2√
log(m)ε2

)
+ O

( √
pCp√

log(m)ε

)
. (33)

Set ε = (log(m))−1/5 in (33), then there exist one constant C̃p depending on p such that

W2(Law(Ỹ ε
tK

), µ) ≤ C̃p · O
(

1
(log(m))1/10

)
+ O(√ps).

Moreover, if f has a finite upper bound, then similar to the proof of Theorem 3.2 and by (32) and Lemma
A.8, we have

W2(Law(Ỹ ε
tK

), µ) ≤ O(√pε) + O(√ps) + O
(√

p(Cp)2
√

mε2

)
+ O

(√
pCp√
mε

)
. (34)

17
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Set ε = m−1/5 in (34), then there exists one constant C̃p depending on p such that

W2(Law(Ỹ ε
tK

), µ) ≤ C̃p · O
(

1
m1/10

)
+ O(√ps).

18


	Introduction
	Schrödinger-Föllmer sampler
	Bound on W2(Law(Y"0365YtK),) without convexity
	Conclusion
	Appendix
	Proof of Proposition 2.1
	Preliminary lemmas for Theorems 3.1-3.2
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Preliminary lemmas for Theorem 3.3
	Proof of Theorem 3.3


