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Abstract

Video instance segmentation (VIS) aims at segmenting and tracking objects in
videos. Prior methods typically generate frame-level or clip-level object instances
first and then associate them by either additional tracking heads or complex instance
matching algorithms. This explicit instance association approach increases system
complexity and fails to fully exploit temporal cues in videos. In this paper, we
design a simple, fast and yet effective query-based framework for online VIS.
Relying on an instance query and proposal propagation mechanism with several
specially developed components, this framework can perform accurate instance
association implicitly. Specifically, we generate frame-level object instances based
on a set of instance query-proposal pairs propagated from previous frames. This
instance query-proposal pair is learned to bind with one specific object across
frames through conscientiously developed strategies. When using such a pair to
predict an object instance on the current frame, not only the generated instance
is automatically associated with its precursors on previous frames, but the model
gets a good prior for predicting the same object. In this way, we naturally achieve
implicit instance association in parallel with segmentation and elegantly take
advantage of temporal clues in videos. To show the effectiveness of our method
InsPro, we evaluate it on two popular VIS benchmarks, i.e., YouTube-VIS 2019
and YouTube-VIS 2021. Without bells-and-whistles, our InsPro with ResNet-50
backbone achieves 43.2 AP and 37.6 AP on these two benchmarks respectively,
outperforming all other online VIS methods.

1 Introduction

Video instance segmentation (VIS) [1] is a challenging but important computer vision task. It requires
not only segmenting object instances on each video frame but also associating them across all frames.
Due to its fine-grained object representation form, it has got a wide range of applications in various
areas such as autonomous driving and video editing.

Existing VIS methods can be categorized into two groups: frame-level methods and clip-level
methods. Frame-level methods [1, 2, 3, 4] generally follow a ‘tracking-by-detection’ paradigm,
which first generate per-frame object instances by existing instance segmentation models [5, 6],
and then associate them across frames via additional tracking heads (as shown in Figure 1 (a)). In
comparison, clip-level methods [7, 8, 9, 10] take a ‘clip-matching’ paradigm, which divide a video
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Figure 1: (a) Previous methods take a two-step approach to VIS. They first generate object instances
and then perform explicit instance association to link them across frames. (b) Our InsPro implements
implicit instance association through a temporal propagation mechanism, achieving object instance
segmentation and tracking in one shot. It generates frame-level object instances based on a set of
instance query and proposal pairs propagated from previous frames. Since the instance query-proposal
pair is learned to represent one specific object across frames, the instance association is naturally
achieved in parallel with segmentation and video temporal clues are elegantly exploited meanwhile.

into multiple overlapped clips, generate instance predictions for each clip, and then associate these
clip-level predictions by some hand-crafted instance matching algorithms. Whether frame-level or
clip-level methods, both of them inevitably need an explicit instance association step to fulfill object
tracking. This generally requires to design a complicated association strategy to achieve good tracking
performance, which is not trivial. More importantly, the explicit association step increases model
complexity and slows inference speed. Furthermore, this extra step also indicates that the temporal
clues intrinsic in videos are not well utilized, as the instance prediction is performed separately on
each frame or each clip.

In this work, inspired by the recent success of query-based object detectors [11, 12], we propose a
simple, fast and yet effective query-based framework for online VIS. Our system, dubbed as InsPro,
segments and tracks objects in one shot through an instance query and proposal propagation strategy
with carefully designed modules (Figure 1 (b)) , which eliminates the explicit instance association
step. Specifically, our approach generates frame-level object instances based on a set of instance
query-proposal pairs propagated from previous frames. In the learning process, we develop several
techniques to make sure that the generated instance query-proposal pair corresponds to one specific
object across frames. Thus, when an object instance is generated using such a query-proposal pair
on the current frame, it is automatically associated with its precursors on all previous frames. In
this way, we achieve implicit object association without a linking step. Meanwhile, this instance
query-proposal propagation mechanism also enables our VIS system to achieve a better prediction
accuracy (see Table 1). This benefits from the instance query-proposal pair’s encoding one object’s
temporal and spatial information across all previous frames, which provides a very good prior for
the model to infer the same object on the current frame. In this sense, our query-based VIS method
actually implements an efficient way to exploit the intrinsic temporal clues in videos.

To fulfill the advantages of our VIS system, learning exclusive and expressive instance query-proposal
pairs is the key. In this work, we develop several strategies to ensure the learning effectiveness. First,
we design a temporally consistent matching mechanism to enforce the one-to-one correspondence
between the instance query-proposal pair and a specific ground truth object across frames during
training. Second, we propose a box deduplication loss to enlarge the distance between instance
proposals. This helps suppress duplicate proposals on the same object and increase the exclusivity of
the generated instance query-proposal pair. At the same time, the sparsely distributed unoccupied
query-proposal pairs can serve as candidates in the next frame to detect new objects, allowing our
system to achieve new object detection and tracking effortlessly. Third, we propose an intra-query
attention module that enhances instance query with its predecessors encoding the same object. This
explicitly aggregates long-range object information into the query, augmenting its representation
capacity, which helps handle occlusion and motion blur.

To validate the effectiveness and efficiency of our InsPro, we conduct extensive experiments on two
popular VIS benchmarks [1], i.e., YouTube-VIS 2019 and YouTube-VIS 2021. Without bells-and-
whistles, our InsPro with ResNet-50 [13] backbone achieves 43.2 AP on YouTube-VIS 2019 and 37.6
AP on YouTube-VIS 2021 respectively, outperforming all other online VIS models. Moreover, our
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lite variant, InsPro-lite, reaches 38.7 AP on YouTube-VIS 2019 at impressive 45.7 FPS on a Nvidia
RTX2080Ti GPU.

In summary, we make the following contributions in this paper. 1) We propose a simple, fast and
yet effective query-based framework for online VIS. 2) We develop several techniques to make the
query-proposal pair propagation mechanism work smoothly. These techniques distinguish our work
from other query propagation-based object association methods [14, 15, 16], and make our work
simpler, more elegant and more effective than them. 3) Our VIS system achieves the state-of-the-art
performances on two popular VIS benchmarks.

2 Related Work

Frame-level VIS Methods mainly adopt a ‘tracking-by-detection’ paradigm and can run in an
online fashion. They first generate instance predictions frame by frame and then perform explicit
instance association. MaskTrack R-CNN [1] first proposes the VIS task and simply adds an additional
tracking head to Mask R-CNN [5] for instance association. Follow-up works [2, 3, 4, 17] improve
either the segmentation or the tracking algorithm to achieve better performance. On the other
hand, some works [8, 18, 19, 20, 21, 22] attempt to perform temporal feature fusion to improve
instance segmentation and association. For example, PCAN [22] proposes frame- and instance-level
prototypical cross-attention modules to leverage rich spatio-temporal information to facilitate better
segmentation. All these methods require additional modules to achieve explicit instance association,
which expands model complexity and reduces inference speed. By contrast, our method performs
instance association implicitly through an instance query and proposal propagation mechanism, which
is simpler and naturally exploits the temporal and spatial consistency in videos.

Clip-level VIS Methods take a ‘clip-matching’ paradigm, which process multiple frames within
a clip simultaneously and then perform instance matching between clips to complete VIS. While
some methods [7, 23, 9] propagate instance information within a clip with well-designed propagation
modules to model temporal context, recent works [8, 10] utilize transformer [24] to model temporal
context in an end-to-end manner. These methods normally need hand-crafted matching algorithms to
complete instance association between clips. Although they usually achieve high performance, they
can only run in an offline mode, which restricts their application to limited areas. In contrast, our
method achieves comparable performance but can run online.

Query-based Methods have attracted increasing attention in recent years due to their flexibility
and simplicity. DETR [11] first uses a set of learned queries interacting with image features to
encode objects, and then directly outputs detections by decoding the transformed queries. Following
works [25, 26, 27, 28, 29] improve DETR in terms of either training efficiency or detection perfor-
mance. Sparse R-CNN [12] builds a query-based detector on top of R-CNN architecture [30, 31]. Its
follow-up works [3, 32] extend it to instance segmentation and video object detection. Besides, Max-
DeepLab [33] proposes a box-free panoptic segmentation method with external query. DAFL [34]
uses a set of queries to encode pedestrian information for pedestrian attribute recognition.

The success of DETR has also inspired query-based VIS methods. VisTR [8] adapts DETR to the
VIS task. It takes a video clip as input and directly outputs the sequence of masks for each instance
orderly. IFC [10] proposes inter-frame communication transformers to reduce the heavy computation
and memory usage of VisTR-like VIS methods. Similar to VisTR, Mask2Former [35] applies masked
attention to a video clip and directly predicts a 3D instance volume. To learn a powerful video-level
instance query, SeqFormer [36] aggregates temporal information from each frame to the instance
query. These methods work on clips rather than frames, and achieve object association through
sharing of the queries within a clip rather than query propagation. Thus, they still need instance
matching between clips. Instead, our method applies to frames, and can propagate query-proposal
pairs through the entire video and thereby can associate object instances over any frame length.

Query Propagation-based Object Association Methods have been recently explored in several
works, such as TransTrack [14], TrackFormer [15], MOTR [16] and EfficientVIS [37], which are also
inspired by query-based methods [11, 12]. This shows the effectiveness and potential of such a new
object linking approach. The differences between our InsPro and them are as follows.
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Figure 2: (a) Overview of our InsPro. It performs VIS by propagating instance query-proposal pairs
across frames. qinit ∈ RN×C and pinit ∈ RN×4 are initial instance queries and proposals on the first
video frame, respectively. They are used in SegHead to predict instance results r0 on frame I0, and
to produce updated q0 and p0 which are propagated to the next frame. By repeating this process, we
complete the VIS task. (b) Details of SegHead. It is a multi-stage network, consisting of a dynamic
instance interaction module (DIIM) and an instance segmentation module. The former transforms
instance queries with RoI features of corresponding proposals and produces object features, while the
latter predicts object instances based on the object features and conditional convolution [39].

First, our InsPro is different from them in the way of either tracking seen objects or detecting new
objects. TransTrack is basically a ‘tracking-by-detection’ method, because it still needs to explicitly
match detection boxes to tracked boxes in each frame, while our InsPro performs implicit association.
More importantly, TransTrack, TrackFormer and MOTR adopt a track query subset to track seen
objects and an extra object query subset to detect new objects. This requires additional heuristic rules
to combine two type queries, and may miss occluded or blurred objects with low scores, which can
result in object trajectory break [38]. Our InsPro simply propagates all object queries produced in
the previous frame to the current frame, and keeps using this set to track seen objects and detect
new objects, which is much simpler and more elegant. As for EfficientVIS, our concurrent work, it
does not consider this new object detection problem, and its performance will probably be impacted
greatly if there are new objects in the next clip.

Furthermore, we design a more intelligent strategy to suppress duplicates. TransTrack and Track-
Former employ score filtering or NMS to reduce duplicate predictions. MOTR builds a temporal
aggregation network to learn more discriminative features to address this problem, while EfficientVIS
does not discuss this problem. By contrast, we design a Box Deduplication Loss to suppress dupli-
cates and an Inter-query attention module to enhance queries with their predecessors. Our solution
avoids heuristic rules and post-processing steps, and is more effective according to the experimental
results (see Table 2 (e)).

3 InsPro

We aim to design a simple and fast VIS system that performs instance association implicitly and
exploits video temporal clues elegantly. To this end, we take a query-based VIS approach that
predicts object instances on each frame based on a set of instance query-proposal pairs propagated
from previous frames. In this section, we introduce our VIS system, InsPro, including an instance
query and proposal propagation mechanism and an instance segmentation head. Meanwhile, we also
describe those proposed techniques that make our propagation mechanism work well.

3.1 Instance Query and Proposal Propagation

The instance query and proposal propagation mechanism enables our VIS system to perform object
instance association implicitly in parallel with instance segmentation. Since it is inspired by the
recent query-based object detector Sparse R-CNN [12], we first briefly review Sparse R-CNN.
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Sparse R-CNN [12] formulates object detection as a set prediction problem and achieves state-of-the-
art performance. It simplifies the detection pipeline and removes heuristic components like NMS.
Specifically, it first initializes a fixed set of learnable instance queries (N ×C, N denotes the number
of queries and C the query dimension) paired with learnable instance proposals (N × 4) to describe
objects in an image. As illustrated in Figure 2 (b), each instance query is convolved with the RoI
feature of the corresponding proposal to output a more discriminate feature ot [12]. After multi-stage
iterative updating, the instance query encodes more accurate object appearance information while the
proposal captures more precise location. Finally, decoding the object feature ot produced using the
instance query-proposal pairs, we get the detection results.

Inspired by this instance query-proposal representation of an object, we design a query-proposal
temporal propagation mechanism (as shown in Figure 2 (a)) to achieve implicit object instance associ-
ation and temporal cue utilization in VIS. Our key insight is that there is a one-to-one correspondence
between the learned instance query-proposal pair and a specific object. If we manage to preserve this
correspondence from the first frame to the one where the object finally disappears, then we realize
object tracking and object information propagation spontaneously.

To this end, we first initialize a set of instance queries qinit ∈ RN×C and proposals pinit ∈ RN×4 on
the first video frame I0, where qinit and pinit are learnable parameters and arranged in pairs. After
learning, they are able to encode objects on the first frame. Decoding them with the first frame image
feature inside the SegHead, we obtain instance results r0 as well as a new set of updated pairs (q0,
p0). Then we propagate this pair set (q0, p0) to the next frame as input to the SegHead. Similarly,
we get the instance results r1 and another new set of (q1, p1) on this frame. Among them, the object
instance produced on this frame shares the same ID with the one on the previous frame if they are
both decoded by the same slice of the instance queries. In this way, we automatically link object
instances belonging to an identical object across frames and elegantly make use of object priors from
the past. Repeating the above process until the last video frame, we then accomplish the VIS task on
this video.

Please note that our InsPro simply propagates all object queries produced in the previous frame to
the current frame, and keeps using this set to track seen objects and detect new objects. Instead,
recent works [14, 15, 16] that take a similar query-propagation mechanism use a track query set
to track seen objects and a new object query set to detect new objects respectively, which requires
additional heuristic rules to combine these two type queries. Moreover, they rely on hand-crafted rules
like a score threshold to select a subset of track queries, and occluded objects with low prediction
scores are probably filtered out, which results in non-negligible true object missing and fragmented
trajectories [38]. In comparison, our method is obviously simpler, more elegant and more effective
(see Table 2 (e)).

Intra-query Attention Since frame-by-frame temporal propagation encodes only short-range
temporal cues, the instance query from just the last frame shows limitations in dealing with tough
scenarios, e.g., occlusion and motion blur. To boost the representation capacity of instance query,
we augment it in practice with instance features from previous T frames [40, 41]. Specifically, we
build a feature bank that caches instance features from previous T frames and perform intra-query
attention inside this bank to aggregate long-range temporal cues into the current instance query, as
shown in the upper part of Figure 2 (b). Formally, at frame It, instance features o from previous T
frames are put together to form a feature bank fb = {ot−T+1, . . . ,ot}. Then, the enhanced instance
query is computed as:

qi
t =

∑T−1
n=0 o

i
t−n exp(ε(o

i
t−n))∑T−1

m=0 exp(ε(o
i
t−m))

+ oi
t, (1)

where i denotes the i-th query and ε(·) is a linear transformation function. The enhanced qt is
basically a weighted sum of instance features inside the feature bank, and the weights are learned
upon the quality of the queries. Experiments (Table 6 (c)) show that this augmentation improves the
query representation capacity greatly.

3.2 Segmentation Head

The segmentation head transforms the instance query and performs instance segmentation on each
frame. As illustrated in Figure 2 (b), it is a multi-stage network and has two main parts: a dynamic
instance interaction module and an instance segmentation module.
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Dynamic Instance Interaction Module transforms the instance query with the proposal RoI
feature and yields object features. It has M stages and forms an iterative structure. At the first stage,
given a pair of instance queries qt−1 ∈ RN×C and proposals pt−1 ∈ RN×4 that propagated from
the previous frame It−1, it first augments the instance queries by a self-attention module [24], which
models the inter-query relations. At the same time, it extracts the RoI feature of each proposal on the
feature map by RoIAlign [5]. Then, each enhanced instance query convolves with its corresponding
RoI feature through dynamic convolution [42] to get the object feature ot ∈ RN×C . Since the object
feature absorbs temporal cues encoded in instance queries, it has better representation ability than the
single-frame RoI feature (see Table 2 (d)). The object feature is used to predict object instances in the
following instance segmentation module, and the newly generated object boxes together with the
object features proceed as input to the next stage in the iterative process. At the final stage, the object
feature is processed together with its precursors from previous frames through the aforementioned
intra-query attention module, to produce instance queries for the next frame.

Instance Segmentation Module decodes the object feature ot and produces VIS predictions. It has
three main heads. While the classification head predicts object classes, the regression one generates
object boxes. Another mask head is responsible for producing instance masks through a conditional
convolution [39] approach. Specifically, it first uses ot to generate conditional convolution weights in
weight generator. As shown in Figure 2 (b), it inputs oi

t that represents the i-th object instance feature
to the weight generator and outputs a set of convolution parameters ωi. Meanwhile, it produces
mask feature maps by transforming FPN [43] feature maps through a mask branch. Note that the
output mask feature maps have 8 channels and a 1

8 resolution of the input image, and are boosted by
concatenating a 2-channel relative coordinates map to it. This relative coordinates map is computed
using the center of predicted object boxes and provides strong location cues for predicting instance
masks. Finally, we feed the combined feature maps fmask

t ∈ R10×H
8 ×W

8 and convolution parameters
ωi to a mask FCN head, predicting the i-th object instance mask via a conditional convolution:

mi
t = CondConv(fmask

t ,ωi). (2)

For more details about the instance segmentation module, please refer to [39].

3.3 Temporally Consistent Matching

The key to the success of our InsPro is to make sure that the evolving instance query-proposal pair
corresponds to the same object across frames in a video. To ensure this, one technique we propose is
temporally consistent matching. This technique matches predictions and ground truth during training,
assigns each ground truth object a proper prediction, and propagates the matching made on previous
frames to subsequent frames.

Specifically, given a training batch consisting of multiple consecutive frames, we first compute the
matching cost Lmatch between predictions and ground truth objects on the first frame:

Lmatch = λcls · Lcls + λL1 · LL1 + λgiou · Lgiou, (3)

where Lcls is the focal loss [44] between predicted classifications and ground-truth labels, LL1 and
Lgiou are L1 loss and the generalized IoU loss [45] between predicted boxes and ground-truth boxes,
respectively. λcls, λL1 and λgiou are loss weights and set as 2, 5, and 2, respectively.

We search for the best bipartite matching that minimizes the matching cost Lmatch with the Hungarian
algorithm [46]. After finding the best matching on the first frame, we propagate this matching to other
frames. Concretely, if one ground truth object still exists on subsequent frames, it will be matched to
the prediction that is generated by the same instance query on the first frame. If there are new objects
emerging, new matching will be made between the new objects and yet unmatched predictions. If a
ground truth object disappears, its corresponding predictions will not participate in a new matching
process. Through this temporally consistent matching mechanism, we bind one ground truth object
to a single instance query during training.

3.4 Loss Function

Box Deduplication Loss Although the self-attention mechanism between queries has driven the
model to generate fewer duplication predictions [11], we still observe multiple overlapped proposal
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Figure 3: (a) Multiple duplicate boxes exist on the same object across frames. (b) After applying
the proposed box deduplication loss (BDL) in training, the duplicate predictions are significantly
suppressed along with temporal propagation.

boxes on the same object across many frames, as displayed in Figure 3 (a). We conjecture this is
caused by those unmatched queries which cannot be pushed away from those matched queries due
to lack of supervision. To address this problem, we propose a box deduplication loss to push away
prediction boxes in terms of the center-to-center distance between them. As a result, not only the
duplication problem is alleviated, but the sparsely distributed unmatched query-proposal pairs can
serve as candidates in the next frame to detect and track new objects (see Figure 7 in Appendix). The
loss is defined as:

Ldedup =
1

k

k∑
i=1

max(β −
C2(b, b̂

i

neg)

D2(b)
, 0), (4)

where b is a ground truth box, b̂
i

neg is a negative box that has the i-th largest IoU with b among those
unmatched predicted boxes, C(·) is the center distance calculation function, and D(·) is the diagonal
length calculation function. β is set as 0.1 and k as 5. This loss penalizes the short distance between
b and b̂

i

neg, and drags all other duplicate boxes away from b [47]. With this new loss, our final box
loss function is formed as:

Lbox = λL1 · LL1 + λgiou · Lgiou + λdedup · Ldedup, (5)

where λL1 and λgiou have the same values as in Equation 3, and λdedup is set as 1.

Overall Loss Given the one-to-one matching results, the final loss on each training frame is a sum
of classification, box and mask losses:

L = λcls · Lcls + λbox · Lbox + λdice · Ldice + λfocal · Lfocal, (6)

where Ldice and Lfocal are dice loss [48] and focal loss [44] for foreground mask prediction,
respectively. We set λbox = 1, λdice = 5 and λfocal = 5. Finally, the losses of all training frames
inside a batch are summed together and normalized by the number of frames.

4 Experiments

4.1 Datasets and Evaluation Metrics

We evaluate our method on YouTube-VIS 2019 and 2021 benchmarks [1]. YouTube-VIS 2019
consists of 2,238 training videos and 302 validation videos, and labels 40 object categories. YouTube-
VIS 2021 is an extended version, which comprises 2,985 training videos and 421 validation videos,
and labels improved 40 categories. All videos in these two datasets are annotated every 5 frames with
object bounding box, object category, instance mask and instance ID. Following [1], we report the
video-level average precision (AP) and average recall (AR) on the validation sets as the evaluation
metrics, where both accurate instance segmentation and instance association are necessary to achieve
high performance.
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Table 1: Comparison of our InsPro to state-of-the-art methods. All methods use ResNet-50 as
backbone. C: additionally using COCO train2017 images that contain YouTube-VIS categories for
training. The inference speed is tested on a Nvidia RTX2080Ti GPU. ∗ indicates using deformable
convolution [52] in backbone. ‡ indicates that the FPS is measured by parallel processing of images
in one clip rather than sequential processing.

YouTube-VIS 2019 Val. YouTube-VIS 2021 Val.
Method Online AP AP50 AP75 AR1 AR10 AP AP50 AP75 AR1 AR10 FPS
STEm-Seg [7] (C) ✗ 30.6 50.7 33.5 31.6 37.1 - - - - - 4.4
VisTR [8] ✗ 35.6 56.8 37.0 35.2 40.2 - - - - - 30.0‡

Propose-Reduce [9] (C) ✗ 40.4 63.0 43.8 41.1 49.7 - - - - - < 20
MaskProp∗ [23] ✗ 40.0 - 42.9 - - - - - - - < 10
IFC [10] ✗ 39.0 60.4 42.7 41.7 51.6 35.2 57.2 37.5 - - 46.5‡

EfficientVIS [37] ✗ 37.9 59.7 43.0 40.3 46.6 34.0 57.5 37.3 33.8 42.5 36‡

MaskTrack R-CNN [1] ✓ 30.3 51.1 32.6 31.0 35.5 28.6 48.9 29.6 26.5 33.8 26.1
SipMask [4] ✓ 33.7 54.1 35.8 35.4 40.1 31.7 52.5 34.0 30.8 37.8 30
STMask∗ [20] ✓ 33.5 52.1 36.9 31.1 39.2 - - - - - 28.6
SG-Net [2] ✓ 34.8 56.1 36.8 35.8 40.8 - - - - - 23.0
PCAN [22] ✓ 36.1 54.9 39.4 36.3 41.6 - - - - - -
CrossVIS [18] ✓ 36.3 56.8 38.9 35.6 40.7 34.2 54.4 37.9 30.4 38.2 25.6
HybridVIS [21] (C) ✓ 41.3 61.5 43.5 42.7 47.8 35.8 56.3 39.1 33.6 40.3 < 20
InsPro-lite ✓ 38.7 60.9 41.7 36.9 43.6 - - - - - 45.7
InsPro ✓ 40.2 62.9 43.1 37.6 44.5 36.1 57.6 39.6 30.9 40.4 26.3
InsPro (C) ✓ 43.2 65.3 48.0 38.8 49.0 37.6 58.7 40.9 32.7 41.4 26.3

4.2 Implementation Details

We implement our InsPro with Detectron2 [49], and most hyperparameters are set following Sparse
R-CNN [12] and CondInst [39] unless otherwise specified. More implementation details can be found
in Appendix A.1.

Training Details We employ AdamW [50] with an initial learning rate of 2.5× 10−5 and weight
decay 0.0001 as our model optimizer. We initialize our model with parameters pre-trained on
COCO [51], and train it for 32k iterations where the learning rate is divided by 10 at iterations 24k
and 28k, respectively. The training is performed end-to-end on 8 Nvidia RTX2080Ti GPUs and each
GPU holds one mini-batch which contains three frame images randomly sampled from the same
video. Data augmentation includes only random horizontal flip and multi-scale training where the
training image is resized so that the length of its shortest side is at least 288 and at most 512. Unless
otherwise noted, our InsPro adopts ResNet-50 [13] as backbone and uses 100 instance queries in our
experiments.

Inference Details In inference, we resize the frame image size to 640 × 360, which follows
MaskTrack R-CNN [1]. The size of the feature bank is set to 18 by default. If the generated proposal
box exceeds the frame’s boundaries, it will be clipped to corresponding boundaries. No multi-scale
testing is adopted in our experiments.

InsPro-lite We also build a lite version of our method, named InsPro-lite. In this variant, inspired
by [32], we divide video frames into key frames and non-key frames, i.e., we select one key frame
per K frames in a video and treat other frames as non-key ones. K is 10 by default. On key frames,
we conduct the dynamic instance interaction 6 times while only once on non-key frames. This takes
advantage of the redundancy of videos and helps reduce inference computation time. Our InsPro-lite
reaches a high inference speed of 45.7 FPS at a small accuracy loss (Table 1).

4.3 Main Results

We perform a thorough comparison of our InsPro to state-of-the-art VIS methods on YouTube-VIS
2019 and 2021. Existing VIS methods can be divided into two categories according to whether they
run online or offline [53]. Since some methods [7, 9] use 80k transformed COCO images [51] as
extra training data to prevent overfitting to YouTube-VIS, for a fair comparison, we also report our
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Table 2: Ablation studies on YouTube-VIS 2019.

(a) Effectiveness of instance query and pro-
posal propagation, and temporally consis-
tent matching (TCM).

query proposal TCM AP AP50 AP75

(A) 24.0 41.3 24.2
(B) ✓ ✓ 36.3 56.3 38.9
(C) ✓ ✓ ✓ 37.4 57.6 41.1
(D) ✓ ✓ 36.7 57.3 39.9
(E) ✓ ✓ 36.6 55.5 40.3

(b) Effectiveness of the proposed
box deduplication loss (BDL).

AP AP50 AP75 FPS
w/o BDL 37.4 57.6 41.1 26.3
w/ BDL 38.4 57.7 41.6 26.3

(c) Intra-query attention. T is the
length of the feature bank.

AP AP50 AP75 FPS
T=1 38.4 57.7 41.6 26.3
T=9 39.7 61.6 42.1 26.3
T=18 40.2 62.9 43.1 26.3
T=27 40.1 62.6 42.2 26.3
T=36 40.1 62.5 42.2 26.3

(d) Comparison between our temporal propagation paradigm
and ‘tracking-by-detection’ paradigm.

AP AP50 AP75 Param (M) FLOPs (G) FPS
Tracking-by-detection 31.5 49.3 34.1 119.9 48.3 25.4
Ours 37.4 57.6 41.1 106.1 45.5 26.3

(e) Comparison between our united query
and ‘track-and-detect query’.

AP AP50 AP75

Track-and-detect query 37.4 56.9 40.3
Ours 38.4 57.7 41.6

results with and without extra COCO training data. Table 1 presents all the results obtained with a
ResNet-50 backbone on a Nvidia RTX2080Ti GPU.

YouTube-VIS 2019 Table 1 (left) shows the comparison between our InsPro and other state-of-the-
art methods on YouTube-VIS 2019 validation set. We can see that, in the online group, our InsPro
outperforms all other popular methods under the same data setting. Specifically, our InsPro achieves
40.2 AP without COCO data and 43.2 AP with COCO data respectively, surpassing other online VIS
methods by a large margin. Even our lite version, InsPro-lite, performs better than all other online
methods trained without COCO data, reaching 38.7 AP at an impressive speed of 45.7 FPS.

YouTube-VIS 2021 Table 1 (right) displays results on YouTube-VIS 2021 validation set. It shows
a similar comparison pattern to YouTube-VIS 2019 and our InsPro achieves the state-of-the-art
performance once again.

4.4 Ablation Study

We conduct extensive experiments on YouTube-VIS 2019 to study the effectiveness and individual
performance contribution of our proposed modules.

Temporal Propagation and Matching Our InsPro is built on the proposed instance query and
proposal temporal propagation mechanism. Table 2 (a) shows how this mechanism contributes to
our high performance. In this table, method A represents the video instance segmentation baseline,
where each frame is processed individually without any temporal propagation, and object instances
generated on each frame are linked if they are produced from the same instance query slice. Since
this method lacks the mechanism to ensure the instance query-proposal pair corresponds to the
same object across frames, it only achieves 24.0 AP due to inaccurate instance association. By
contrast, when we add the temporal propagation (method B), we can easily improve the performance
significantly to 36.3 AP. This evidences the importance and effectiveness of the proposed temporal
propagation technique in a query-based VIS framework. If we further adopt the temporally consistent
matching strategy during training (method C), we achieve an even better performance of 37.4 AP.

We also analyze the separate performance of propagating only instance query (method D) or instance
proposal (method E). The results show that these two settings achieve a similar performance boost
(36.7 AP vs 36.6 AP). Applying them together yields 37.4 AP, bringing further performance gain.

Box Deduplication Loss We propose a box deduplication loss to suppress the duplicate proposal
boxes on the same object across frames. With the qualitative results shown in Figure 3, we show the
quantitative comparison in Table 2 (b). We can see that supervising the learning with this loss during
training can lead 1.0 AP improvement (38.4 AP vs 37.4 AP). This performance gain is brought by
fewer duplicate boxes and fewer missed detections.
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Intra-query Attention We perform intra-query attention inside a feature bank to augment the
instance query so that it can capture long-range temporal cues. As we can see in Table 2 (c), this
simple method works well and improves the performance considerably. In particular, T = 1 indicates
no intra-query attention is used and 38.4 AP is achieved. When we increase the volume T of the
feature bank, the performance rises and saturates at 40.2 AP with T = 18. It is worthwhile to note
that this lightweight yet effective intra-query attention module brings almost no speed drop.

Temporal Propagation vs. Tracking-by-Detection Despite the fact that our InsPro does not
perform explicit instance association, it still outperforms all other online methods implementing
explicit tracking or matching. To verify that our superior performance comes from the temporal
propagation mechanism rather than the instance segmentation model design, we compare our temporal
propagation VIS approach to the typical ‘tracking-by-detection’ paradigm with the same instance
segmentation baseline. We implement a ‘tracking-by-detection’ VIS system by replacing the Mask
R-CNN part in MaskTrack R-CNN [1] with our instance segmentation model. In this case, the only
independent variable is the object tracking method.

As shown in Table 2 (d), our InsPro surpasses the ‘tracking-by-detection’ model by a large margin
even if our design is simpler and faster, which soundly proves the effectiveness of our method. We
argue again that this is because the evolving instance query-proposal pair in propagation encodes
object temporal and spatial cues intrinsic in videos, whereas ‘tracking-by-detection’ methods are
generally incapable of exploiting this advantage.

Our United Query vs. Track-and-Detect Query We further compare our method to those MOT
methods that adopt a similar query-propagation method for object tracking. These methods rely on
two different query sets, i.e., a track query set and an object query set, to track seen objects and detect
new objects respectively, while we only maintain one united query set. They need heuristic rules to
combine these two type queries. Meanwhile, they manually select track queries with high scores
from the previous frame to build the track query set. This makes them complex and less effective
in tracking since occluded objects with low scores probably have broken trajectories because of the
filtering.

To show the superiority of our method, we compare the ‘track-and-detect query’ paradigm adopted
in the most recent MOTR [16] to ours using the same instance segmentation baseline. We follow
MOTR [16] exactly to set up the model and experiment settings. To exclude the influence of
other factors, we do not use temporal feature aggregation in both methods. Table 2 (e) shows the
comparisons on YouTube-VIS 2019. It can be seen that our InsPro achieves a higher performance
even using a simpler query design. We attribute this advantage to our conscientiously designed
modules described in Sec 3.

5 Conclusion

In this paper, we propose a simple, fast and yet effective query-based framework for online VIS. In
this framework, we rely on a novel instance query and proposal propagation mechanism to undertake
VIS, where we generate object instances based on a set of evolving instance query-proposal pairs
propagated from previous frames. This mechanism enables our model not only to associate object
instances implicitly, but to utilize video temporal cues elegantly. To make this propagation mechanism
work well, we develop several modules to ensure that the learned instance query-proposal pair
keeps being bound to one object, These modules include an intra-query attention unit, a temporally
consistent matching mechanism and a box deduplication loss. Extensive experiments on YouTube-
VIS 2019 and 2021 verify the effectiveness of our designs, and show that our InsPro achieves superior
VIS performance, outperforming all other online VIS methods.
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