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ABSTRACT

Vision-language models (VLMs) are known to be susceptible to distribution shifts
between pre-training data and test data, and test-time adaptation (TTA) methods
for VLMs have been proposed to mitigate the detrimental impact of the distribu-
tion shifts. However, the existing methods solely rely on the internal knowledge
encoded within the model parameters, which are constrained to pre-training data.
To complement the limitation of the internal knowledge, we propose Retrieval-
Augmented-TTA (RA-TTA) for adapting VLMs to test distribution using external
knowledge obtained from a web-scale image database. By fully exploiting the bi-
modality of VLMs, RA-TTA adaptively retrieves proper external images for each
test image to refine VLMs’ predictions using the retrieved external images, where
fine-grained text descriptions are leveraged to extend the granularity of external
knowledge. Extensive experiments on 17 datasets demonstrate that the proposed
RA-TTA outperforms the state-of-the-art methods by 3.01–9.63% on average.

1 INTRODUCTION

In recent years, vision-language models (VLMs) pre-trained on large corpora of image-text pairs
have garnered significant attention (Radford et al., 2021; Jia et al., 2021; Li et al., 2022; Sun et al.,
2023; Zhang et al., 2024a). When transferring the pre-trained knowledge of VLMs at test time,
distribution shifts between pre-training data and test data deteriorate the zero-shot transferability of
VLMs (Bommasani et al., 2021; Nguyen et al., 2022; Fang et al., 2022; Santurkar et al., 2023). Thus,
a number of test time adaptation (TTA) methods for VLMs (Shu et al., 2022; Feng et al., 2023; Ma
et al., 2023; Zhao et al., 2024b; Karmanov et al., 2024; Zhang et al., 2024b) have been proposed to
mitigate the detrimental impact of the distribution shifts. For adapting to an unlabeled test image, the
existing methods typically rely on the outputs of VLMs on the test image, which are determined by
the pre-trained knowledge encoded within the model parameters. However, this internal knowledge
learned from the pre-training data may be insufficient to address unseen test data potentially deviated
by distribution shifts (Agarwal et al., 2021; Menon et al., 2024; Parashar et al., 2024).

Due to the difficulty of updating pre-trained models frequently, retrieval-augmented generation
(RAG) (Gao et al., 2023; Zhao et al., 2024a; Fan et al., 2024) is proposed in language domains,
and it incorporates external knowledge from a document database into a query to complement new
or focused knowledge absent in the pre-trained knowledge. Thus, in accordance with the philosophy
of using external knowledge, we propose a retrieval-augmented approach for TTA with VLMs and
refer to this approach as retrieval-augmented-TTA (RA-TTA). Figure 1(a) shows the overall proce-
dure of RA-TTA: (i) a VLM is requested to provide an answer in response to a test image; (ii) the
test image is queried against a web-scale image database to retrieve relevant and useful images for
the purpose of TTA; (iii) the final answer is adjusted on the fly using both the answer from the VLM
and the retrieved external images. The image database usually contains only the images without
labels and captions (Caron et al., 2019; Tian et al., 2021; Goyal et al., 2021).

It is evident that the external images offer insights into a test image only when properly retrieved.
For example, let’s consider a task that recognizes a vehicle type (e.g., CX-9) from an image. If a
test image depicts the front and side of a vehicle while obscuring the rear, the external images with
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(a) Overview of the proposed RA-TTA. (b) Overview of the description-based retrieval.

Figure 1: Key idea of RA-TTA: (a) shows the overall procedure of RA-TTA; (b) elaborates on the
description-based retrieval approach, where a VLM embeds a test image into the embedding space
and identifies its pivotal features (text descriptions), e.g., boomerang-shaped headlight of CX-9, and
the neighboring images to the identified descriptions in the embedding space are retrieved.

pivotal features such as the headlight must be helpful, whereas those with non-visible features such
as the taillight or irrelevant features such as a ski-box would not aid in the recognition. This objective
aligns with RAG for retrieving documents that contain critical information relevant to a given query.
However, naive image-to-image similarity search (Iscen et al., 2023) often fails to retrieve the images
with the pivotal features. The primary reason is that an image, similar to a lengthy document, often
encompasses multiple diverse semantics, e.g., a vehicle image with a headlight and a ski-box in
Figure 1(b). That is, images may be quite intricate to be encapsulated by single embeddings. Recall
that, in RAG, a document is divided into multiple chunks, with each chunk intended to contain a
specific piece of information (Lewis et al., 2020; Wang et al., 2024a). This chunking enables the
capture of more relevant and coherent information for a query. On the other hand, because precise
image segmentation is very costly and challenging, applying image segmentation to achieve an effect
analogous to document chunking for images is infeasible.

In this paper, to retrieve proper external images and ultimately improve the zero-shot transferability
of a VLM at test time, we propose a description-based retrieval approach that fully leverages the
bi-modality of VLMs. Figure 1(b) elaborates on its overall procedure: (i) Multiple (e.g., 20) fine-
grained visual features for each target class are extracted in the form of text descriptions, such as
“Mazda CX-9 has a boomerang-shaped headlight,” by LLMs. These text descriptions are extracted
offline prior to test time. (ii) For each test image given online, text descriptions relevant to a test
image are selected by image-to-text similarity search on the embedding space of a VLM, which we
regard as the pivotal features of the test image. (iii) External images aligned with these selected
text descriptions are retrieved by text-to-image similarity search on the same embedding space. We
contend that image retrieval through text descriptions is comparable to document chunking, as it
divides images into multiple semantic chunks for effective retrieval. In Figure 1(b), due to the
text descriptions on the headlight of CX-9, its headlights are desirably dominant in the retrieved
images. In contrast, arbitrary SUV images with a ski-box could be retrieved if a naive image-to-
image similarity search were employed. Moreover, we also propose a description-based adaptation
approach that exploits the selected text descriptions for the adaptation with the retrieved images.

Overall, the proposed RA-TTA equipped with the description-based retrieval and adaptation signifi-
cantly outperforms the state-of-the-art TTA methods on 17 datasets, including the standard transfer
learning and natural distribution shift benchmarks. According to our extensive evaluation, the im-
pact of external images was higher when the strength of distribution shifts became higher, and the
advantages of the description-based retrieval became more pronounced when test data exhibited
more complex semantics (see § 4.2 and § 4.6).

2 RELATED WORK AND PRELIMINARY

2.1 VISION-LANGUAGE MODELS

Vision-language models (VLMs), such as CLIP (Radford et al., 2021), ALIGN (Jia et al., 2021),
and LongCLIP (Zhang et al., 2024a), are pre-trained to align images with corresponding text
descriptions, thereby understanding the relationships between arbitrary image-text pairs. These
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models have demonstrated excellent zero-shot transferability for image classification tasks, where
classes are represented by text prompts, and images are classified based on the similarity to these
prompts (Radford et al., 2021). Previous approaches employ coarse text prompts, such as “a photo
of Chevrolet Impala,” which do not fully utilize the contextual richness of language. Recent ad-
vancements shift towards incorporating fine-grained visual details in prompts, such as “Chevro-
let Impala has sharp and muscular styling,” to enhance representational capacity. For example,
VisDesc (Menon & Vondrick, 2022) and CuPL (Pratt et al., 2023) employ class-specific, LLM-
generated text descriptions as the prompts for VLMs. WaffleCLIP (Roth et al., 2023) proposes a
novel prompting technique for VLMs to improve the utility of the text descriptions by analyzing the
effect of LLM-generated text descriptions. Following these studies, our research further explores
the utility of fine-grained text descriptions to improve VLM efficacy.

2.2 TEST-TIME ADAPTATION FOR VISION-LANGUAGE MODELS

When transferring the zero-shot capabilities of VLMs, the distribution shift between pre-training
data and test data is the main obstacle. Test-time adaptation (TTA) methods for VLMs have been
proposed to adapt VLMs to the distribution shift. These methods adapt to an input test image on the
fly without any training requirements. TPT (Shu et al., 2022) uses data augmentation to enrich the
test image, filters out unreliable augmented images based on prediction entropy, and then updates
learnable prompts by minimizing the entropy of the reliable predictions. DiffTPT (Feng et al., 2023)
enhances TPT by augmenting an input image with generated images from a pre-trained diffusion
model. C-TPT (Yoon et al., 2024) also enhances TPT by calibrating the prediction uncertainty.
RLCF (Zhao et al., 2024b) introduces a CLIP score-based loss to avoid the pitfall of the entropy
minimization. Because only a single unlabeled test image is available, existing methods leverage
the outputs of VLMs on the test image for the adaptation. However, they solely rely on the internal
knowledge encoded in the VLM parameters, which are constrained to the pre-training data (Agarwal
et al., 2021; Menon et al., 2024; Parashar et al., 2024). In contrast, we leverage external knowledge
retrieved from an external image database, which could have new or focused knowledge that is not
present in the internal knowledge, thereby providing informative knowledge for unseen test images.

2.3 RETRIEVAL-AUGMENTED STRATEGY FOR VISION-LANGUAGE MODELS

Since not all knowledge can be encoded within VLM parameters, retrieval-augmented strategies
have been adopted as a solution, which can leverage external knowledge. These strategies can be
broadly categorized into training-based and training-free methods. Because training-based methods
exceed the scope of this work due to the necessity for extensive training and/or additional param-
eters before test time, we focus on training-free methods here. Training-free methods, including
SuS-X (Udandarao et al., 2023), Neural Priming (Wallingford et al., 2023), and Ret-Adapter (Ming
& Li, 2024)), retrieve training datasets and use the retrieved datasets to adapt VLMs without back-
propagation based on few-shot adaptation methods. However, since they conduct the retrieval before
test time, their retrieved images are static; thus, they cannot adaptively cope with unseen test im-
ages deviated by distribution shifts. On the other hand, we retrieve external images adaptive to test
images on the fly and can flexibly handle distribution shifts. See Appendices A.1 and A.2 for the
details of training-based and training-free methods, respectively.

2.4 BACKGROUND ON THE CLIP MODEL

The contrastive language-image pre-trained (CLIP) model (Radford et al., 2021) consists of an image
encoder f(·) and a text encoder g(·), each of which maps an image x ∈ R3×h×w and a text prompt t
into a d-dimensional shared embedding space, respectively. By calculating cosine similarity between
the mapped embeddings eI ∈ Rd for the image and eT ∈ Rd for the text prompt, CLIP produces
the image-text alignment score salign = cos(eI , eT ), which measures semantic similarity between
the image x and the text prompt t. For text prompts, text descriptions that represent the fine-grained
visual features of objects can be utilized. For each class c, multiple L text descriptions {tc,l}Ll=1
are generated and mapped to the embedding space. The embeddings of these descriptions for each
class c are averaged, and the averaged embedding ēTc is used as a prototype for the class c. Using
the prototypes, the prediction probability for an image x being a class c can be calculated as

p(c |x) = exp(cos(eI , ēTc )/τ)∑C
i=1 exp(cos(e

I , ēTi )/τ)
, (1)

where C is the number of classes and τ is a temperature parameter.
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Figure 2: Overall procedure of RA-TTA.

3 RA-TTA: RETRIEVAL-AUGMENTED TEST-TIME ADAPTATION FOR VLMS

3.1 PROBLEM STATEMENT AND OVERVIEW

Problem Statement. RA-TTA aims to adapt a VLM (e.g., CLIP) to classify a test image xtest as
its label y by leveraging a set of N external image embeddings R={eIe

k |k ∈ L} retrieved from an
image vector database D={eIe

j }Dj=1, where L is the index set of the N retrieved embeddings, D is
the database size, and eI

e

j ∈Rd is the image embedding computed by an image encoder f(·) for an
external image xe

j .1 In line with TPT (Shu et al., 2022), the training data is unavailable, the training
pipeline cannot be modified, and the adaptation is conducted online on a single image.

Overview. Figure 2 illustrates the retrieval-and-adaptation procedure of RA-TTA. In Step I, for a
test image, description-based retrieval selects relevant text descriptions and retrieves external im-
ages aligned with the selected text descriptions (§ 3.2). In Step II, description-based adaptation
calculates relevance scores for the retrieved images with respect to the test image, and the initial
prediction is refined by the relevance scores to produce the augmented prediction (§ 3.3). Its pseu-
docode is presented in Appendix B.

3.2 STEP I: DESCRIPTION-BASED RETRIEVAL

Figure 3 details the procedure of the description-based retrieval step. The retrieved images should
include the visible features of the target object in a test image xtest, which are pivotal for recognizing
the corresponding label y. To achieve this goal, multiple fine-grained visual features of each target
class are extracted offline by LLMs in the form of text descriptions, which can be represented as T =
∪C
c=1{tc,l}Ll=1. Based on the descriptions in T , we present a description-based retrieval approach to

retrieve images that include the pivotal features of xtest from D. The bi-modality of VLMs is fully
exploited first through image-to-text search (Left of Figure 3, § 3.2.1) and then through text-to-image
search (Right of Figure 3, § 3.2.2).

3.2.1 IMAGE-TO-DESCRIPTION SELECTION (LEFT OF FIGURE 3)

Robust Image-Text Alignment. The image-text alignment scores between a test image xtest and the
text descriptions in T are calculated for selecting relevant text descriptions. Misleading descriptions
may be inaccurately aligned with the test image, mainly due to non-target objects, likely leading
to the retrieval of irrelevant images. To select only relevant descriptions without misleading ones,
we enable a VLM to analyze a test image from multiple perspectives, thereby understanding it
comprehensively. Specifically, the standard augmentation A(·), including random resized cropping
and random flipping, is applied to a test image xtest, obtaining the augmented images A={xm}Mm=0,
where M is the number of augmented images by A(·) and the original test image xtest is denoted
as x0. Subsequently, the alignment scores of each description tc,l are calculated with the images in
A. That is, Stc,l={salignm,tc,l

|xm ∈A}, where salignm,tc,l
=cos(eIm, eTc,l), e

I
m=f(xm), and eTc,l=g(tc,l).

Although misleading descriptions may result in inaccurately elevated alignment scores for a few
certain augmentations, the majority of augmentations overlook these misleading descriptions; the
scores of the misleading descriptions are generally low, with only a few exceptions. Thus, to avoid
selecting the misleading descriptions (i.e., features), the p-percentile of the scores in Stc,l is used as
the representative image-text alignment score for the description tc,l, which is represented by

saligntc,l
= percentilep(Stc,l) = percentilep({s

align
m,tc,l

}Mm=0), (2)
where percentilep(·) returns the 100p-th (p ∈ [0, 1]) percentile of a set. We choose p=0.75 or
0.90, with which the function returns the top 75% (i.e., third quartile (Q3)) or 90% value of Stc,l .

1For simplicity, we refer to eI and eT as an image and a text description, respectively, omitting the term
“embedding” hereafter.
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Figure 3: Description-based retrieval. Left: Image-to-description selection. A test image is aug-
mented to produce multiple views, and the image-text alignment scores between the augmented
images and the text descriptions are calculated. The top-K descriptions are selected based on the
third quartile (Q3) value of the alignment scores of each description to avoid misleading and irrel-
evant descriptions. Right: Description-to-image retrieval. The selected descriptions are grouped
by their corresponding class, and those in each group are embedded and averaged to build a text
prototype. Finally, the external images closest to the prototypes are retrieved.

Consequently, the robust alignment scores of the xtest with the text descriptions in T become
ST = {saligntc,l

| tc,l ∈ T }. (3)

Description Selection. Since the high image-text alignment score of an image-text pair represents
the high correspondence between them, the top KD descriptions in TKD

are selected as the pivotal
features of xtest using the alignment scores in ST , which can be represented by

TKD
= {tc,l | saligntc,l

∈ Top-K(ST ;KD)}, (4)
where Top-K( · ;K) is a function that selects the K highest values from a set.

3.2.2 DESCRIPTION-TO-IMAGE RETRIEVAL (RIGHT OF FIGURE 3)

Description Grouping. Before conducting the retrieval, we arrange the selected descriptions be-
cause those of different classes could be mixed, where the corresponding classes of the descriptions
in TKD

are denoted as C={c | tc,l∈ TKD
}. The text descriptions in TKD

are grouped by their corre-
sponding class as G={Gc}c∈C , where Gc includes those of a class c and represents the semantics of
the class c with the features indicated by the belonging descriptions.
Prototype-Based Retrieval. Based on the descriptions in Gc, we retrieve the external images that
can be interpreted as representing the semantics of Gc and attach c as their pseudo label. First, the
embeddings of the descriptions in Gc are simply averaged to build a text prototype ēTGc

that serves as
the representative embedding of the semantics in Gc. Then, the alignment scores between ēTGc

and
the embeddings of external images in D={eIe

j }Dj=1 are calculated, and the top KS external images
are retrieved using the alignment scores, which can be represented as

RGc={xe
j | s

align
j ∈ Top-K(SD;KS)}, (5)

where SD= {salignj }Dj=1 and salignj = cos(eI
e

j , ēTGc
).2 The same procedure is applied separately to

each group Gc. Since the same number (KS) of images are retrieved for each group, the total number
of retrieved images is N = KS × |C|. Finally, R = {RGc}c∈C is fed to the next step.

3.3 STEP II: DESCRIPTION-BASED ADAPTATION

By leveraging the set of retrieved external images, R={RGc
}c∈C , the VLM’s initial prediction for

a test image xtest is adjusted by an additional prediction based on R, where the initial prediction
p is conducted as in Eq. (1). Since each set of external images, RGc , is associated with its pseudo
label c, we first calculate the relevance score from xtest to the set of external images, RGc , which is
then used to determine the probability of xtest belonging to the corresponding class c. Interestingly,
to calculate this relevance score, the selected text descriptions, TKD

in Eq. (4), are exploited again

2K-nearest neighbor search can be performed very efficiently with conventional vector databases.
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(§ 3.3.1), where our description-based adaption kicks in. Subsequently, both initial and additional
predictions are fused to produce the augmented prediction (§ 3.3.2). In short, this adaptation step
can be viewed as an ensemble procedure in which each retrieved external image casts a vote for the
label of xtest based on its pseudo label.

3.3.1 DESCRIPTION-BASED RELEVANCE
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Figure 4: Semantic gap.

Semantic Gap. Since we use the pivotal features (i.e., text descriptions)
of a test image to retrieve external images, it is logical to employ these
descriptions to assess the relevance between a test image and an external
image. We intend to measure the disparity between two images concern-
ing a specific semantic aspect. We specifically introduce the semantic
gap between two images, which pertains to the specific semantic aspect,
in Definition 3.1. As illustrated in Figure 4, it is the difference between
the distances from each image embedding to the embedding representing
the semantic aspect of interest. For instance, when examining the front
grille of vehicles, the semantic gap would signify the disparity between two vehicle images in terms
of the clarity with which they depict the front grille.
Definition 3.1 (SEMANTIC GAP). Given the descriptions in Gc, the semantic gap between two
images xi and xj is the absolute difference between their cosine distances with the text prototype
ēTGc

of the descriptions in Gc in the embedding space of a VLM,

gap(xi, xj ,Gc) = |(1− cos(eIi , ē
T
Gc
))− (1− cos(eIj , ē

T
Gc
))|, (6)

where eIi = f(xi), eIj = f(xj), and ēTGc
is the text prototype of the descriptions in Gc computed by

averaging their embeddings.
Semantic Relevance Computation. Through the concept of the semantic gap, we now derive the
relevance score of a test image to the set of external images for a specific class. To enhance its
reliability and robustness, we devise two simple yet effective techniques. First, we reuse the set A
of augmented images for the test image xtest instead of considering it only. As a result, the relevance
score is aggregated from the pair-wise semantic gaps between (M + 1) augmented images and KS

external images. Second, the significance of each image within each set, i.e., A or RGc
, is factored

into the relevance score. If an image is located closer to the text prototype of the corresponding set in
the embedding space of a VLM, the image should be considered more importantly in aggregating the
pairwise semantic gaps. Mathematically, a matrix CGc

∈ R(M+1)×KS has the pair-wise semantic
gaps between xi ∈ A and xe

j ∈ RGc , which can be represented as

CGc
=

[
gap(xi, x

e
j ,Gc) |xi∈A,xe

j∈RGc

]
∈ R(M+1)×KS . (7)

For the significance of each image, we additionally define two weight vectors U ∈ R(M+1) and
V ∈ RKS : U contains normalized weights from the cosine similarity between the embedding of
xi ∈ A and the prototype ēTA of A, where ēTA is calculated by averaging the embeddings of the
descriptions in TKD

(see Eq. (4)); V contains normalized weights from the cosine similarity between
the embedding of xj ∈ RGc

and ēTGc
(see Eq. (6)). Considering these weight vectors, the pair-wise

semantic gaps in CGc are aggregated by the optimal transport (OT) framework (Villani et al., 2009),
which can measure the distance between the two sets of weighted data points. Then, the relevance
score to a class c is formulated by

srelGc
=

1

OTdist(CGc
,U ,V) + 1

, (8)

where OTdist(·, ·, ·) returns the aggregated distance based on the OT framework. The same proce-
dure repeats for each group RGc (i.e., for each class), resulting in RS={srel

Gc
| c ∈ C}. We further

provide the details of OT in Appendix C.

3.3.2 KNOWLEDGE FUSION FOR ADAPTATION

We derive the retrieval-based prediction p̂ for xtest using the relevance scores in RS, and the pre-
diction probability for the image xtest of being a class c can be represented as

p̂(c |xtest) =


exp(srelGc

)/τ)∑
c∈C exp(s

rel
Gc
)/τ)

if c ∈ C

0 otherwise
. (9)
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Finally, we fuse the retrieval-based prediction p̂ and the initial prediction p using the entropy of each
prediction, leading to the augmented prediction paug for the image xtest,

paug(c |xtest) = α× p(c |xtest) + (1− α)× p̂(c |xtest). (10)

Here, α= exp(1/(1+H))

exp(1/(1+H))+exp(1/(1+Ĥ))
, where H (or Ĥ) is the entropy of P (or P̂ ).

4 EVALUATION

4.1 EXPERIMENT SETTING

Datasets. To evaluate the zero-shot transferability, we use standard transfer learning and natural
distribution shift benchmarks, including 17 datasets that span a wide range of image classifica-
tion tasks: ImageNet (Deng et al., 2009), Flowers102 (Nilsback & Zisserman, 2008), DTD (Cimpoi
et al., 2014), Oxford pets (Parkhi et al., 2012), Stanford cars (Krause et al., 2013), UCF101 (Soomro
et al., 2012), Caltech101 (Fei-Fei et al., 2004), Food101 (Bossard et al., 2014), SUN397 (Xiao et al.,
2010), FGVC aircraft (Maji et al., 2013), RESISC45 (Cheng et al., 2017), Caltech256 (Griffin et al.,
2007), and CUB200 (Wah et al., 2011) as transfer learning benchmarks, and natural distribution shift
benchmarks, including ImageNet adversarial (Hendrycks et al., 2021b), ImageNet V2 (Recht et al.,
2019), ImageNet rendition (Hendrycks et al., 2021a), and ImageNet sketch (Wang et al., 2019). The
details of each dataset can be found in Appendix D.1.

Compared Methods. We compare RA-TTA against four kinds of VLM adaptation methods that
do not require training procedures before test time: (1) zero-shot CLIP baselines, (2) tuning-based
methods, (3) text description-based methods, and (4) retrieval-based methods. For zero-shot CLIP
baselines, we include two zero-shot baselines of CLIP using a default prompt, “a photo of a {class
name},” and the ensemble of 80 hand-crafted prompts (Radford et al., 2021). For tuning-based
methods, we use TPT (Shu et al., 2022), C-TPT (Yoon et al., 2024), and RLCF (Zhao et al., 2024b),
which update parameters through back-propagation from VLM outputs for a test image. We use
VisDesc (Menon & Vondrick, 2022), WaffleCLIP (Roth et al., 2023), and CuPL (Pratt et al., 2023)
as text description-based methods that leverage the contextual richness of language. For retrieval-
based methods, we include SuS-X-LC (Udandarao et al., 2023) and Neural Priming (Wallingford
et al., 2023), which retrieve external images from an image database offline.

Web-Scale External Image Database Construction. We construct the database for retrieval-based
methods, including SuS-X-LC, Neural Priming, and our proposed RA-TTA, with the following
objectives: ensuring relevance to downstream tasks and preserving the diversity and noisy nature
of a web-scale database. Thus, we explore LAION2B (Schuhmann et al., 2022) dataset that consists
of 2B web-scale image-caption pairs for the construction. Following keyword-based fast string
matching on LAION2B (Wallingford et al., 2023; Parashar et al., 2024), we downloaded images
whose text captions contain the target classes and used the downloaded images as external images.
This approach offers several advantages: it ensures the relevance and preserves the nature of a web-
scale database (Parashar et al., 2024), not to mention reproducibility. While using all images in
LAION2B may seem appealing, it requires 100 TB of storage. We conjecture that our database
achieves a practical balance between leveraging web-scale images and the complexity of evaluation.
The details for the image database construction can be found in Appendix D.2

Implementation Details. We implement RA-TTA using the CLIP-B/16 (Radford et al., 2021)
model as a VLM. For generating text descriptions, we use GPT-3.5 Turbo (Ouyang et al., 2022)
and CuPL (Pratt et al., 2023)-style hand-written templates. We set the augmentation size M to 100.
We configure K for Top-K operations at KD = 20 and KS = 20. We use a temperature param-
eter τ of 0.01, which is the default scale value of CLIP. We use the aforementioned configurations
across all datasets because dataset-specific configurations are not preferred in TTA. We set p = 0.75
for transfer learning datasets except ImageNet and p = 0.90 for ImageNet-based datasets. Further
implementation details on the compared methods can be found in Appendix D.3. All implementa-
tions are conducted using PyTorch 2.3.0 on an NVIDIA RTX 4090. The source code of RA-TTA is
available at https://github.com/kaist-dmlab/RA-TTA.

4.2 MAIN RESULTS

Table 1 shows a comparative analysis of RA-TTA against the compared methods for 13 transfer
learning benchmarks, evaluating how much the given methods can improve the zero-shot capability
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Table 1: Overall results for test-time adaptation (or transfer learning). We report the top-1
accuracy (%) for 13 standard transfer learning datasets. The “Avg.” column indicates the average
accuracy of 13 datasets. The best results are in bold, and the second best results are underlined.
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CLIP 66.76 67.19 44.50 88.14 65.27 64.92 92.78 85.40 62.55 24.60 55.70 82.80 58.08 66.05
Ensemble 68.37 65.85 45.21 88.20 66.34 67.41 93.77 85.41 65.79 24.39 58.35 85.81 58.61 67.19
TPT 69.08 69.18 47.04 87.44 66.55 68.04 93.79 86.34 65.32 23.31 56.84 85.37 60.11 67.57
C-TPT 68.32 69.43 45.27 88.25 65.48 65.50 93.39 84.95 64.55 24.39 56.02 85.25 58.84 66.90
RLCF 68.61 67.72 46.40 86.73 66.51 66.98 93.83 86.09 64.92 23.43 56.89 85.18 57.91 67.02
VisDesc 69.09 71.86 50.41 88.55 65.48 69.52 94.81 86.43 68.25 25.59 57.81 88.17 60.13 68.93
WaffleCLIP 69.05 72.59 48.33 89.79 64.60 69.13 94.61 86.85 67.17 25.25 63.31 88.10 59.83 69.12
CuPL 69.78 75.92 58.22 91.47 66.92 67.80 94.24 86.39 67.38 28.98 65.17 88.07 60.18 70.81
SuS-X-LC 69.45 76.23 59.23 91.83 67.55 67.12 93.78 86.13 67.78 29.41 65.22 88.75 59.12 70.89
Neural Priming 69.38 73.22 55.98 89.76 66.13 68.02 94.71 87.01 67.86 27.32 63.11 88.50 57.14 69.86
RA-TTA (Ours) 70.58 78.65 60.98 92.78 70.11 73.28 94.84 87.10 70.38 32.34 66.95 89.50 62.73 73.09

of VLMs. RA-TTA outperforms all existing methods, with an average improvement of 3.01–9.63%
over the baselines, demonstrating its effectiveness in enhancing the knowledge of VLMs at test time.
The tuning-based methods (Shu et al., 2022; Yoon et al., 2024; Zhao et al., 2024b) cannot leverage
knowledge from an external database and the contextual information from textual modality, thus fail-
ing to adapt. On the other hand, RA-TTA achieves the best performance by leveraging the external
knowledge and the textual information, even outperforming text description-based methods (Menon
& Vondrick, 2022; Pratt et al., 2023; Roth et al., 2023) that adopt fine-grained text descriptions but
cannot use external knowledge unlike RA-TTA.

RA-TTA is particularly effective for a specialized domain dataset, like RESISC45 for satellite im-
ages, and fine-grained datasets, such as Flowers102, Stanford Cars, FGVC Aircraft, and CUB200
because RA-TTA retrieves a customized set of external images for each test image by identifying
its pivotal features through fine-grained descriptions. In contrast, previous retrieval-based methods,
including SuS-X-LC (Udandarao et al., 2023) and Neural Priming (Wallingford et al., 2023) retrieve
a fixed set of external images for a given class, which limits the granularity of extractable knowledge
and ultimately results in inferior performance compared to RA-TTA.

Table 2: Performance for natural distribution
shifts. We report the top-1 accuracy (%) for four Im-
ageNet variants. The “Avg.” column indicates the
average accuracy of 4 datasets.

IN-A IN-V2 IN-R IN-K Avg. (4)

CLIP 47.51 60.80 73.98 46.19 57.12
Ensemble 50.04 61.89 77.58 48.29 59.45
TPT 54.39 63.48 77.27 47.95 60.77
C-TPT 50.28 62.47 75.68 47.42 58.96
RLCF 56.52 63.37 77.04 48.09 61.26
VisDesc 50.17 62.76 75.25 48.25 59.11
WaffleCLIP 50.51 62.68 75.81 48.73 59.43
CuPL 50.23 63.00 78.16 49.60 60.25
SuS-X-LC 49.91 63.22 77.82 49.18 60.03
Neural Priming 49.68 62.79 76.70 49.03 59.55
RA-TTA (Ours) 59.21 64.16 79.68 50.83 63.47

Moreover, Table 2 illustrates the perfor-
mance of RA-TTA for ImageNet vari-
ants (Hendrycks et al., 2021b; Recht et al.,
2019; Hendrycks et al., 2021a; Wang et al.,
2019) which are typically used to evaluate
the VLMs’ robustness to natural distribution
shifts, such as artistic rendition and black
and white sketches (Radford et al., 2021;
Shu et al., 2022). RA-TTA outperforms the
compared methods in terms of the average
accuracy, demonstrating that RA-TTA can
cope with natural distribution shifts effec-
tively. Notably, the description-based meth-
ods (e.g., CuPL (Pratt et al., 2023)) that em-
ploy only fine-grained descriptions without
help from external knowledge show minor
improvements compared to Ensemble (Radford et al., 2021). However, RA-TTA improves the accu-
racy by 15.49% over Ensemble, indicating that the effectiveness of RA-TTA arises not only from the
use of fine-grained descriptions but also from the sophisticated integration of external knowledge.
The standard deviations for Tables 1 and 2 are presented in Appendix E.1 owing to the lack of space.

4.3 ABLATION STUDY

In Table 3, we conduct ablation studies to understand the impact of the description-based retrieval,
the description-based adaptation, and the image weighting scheme. (1) If the description-based
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retrieval is disabled, the retrieval procedure in Section 3.2 is simply replaced by image-to-image
similarity search. (2) If the description-based adaptation is disabled, the semantic gap in Defini-
tion 3.1 is simply replaced by image-to-image cosine similarity. (3) If the image weighting scheme
is disabled, the weight vectors U and V in Eq. (8) are not used for aggregating the pair-wise dis-
tances. We prepare three different variants, denoted by Var. 1, Var. 2, and Var. 3 in Table 3,

Table 3: Ablation studies. We report
the top-1 accuracy (%) on the FGVC air-
craft dataset, where the benefit of RA-
TTA is significant. Description-based re-
trieval, description-based adaptation, and im-
age weighting are disabled separately.

Retrieval Adaptation Weighting Accuracy
Var. 1 ✗ ✗ ✗ 29.39
Var. 2 ✓ ✗ ✗ 30.91
Var. 3 ✓ ✓ ✗ 31.96

RA-TTA ✓ ✓ ✓ 32.34

by disabling three, two, and one component(s), re-
spectively. While the description-based retrieval
is effective by itself (compare between Var. 1 and
Var. 2), its effect is clearly boosted when combined
with the description-based adaptation (compare be-
tween Var. 2 and Var. 3). In addition, the image
weighting scheme adds a slight improvement (com-
pare between Var. 3 and RA-TTA). Overall, all three
components are shown to be effective, supporting
the superior performance of RA-TTA. The results
for other datasets can be found in Appendix E.2.
Furthermore, refer to Appendices E.3 and E.4 about
the results of changing the LLM for generating descriptions and varying the database size.

4.4 HYPERPARAMETER SENSITIVITY ANALYSIS

We conduct sensitivity analyses on four crucial hyperparameters which influence the performance
of RA-TTA. The results in Figure 5 report the averaged accuracy on 13 standard transfer learning
benchmarks. Refer to Appendix E.5 for more results.

• Effect of Augmentation Size. For mitigating the interfering effect of misleading descriptions,
RA-TTA conducts augmentations to analyze a test image from multiple perspectives. We analyze
the impact of the augmentation size M on the accuracy. As shown in Figure 5(a), increasing
the augmentation size improves the accuracy, with a plateau observed around 25. This result
suggests that while more augmentations are generally beneficial, the benefits diminish beyond a
certain point (around 25), where the accuracy stabilizes.

• Effect of KD for Description Selection. RA-TTA selects the top KD descriptions as the pivotal
features of a test image. Figure 5(b) demonstrates the accuracy concerning the KD. RA-TTA
performs best at KD = 20, after which the accuracy declines sharply. This result can be un-
derstood as increased KD may lead to selecting irrelevant or misleading descriptions, negatively
impacting the following retrieval and adaptation.

• Effect of KS for Image Retrieval. RA-TTA retrieves the top KS images using the selected
text descriptions. Figure 5(c) illustrates the effect of KS . As for KD, we can infer that the
accuracy drops because outlier images can be included as KS increases. However, the accuracy
remains stable across different values of KS , with no significant drop even as KS increases. This
result suggests that when aggregating the semantic gap, representing the significance weights of
retrieved images makes RA-TTA robust to the retrieved outlier images.

• Effect of Alignment Score Percentile. Figure 5(d) shows the accuracy based on the percentile
value p for rejecting misleading descriptions. The best accuracy is achieved around 0.75, the third
quartile value, which is optimal for selecting relevant descriptions while rejecting misleading
descriptions. When the value is set too high (e.g., 1.0), the accuracy degrades, possibly due to the
inclusion of misleading descriptions.

4.5 EFFICIENCY ANALYSIS

Table 4: GPU inference time per sample (s/sample)

FGVC aircraft Stanford cars RESISC45 Avg. (3)

TPT 0.103 0.155 0.95 0.118
RA-TTA (Ours) 0.113 0.117 0.121 0.117

In the context of TTA, the effi-
ciency is indeed a critical factor
to consider. We provide an anal-
ysis of computational complexity,
including inference time and GPU
peak memory. Based on Table 4, which shows the GPU inference time per sample (i.e., s/sample),
the inference time of RA-TTA is comparable to that of TPT, the representative TTA method. This
is because FAISS (Johnson et al., 2021), an advanced and efficient search engine typically used for
RAG-based approaches, enables fast nearest-neighbor search. The analysis of GPU peak memory is
provided in Appendix E.6 owing to the lack of space.
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(a) Augmentation size. (b) # of selected descriptions. (c) # of retrieved images. (d) Score percentile.

Figure 5: Effects of the four hyperparameters on the accuracy. The green dashed line denotes the
accuracy of SuS-X-LC as a strong baseline.

4.6 QUALITATIVE ANALYSIS

In Figure 6, we present illustrative examples of the description-based retrieval of RA-TTA on the
Stanford cars (Krause et al., 2013) and RESISC45 Cheng et al. (2017) datasets. We observe in Fig-
ure 6 that description-based retrieval allows us to retrieve external images with the pivotal features
of test images because the retrieval procedure focuses on a specific piece of information, i.e., a piv-
otal feature, without being distracted by other irrelevant information. Additional visualizations are
provided in Appendix E.7.

Test image Retrieved images

: Pivotal features

GT: 2012 Acura RL Sedan

GT: Thermal power plant

GT: Overload

GT: 2012 Porsche Panamera Sedan

I2T

I2T

I2T

T2I

T2I

I2T

T2I

T2I

…exterior styling,
which includes a 
sleek, low-slung profile 
with four doors…

Selected text descriptions
…specific features such as 
the distinctive grille 
with the Acura logo, 
the swept-back headlights…

…prominent structures 
such as cooling towers, 
smokestacks, and…

…road bridge from 
a top-down perspective, 
clearly revealing 
the intersections…

I2T : Image-to-text search T2I : Text-to-image search

Figure 6: Examples of the images retrieved by our description-based retrieval on the Stanford cars
and RESISC45 datasets. The results of the image-to-description selection and the description-to-
image retrieval are shown individually. A pivotal feature is indicated by a red box in the images.

5 CONCLUSION

In this paper, we propose RA-TTA (Retrieval-Augmented Test-Time Adaptation), designed to lever-
age the external knowledge from a web-scale image database on-the-fly. By fully exploiting the text
descriptions, which represent fine-grained visual details, the description-based retrieval ensures to
retrieve external images with the pivotal features of a test image, and the description-based adapta-
tion allows a VLM to adapt to the test image using the inherent semantics of the retrieved images.
Our extensive experimental results demonstrate superior zero-shot transferability compared to the
state-of-the-art methods across 17 datasets. Overall, we believe that our work sheds light on the
effectiveness of external knowledge for the zero-shot transfer of VLMs.
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A EXTENDED SURVEY

A.1 TRAINING-BASED RETRIEVAL-AUGMENTED METHODS FOR VLMS

Within retrieval-augmented strategies for VLMs, training-based methods have proposed (additional)
pre-training schemes which make use of external knowledge as training datasets (Shen et al., 2022;
Liu et al., 2023) and which introduce specifically designed modules for external knowledge (Xie
et al., 2023; Iscen et al., 2023). K-LITE (Shen et al., 2022) augments text supervisions by incor-
porating external textual knowledge such as Wiktionary and uses these enhanced supervisions to
train VLMs. REACT (Liu et al., 2023) fine-tunes VLMs by constructing datasets about downstream
tasks through retrieval. RA-CLIP (Xie et al., 2023) and RECO (Iscen et al., 2023) introduce addi-
tional modules that allow VLMs to utilize retrieved images, where the parameters are trained using
large-scale image-text datasets (e.g., WebLI (Chen et al., 2023), YFCC (Thomee et al., 2016), and
Conceptual Captions 12M (Changpinyo et al., 2021)). However, these methods require extensive
training before test time, which demands high computational resources, making them challenging to
use for resource-constrained applications. On the other hand, RA-TTA requires neither training nor
additional parameters, hence facilitating its straightforward implementation.

A.2 TRAINING-FREE ADAPTATION METHODS FOR VLMS

Training-free adaptation methods for VLMs (Zhang et al., 2022; 2023; Zhu et al., 2023; Wang et al.,
2024b) have aimed to adapt VLMs to downstream tasks without updating learnable parameters.
They can conduct the adaptation efficiently because they do not require backpropagation. Tip-
Adapter (Zhang et al., 2022) introduces a non-parametric cache model that stores the embeddings
of few-shot training images and the corresponding labels. Next, it computes the similarities be-
tween the embeddings in the cache model and a test image, uses them as a weight to aggregate
the labels in the cache model, and integrates the aggregated pseudo-labels with the logits of CLIP.
In order to improve Tip-Adapter, CaFo (Zhang et al., 2023) adds a vision foundation model called
DINO, synthetic images from DALL-E (Ramesh et al., 2021) to expand the few-shot training data,
and text descriptions generated by GPT-3 to enrich the language context. APE (Zhu et al., 2023)
improves Tip-Adapter by extracting useful features from the cache model, and CLIP-GDA (Wang
et al., 2024b) applies the Gaussian Discriminant Analysis (GDA) to create a feature-based classifier.
However, these methods only focus on adapting VLMs without backpropagation and do not account
for using external knowledge. In contrast, the goal of RA-TTA is leveraging external knowledge to
complement the absence in the pre-trained knowledge, which is orthogonal to the objective of the
training-free methods.

B PSEUDOCODE OF RA-TTA

The overall procedure of RA-TTA is described in Algorithm 1, which is self-explanatory.

C OPTIMAL TRANSPORT FOR CALCULATING SEMANTIC RELEVANCE SCORE

Optimal Transport (OT) (Villani et al., 2009) is a framework for calculating the distance between
two distributions, typically represented by sampled data points. Mathematically, each distribution is
formulated as

U =

M∑
i=1

uiδxi
and V =

N∑
j=1

vjδyj
, (11)

where xi is a sample from U , ui is a probability mass of xi, i.e.,
∑M

i=1 ui=1, and δxi
is a Dirac delta

function placed at xi. The same definition applies for V . Here, M and N denote the number of data
points sampled from U and V , respectively. When calculating the distance, OT requires a disparity
matrix C representing pairwise disparities between samples from the two distributions. Then, to
find the optimal transportation plan Γ∗, the optimization problem of OT is formulated as

min
Γ∈Π(u,v)

⟨Γ,C⟩ − λH(Γ), Π(u,v) =
{
Γ ∈ RM×N

+

∣∣ Γ1N = u, Γ⊤1M = v
}
, (12)

where C∈RM×N is a disparity matrix where each element ci,j represents the disparity between xi

and yj , u∈RM is a probability mass vector whose i-th element is ui, v∈RN is a probability mass
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Algorithm 1 RA-TTA: Overall Procedure

Require: a test image xtest, text descriptions T =∪C
c=1{tc,l}Ll=1, an external image vector database D, an

image encoder f(·), a text encoder g(·), augmentation size M , K for description selection KD , K for
image retrieval KS , percentile value p

Ensure: final prediction paug

1: /* STEP I: DESCRIPTION-BASED RETRIEVAL IN § 3.2 */
2: /* IMAGE-TO-DESCRIPTION SELECTION IN § 3.2.1 */
3: ST ← RobustAlignment(xtest, T ,M, p, f, g)
4: TKD ← DescriptionSelction(ST ,KD, T )
5: /* DESCRIPTION-TO-IMAGE RETRIEVAL IN § 3.2.2 */
6: G ← DescriptionGrouping(TKD )
7: R← PrototypeBasedRetrieval(G,D,KS , g)
8: /* STEP II: DESCRIPTION-BASED ADAPTATION IN § 3.3 */
9: /* DESCRIPTION-BASED RELEVANCE SCORE COMPUTATION IN § 3.3.1 */

10: C← SemanticGapComputation(xtest,G,R, f, g)
11: RS ← RelevanceScoreComputation(C, TKD ,G)
12: /* KNOWLEDGE FUSION IN § 3.3.2 */
13: p̂← RetrievalBasedPrediction(RS)
14: p← InitialPrediction(xtest, T , f, g)
15: paug ← Fusion(p̂, p)
16: return paug;

vector whose j-th element is vj , and H(Γ) = −
∑

i,j Γij log Γij is an entropic regularizer for an
efficient solution using the Sinkhorn-Knopp algorithm (Cuturi, 2013). 1N denotes the all-one vector
of dimension N . Using the optimal solution Γ∗, the distance between U and V is ⟨Γ∗,C⟩.
A key advantage of the OT framework is its flexibility to incorporate a user-defined disparity function
to measure the distance between two distributions. In RA-TTA, a novel disparity (i.e., cost) function
called semantic gap is introduced to calculate the semantic disparity between a test image and a
retrieved image. Moreover, we adopt two techniques to enhance the reliability and robustness of the
adaptation procedure:

• We reuse the augmented images of the test image, previously employed in description-based
retrieval. As a result, we have the test image set A (comprising the test image and its augmented
images) and the retrieved image set RGc

that is related to the selected features of class c.
• We represent the importance of each image within these sets using alignment scores because the

importance of individual images may vary. This importance is normalized, allowing the two sets
to be interpreted as probability distributions.

Thus, calculating the distance between the test image and the retrieved images is transformed into
calculating the distance between two distributions using our novel disparity function, semantic gap.
Consequently, the optimal transport framework is adopted in this context.

D FURTHER DETAILS FOR EVALUATION

D.1 DETAILS OF EVALUATION DATASETS

In Table 5, we provide detailed statistics on the evaluation datasets. We use the dataset configuration
of CoOp (Zhou et al., 2022) except for Caltech256 and RESISC45, which CoOp does not handle.
We use a test split from SuS-X (Udandarao et al., 2023) for Caltech256, and we adopt a test split
from (Neumann et al., 2020) for RESISC45.

D.2 DETAILS OF EXTERNAL IMAGE DATABASE CONSTRUCTION

To construct a web-scale external image database, we explore the text captions of
LAION2B (Schuhmann et al., 2022) and download the images whose captions contain the target
class name, such as “Chevrolet Impala.” Specifically, the SQLite full-text search (FTS) table of the
text captions in LAION2B is first built, which enables efficient text search for the captions. Then, the
class names of downstream tasks are extracted from the definition of downstream tasks. The class
names are queried to the FTS table, and the table returns the indexes of the captions that contain the
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Table 5: Detailed statistics of datasets used in evaluations.

Dataset # Classes # Test samples Remark

ImageNet 1,000 50,000 WordNet categories classification
Flowers102 102 2,463 Fine-grained flowers classification
DTD 47 1,692 Textural classification
Oxford Pets 37 3,669 Fine-grained pets classification
Stanford Cars 196 8,041 Fine-grained car classification
UCF101 101 3,783 Human action classification
Caltech101 100 2,465 Object classification
Food101 101 30,300 Fine-grained food classification
Sun397 397 19,850 Scene classification
FGVCAircraft 100 3,333 Fine-grained aircraft classification
RESISC45 45 6,300 Remote sensing image scene classification
Caltech256 256 2465 Object classification
CUB200 200 5794 Fine-grained birds classification

ImageNet-V2 1,000 10,000 ImageNet variant of temporal shift
ImageNet-Sketch 1,000 50,889 ImageNet variant of sketches
ImageNet-Adversarial 200 7,500 ImageNet variant of adversarial samples
ImageNet-Rendition 200 30,000 ImageNet variant of artistic renditions

queried class names. Finally, the corresponding images to the returned indexes are downloaded. The
database of each downstream task is constructed separately, and the database size for each down-
stream task is reported in Table 6. Because the database is constructed using the class name, the
relevance of the database for each dataset to the corresponding task could be ensured (Wallingford
et al., 2023; Parashar et al., 2024).

Table 6: Detailed statistics of external image databases for the evaluation datasets.

Dataset D

ImageNet 10,695,986
Flowers102 2,128,144
DTD 452,735
Oxford Pets 1,328,173
Stanford Cars 374,413
UCF101 1,795,826
Caltech101 2,741,240
Food101 2,237,734
Sun397 6,267,408
FGVCAircraft 336,551
RESISC45 1,962,533
Caltech256 7,015,883
CUB200 644,720

The LAION2B consists of 2B image-caption pairs from the Web; thus, the downloaded images
contain the diversity of the Web. At the same time, the text captions of LAION2B are very noisy,
and, as shown in Figure 7, the downloaded image could be irrelevant to the queried class name
even if the caption contains the queried name, reflecting the Web’s noisy nature. Therefore, the
constructed databases preserve the nature of a web-scale image database.

D.3 DETAILS OF THE COMPARED METHODS

We evaluate ten methods to compare with our proposed RA-TTA. The implementation details for
the compared methods as follows.

• CLIP (Radford et al., 2021): A basic prompt “a photo of a/an <Class>” is used for the zero-shot
classification.3

• Ensemble (Radford et al., 2021): The ensemble of 80 hand-crafted prompts is used as a text
prompt.

3https://github.com/openai/CLIP

17

https://github.com/openai/CLIP


Published as a conference paper at ICLR 2025

Query: PrisonQuery: Praying mantisQuery: Pelican Query: Bird house

Query: Banana Query: Ant Query: Hen

Figure 7: Examples of the downloaded noisy images with the corresponding queried class name
from ImageNet.

• TPT (Shu et al., 2022): The official code4 released by the authors is used, and their default
hyperparameters are adopted.

• C-TPT (Yoon et al., 2024): The official code5 released by the authors is used, and their default
hyperparameters are adopted.

• RLCF (Zhao et al., 2024b): The official code6 released by the authors is used, and their default
hyperparameters are adopted. The reward model is same with the main model.

• VisDesc (Menon & Vondrick, 2022): The official code7 released by the authors is used. The
default templates for generating text descriptions are adopted.

• WaffleCLIP (Roth et al., 2023): The official code8 released by the authors is used. The default
templates for generating text descriptions are adopted.

• CuPL (Pratt et al., 2023): The official code9 released by the authors is used. As remarked in
Appendix D.4, we slightly modified the default templates for generating text descriptions.

• SuS-X-LC (Udandarao et al., 2023): The official code10 released by the authors is used. Because
the validation dataset is unavailable in TTA, hyperparameter tuning for each dataset is prohibited.
Thus, the same hyperparameters are used across all datasets, which are reported to function well
in the original paper. For the fair comparison between the retrieval-based methods, including
SuS-X-LC, Neural Priming, and RA-TTA, the image database introduced in Appendix D.2 is
used for the retrieval.

• Neural Priming (Wallingford et al., 2023): The official code11 released by the authors is used,
and their default hyperparameters are adopted. As with SuS-X-LC, the image database introduced
in Appendix D.2 is used for the retrieval.

D.4 LLM TEMPLATES FOR GENERATING TEXT DESCRIPTIONS

In Table 7, we present the templates for GPT-3.5 Turbo (Ouyang et al., 2022) used to generate text
descriptions for each dataset. The templates are based on those from CuPL (Pratt et al., 2023), but
we slightly modified them for GPT-3.5 Turbo. Since the CuPL templates were initially designed for
text-davinci-002, which is based on GPT-3 and has now been deprecated, some of these templates
do not function as expected with GPT-3.5 turbo. For instance, when prompted with the original
CuPL template, “Describe an image from the internet of a goldfish,” GPT-3.5 turbo responds, “I

4https://github.com/azshue/TPT
5https://github.com/hee-suk-yoon/C-TPT
6https://github.com/mzhaoshuai/RLCF
7https://github.com/sachit-menon/classify_by_description_release
8https://github.com/ExplainableML/WaffleCLIP
9https://github.com/sarahpratt/CuPL

10https://github.com/vishaal27/SuS-X
11https://github.com/RAIVNLab/neural-priming
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can’t access the internet to see the image of a goldfish.” Therefore, we carefully revised only those
templates that do not function properly with GPT-3.5 Turbo to ensure they work as intended.

Table 7: CuPL style hand-written templates for extracting text descriptions from LLMs.

Dataset CuPL style templates

ImageNet

- Describe a photo of {} {}.
- Describe what {} {} looks like.
- How can you identify {} {}?
- What does {} {} look like?
- Describe a photo of {} {} with distinctive visual features.
- Describe the shapes and structures of .
- Describe the color and patterns of .
- Describe the overall appereance of .
- A caption of an image of {} {}:

Flowers102

- What does {} {} flower look like.
- Describe the appearance of {} {}.
- Visually describe {} {}, a type of flower.
- A caption of an image of {} {}.

DTD

- What does {} {} material look like? Please explain the characteristics and provide examples of where it is typically found.
- What does {} {} surface look like? Please explain the characteristics and provide examples of where it is typically found.
- What does {} {} texture look like? Please explain the characteristics and provide examples of where it is typically found.
- What does {} {} object look like? Please explain the characteristics and provide examples of where it is typically found.
- What does {} {} thing look like? Please explain the characteristics and provide examples of where it is typically found.
- What does {} {} pattern look like? Please explain the characteristics and provide examples of where it is typically found.

Oxford Pets - Describe what {} {} pet looks like.
- Visually describe {} {}, a type of pet.

Stanford Cars

- How can you identify {} {}.
- Description of {} {}, a type of car.
- A caption of a photo of {} {}:
- What are the primary characteristics of {} {}?
- Description of the exterior of {} {}.
- What are the identifying characteristics of {} {}, a type of car?
- Describe an image of {} {}.
- What does {} {} look like?
- Describe what {} {}, a type of car, looks like.

UCF101
- What does a person doing {} look like.
- Describe the process of {}.
- How does a person {}.

Caltech101 - Describe what {} {} looks like.
- What does look like.
- Describe the shapes and structures of .
- Describe a photo of {} {} with distinctive visual features.

Food101

- Visually describe {} {}.
- Describe what {} {} looks like.
- Describe a photo of {} {} with distinctive visual features.
- How can you tell that the food in a photo is {} {}?

SUN397
- Describe what {} {} looks like.
- How can you identify {} {}?
- Describe a photo of {} {} with distinctive visual features.

FGVC Aircraft - Describe {} {} aircraft.

RESISC45
- Describe a satellite photo of {} {}.
- Describe the satellite photo of {} {}.
- Describe an aerial photo of {} {}.

Caltech256 - Describe what {} {} looks like.
- Describe a photo of {} {} with distinctive visual features.

CUB200

- Describe what {} {}, a species of bird, looks like.
- What does {} {} look like.
- Visually describe {} {}, a type of bird.
- A caption of an image of {} {}, a type of bird.
- Describe the appearance of {} {}.
- What are the prominent features to identify {} {} bird.

ImageNet rendition

- Describe an art drawing of {} {}.
- Describe artwork showing {} {}.
- Describe a cartoon {} {}.
- Describe an origami of {} {}.
- Describe a deviant art photo depicting {} {}.
- Describe an embroidery of {} {}.
- Describe a graffiti art showing {} {}.
- Describe a painting of {} {}.
- Describe a sculpture of {} {}.
- Describe a black and white sketch of {} {}.
- Describe a toy {} {}.
- Describe a video game of {} {}.

ImageNet sketch - Describe how a black and white sketch of {} {} looks like.
- Describe a black and white sketch of {} {}.
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E ADDITIONAL EVALUATION RESULTS

E.1 MAIN RESULTS WITH STATISTICAL SIGNIFICANCE

In Tables 8 and 9, we report the standard deviation omitted in Tables 1 and 2, where the value after
“±” represents the standard deviation over five different runs. Overall, RA-TTA demonstrates robust
performance, exhibiting low variability across most datasets.

Table 8: Statistical significance for the results in Table 1.
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Table 9: Statistical significance for the results in Table 2.

IN-A IN-V2 IN-R IN-K Avg. (4)

TPT 55.78
(±0.17)

63.48
(±0.14)

78.98
(±0.10)

47.95
(±0.12)

60.77
(±0.13)

C-TPT 50.28
(±0.22)

62.47
(±0.28)

75.68
(±0.07)

47.42
(±0.13)

58.96
(±0.18)

RLCF 56.52
(±0.18)

63.37
(±0.22)
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(±0.05)

48.09
(±0.14)

61.26
(±0.15)

RA-TTA (Ours) 59.21
(±0.26)

64.16
(±0.15)

79.68
(±0.04)

50.83
(±0.04)

63.47
(±0.12)

E.2 RESULTS ON ABLATION STUDY

We present the implementation details for the variants of RA-TTA. For the image-to-image similar-
ity search of Var. 1, we use simple cosine similarity between image embeddings and retrieve KS

external images for a test image. To replace the semantic gap computation for Var. 2, we adopt
simple cosine similarity between image embeddings. To realize Var. 3, we just use uniform weights
vectors for U and V .

In Table 10, we present results on ablation study across the standard transfer learning benchmarks,
and the similar trends in Section 4.3 are observed, where description-based approaches, including
Var. 3 and RA-TTA, outperform other variants.

Table 10: Results on ablation study for test-time adaptation (or transfer learning).
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Var. 2 68.81 78.81 57.17 91.93 68.71 69.02 94.05 86.93 69.41 30.91 65.01 88.61 61.27 71.59
Var. 3 70.45 79.31 59.16 91.94 69.95 73.14 94.35 87.15 69.86 31.96 65.67 88.82 62.92 72.67

RA-TTA (Ours) 70.58 78.65 60.98 92.78 70.11 73.28 94.84 87.10 70.38 32.34 66.95 89.50 62.73 73.09

E.3 EFFECTS OF DIFFERENT LLMS FOR GENERATING TEXT DESCRIPTIONS

The description-based retrieval relies on the LLMs to generate detailed text descriptions. Thus,
to analyze how different LLMs affect description quality and final adaptation performance, text
descriptions generated by Claude-Sonnet are newly considered for this analysis. We compare the
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performance of CuPL (Pratt et al., 2023) to investigate the quality of text descriptions, as CuPL can
achieve better performance with improved descriptions.

Table 11: Performance when using text descriptions generated by
ChatGPT and Claude3. We report the top-1 accuracy (%) on the
FGVC aircraft, Stanford cars, and RESISC45 datasets. The em-
ployed LLMs are indicated with the method name.

FGVC aircraft Stanford cars RESISC45 Avg. (3)

CuPL+Claude3 28.05 66.38 57.33 50.59
CuPL+ChatGPT 28.89 66.92 65.17 53.66
RA-TTA+Claude3 30.93 68.82 61.92 53.89
RA-TTA+ChatGPT 32.34 70.11 66.95 56.47

As shown in the first two rows
of Table 11, CuPL with the de-
scriptions of GPT works bet-
ter than CuPL with those of
Claude, implying that the text
descriptions generated by GPT
are better than those gener-
ated by Claude. Thus, differ-
ent LLMs can affect descrip-
tion quality even with the same
generation prompts. Also, the last two rows of Table 11 show that RA-TTA with the descriptions
of GPT outperforms RA-TTA with those of Claude, implying that the better descriptions facilitate
the adaptation of RA-TTA more effectively by improving the relevance and quality of retrieved
images. Notably, RA-TTA with the text descriptions of Claude outperforms the performance of
the corresponding CuPL (i.e., CuPL+Claude3 vs. RA-TTA+Claude3), demonstrating that RA-TTA
effectively leverages external knowledge even when the quality of the description is not very good.

E.4 IMPACT OF DATABASE SIZE ON ADAPTATION PERFORMANCE

Regarding the database of external images, we analyze the impact of its size on adaptation
performance—adaptation accuracy, storage costs, and inference time. For this analysis, we use
random sampling to build a subset of the original database. As shown in Table 12, accuracy im-
proves alongside storage costs as the database size increases. This result is expected because the
likelihood of including informative samples for adaptation increases with a larger database, albeit at
the expense of increased storage costs. Regarding inference time, thanks to efficient search engines,
such as FAISS (Johnson et al., 2021), the increase in latency remains almost negligible, as shown in
the last row of Table 12.

Table 12: Effects of the database size on accuracy, storage costs, and inference time of RA-TTA.
We report the top-1 accuracy (%), storage costs (MB), and average GPU inference time per sample
(s/sample) measured on a single RTX4090 for the Stanford cars dataset. The percentage represents
the proportion of the sampled database to the original database. The values in the parentheses
indicate the number of images in a database.

5%
(13,720)

10%
(37,441)

20%
(74,882)

40%
(149,765)

60%
(224,647)

80%
(299,530)

Original
(374,413)

Accuracy 68.12 68.81 69.01 69.81 69.96 70.08 70.11
Storage costs (MB) 18.28 36.56 73.13 146.25 219.38 292.51 365.64
Inference time (s/sample) 0.106 0.106 0.107 0.111 0.113 0.113 0.117

E.5 RESULTS ON SENSITIVITY ANALYSIS

We present hyperparameter sensitivity analyses on the standard transfer learning datasets, and the
similar trends in Section 4.4 are observed as shown in Figures 8–20.
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Figure 8: Effects of the four hyperparameters on the accuracy of ImageNet-1k.
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Figure 9: Effects of the four hyperparameters on the accuracy of Flowers102.
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Figure 10: Effects of the four hyperparameters on the accuracy of DTD.

5 25 50 100 150 200
M

92

93

A
cc

ur
ac

y 
(%

)

RA-TTA
SuS-X-LC

5 20 40 60 80 160
KD

92

93

A
cc

ur
ac

y 
(%

)

5 20 40 60 80 160
KS

92

93

A
cc

ur
ac

y 
(%

)

0.10.25 0.5 0.75 0.91.0
p

87
88
89
90
91
92
93

A
cc

ur
ac

y 
(%

)
(a) Augmentation size. (b) # of selected descriptions. (c) # of retrieved images. (d) Score percentile.

Figure 11: Effects of the four hyperparameters on the accuracy of Oxford pets.
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Figure 12: Effects of the four hyperparameters on the accuracy of Stanford cars.
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Figure 13: Effects of the four hyperparameters on the accuracy of UCF101.
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Figure 14: Effects of the four hyperparameters on the accuracy of Caltech101.
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Figure 15: Effects of the four hyperparameters on the accuracy of Food101.
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Figure 16: Effects of the four hyperparameters on the accuracy of SUN397.
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Figure 17: Effects of the four hyperparameters on the accuracy of FGVC aircraft.
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Figure 18: Effects of the four hyperparameters on the accuracy of RESISC45.
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(a) Augmentation size. (b) # of selected descriptions. (c) # of retrieved images. (d) Score percentile.

Figure 19: Effects of the four hyperparameters on the accuracy of Caltech256.
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Figure 20: Effects of the four hyperparameters on the accuracy of CUB200.

E.6 GPU MEMORY OVERHEAD FOR INFERENCE

RA-TTA does not require backpropagation (i.e., training-free), which contributes to the memory
efficiency of RA-TTA. As shown in Table 13, it results in lower GPU peak memory compared to
TPT which uses backpropagation to update learnable prompts.

Table 13: GPU peak memory for TPT and RA-TTA. We report the GPU peak memory (MB) on the
FGVC aircraft, Stanford cars, and RESISC45 datasets.

FGVC aircraft Stanford cars RESISC45 Avg. (3)

TPT 2213.53 3718.75 1358.73 2430.33
RA-TTA (Ours) 905.63 984.75 911.43 933.94

E.7 ADDITIONAL VISUALIZATIONS

In Figure 21, we present illustrative examples of the rejected/selected descriptions in description-
based retrieval on the Stanford cars (Krause et al., 2013) and RESISC45 Cheng et al. (2017) datasets.
Figure 21 illustrates that the selected descriptions pay attention to a specific piece of information,
namely a pivotal feature, whereas the rejected descriptions emphasize irrelevant features. Figure 22
briefly illustrates the workflow of RA-TTA on the Stanford cars and RESISC45 datasets.

24



Published as a conference paper at ICLR 2025

GT: Thermal 
power plant

GT: 2012 Porsche 
Panamera Sedan

Test image
Selected text descriptions

with relevant features

You can identify a 2012 Porsche Panamera
Sedan by looking for its distinct body style,
four-door design, aggressive front fascia
and signature Porsche logo on the front
and rear of the vehicle.

Rejected text descriptions
with irrelevant features

The 2012 Porsche Panamera Sedan features
sporty exterior styling, which includes a
sleek, low-slung profile with four doors,
and wide wheel arches. It has a distinctive
sloping roofline and a four-door layout,
combining the elegance of a coupe.

A thermal power plant in a satellite photo
appears as a large industrial complex with
prominent structures like cooling towers,
boiler units, and smokestacks. The photo may
show heat emissions in the form of thermal
plumes from the cooling towers and steam
vents, as well as energy production.

A thermal power plant in an aerial
image would show large buildings with
tall chimneys and a network of power
lines connecting it to the grid. It also
have fuel storage areas, water
reservoirs, and roads for transport.

GT: Harbor

A satellite photo of a harbor typically shows
a body of water surrounded by land with
docks, piers, and boats. The harbor may
appear as a dark area within the surrounding
land, with watercraft visible in the water.

A satellite photo of a harbor typically
shows ships and boats docked along piers
and quays, with cranes and containers
visible for cargo handling. The layout of
the harbor, such as breakwaters can be
seen along with surrounding infrastructure.

Figure 21: Examples of the selected and rejected text descriptions in our description-based retrieval
on the Stanford cars and RESISC45 datasets. The results of the rejected text descriptions and the
selected text descriptions are shown individually. An irrelevant feature is colored yellow in the
descriptions, while a relevant feature is colored red.

GT: Thermal 
power plant

GT: 2012 Porsche 
Panamera Sedan

Test image
Selected text descriptions

with relevant features

The 2012 Porsche Panamera Sedan features
sporty exterior styling, which includes a
sleek, low-slung profile with four doors,
and wide wheel arches. It has a distinctive
sloping roofline and a four-door layout,
combining the elegance of a coupe.

A thermal power plant in a satellite photo
appears as a large industrial complex with
prominent structures like cooling towers,
boiler units, and smokestacks. The photo may
show heat emissions in the form of thermal
plumes from the cooling towers and steam
vents, as well as energy production.

GT: Harbor

A satellite photo of a harbor typically shows
a body of water surrounded by land with
docks, piers, and boats. The harbor may
appear as a dark area within the surrounding
land, with watercraft visible in the water.

Retrieved images Refined prediction

…

…

…

Before refinement
: 2012 BMW 
M3 Coupe
After refinement 
: 2012 Porsche 
Panamera Sedan

Before refinement
: Industrial area

After refinement 
: Thermal power plant

Before refinement
: Parking lot

After refinement 
: Harbor

Figure 22: Examples of the brief workflow of RA-TTA on the Stanford cars and RESISC45 datasets.
The test image is queried to select text descriptions that include relevant features, and then proper
images are retrieved based on those text descriptions. The initial prediction is refined with the help
of the retrieved images.
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