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Abstract
Continual learning requires learning incremental
tasks with dynamic data distributions. So far, it
has been observed that employing a combination
of contrastive loss and distillation loss for training
in continual learning yields strong performance.
To the best of our knowledge, however, this con-
trastive continual learning framework lacks con-
vincing theoretical explanations. In this work,
we fill this gap by establishing theoretical per-
formance guarantees, which reveal how the per-
formance of the model is bounded by training
losses of previous tasks in the contrastive contin-
ual learning framework. Our theoretical explana-
tions further support the idea that pre-training can
benefit continual learning. Inspired by our theo-
retical analysis of these guarantees, we propose
a novel contrastive continual learning algorithm
called CILA, which uses adaptive distillation coef-
ficients for different tasks. These distillation coef-
ficients are easily computed by the ratio between
average distillation losses and average contrastive
losses from previous tasks. Our method shows
great improvement on standard benchmarks and
achieves new state-of-the-art performance.

1. Introduction
Incrementally learning a sequence of tasks with dynamic
data distributions is a typical setting for continual learning.
We call the learned neural networks “continual learners”.
The main challenge for continual learners is to obtain a
suitable trade-off between learning plasticity and memory
stability. Specifically, excessive focus on learning plasticity
of new tasks often leads to greatly reduced performance
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on old tasks (McClelland et al., 1995), which is known as
catastrophic forgetting.

To address the challenge, the literature on continual learn-
ing has proposed various approaches. Representation-based
approaches take advantage of representations. As one of
these approaches, self-supervised learning with contrastive
loss has demonstrated notable efficacy in obtaining robust
representations against catastrophic forgetting in continual
learning (Gallardo et al., 2021; Fini et al., 2022). For these
methods based on contrastive loss, the training of represen-
tations is often decoupled with the training of the classifier,
unlike methods based on cross-entropy. Specifically, con-
trastively trained representations suffer less catastrophic for-
getting than ones trained by cross-entropy loss (Cha et al.,
2021). Replay-based approaches use buffers to restore a
part of previous data, and train networks using data from a
combination of the current task and the buffer (Lopez-Paz
& Ranzato, 2017). Naturally, these methods are combined
with knowledge distillation strategies to prevent the degrada-
tion of information in the network over time (Rebuffi et al.,
2017). Regularization-based approaches introduce regular-
ization terms to the target loss for continual learning to reach
a balance between learning new tasks and preserving infor-
mation from old tasks (Kirkpatrick et al., 2017). Two main
sub-directions within regularization-based approaches in-
clude weight regularization (Ritter et al., 2018) and function
regularization (Li & Hoiem, 2016).

To achieve effective continual learning, a natural idea is to
combine the three approaches above, and this idea leads to
a new framework called contrastive continual learning (Cha
et al., 2021), as illustrated in Figure 1. This framework fo-
cuses on using contrastively learned representations to learn
new tasks and utilizing knowledge distillation to preserve
information from past tasks, with the help of memory buffer
and function regularization. The target loss of this frame-
work contains a contrastive loss and a distillation loss with a
distillation coefficient λ. The training data will be selected
from the combination of the current data and buffered data.
Empirically, this framework has been observed to be effi-
cient, showing promising performance in continual learning
(Cha et al., 2021). Despite the growing attention directed
towards this framework, limited theoretical works have been
proposed to explain its superior performance.
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In this paper, we try to address the theoretical problem of
why this framework is efficient. Therefore, we consider
the losses provided in (Cha et al., 2021). We have found
a clear relationship between the contrastive losses of two
consecutive models in continual learning. Inspired by this,
we propose theoretical performance guarantees that reveal
how the population test loss, i.e., the total performance of
the final model on all seen tasks, is bounded by the se-
ries of training losses for the contrastive continual learning
framework. Based on our theory, we propose a new and effi-
cient contrastive continual learning algorithm called CILA,
which uses distillation coefficients adapted to different tasks.
Moreover, CILA consistently outperforms all baselines in
different scenarios, datasets, and buffer sizes, e.g., about
1.77% improvement compared with the previous state-of-
the-art method Co2L (Cha et al., 2021) on Seq-CIFAR-10
with a buffer of 500 samples for Class-IL scenario.

Overall, our contributions are listed as follows. (1) We pro-
vide theoretical performance guarantees for the contrastive
continual learning scheme. We identify that the overall per-
formance of the final learned model on all seen tasks can
be bounded by a function of the series of training losses
with the distillation coefficient; (2) We propose an efficient
algorithm CILA, which uses adaptive distillation coefficient
λt (replace λ with λt in Figure 1) for each task t; (3) We
conduct extensive experiments to validate the efficacy of our
algorithm, and the results strongly support our theory. Our
method can inspire future works in contrastive continual
learning.

2. Related Work
Continual learning. Continual learning is also referred
to as incremental learning, which learns incremental tasks
effectively (Wang et al., 2023). The literature in this field
mainly focuses on several streams including weight and
function regularization (Jung et al., 2020), memory replay
(Prabhu et al., 2020), sparse representations (Javed & White,
2019), parameter isolation (Gurbuz & Dovrolis, 2022), and
dynamic architecture (Ramesh & Chaudhari, 2021).

As one of these effective continual learning methods, replay-
based methods have demonstrated superior performance
in terms of both learning plasticity and memory stability
(Riemer et al., 2019). Replay-based continual learning
methods are developed from the idea of Experience Re-
play (Buzzega et al., 2020), which typically stores past
training samples in a fixed-size buffer. Currently, these
replay-based methods are divided into two main streams,
including experience replay and generative replay. Expe-
rience replay-based methods focus on the construction of
memory buffer (Riemer et al., 2019; Tiwari et al., 2022) and
storage efficiency (Caccia et al., 2019; Bang et al., 2021).
Generative replay-based methods concentrate on generative

adversarial networks (GANs) to generate fine-grained data
(Cong et al., 2020; Ayub & Wagner, 2021).

Representation-based methods for continual learning are
also observed to be competitive. Recent works in continual
learning take advantage of self-supervised learning to obtain
robust representations, showing great performance on down-
stream tasks (Pham et al., 2021). Large-scale pre-training
also contributes to improving transferable and robust rep-
resentations for downstream continual learning (Gallardo
et al., 2021; Ramasesh et al., 2022).

Regularization-based methods mainly focus on weight and
function regularization. Weight regularization methods add
penalties to the loss function, typically the penalty is a
quadratic one (Kirkpatrick et al., 2017; Liu et al., 2018), and
function regularization methods implement knowledge dis-
tillation on the intermediate or final output of the prediction
function (Li & Hoiem, 2017; Lee et al., 2019). For function
regularization methods, the teacher model is the frozen past
model, and the student model is the current model. Besides,
there are some theory works analyzing regularization-based
methods. Evron et al. (2022) study the minimum norm
estimator in CL under an over-parameterized and noise-
free setup. Li et al. (2023) give a fixed design analysis
of continual ridge regression for two-task linear regres-
sion. Zhao et al. (2024) consider a family of generalized
ℓ2-regularization estimators and give some optimality anal-
ysis.

Contrastive learning. Contrastive learning aims to learn
representations that attract different views of the same im-
age while repelling views from different images (Tian et al.,
2020). Contrastive methods have been widely used in self-
supervised learning and pre-training, showing superior per-
formance on downstream tasks. The contrastive loss was
first proposed in (Bromley et al., 1993) and then more for-
mally defined in (Chopra et al., 2005) and (Hadsell et al.,
2006). Later some theoretical analyses on the contrastive
learning framework were provided in (Arora et al., 2019;
Huang et al., 2023; Tan et al., 2023b;c;a; Zhang et al., 2023).
There are various target losses in contrastive learning, for
example, InfoNCE loss (van den Oord et al., 2019) is a
widely adopted and efficient one. Notably, methods in this
field have reached or even outperformed supervised learn-
ing methods (Khosla et al., 2020) for image classification.
Representative approaches include SimCLR (Chen et al.,
2020a), MoCo v1&v2 (He et al., 2020; Chen et al., 2020b).
In this work, we employ the contrastive loss provided in
(Khosla et al., 2020) for the contrastive continual learning
framework to show some theoretical insights.

Knowledge distillation. In various scenarios of continual
learning, knowledge distillation is used to preserve infor-
mation from the old model to the current model, contribut-
ing to mitigate catastrophic forgetting. Typically, knowl-
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Figure 1. An illustration of contrastive continual learning framework. At the end of the previous task, we restore the previous model and
values of losses. For the current task, augmentations are applied to both the buffered and the current data. Then the augmented data is
passed through the current model and the previous frozen model to obtain representations. The target loss of contrastive continual learning
is a weighted sum of contrastive loss and distillation loss with a distillation coefficient λ.

edge distillation learns a small student model from a large
teacher model with limited resources (Gou et al., 2021). Var-
ious kinds of knowledge can be transferred by knowledge
distillation, including response-based knowledge which is
the neural response of the last output layer of the teacher
model (Hinton et al., 2015), feature-based knowledge like
feature maps (Zagoruyko & Komodakis, 2016) and relation-
based knowledge referring to relationships between different
layers or between different samples (Passalis et al., 2020).
Learning schemes of knowledge distillation include three
streams, they are online distillation, offline distillation, and
self-distillation. Among them, self-distillation considers the
same structure between the teacher model and the student
model (Zhang & Sabuncu, 2020; Mobahi et al., 2020).

3. Problem Setup
We are given a sequence of T supervised tasks, with each
task presented sequentially, one after the other. For each
task t, the training samples are assumed to be drawn from
an unknown data distributionDt. The model can be updated
after seeing each task. The goal of continual learning is to
train a model f that performs well over all seen tasks.

Supervised contrastive loss (Khosla et al., 2020) has shown
its superiority over the cross-entropy loss in the standard
supervised classification, and it is then introduced into the
continual learning by Co2L (Cha et al., 2021). Specifically,
contrastive continual learning updates the model at each
time step t according to two losses, the contrastive loss and
the distillation loss, which measure the learning plasticity
and memory stability, respectively.

Contrastive loss. For each task t, we use µt to denote the
class distribution of task Dt, and Dc to denote the data dis-
tribution associated with each class c. In this paper, we con-
sider a contrastive loss involving two similar samples x, x+

i.i.d. drawn from the same class distribution Dc. Mean-
while, there are several negative samples randomly picked
from the whole data distribution Dt. For simplicity, we
only consider the case of one negative sample here, the case
of multiple negative samples can be found in Appendix D
and E. Therefore, the contrastive loss can be formulated as

Lcon(f ;Dt) = E
c+∼µt

c−∼µt

E
x,x+∼Dc+

x−∼Dc−

ℓ [f(x)⊤(f(x+)−f(x−))],

where function ℓ(v) is defined as log(1 + exp(−v)) and
embeddings are conventionally normalized, i.e., ∥f∥ = 1.

Distillation loss. Continual learning focuses on retain-
ing previously acquired information while simultaneously
learning new knowledge. In the specific context of con-
trastive continual learning, the model achieves knowledge
preservation by keeping the model’s ability to differentiate
between similar and dissimilar (negative) samples. To do so,
we first compute the similarity probability distribution as
p(f ;x, x+, x−) = softmax(f(x)⊤f(x+), f(x)⊤f(x−)),
and then regulate the cross-entropy between the past simi-
larity probability distribution and the current one (e.g., IRD
loss in (Cha et al., 2021)). Specifically, for task t, we denote
the distribution of all seen data by D1:t−1 :=

∑t−1
j=1 ktjDj ,

where we allow different tasks have different weights
ktj > 0 with

∑t−1
j=1 ktj = 1. Therefore, the distillation

loss considered in this paper can be formulated as

Ldis(ft; ft−1,D1:t−1) =

E
c+∼µ1:t−1

c−∼µ1:t−1

E
x,x+∼Dc+

x−∼Dc−

[−p(ft−1;x, x
+, x−) · logp(ft;x, x+, x−)],

where µ1:t−1 represents the class distribution of D1:t−1.
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The total training loss of ft on task t ≥ 2 is

Ltrain(ft; ft−1,Dt,D1:t−1)

= Lcon(ft;Dt) + λ · Ldis(ft; ft−1,D1:t−1),

where λ is a hyper-parameter for balancing the two loss
terms. For the first task t = 1, the training loss does not have
the distillation term, i.e., Ltrain(f1;D1) = Lcon(f1;D1).

To evaluate the contrastive continual learning model, we use
the total performance (test loss) of the final model fT on all
seen tasks, which can be formulated as

Ltest(fT ;D1, . . . ,DT ) :=

T∑
t=1

Lcon(fT ;Dt).

4. Theoretical Analysis
Contrastive continual learning has demonstrated strong per-
formance in practice. The focus of this paper is to ex-
amine its performance guarantees theoretically. In par-
ticular, our study aims to investigate the relationship be-
tween the test loss Ltest(fT ;D1, . . . ,DT ) and the series
of training losses Ltrain(f1;D1), Ltrain(f2; f1,D2,D1), . . . ,
Ltrain(fT ; fT−1,DT ,D1:T−1).

According to the definition, despite the distillation loss
terms, the training losses involve {Lcon(ft;Dt)}Tt=1, while
the test loss consists of {Lcon(fT ;Dt)}Tt=1. To bridge the
test loss and the training losses, we first provide the rela-
tionship between the contrastive losses of two consecutive
models ft and ft−1 in the following lemma.

Lemma 1. When t ≥ 2, for any data distribution D, the
contrastive losses of current model ft and previous model
ft−1 can be connected via the distillation loss, i.e.,

Lcon(ft;D) ≤ αLcon(ft−1;D) + Ldis(ft; ft−1,D) + β,

Lcon(ft;D) ≥ αLcon(ft−1;D) + Ldis(ft; ft−1,D) + β′,

where α = 2e2

1+e2 , β = 2−α+α log α
2 , and β′ = −α log(1+

e2)− α.

The above lemma can be directly proved using the formulae
for contrastive loss and distillation loss. A detailed proof is
provided in the appendix due to the space limitation.

According to Lemma 1, when considering D = Dt (t ≤ T ),
a connection between Lcon(fT ;Dt) and Lcon(fT−1;Dt) can
be established. Similarly, a link between Lcon(fT−1;Dt)
and Lcon(fT−2;Dt) can be drawn, and so on. This ap-
proach allows us to build a bridge between Lcon(fT ;Dt)
and Lcon(ft;Dt) for any given t, which are the compo-
nents of test loss and training losses, respectively. Thus,
with Lemma 1, we can now derive the relationship be-
tween the test loss Ltest(fT ;D1, . . . ,DT ) and the series

of training losses Ltrain(f1;D1), Ltrain(f2; f1,D2,D1), . . . ,
Ltrain(fT ; fT−1,DT ,D1:T−1). Our results are presented in
the following main theorem.

Theorem 1. For the contrastive continual learning involv-
ing T ≥ 2 tasks, the test loss of the final model fT can
be bounded via a linear combination of the training losses
associated with each task. More specifically, the following
two bounds are applicable.

(1) Upper bound:

Ltest(fT ;D1, . . . ,DT ) ≤ αT−1Ltrain(f1;D1)

+

T∑
t=2

αT−t

γt(λ)
Ltrain(ft; ft−1,Dt,D1:t−1) + η,

(2) Lower bound:

Ltest(fT ;D1, . . . ,DT ) ≥ αT−1Ltrain(f1;D1)

+

T∑
t=2

αT−t

γ′
t(λ)

Ltrain(ft; ft−1,Dt,D1:t−1) + η′,

where

α = 2e2

1+e2 ,

γt(λ) = min
(
{ 1t } ∪ {λktj}

t−1
j=1

)
,

γ′
t(λ) = max

(
{1} ∪ {λktj}t−1

j=1

)
,

η = (2− α+ α log α
2 )

T−1−Tα+(α)T

(1−α)2

+
∑T

t=2 α
T−t(1− 1

γt(λ)
)minfLcon(f ;Dt),

η′ = −(α log(1 + e2) + α)T−1−Tα+(α)T

(1−α)2 .

The proof for the theorem can be found in the appendix.
It can be concluded from Theorem 1 that, the perfor-
mance of the final model fT on all T tasks, namely
Ltest(fT ;D1, . . . ,DT ), can be well bounded by train-
ing losses on all seen tasks, suggesting that minimizing
Ltrain(ft; ft−1,Dt,D1:t−1) during each task t can help
to improve the performance of the final model on all
seen tasks. Note that there is also a lower bound of
Ltest(fT ;D1, . . . ,DT ), which means that minimizing the
training loss during each task t is necessary. In particular,
given that the training loss is a weighted sum of contrastive
loss and distillation loss, these bounds also emphasize the
necessity of both contrastive loss and distillation loss in
effectively learning a contrastive continual learning model.

Taking inspiration from Theorem 1, we can infer that pre-
training can benefit continual learning. The coefficients of
training losses associated with each task become fixed if
λ exceeds a certain value. For example, the denominators
of the coefficients of training losses, i.e., {γt(λ)}Tt=2 for
the upper bound become constant values if λ is large. Note
that the component α > 1, then the weight αT−t/γt(λ) for
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the training loss of task t decreases greatly as t increases,
reducing the importance of task t in the bounds. Therefore,
we have the following corollary, which shows that improved
training performance of initial tasks contributes more to im-
proving the later models’ performance guarantees than that
of later tasks. This aligns with the idea that pre-training can
benefit continual learning, as observed in previous literature
(Wang et al., 2022; Hu et al., 2022).

After choosing a suitable distillation coefficient λ, training
performances of initial tasks in contrastive continual learn-
ing contribute more to improving the overall performance
of the final model on all tasks compared with that of the
latter ones, explaining that a well pre-trained network can
benefit continual learning.

We conclude from the statement above that small changes in
the training performance on the first task may lead to great
changes in the overall performance of the final model. For
example, the weight of Ltrain(f1;D1) in the upper bound
increases greatly when adding more tasks, and a large value
of Ltrain(f1;D1) implies a potential great increase of the
upper bound. Therefore, well-trained initial models with
small training losses in continual learning can be beneficial.

5. Further Discussion on the Distillation
Coefficient λ

5.1. Analysis on the distillation coefficient

Inspired by additional analysis on Theorem 1, we find that
the suitable distillation coefficient λ is correlated with the
weights {{ktj}t−1

j=1}Tt=1 that depends on the data distribu-
tions. Specifically, we would like to choose the suitable
value of λ as the turning point of the upper bound to get
better theoretical guarantees. We define the turning point
as the minimum value of λ at which the upper bound no
longer decreases. Once the distillation coefficient λ exceeds
the value of this turning point, the upper bound becomes a
fixed value that is no longer influenced by λ, as illustrated
in Figure 2. In the following part of this section, we will
present several examples and calculate the corresponding
turning point values. This may help us better understand the
choice of distillation coefficient (λ = 1) employed in the
experiments of Co2L (Cha et al., 2021).

We begin by clarifying that in the contrastive continual
learning framework, choosing a fixed distillation coefficient
as one for all tasks is favorable for achieving a balance
between learning new tasks and preserving old knowledge.
Specifically, with well-constructed weights {ktj}t−1

j=1 for
task t, the suggested λ value for learning tends to stay close
to one, thereby contributing to a tighter upper bound. To
illustrate this point, we provide an example below.
Example 1. Assume that there are five tasks, each task
with data distribution Dt, t ∈ {1, . . . , 5}, and we have

Figure 2. An illustration of Example 2. The suggesting λ for ρ =
0.95 or ρ = 1.05 stays close to one.

corresponding models {ft}5t=1. We make the assumption
that these models obtain the same value of training loss, i.e.,

Ltrain(f5; f4,D5,D1:4) = · · · = Ltrain(f1;D1).

Weights of tasks are given as follows, i.e., for t ≥ 2,

ktj =

{
2
t , j = 1,
1
t , else.

These weights can be considered well-constructed, as they
are uniform across different tasks, except for the weight
of the first task which has a larger value than the others.
Indeed, this strategy emphasizes the importance of the first
task which is typically regarded as a base task.

Then according to our Theorem 1, the value of appropriate
λ is suggested to be close to one to get a tighter upper bound
on the overall performance for the final model.

Note that in Example 1, we have assumed that the values
of total training losses of different tasks remain the same,
which may not align with realistic settings. To provide a
more realistic illustration, we construct another example
with adaptive ratios between the training losses of different
tasks. Specifically, we allow the value of the training loss
of each task to either increase or decrease with the same
ratio ρ close to one. The weights construction strategy is
correlated to ρ to maintain an alignment with the chang-
ing training loss. Constructed in this way, the following
example illustrates how the appropriate value of λ remains
close to one even when ρ fluctuates around one, and further
achieves a tighter upper bound. This observation inspires us
to consider adjusting the value of λ around one.
Example 2. Assume that there are five tasks, each task
with data distribution Dt, t ∈ {1, . . . , 5}, and we have
corresponding models {ft}5t=1. We assume that the value
of the training loss of each task has a fixed ratio ρ ≈ 1, i.e.,

Ltrain(f5; f4,D5,D1:4) = · · · = ρ4Ltrain(f1;D1).
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Weights of different tasks are given by a biased strategy
related to ρ, i.e, for t ≥ 2,

ktj =

{
1− t−2

ρt , j = 1,
1
ρt , else.

Then according to Theorem 1, the value of appropriate
λ is suggested to get close to one as ρ changes slightly
around one, ensuring a tight upper bound on the overall
performance of the final model. As illustrated in Figure 2,
setting ρ = 0.95 or ρ = 1.05 implies that suggesting λ value
remains close to one. The settings in Example 2 are more
realistic and can closely resemble the Co2L configuration
(Cha et al., 2021). Thus this example can further support
the rationale for choosing λ = 1 in Co2L.

However, in an extreme case of the weights construction,
an undesirable result may occur with a value of λ greater
than one. This insight suggests that data distribution may
play a crucial role in selecting a suitable λ since the weights
{ktj}t−1

j=1 are strongly correlated with the data distribution
of task t. As illustrated in the following example, when
there exists a weight significantly smaller than the other
weights, the value of appropriate λ would deviate from one.
In such a case, persistently using λ = 1 may not achieve the
best theoretical guarantees.
Example 3. Take the same assumption from Example 1,
excluding the weights construction strategy. Weights of
tasks are given as follows, i.e., for t ≥ 3,

ktj =


2.9
t , j = 1,

0.1
t , j = 2,

1
t , else.

For the second task, we set k21 = 1.

Then according to our Theorem 1, the suggesting value of
appropriate λ is close to ten in Example 3. If we choose
λ = 1, the upper bound may get large and fail to provide
the best guarantees. The failure of Example 3 is attributed
to a change in the weights construction strategy, highlight-
ing a substantial relationship between the suitable value of
distillation coefficient λ and data distributions.

5.2. Adaptive selection of distillation coefficients

Inspired by our theoretical analysis, we are curious whether
it is possible to provide better theoretical guarantees by
dynamically adjusting distillation coefficients. Interestingly,
the analysis of Theorem 1 can be adapted to the case of
adaptive distillation coefficient λt, simply by replacing λ
with λt for the coefficient of training loss of task t in the
bounds. Then we can conclude from Theorem 1 for the
new case that, increasing λt for each task t with a threshold
strategy can provide better guarantees.

Note that our target is to get a set of distillation coefficients
{λt}Tt=2 that tighten the upper bound in Theorem 1. There-
fore, we want to adaptively select λt for task t to achieve
this goal. We now propose our theoretical explanations for
the adaptive selection of distillation coefficients. First, we
give some related definitions. Suppose there are T tasks for
continual learning setting. For each task t ≥ 2, we denote
λt as the task-specific distillation coefficient, and define

Ut =

t∑
j=2

αt−j

γj(λt)
Ltrain(fj ; fj−1,Dj ,D1:j−1).

Motivated by Theorem 1 and explanations above, at the end
of task t, if the calculated Ut has a relatively large value,
then a slight increase in λt+1 around one can be benefi-
cial for improving the upper bound. Inspired by this, we
will maintain an extra set of task-specific threshold values
{ut}Tt=2 where ut > 0, and a set of update momentums
{∆t}Tt=1 where ∆t ≥ 0. After training task t, if Ut > ut,
we let λt+1 = λt + ∆t, else, λt+1 = λt. Then the total
training loss of each task t for model ft can be rewritten as

Ltrain(ft; ft−1,Dt,D1:t−1)

= Lcon(ft;Dt) + λt · Ldis(ft; ft−1,D1:t−1).

The following theorem provides a theoretical explanation
for the benefits of the adaptive λt selection protocol above.

Theorem 2. Assume that the training loss of each task is
larger than zero. For each task t ≥ 2, there exists a task-
specific constant ut > 0. If we have

Ut =

t∑
j=2

αt−j

γj(λt)
Ltrain(fj ; fj−1,Dj ,D1:j−1) > ut,

where α, {γj(λt)}tj=2 are defined in Theorem 1, then we
increase λt by ∆t , i.e., λt+1 = λt +∆t, else, λt+1 = λt.
By choosing λt in this way, we get tighter upper bounds.

It can be concluded from Theorem 2 that, increasing λt

by a threshold strategy about the performance of the cur-
rent model can help make the upper bound tighter. More-
over, Theorem 2 can also provide theoretical support for the
choosing strategy of λ in previous examples.

5.3. Contrastive Incremental Learning with Adaptive
distillation (CILA)

Note that we lack access to the construction of weights dur-
ing the real training phase. Consequently, computing Ut

is not available for task t, and estimating {ktj}t−1
j=1 may be

also inaccessible due to the high computing load and low es-
timating accuracy. However, according to our explanations
above, it is suggested that the adaptive λt for each task t
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stays around one with a relatively larger value. Hence, we
can find an easy-to-get and adaptive metric to replace λt.
Before we introduce the chosen metric, we first give some
related definitions. We first define the empirical contrastive
loss (Khosla et al., 2020). For each task t, we denote Dt

as the given batch of N training samples {(xt,i, ct,i)}Ni=1,
and the augmented batch is {(x̃t,i, c̃t,i)}2Ni=1 which is gener-
ated by making two randomly augmented versions of xt,i

as x̃t,2i−1 and x̃t,2i with c̃t,2i−1 = c̃t,2i = ct,i. The aug-
mented samples are mapped to a d-dimensional Euclidean
sphere by a model ft. Denote zt,i = ft(x̃t,i), then the
empirical contrastive loss can be formulated as

L̂con(ft;Dt)

=

2N∑
i=1

−1
|pt,i|

∑
j∈pt,i

log

(
exp(z⊤

t,izt,j/τ)∑
k ̸=i exp(z

⊤
t,izt,k/τ)

)
,

where pt,i = {j ∈ {1, . . . , 2N}|j ̸= i, ct,j = ct,i} and
τ > 0 is the temperature hyperparameter. Then we define
the empirical distillation loss (Cha et al., 2021). We first
define a similarity vector

p(ft, τ ; x̃i) = softmax(z⊤
t,izt,1/τ, . . . , z

⊤
t,izt,i−1/τ,

z⊤
t,izt,i+1/τ, . . .z

⊤
t,izt,2N/τ).

Then the empirical distillation loss is formulated as

L̂dis(ft; ft−1, Dt)

=

2N∑
i=1

−p(ft−1, τ
∗; x̃t,i) · log p(ft, τ ; x̃t,i).

Here, both τ∗ and τ will remain fixed for all tasks. Actually,
when constructing the experiment, we found that the ratio

t−1∑
j=2

L̂dis(fj ; fj−1, Dj)/

t−1∑
j=2

L̂con(fj ;Dj),

is stable and stays close to one as task index t ≥ 3 varies.
This ratio is easy to get during the training procedure and is
aligned with the idea that the distillation coefficient is sug-
gested to stay close to one and varies according to the data
distribution which depends on the task index. Therefore,
inspired by Example 2 and 3, an applicable method is to use

λt = max(1, κ

t−1∑
j=2

L̂dis(fj ; fj−1, Dj)/

t−1∑
j=2

L̂con(fj ;Dj)),

for task t ≥ 3, where κ is a balancing distillation coefficient,
and for the second task, we use λ2 = 1. More details can
be found in Algorithm 1. In the following section, we will
conduct several experiments.

Algorithm 1 CILA: Contrastive Incremental Learning with
Adaptive distillation
Input: Buffer size B, a sequence of training sets {Dt}Tt=1,

base distillation coefficient λ0, balancing distillation
coefficient κ.

1: Initialize model f0 and set bufferM← ϕ;
2: for task t = 1, · · · , T do
3: Construct dataset D ← Dt ∪M;
4: Initialize model ft ← ft−1;
5: Compute L by L← L̂con(ft;D);
6: if t > 1 then
7: Adaptively update λt by

λt ← max(λ0, κ ·
∑t−1

j=2 L̂dis(fj ;fj−1,Dj)∑t−1
j=2 L̂con(fj ;Dj)

);

8: Update L by
L← L+ λt · L̂dis(ft; ft−1, D);

9: end if
10: Update ft by SGD;
11: Collect buffer samples until |M| = B;
12: end for

6. Experiment
Learning settings and datasets. We conducted experi-
ments on three basic continual learning scenarios, Class-IL,
Task-IL, and Domain-IL (van de Ven & Tolias, 2019). Each
scenario was evaluated using different datasets. Specifically,
for Class-IL and Task-IL, we utilized Seq-CIFAR-10 and
Seq-Tiny-ImageNet datasets. Seq-CIFAR-10 is a modified
version of the CIFAR-10 (Krizhevsky, 2009) dataset, where
it is divided into 5 distinct subsets, each comprising two
classes. Similarly, Seq-Tiny-ImageNet is an adapted version
of the Tiny-ImageNet (Le & Yang, 2015) dataset, where
the 200 classes are split into 10 separate sets, each contain-
ing 20 classes. The order of splits in Seq-CIFAR-10 and
Seq-Tiny-ImageNet remains consistent across multiple runs.

For Domain-IL, we employed R-MINST, which is a variant
of the MNIST (Lecun et al., 1998) dataset. In R-MINST, the
original images are randomly rotated by an angle between
0 and π. R-MINST consists of 20 tasks, with each task
corresponding to a randomly selected rotation angle. During
the training process, samples from different tasks with the
same digital class are treated as distinct classes.

In summary, our experiments covered Class-IL, Task-IL,
and Domain-IL scenarios, utilizing Seq-CIFAR-10, Seq-
Tiny-ImageNet, and R-MINST datasets, respectively.

Baselines. We compare our contrastive continual learning
algorithm with replay-based continual learning baselines,
including ER (Riemer et al., 2019), GEM (Lopez-Paz &
Ranzato, 2017), A-GEM (Chaudhry et al., 2018), iCaRL
(Rebuffi et al., 2017), FDR (Benjamin et al., 2019), GSS
(Aljundi et al., 2019), HAL (Chaudhry et al., 2019), DER
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Table 1. Classification accuracies for Seq-CIFAR-10, Seq-Tiny-ImageNet, and R-MNIST on replay-based baselines and our algorithm.
All results are averaged over ten independent trials. The best performance is marked as bold.

Dataset Seq-CIFAR-10 Seq-Tiny-ImageNet R-MNIST

Scenario Class-IL Task-IL Class-IL Task-IL Domain-IL

Buffer 200 500 200 500 200 500 200 500 200 500

ER 44.79±1.86 57.74±0.27 91.19±0.94 93.61±0.27 8.49±0.16 9.99±0.29 38.17±2.00 48.64±0.46 93.53±1.15 94.89±0.95

GEM 25.54±0.76 26.20±1.26 90.44±0.94 92.16±0.64 – – – – 89.86±1.23 92.55±0.85

A-GEM 20.04±0.34 22.67±0.57 83.88±1.49 89.48±1.45 8.07±0.08 8.06±0.04 22.77±0.03 25.33±0.49 89.03±2.76 89.04±7.01

iCaRL 49.02±3.20 47.55±3.95 88.99±2.13 88.22±2.62 7.53±0.79 9.38±1.53 28.19±1.47 31.55±3.27 – –
FDR 30.91±2.74 28.71±3.23 91.01±0.68 93.29±0.59 8.70±0.19 10.54±0.21 40.36±0.68 49.88±0.71 93.71±1.51 95.48±0.68

GSS 39.07±5.59 49.73±4.78 88.80±2.89 91.02±1.57 – – – – 87.10±7.23 89.38±3.12

HAL 32.36±2.70 41.79±4.46 82.51±3.20 84.54±2.36 – – – – 89.40±2.50 92.35±0.81

DER 61.93±1.79 70.51±1.67 91.40±0.92 93.40±0.39 11.87±0.78 17.75±1.14 40.22±0.67 51.78±0.88 96.43±0.59 97.57±1.47

DER++ 64.88±1.17 72.70±1.36 91.92±0.60 93.88±0.50 10.96±1.17 19.38±1.41 40.87±1.16 51.91±0.68 95.98±1.06 97.54±0.43

Co2L 65.57±1.37 74.26±0.77 93.43±0.78 95.90±0.26 13.88±0.40 20.12±0.42 42.37±0.74 53.04±0.69 97.90±1.92 98.65±0.31

CILA (Ours) 67.06±1.59 76.03±0.79 94.29±0.24 96.40±0.21 14.55±0.39 20.64±0.59 44.15±0.70 54.13±0.72 98.36±0.45 98.76±0.22

(Buzzega et al., 2020), DER++ (Buzzega et al., 2020), and
Co2L (Cha et al., 2021).

Details of training. Following the configuration of previ-
ous studies, we trained ResNet-18 on the Seq-CIFAR-10 and
Tiny-ImageNet datasets. We implemented a simple network
with convolution layers for the R-MNIST dataset. In our
training process, we employed buffers of sizes 200 and 500.
The base distillation coefficient λ0 is set as one following
the default configuration of Co2L (Cha et al., 2021).

Evaluation. Like Co2L, CILA follows the idea of “first
pre-training, then linear probing”. Thus, unlike the joint
representation-classifier training approaches, an additional
classifier needs to be trained on top of the frozen representa-
tions. To ensure a fair comparison, the classifier is trained
using only the samples from the last task and buffered sam-
ples, leveraging the representations learned by CILA. To
mitigate the challenges posed by class imbalance, we em-
ploy a class-balanced sampling strategy during the training
of a linear classifier. The strategy involves the following
steps. We first uniformly select a class from the available
set of classes. This ensures that each class has an equal
chance of being chosen. Once a class is selected, we fur-
ther uniformly sample an instance from that specific class.
This guarantees that all instances within the chosen class
are equal to be selected.

For all experiments, a linear classifier is trained for a fixed
number of epochs and we adopt 100 epochs to align with
prior work. After training, the classification test accuracy is
reported based on the predictions made by this classifier.

Main results. In Table 1, our method outperforms all base-
lines in different scenarios, datasets, and buffer sizes, es-
pecially compared with Co2L. This result verifies the su-

Table 2. Accuracies on Seq-CIFAR-10 with 200 buffer samples.

Adaptive Method Class-IL Task-IL

Co2L 65.57 93.43
Pure-adapted 66.52 94.27
Min-adapted 66.36 94.21
Max-adapted 67.06 94.29

periority of our adaptive method and supports our theories
strongly. Our algorithm successfully reaches a balance be-
tween learning plasticity and memory stability in continual
learning. Under appropriate adaptation of the distillation
coefficients, we also mitigate the catastrophic forgetting
problem. Besides, the power of adaptation also impacts the
performance of the learned continual learner, we will talk
about it in the following ablation study.

7. Ablation Studies
We conduct ablation experiments to verify the effectiveness
of adaptive distillation coefficients. We consider two setups,
Class-IL and Task-IL, and perform experiments on Seq-
CIFAR-10 with three variants of adapted λt for each task t.
Variants include

(1) pure-adapted

λt,pure = κ

t−1∑
j=2

L̂dis(fj , fj−1;Dj)/

t−1∑
j=2

L̂con(fj ;Dj),

(2) min-adapted

λt,min = min(1, λt,pure),
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and (3) max-adapted

λt,max = max(1, λt,pure),

where κ is a balancing distillation coefficient. For our abla-
tion experiments, we train the linear classifier on top of the
representations with 200 buffer samples.

As shown in Table 2, methods with adaptive distillation
coefficients show superior performance compared with the
method with a fixed distillation coefficient with about 1%
improvement on both settings. As the adaptive λt increases
with moderate limitations, the performance of the model
boosts with an obvious improvement on Class-IL. This ver-
ifies our assumption based on the theoretical results that
continual learners with larger adaptive distillation coeffi-
cients show greater performance.

8. Conclusion
Contrastive learning has demonstrated remarkable perfor-
mance in the field of continual learning, although there
remains a lack of theoretical explanations. In this study,
we aim to fill this gap by introducing theoretical perfor-
mance guarantees for the final model in contrastive continual
learning. Drawing inspirations from a detailed theoretical
analysis, we propose the utilization of adaptive distillation
coefficients for the distillation training loss in contrastive
continual learning. Through comprehensive experiments
conducted in diverse settings for continual learning, our
approach surpasses baseline methods in terms of perfor-
mance. We anticipate that our work can establish a robust
foundation for continual learning from a representation per-
spective, and potentially spark further theoretical insights
into the realm of contrastive continual learning.
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Appendix

A. Proof of Lemma 1
We recall Lemma 1.

Lemma 1. When t ≥ 2, for any data distribution D, the contrastive losses of current model ft and previous model ft−1 can
be connected via the distillation loss, i.e.,

Lcon(ft;D) ≤ αLcon(ft−1;D) + Ldis(ft; ft−1,D) + β,

Lcon(ft;D) ≥ αLcon(ft−1;D) + Ldis(ft; ft−1,D) + β′,

where α = 2e2

1+e2 , β = 2− α+ α log α
2 , and β′ = −α log(1 + e2)− α.

Proof. For model f , denote the data pair x = (x, x+, x−) to simplify the proof, we first define v(f ;x) = f(x)⊤(f(x+)−
f(x−)), and

q(f ;x) =
exp(v(f ;x))

1 + exp(v(f ;x))
.

For models ft and ft−1, the function ℓ(v) = log(1 + exp(−v)), and p(f ;x) = softmax(f(x)⊤f(x+), f(x)⊤f(x−)), we
have the following equation

−p(ft−1;x) · log p(ft;x)
= −q(ft−1;x) log(q(ft;x))− (1− q(ft−1;x)) log(1− q(ft;x))

= q(ft−1;x) log(1 + exp(−v(ft;x))) + (1− q(ft−1;x)) log(1 + exp(v(ft;x)))

= q(ft−1;x) log(1 + exp(−v(ft;x))) + (1− q(ft−1;x)) log(1 + exp(−v(ft;x))) + (1− q(ft−1;x)) log(exp(v(ft;x)))

= ℓ(v(ft;x)) + (1− q(ft−1;x))v(ft;x).

Then for any data distribution D, we have

Ldis(ft; ft−1,D)
= E

c+∼µ
c−∼µ

E
x,x+∼Dc+

x−∼Dc−

−p(ft−1;x) · log p(ft;x)

= E
c+∼µ
c−∼µ

E
x,x+∼Dc+

x−∼Dc−

ℓ(v(ft;x)) + E
c+∼µ
c−∼µ

E
x,x+∼Dc+

x−∼Dc−

(1− q(ft−1;x))v(ft;x)

= Lcon(ft;D) + E
c+∼µ
c−∼µ

E
x,x+∼Dc+

x−∼Dc−

(1− q(ft−1;x))v(ft;x).

Note that ft, ft−1 are normalized, i.e., −2 ≤ v(ft−1;x) ≤ 2, and −2 ≤ v(ft;x) ≤ 2. We first prove the upper bound. By
using the following inequality

α log(1 + e−h) + β − 2

1 + eh
≥ 0,

where α = 2e2

1+e2 , β = 2− α+ α log α
2 , −2 ≤ h ≤ 2, and using v(ft−1;x) to replace h, we have

(1− q(ft−1;x))v(ft;x) ≥ −2(1− q(ft−1;x))

= − 2

1 + exp(v(ft−1;x))

≥ −α log(1 + exp(−v(ft−1;x)))− β

= −αℓ(v(ft−1;x))− β.
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Using the result above, we have

Ldis(ft; ft−1,D) = Lcon(ft;D) + E
c+∼µ
c−∼µ

E
x,x+∼Dc+

x−∼Dc−

(1− q(ft−1;x))v(ft;x)

≥ Lcon(ft;D) + E
c+∼µ
c−∼µ

E
x,x+∼Dc+

x−∼Dc−

[−αℓ(v(ft−1;x))− β]

= Lcon(ft;D)− αLcon(ft−1;D)− β.

which means

Lcon(ft;D) ≤ αLcon(ft−1;D) + Ldis(ft; ft−1,D) + β.

This finishes the upper bound part. Then let us consider the lower bound. We use the inequality

α log(1 + e−h) + β′ +
2

1 + eh
≤ 0,

where α = 2e2

1+e2 , β′ = −α log(1 + e2)− α, −2 ≤ h ≤ 2, and using v(ft−1;x) to replace h, then we have

(1− q(ft−1;x))v(ft;x) ≤ 2(1− q(ft−1;x))

=
2

1 + exp(v(ft−1;x))

≤ −α log(1 + exp(−v(ft−1;x))− β′

= −αℓ(v(ft−1;x))− β′.

Using the result above, we have

Ldis(ft; ft−1,D) = Lcon(ft;D) + E
c+∼µ
c−∼µ

E
x,x+∼Dc+

x−∼Dc−

(1− q(ft−1;x))v(ft;x)

≤ Lcon(ft;D) + E
c+∼µ
c−∼µ

E
x,x+∼Dc+

x−∼Dc−

[−αℓ(v(ft−1;x))− β′]

= Lcon(ft;D)− αLcon(ft−1;D)− β′.

It can be translated into

Lcon(ft;D) ≥ αLcon(ft−1;D) + Ldis(ft; ft−1,D) + β′.

The proof has finished.

B. Proof of Theorem 1
We recall Theorem 1.

Theorem 1. For the contrastive continual learning involving T ≥ 2 tasks, the test loss of the final model fT can be bounded
via a linear combination of the training losses associated with each task. More specifically, the following two bounds are
applicable.

(1) Upper bound:

Ltest(fT ;D1, . . . ,DT ) ≤ αT−1Ltrain(f1;D1)

+

T∑
t=2

αT−t

γt(λ)
Ltrain(ft; ft−1,Dt,D1:t−1) + η,

13
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(2) Lower bound:

Ltest(fT ;D1, . . . ,DT ) ≥ αT−1Ltrain(f1;D1)

+

T∑
t=2

αT−t

γ′
t(λ)

Ltrain(ft; ft−1,Dt,D1:t−1) + η′,

where



α = 2e2

1+e2 ,

γt(λ) = min
(
{ 1t } ∪ {λktj}

t−1
j=1

)
,

γ′
t(λ) = max

(
{1} ∪ {λktj}t−1

j=1

)
,

η = (2− α+ α log α
2 )

T−1−Tα+(α)T

(1−α)2

+
∑T

t=2 α
T−t(1− 1

γt(λ)
)minfLcon(f ;Dt),

η′ = −(α log(1 + e2) + α)T−1−Tα+(α)T

(1−α)2 .

Proof. We first proof the upper bound. For models ft and ft−1, we have

Ldis(ft; ft−1,D1:t−1) = E
c+∼µ1:t−1

c−∼µ1:t−1

E
x,x+∼Dc+

x−∼Dc−

[−p(ft−1;x) · log p(ft;x)]

=

t−1∑
j=1

ktj E
c+∼µj

c−∼µj

E
x,x+∼Dc+

x−∼Dc−

[−p(ft−1;x) · log p(ft;x)]

=

t−1∑
j=1

ktjLdis(ft; ft−1,Dj).

Then we can write the training loss as

Ltrain(ft; ft−1,Dt,D1:t−1) = Lcon(ft;Dt) + λLdis(ft; ft−1,D1:t−1)

= Lcon(ft;Dt) + λ

t−1∑
j=1

ktjLdis(ft; ft−1,Dj).

for task t ≥ 2, and Ltrain(f1;D1) = Lcon(f1;D1). According to the proof of Lemma 1, for models ft and ft−1, data
distribution Dj (j ≤ t), we have

Lcon(ft,Dj) ≤ αLcon(ft−1,Dj) + Ldis(ft; ft−1,Dj) + β.

14
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Denote γt(λ) = min
(
{ 1t } ∪ {λktj}

t−1
j=1

)
for task t ≥ 2. Then we have

Ltest(fT ;D1:T )

= Lcon(fT ;DT ) +

T−1∑
t=1

Lcon(fT ,Dt)

≤ Lcon(fT ;DT ) +

T−1∑
t=1

[Ldis(fT ; fT−1,Dt) + αLcon(fT−1;Dt) + β]

≤ (
1

γT (λ)
− 1

γT (λ)
+ 1)Lcon(fT ;DT ) +

λ

γT (λ)

T−1∑
t=1

kTtLdis(fT ; fT−1,Dt) +

T−1∑
t=1

[αLcon(fT−1;Dt) + β]

≤ 1

γT (λ)
Ltrain(fT ; fT−1,DT ,D1:T−1) + (1− 1

γT (λ)
)minfLcon(f ;DT )

+ (T − 1)β + αLtest(fT−1;D1:T−1)

...

≤ αT−1Ltrain(f1;D1) +

T∑
t=2

αT−t

γt(λ)
Ltrain(ft; ft−1,Dt,D1:t−1) + η.

where α = 2e2

1+e2 , η = (2− α+ α log α
2 )

T−1−Tα+(α)T

(1−α)2 +
∑T

t=2 α
T−t(1− 1

γt(λ)
)minfLcon(f ;Dt).

Let us prove the lower bound. According to the proof of Lemma 1, for models ft and ft−1, and data distribution Dj (j ≤ t),
we have

Lcon(ft,Dj) ≥ αLcon(ft−1,Dj) + Ldis(ft; ft−1,Dj) + β′.

Denote γ′
t(λ) = max

(
{1} ∪ {λktj}t−1

j=1

)
for task t ≥ 2. The proof is similar to that of the upper bound.

Ltest(fT ;D1:T )

= Lcon(fT ;DT ) +

T−1∑
t=1

Lcon(fT ,Dt)

≥ Lcon(fT ;DT ) +

T−1∑
t=1

[Ldis(fT ; fT−1,Dt) + αLcon(fT−1;Dt) + β′]

≥ 1

γ′
t(λ)

[Lcon(fT ;DT ) + λ

T−1∑
t=1

kTtLdis(fT ; fT−1,Dt)] +

T−1∑
t=1

[αLcon(fT−1;Dt) + β′]

=
1

γ′
t(λ)

Ltrain(fT ; fT−1,DT ,D1:T−1) + α

T−1∑
t=1

Lcon(fT−1;Dt) + (T − 1)β′

=
1

γ′
t(λ)

Ltrain(fT ; fT−1,DT ,D1:T−1) + αLtest(fT−1;D1:T−1) + (T − 1)β′

≥ αT−1Ltrain(f1;D1) +

T∑
t=2

αT−t

γ′
t(λ)

Ltrain(ft; ft−1,Dt,D1:t−1) + η′.

where α = 2e2

1+e2 , η′ = −(α log(1 + e2) + α)T−1−Tα+(α)T

(1−α)2 .

C. Proof of Theorem 2
We recall Theorem 2.

15
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Theorem 2. Assume that the training loss of each task is larger than zero. For each task t ≥ 2, there exists a task-specific
constant ut > 0. If we have

Ut =

t∑
j=2

αt−j

γj(λt)
Ltrain(fj ; fj−1,Dj ,D1:j−1) > ut,

where α, {γj(λt)}tj=2 are defined in Theorem 1, then we increase λt by ∆t , i.e., λt+1 = λt +∆t, else, λt+1 = λt. By
choosing λt in this way, we get tighter upper bounds.

Proof. Note that Ut > 0, thus ut exists. If λt increases by ∆ ≥ 0, then λt+1 ≥ λt and γj(λt+1) ≥ γj(λt). We have

U ′
t+1 =

t+1∑
j=2

αt+1−j

γj(λt+1)
Ltrain(fj ; fj−1,Dj) ≤ Ut+1 =

t+1∑
j=2

αt+1−j

γj(λt)
Ltrain(fj ; fj−1,Dj).

Thus the upper bound becomes tighter.

D. The Case of Multiple Negative Examples for Lemma 1
Following our definitions in the paper, the contrastive loss for the case of k(k ≥ 1) negative samples can be formulated as

Lcon(f ;Dt) = E
c+∼µt

c−i ∼µt

E
x,x+∼Dc+

x−
i ∼D

c
−
i

ℓ [{f(x)⊤(f(x+)−f(x−
i ))}],

where function ℓ(v) is defined as ℓ(v) = log(1 +
∑k

i=1 exp(−vi)) for v ∈ Rk and embeddings are conventionally
normalized, i.e., ∥f∥ = 1. The distillation loss for the case of k negative samples can be formulated as

Ldis(ft; ft−1,D1:t−1) =

E
c+∼µ1:t−1

c−i ∼µ1:t−1

E
x,x+∼Dc+

x−
i ∼D

c
−
i

[−p(ft−1;x, x
+, x−

1 , . . . , x−
k ) · logp(ft;x, x+, x−

1 , . . . , x−
k )],

where µ1:t−1 represents the class distribution of D1:t−1 and

p(f ;x, x+, x−
1 , . . . , x

−
k ) = softmax(f(x)⊤f(x+), f(x)⊤f(x−

1 ), . . . , f(x)
⊤f(x−

k )).

Then we provide the extended version of Lemma 1 and its proof.

Lemma 2. When t ≥ 2 and the number of negative samples k ≥ 1, for any data distribution D, the contrastive losses of
current model ft and previous model ft−1 can be connected via the distillation loss, i.e.,

Lcon(ft;D) ≤ αLcon(ft−1;D) + Ldis(ft; ft−1,D) + β,

Lcon(ft;D) ≥ αLcon(ft−1;D) + Ldis(ft; ft−1,D) + β′,

where α = 2e2

k+e2 , β = 2− α+ α log α
2 , and β′ = −α log(1 + ke2)− 2ke2

1+ke2 .

Proof. For model f , denote the data pair x = (x, x+, x−
1 , . . . , x

−
k ) to simplify the proof, we first define vi(f ;x) =

f(x)⊤(f(x+)− f(x−
i )), and

qi(f ;x) =
exp(−vi(f ;x))

1 +
∑k

i=1 exp(−vi(f ;x))
,

q(f ;x) =
1

1 +
∑k

i=1 exp(−vi(f ;x))
,

16
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where q(f ;x) +
∑k

i=1 qi(f ;x) = 1. For models ft and ft−1, the function ℓ(v) = log(1 +
∑k

i=1 exp(−vi)) for v ∈ Rk ,
and

p(f ;x) = softmax(f(x)⊤f(x+), f(x)⊤f(x−
1 ), . . . , f(x)

⊤f(x−
k )),

we have the following equation

−p(ft−1;x) · log p(ft;x)

= −q(ft−1;x) log(q(ft;x))−
k∑

i=1

qi(ft−1;x) log(qi(ft;x))

= q(ft−1;x) log(1 +

k∑
i=1

exp(−vi(ft;x)))−
k∑

i=1

qi(ft−1;x)[−vi(ft;x)− log(1 +

k∑
i=1

exp(−vi(ft;x)))]

= q(ft−1;x) log(1 +

k∑
i=1

exp(−vi(ft;x))) +
k∑

i=1

qi(ft−1;x)[vi(ft;x) + log(1 +

k∑
i=1

exp(−vi(ft;x)))]

= log(1 +

k∑
i=1

exp(−vi(ft;x))) +
k∑

i=1

qi(ft−1;x)vi(ft;x)

= ℓ(v(ft;x)) +

k∑
i=1

qi(ft−1;x)vi(ft;x).

Then for any data distribution D, we have

Ldis(ft; ft−1,D)
= E

c+∼µ

c−i ∼µ

E
x,x+∼Dc+

x−
i ∼D

c
−
i

−p(ft−1;x) · log p(ft;x)

= E
c+∼µ

c−i ∼µ

E
x,x+∼Dc+

x−
i ∼D

c
−
i

ℓ(v(ft;x)) + E
c+∼µ

c−i ∼µ

E
x,x+∼Dc+

x−
i ∼D

c
−
i

k∑
i=1

qi(ft−1;x)vi(ft;x)

= Lcon(ft;D) + E
c+∼µ

c−i ∼µ

E
x,x+∼Dc+

x−
i ∼D

c
−
i

k∑
i=1

qi(ft−1;x)vi(ft;x).

Note that ft, ft−1 are normalized, i.e., −2 ≤ vi(ft−1;x) ≤ 2, and −2 ≤ vi(ft;x) ≤ 2. We first prove the upper bound. By
using the following inequality

α log h+ β ≥ 2(1− 1

h
),

where α = 2e2

k+e2 , β = 2− α+ α log α
2 , 1 + ke−2 ≤ h ≤ 1 + ke2, and using 1 +

∑k
i=1 exp(−vi(ft−1;x)) to replace h in

the inequality above, we have

k∑
i=1

qi(ft−1;x)vi(ft;x) ≥ −2(1− q(ft−1;x))

= −2(1− 1

1 +
∑k

i=1 exp(−vi(ft−1;x))
)

≥ −α log(1 +

k∑
i=1

exp(−vi(ft−1;x)))− β

= −αℓ(v(ft−1;x))− β.

17
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Using the results above, we have

Ldis(ft; ft−1,D) = Lcon(ft;D) + E
c+∼µ

c−i ∼µ

E
x,x+∼Dc+

x−
i ∼D

c
−
i

k∑
i=1

qi(ft−1;x)vi(ft;x)

≥ Lcon(ft;D) + E
c+∼µ

c−i ∼µ

E
x,x+∼Dc+

x−
i ∼D

c
−
i

[−αℓ(v(ft−1;x))− β]

= Lcon(ft;D)− αLcon(ft−1;D)− β.

which means

Lcon(ft;D) ≤ αLcon(ft−1;D) + Ldis(ft; ft−1,D) + β.

This finishes the upper bound part. Then let us consider the lower bound. We use the inequality

−α log h− β′ ≥ 2(1− 1

h
),

where α = 2e2

k+e2 , β′ = −α log(1 + ke2)− 2ke2

1+ke2 , 1 + ke−2 ≤ h ≤ 1 + ke2, and using 1 +
∑k

i=1 exp(−vi(ft−1;x)) to
replace h, then we have

k∑
i=1

qi(ft−1;x)vi(ft;x) ≤ 2(1− q(ft−1;x))

= 2(1− 1

1 +
∑k

i=1 exp(−vi(ft−1;x))
)

≤ −α log(1 +

k∑
i=1

exp(−vi(ft−1;x))− β′

= −αℓ(v(ft−1;x))− β′.

Using the results above, we have

Ldis(ft; ft−1,D) = Lcon(ft;D) + E
c+∼µ

c−i ∼µ

E
x,x+∼Dc+

x−
i ∼D

c
−
i

k∑
i=1

qi(ft−1;x)vi(ft;x)

≤ Lcon(ft;D) + E
c+∼µ

c−i ∼µ

E
x,x+∼Dc+

x−
i ∼D

c
−
i

[−αℓ(v(ft−1;x))− β′]

= Lcon(ft;D)− αLcon(ft−1;D)− β′.

It can be translated into

Lcon(ft;D) ≥ αLcon(ft−1;D) + Ldis(ft; ft−1,D) + β′.

The proof has finished.

E. The Case of Multiple Negative Examples for Theorem 1
We provide the extended version of Theorem 1 and its proof.

Theorem 3. For the contrastive continual learning involving T ≥ 2 tasks where each task involves k negative samples, the
test loss of the final model fT can be bounded via a linear combination of the training losses associated with each task.
More specifically, the following two bounds are applicable.
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(1) Upper bound:

Ltest(fT ;D1, . . . ,DT ) ≤ αT−1Ltrain(f1;D1)

+

T∑
t=2

αT−t

γt(λ)
Ltrain(ft; ft−1,Dt,D1:t−1) + η,

(2) Lower bound:

Ltest(fT ;D1, . . . ,DT ) ≥ αT−1Ltrain(f1;D1)

+

T∑
t=2

αT−t

γ′
t(λ)

Ltrain(ft; ft−1,Dt,D1:t−1) + η′,

where 

α = 2e2

k+e2 ,

γt(λ) = min
(
{ 1t } ∪ {λktj}

t−1
j=1

)
,

γ′
t(λ) = max

(
{1} ∪ {λktj}t−1

j=1

)
,

η = (2− α+ α log α
2 )

T−1−Tα+(α)T

(1−α)2

+
∑T

t=2 α
T−t(1− 1

γt(λ)
)minfLcon(f ;Dt),

η′ = −(α log(1 + ke2) + 2ke2

1+ke2 )
T−1−Tα+(α)T

(1−α)2 .

Proof. We first proof the upper bound. For models ft and ft−1, we have

Ldis(ft; ft−1,D1:t−1) = E
c+∼µ1:t−1

c−∼µ1:t−1

E
x,x+∼Dc+

x−∼Dc−

[−p(ft−1;x) · log p(ft;x)]

=

t−1∑
j=1

ktj E
c+∼µj

c−∼µj

E
x,x+∼Dc+

x−∼Dc−

[−p(ft−1;x) · log p(ft;x)]

=

t−1∑
j=1

ktjLdis(ft; ft−1,Dj).

Then we can write the training loss as

Ltrain(ft; ft−1,Dt,D1:t−1) = Lcon(ft;Dt) + λLdis(ft; ft−1,D1:t−1)

= Lcon(ft;Dt) + λ

t−1∑
j=1

ktjLdis(ft; ft−1,Dj).

for task t ≥ 2, and Ltrain(f1;D1) = Lcon(f1;D1). According to the proof of Lemma 1, for models ft and ft−1, data
distribution Dj (j ≤ t), we have

Lcon(ft,Dj) ≤ αLcon(ft−1,Dj) + Ldis(ft; ft−1,Dj) + β.
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Denote γt(λ) = min
(
{ 1t } ∪ {λktj}

t−1
j=1

)
for task t ≥ 2. According to the equations above, we have

Ltest(fT ;D1:T )

= Lcon(fT ;DT ) +

T−1∑
t=1

Lcon(fT ,Dt)

≤ Lcon(fT ;DT ) +

T−1∑
t=1

[Ldis(fT ; fT−1,Dt) + αLcon(fT−1;Dt) + β]

≤ (
1

γT (λ)
− 1

γT (λ)
+ 1)Lcon(fT ;DT ) +

λ

γT (λ)

T−1∑
t=1

kTtLdis(fT ; fT−1,Dt) +

T−1∑
t=1

[αLcon(fT−1;Dt) + β]

≤ 1

γT (λ)
Ltrain(fT ; fT−1,DT ,D1:T−1) + (1− 1

γT (λ)
)minfLcon(f ;DT )

+ (T − 1)β + αLtest(fT−1;D1:T−1)

...

≤ αT−1Ltrain(f1;D1) +

T∑
t=2

αT−t

γt(λ)
Ltrain(ft; ft−1,Dt,D1:t−1) + η.

where α = 2e2

k+e2 , η = (2− α+ α log α
2 )

T−1−Tα+(α)T

(1−α)2 +
∑T

t=2 α
T−t(1− 1

γt(λ)
)minfLcon(f ;Dt).

Let us prove the lower bound. According to the proof of Lemma 1, for models ft and ft−1, and data distribution Dj (j ≤ t),
we have

Lcon(ft,Dj) ≥ αLcon(ft−1,Dj) + Ldis(ft; ft−1,Dj) + β′.

Denote γ′
t(λ) = max

(
{1} ∪ {λktj}t−1

j=1

)
for task t ≥ 2. The proof is similar to that of the upper bound. Similarly, we have

Ltest(fT ;D1:T )

= Lcon(fT ;DT ) +

T−1∑
t=1

Lcon(fT ,Dt)

≥ Lcon(fT ;DT ) +

T−1∑
t=1

[Ldis(fT ; fT−1,Dt) + αLcon(fT−1;Dt) + β′]

≥ 1

γ′
t(λ)

[Lcon(fT ;DT ) + λ

T−1∑
t=1

kTtLdis(fT ; fT−1,Dt)] +

T−1∑
t=1

[αLcon(fT−1;Dt) + β′]

=
1

γ′
t(λ)

Ltrain(fT ; fT−1,DT ,D1:T−1) + α

T−1∑
t=1

Lcon(fT−1;Dt) + (T − 1)β′

=
1

γ′
t(λ)

Ltrain(fT ; fT−1,DT ,D1:T−1) + αLtest(fT−1;D1:T−1) + (T − 1)β′

≥ αT−1Ltrain(f1;D1) +

T∑
t=2

αT−t

γ′
t(λ)

Ltrain(ft; ft−1,Dt,D1:t−1) + η′.

where α = 2e2

k+e2 , η′ = −(α log(1 + ke2) + 2ke2

1+ke2 )
T−1−Tα+(α)T

(1−α)2 .
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