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Abstract

Graph contrastive learning (GCL) have shown promising results for self-supervised repre-
sentation learning on graph-structured data, benefiting various downstream tasks such as
node classification and graph classification. Despite their outstanding performance, a preva-
lent issue in most existing GCL methods is the arbitrary selection of other data points as
negative samples, even when they share the same ground truth label with the anchor. The
inclusion of such false negative samples could degrade the performance of GCL. In this study,
we present a dual-branch ensembling learning framework, which provides model discrepancy
as a crucial indicator to more effectively differentiate false negatives from true negatives.
Building on this, we develop a debiased contrastive learning objective. This objective focuses
on pulling false negatives closer to the anchor in the embedding space, while simultaneously
retaining the capacity to repel true negatives away from the anchor. Extensive experiments
on real-world datasets demonstrate the effectiveness of our framework.

1 Introduction

Graph neural networks (GNNs) (Kipf & Welling, 2016a; Veličković et al., 2017) have significantly advanced
graph representation learning, facilitating various tasks such as node classification, and graph classification.
However, their reliance on supervised labels may limit their generalization capabilities (Rong et al., 2019).
To address this limitation and achieve more generalizable and transferable representations, self-supervised
learning (SSL) has emerged in the field of GNNs. SSL enables GNNs to learn from unlabeled graph data (You
et al., 2020; Jin et al., 2020) by training on pretext tasks. Among various SSL techniques, graph contrastive
learning (GCL) has gained significant attention due to its impressive empirical performance (Veličković et al.,
2019; Hassani & Khasahmadi, 2020b; You et al., 2021; Suresh et al., 2021; Zhu et al., 2020; Thakoor et al.,
2021b). Most existing GCL methods adopt an augmentation strategy, which treats augmented versions of
the same data as positive samples, and other instances in the same batch as negative samples. Various
contrastive objects are studied in the context of graphs, such as node-node (Zhu et al., 2020; Peng et al.,
2020), node-(sub)graph (Veličković et al., 2019; Hassani & Khasahmadi, 2020b), and graph-graph (Bielak
et al., 2022; Thakoor et al., 2021b; Suresh et al., 2021) contrastive pairs. GCL then aims to maximize
the representation similarity between positive pairs and minimize representation similarity between negative
pairs.

Despite their great performance, existing GCLs are at risk of noisy views. Due to the absence of labels, most
existing GCL methods randomly nodes as negative samples, which raises the risk of introducing noisy views,
a situation known as sampling bias (Chuang et al., 2020). The illustration in Figure 3 depicts the strategy
employed by GRACE (Zhu et al., 2021). For a given anchor node vi, it designates other nodes as negative
samples, which could inadvertently treat nodes of the same class as vi as negative pairs. The prevalent
presence of false negatives significantly hampers the performance of augmentation-based GCL (Xia et al.,
2021). Therefore, it is critical to design a denoise framework that can effectively address the widespread
issue of sampling bias.

Developing such a framework without label information is challenging. Several initial efforts (Zhao et al.,
2021; Zhang et al., 2022a; Xuan et al., 2021; Xia et al., 2021) have been taken to alleviate the effects of

1



Under review as submission to TMLR

Positive pairs
Negative pairs (intra-view)

Negative pairs (inter-view)

False negative pairs

Data augmentation
Nodes in different classes
Anchor node

Figure 1: Schematic diagram of node-level GCL framework and illustration of false negative samples in GCL.

false negative views. For example, Zhao et al. (Zhao et al., 2021) adopts clustering results as pseudo labels.
However, the quality of pseudo label cannot be guaranteed, which might introduce additional noisy signals.
Zhang et al. (Zhang et al., 2022a) generate hard negative samples that are similar to the positive samples
but belong to different classes, assuming that by training a model to distinguish between positive samples
and hard negatives, the model learns to focus on more subtle and discriminative features. However, the
entanglement between hard negative and positive samples can hinder the performance improvement (Xuan
et al., 2021). ProGCL (Xia et al., 2021) shows that most negatives with larger similarities to the anchor
are false negatives. It fits the distributions of false and true negative samples with Beta Mixture Model
(BMM) and assigns weight to each negative sample based on the probability that a negative sample is
false. However, for the area where there exists a significant overlap between true negative and false negative
samples, it may encounter challenges in determining the appropriate probability that a given sample belongs
to each distribution.

As significant overlaps between false negatives and true negatives exist in certain regions, we contend that
depending solely on the similarity to the anchor to distinguish a negative sample as false is inadequate. Ad-
ditionally, current research often overlooks the fact that even with relatively accurate estimations, assigning
lower weights to false negatives remains an imperfect solution. In pursuit of high-quality representations for
downstream tasks, our goal should focus on bringing false negative samples closer to the anchor rather than
pushing them away. However, the work on these is rather limited.

Fortunately, our empirical results in Figure 2 and Figure 3 show that (1) two models trained on different
augmented graphs exhibit substantial discrepancy in the similarity of negative samples to the anchor in
regions where false and true negative samples significantly overlap; and (2) these two models display a more
pronounced discrepancy on true negative samples compared to false negative samples. The details of the
preliminary experimental analysis are given in Section III-B. Based on these findings, it appears promising
to utilize model discrepancy as a significant indicator to improve our capacity to differentiate between false
negatives and true negatives in overlapping areas. Additionally, it paves the way for the formulation of a
debiased contrastive objective function which can draw false negatives with the same ground-truth label
closer to the anchor.

Therefore, in this paper, we explore a novel problem of estimating the likelihood that a negative sample is
false, considering factors beyond mere similarity to the anchor, and draw those false negative samples closer
to the anchor. Specifically, we confront two primary challenges: (i) how to integrate additional factors with
the commonly used similarity metric to accurately estimate the distributions of unlabeled negative samples;
and (ii) how to develop a learning strategy that effectively draws false negative samples closer to the anchor
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while retaining the capacity to push true negatives away from the anchor. To tackle these challenges, we
introduce a novel framework MDGCL that trains two GNN encoders on distinct augmented graphs. This
framework estimates the distribution of negative samples by jointly considering model discrepancy and
similarity. With this relatively precise estimation, we selectively sample false negative samples and devise a
debiased contrastive learning objective function to maximize the similarity of these samples to the anchor
while minimizing the similarity of true negative sample to the anchor. Our main contributions are:

• We propose a novel framework that can better differentiate between false negatives and true negatives by
incorporating insights from model discrepancies.

• We design a new debiased contrastive learning strategy aimed at mitigating sampling bias by drawing
false negative samples closer to the anchor.

• Extensive experiments on real-world datasets demonstrate the effectiveness of the proposed framework.

2 Related work

2.1 Graph Contrastive Learning

Graph contrastive learning (Veličković et al., 2019; Hassani & Khasahmadi, 2020b; You et al., 2021; Suresh
et al., 2021; Zhu et al., 2020; Thakoor et al., 2021b) has shown great performance for self-supervised repre-
sentation learning on graphs. Generally, augmentation-based GCL first generate two views of a data sample
and prepare positive and negative pairs of each anchor node. It then aims to learn node representations by
pushing positive pairs together and pull negative pairs far away. Various methods, including but not limited
to DGI (Veličković et al., 2019), HDI (Jing et al., 2021), GMI (Peng et al., 2020), and InfoGCL (Xu et al.,
2021), employ this principle by directly quantifying the mutual information (MI) shared across different
views. MVGRL (Hassani & Khasahmadi, 2020a) takes this a step further by maximizing the information
shared between the cross-view representations of nodes and graphs. Several methodologies such as GRACE
(Zhu et al., 2020), GCA (Zhu et al., 2021), ProGCL (Xia et al., 2021), ARIEL (Feng et al., 2022), and
gCooL (Li et al., 2022) have successfully implemented the SimCLR framework (Xia et al., 2022) for learning
at the node-level. On the graph-level, the SimCLR framework has been effectively utilized by GraphCL
(You et al., 2021) and SimGRACE (Xia et al., 2022). Furthermore, innovative CL frameworks, that relieve
the dependency on negative samples or data augmentations, have been adopted by BGRL (Thakoor et al.,
2021a), AFGRL (Lee et al., 2021), and CCA-SSG (Zhang et al., 2021).

2.2 Debiased Contrastive Learning

Despite the great performance of GCL methods, most of them suffer from the problem of sampling bias
(i.e. randomly assign other samples as negative samples). Therefore, several efforts (Xia et al., 2021; Liu
et al., 2022; Zhao et al., 2021; Chu et al., 2021; Li et al., 2023; Zhu et al., 2022) have been taken to alleviate
false negative sample issue. For example, DGCL (Zhao et al., 2021) incorporates clustering pseudo labels
to address the issue of false negatives. CuCo (Chu et al., 2021) organizes the negatives from least to most
difficult based on similarity in graph-level contrastive learning and introduces a system to automatically
select and train negative samples through a curriculum learning framework. ProGCL (Xia et al., 2021)
extends GRACE (Zhu et al., 2020) by leveraging hard negative samples via Expectation Maximization to
fit the observed node-level similarity distribution. However, the significant overlap between false negatives
and true negatives impedes the potential for performance improvement. SpCo (Liu et al., 2022) amplifies
the high-frequency components of the augmented graph while retaining its inherent low-frequency structure.
HomoGCL (Li et al., 2023) enriches the positive set by incorporating neighboring nodes based on homophily
assumption.

Our work is inherently different from existing work: (i) We address the novel challenge of effectively distin-
guishing false negatives from true negatives in GCL; and (ii) We aim to bring false negative samples with
the same ground-truth label closer to the anchor in the embedding space, a critical aspect overlooked by
previous works.
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3 Preliminary

3.1 Notation and Background

We use G = (V, E , X) to denote an attributed graph, where V = {v1, . . . , vN } denotes the set of N nodes,
E ⊆ V × V is the set of edges, and X = {x1, . . . , xN } is the set of node attributes with xi being the node
attribute of node vi. A ∈ RN×N is the adjacency matrix of the graph G, where Aij = 1 if nodes vi and
vj are connected; otherwise Aij = 0. Thus, G can also be denoted as G = (X, A). We use T to denote a
random augmentation function, such as randomly dropping edges and masking features.

GCL has become a popular approach for self-supervised representation learning. Generally, it follows the
“augmenting-contrasting” learning pattern, where the similarity between two augmentations of the same
sample (positive pair) is maximized, while the similarities between two augmentations of different samples
(negative pairs) are minimized. The learned node embeddings can be applied to downstream tasks like node
classification and node clustering.

Take the popular GCL method GRACE (Zhu et al., 2020) as an example, two augmentation functions T1 ∼ T
and T2 ∼ T are firstly applied to the graph G to generate two graph views G(1) = (X(1), A(1)) = T1(X, A)
and G(2) = (X(2), A(2)) = T2(X, A). GRACE then applies a GNN encoder fθ to get node embedding for
each node in both views as

H(1)
f = [f (1)

1 , . . . , f
(1)
N ] = f(G(1)),

H(2)
f = [f (2)

1 , . . . , f
(2)
N ] = f(G(2)).

(1)

For a node vi, its embedding in one view f
(1)
i is regarded as the anchor. The embedding f

(2)
i in the other

view is the positive sample and the embeddings of other nodes in both views are negatives. GRACE aims to
maximize the Mutual Information (MI) between learned representations of positive pairs while minimizing
the MI between learned representations of negative pairs by optimizing the following loss function for each
anchor as:
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where S(·, ·) is the cosine similarity and τ is a temperature parameter.

3.2 Preliminary Analysis of GCL Model Discrepancy

To effectively differentiate false negatives, we conduct experiments focusing on the model discrepancy in the
representation similarity between false and true negatives relative to anchor points. These experiments lead
us to identify model discrepancy as a valuable indicator, paving us a way for the development of a debiased
graph contrastive learning framework.

Specifically, we firstly pretrain two 2-layer GNN encoders using GRACE (Zhu et al., 2020) and obtain f and g
parameterized by Θ1 and Θ2. Given G, we obtain two augmented graphs G(1) = T1(X, A), G(2) = T2(X, A).
Then we apply f on G(1) and G(2) to inference node representations H(1)

f and H(2)
f . Similarly, another

pretrained GNN encoder g is used to inference node representations H(2)
g on G(2).

To measure the difference in similarity between the identical pairs of anchor and its negative sample across
G(1) and G(2) obtained by network f , given an anchor node vi and its negative sample vk, we calculate the
discrepancy as:

abs(S(f (1)
i , f

(1)
k ) − S(f (2)

i , f
(2)
k )), (3)

The discrepancy distribution of f for False Negative and True Negative result are shown in Figure 2 (a).

To measure the difference in similarity between the anchor vi and its negative sample vk across encoder f
and g, we measure the discrepancy as

abs(S(f (1)
i , f

(1)
k ) − S(g(2)

i , g
(2)
k )), (4)
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Figure 2: Histograms of discrepancy on similarity (cosine similarity between normalized embeddings of
anchor and negatives) on Cora dataset. Given two augmented views G(1), G(2) of the same graph, and GNN
networks f, g. The discrepancy in (a) is calculated by measuring the difference in similarity between the
identical pairs of anchor and its negative sample across G(1) and G(2). The discrepancy in (b) is calculated
by measuring the difference in similarity between the anchor and its negative sample across networks f and
g.
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Figure 3: (a) Similarity distributions of false negatives, true negatives and those samples with discrepancy
> 0.1 on Cora dataset. (b) The distribution of samples with substantial divergence and their corresponding
divergence values.

The discrepancy distribution across f and g for False Negative and True Negative is given in Figure 2 (b).

As we observed, the two networks f and g exhibit a more pronounced difference in similarity concerning
true negatives compared to false negatives in Figure 2 (b). On the contrary, similar distributional trends
in Figure 2 (a) do not provide us with a valuable indicator to distinguish between false and true negatives.
The results indicate that the discrepancy between the two networks, f and g, arises not mainly from data
augmentation, but from their distinct perceptions of the inherent structure of the data.

For Figure 3, we further visualize the similarity distributions of false negatives and true negatives considering
both S(f (1)

i , f
(1)
k )) and S(g(2)

i , g
(2)
k )). Meanwhile, we draw distributions of those samples with discrepancy

> 0.1 calculated by Equation 4. As shown in (a), while the overall percentage of samples in the overlap region
is relatively low, it is noteworthy that the majority of samples displaying large divergence are concentrated
within this particular region. Figure 3 (b) illustrates the distribution of samples with substantial divergence
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Figure 4: Framework of MDGCL.

and their corresponding divergence values. It is evident that in the overlapping area, true negatives typically
display greater divergence than false negatives.

This phenomenon can be readily understood as contrastive learning aims to distance negative samples from
the anchor in the embedding space. Yet, this becomes complex when hard negative and positive samples are
entangled, creating a conflicting dynamic (Xuan et al., 2021). This is due to the exclusive reliance on model
parameter adjustments for learning representations. Adjusting parameters to bring positive samples nearer
to the anchor results in the inadvertent proximity of entangled hard negatives, which leads to a convoluted
dynamic in regions where hard negatives and positives significantly overlap, complicating the update of
representations in these areas. Contrarily, false negatives, which share similar semantic information and
ground truth label with the anchor, encounter a less intricate learning process. As a result, in overlapping
area, it is logical to expect a noticeable divergence between two models that haven been trained on distinct
augmented graphs. This divergence arises because random augmentation provides them with the opportunity
to learn the inherent structure of data from different perspectives.

The above observations and analyses motivate us to investigate the incorporation of model discrepancy
as a vital indicator for distinguishing between false and true negatives, especially in overlap areas where
traditional methods struggle to differentiate them effectively. Therefore, in this paper, we study a novel
problem of leveraging model discrepancy to counteract sampling bias in graph contrastive learning. The
problem is formally defined as:

Problem 1. Given an unlabeled graph G, our goal is to develop a debiased graph contrastive learning frame-
work that incorporates the knowledge of model discrepancy, ensuring that the representations learned through
this framework are highly effective in downstream node classification tasks.

4 Methodology

In this section, we present the details of the proposed framework MDGCL, which involves false negative
samples selection and a debiased learning strategy to push false negative sample closer to the anchor. An
illustration of the proposed framework is given in Figure 4. Building upon our empirical observations that
two networks tend to exhibit a greater discrepancy in the overlap area for true negatives compared to false
negatives, we adopt a strategy where we train two networks with different augmented views. We then
merge the knowledge derived from the model discrepancy along with similarity to the anchor to estimate
more distinguishable distributions for false and true negatives. In order to fully harness the distributional
information, we employ a sampling approach for false negatives and introduce a novel debiased objective
function. This function is designed to maximize the similarity of false negative samples to the anchor, all
the while maintaining the original objective of pushing true negative samples away from the anchor within
the embedding space. Next, we give the details of each component.
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4.1 False Negative Selection

To utilize model discrepancy to estimate more discernible distributions for false and true negatives, we adopt
two GNN encoders f and g parameterized by Θ1 and Θ2, respectively. We train them to learn representations
of input view following GRACE (Zhu et al., 2020) separately with loss function in Equation 2. Specifically,
given G, during each epoch, we first generate three graph views as

G(1) = T1(X, A), G(2) = T2(X, A), G(3) = T3(X, A) (5)

We then apply f on G(1) and G(2) to learn node representation as H(1)
f , H(2)

f . Similarly, we apply g on G(2)

and G(3) to learn node representation H(2)
g , H(3)

g . The purpose of having two networks share a common view
while also maintaining their own views during training is to enable them to learn from different angles while
staying interconnected. This approach guarantees that the observed discrepancies are not merely a product
of random data augmentation but primarily arise from the intricate and conflicting overlap between false
negatives and true negatives, thereby enhancing the reliability of the discrepancy values.

To streamline our explanation, we will present our framework with node vi, its embedding f
(1)
i ∈ H(1)

f

and g
(2)
i ∈ H(2)

g as anchor for f and g respectively. Similarly, for node vk, its embedding f
(1)
k ∈ H(1)

f and
g

(2)
k ∈ H(2)

g as intra-view negative for f
(1)
i and g

(2)
i respectively. It is worth noting that the same learning

strategy is fully applicable to inter-view case as well (i.e. negative samples from f
(2)
k ∈ H(2)

f and g
(3)
k ∈ H(3)

g

for f
(1)
i and g

(2)
i respectively).

With learned representations, we combine the similarity as:

sik = 1
2(sf

ik + sg
ik) · (1 − dik), (6)

where sf
ik = S(f (1)

i , f
(1)
k ), sg

ik = S(g(2)
i , g

(2)
k )), dik = abs(sf

ik − sg
ik). Going forward this paper, assume that all

embedding similarities are Min-Max normalized unless stated otherwise. Then sik, dik ∈ [0, 1]. We employ
Equation 6 to merge the knowledge of similarity and discrepancy based on the empirical findings previously
mentioned. These findings highlight that, generally, the two models exhibit a more substantial divergence
on true negative samples compared to false negative samples, especially in overlapping area. As a result,
while shifts may occur in both distributions, the shift is more pronounced for true negative samples. This
leads to a reduced overlap between the distributions, enhancing the distinction between them. Experiment
results in Section 5.4 also verify our analysis.

Different from ProGCL (Xia et al., 2021), which employs the Beta Mixture Model (BMM) to fit the empirical
distribution of negative samples, leading to a high computation cost, we utilize sik as the input for a Bernoulli
distribution, from which we sample to determine the selection of a given sample as a false negative. This
process is formally defined as:

F = {1(Bernoulli(sik) = 1) | sik > θ, k ∈ [1, N ] \ {i}}, (7)

where θ is a predefined threshold, 1(·) is an indication that equals to 1 if the condition holds and 0 otherwise.
In this setup, a sample outcome of 1 indicates its selection as a false negative, while a 0 implies it is not
selected. Since false negatives usually show smaller differences and higher similarity, while true negatives
often display larger discrepancies and lower similarity, our sampling strategy tends to assign more weight
to false negatives. Notably, F is shared by f and g. By doing so, each time we sample data, there is a
significantly higher chance of selecting false negatives, enhancing the effectiveness of our debiased contrastive
objective function in the next section.

4.2 Debiased Contrastive Learning

Given the indexes of potential false negative candidates, we propose a debiased contrastive learning objective.
This objective aims to maximize the similarity of false negatives to the anchor, all the while ensuring that
our primary objective of minimizing the similarity of true negatives to the anchor is maintained.
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Algorithm 1 MDGCL (intra-view)
Input: GNN networks f, g, augmentation function T , graph G and normalized cosine similarity function S

1: for epoch = 0, 1, 2, ..., Emax do
2: Draw three augmentation functions T1 ∼ T , T2 ∼ T , T3 ∼ T
3: G(1) = T1(G), G(2) = T2(G), G(3) = T3(G)
4: H(1)

f = f(G(1)), H(2)
f = f(G(2)), H(2)

g = g(G(2)), H(3)
g = g(G(3))

5: for all f
(1)
i , f

(1)
k ∈ H(1)

f do
6: sf

ik = S(f (1)
i , f

(1)
k )

7: end for
8: for all g

(2)
i , g

(2)
k ∈ H(2)

g do
9: sg

ik = S(g(2)
i , g

(2)
k )

10: end for
11: Compute sik following Equation 6
12: Record indexes F of false negative candidates with Equation 7
13: Compute ℓ(vi, f), ℓ(vi, g) for each anchor vi for f and g with Equation 9 separately.
14: Update the parameters of f and g with 1

N

∑
ℓ(vi, f) and 1

N

∑
ℓ(vi, g)

15: end for
Output: f, g

Let τ+ be the proportion of false negative samples and τ− = 1 − τ+. Given p be the all negative samples
distribution and p+

x be the false negatives distribution. Then the true negatives distribution is calculated as:

p−
x (x) =

(
p (x) − τ+p+

x (x)
)

/τ−. (8)

The equation above demonstrates how to mitigate sampling bias by sampling from false negatives. Conse-
quently, when we sample data from the negative distribution p following Equation 8, we inherently draw
samples from the true negative distribution p−

x .

Thus, with F representing the indexes for false negative candidates, we sample nodes with corresponding
IDs from within this set and denote them as vF . Subsequently, we design our debiased loss function for each
anchor as:

ℓ(vi, f) = − log eSf
ii

eSf
ii + N−1

τ−

(
1

N − 1

N−1∑
i=1

eSf
ik − τ+ 1

M

∑
eSf

iF

)
︸ ︷︷ ︸

Debias Sampling

, (9)

where Sf
ii = S(f (1)

i , f
(2)
i ), Sf

iF = S(f (1)
i , f

(1)
F ) and M =| F | equals to the number of sampled false negatives.

We calculate τ+ as
τ+ = M

N − 1 . (10)

Here, we aim to highlight the distinctions between our loss function and that in (Chuang et al., 2020).
Unlike previous work that sample vF s from positive samples distribution, our approach focuses on sampling
from false negatives. This strategic choice is driven by the fact that positive samples typically already
exhibit high similarity to the anchor in standard contrastive learning setting. Our objective is not to further
enhance the proximity of these positive samples to the anchor – a task relatively easily achieved in standard
contrastive learning frameworks. Instead, we aim to specifically target false negatives, endeavoring to draw
them closer to the anchor. This approach is intended to effectively mitigate the prevalent issue of sampling
bias, addressing a critical gap in existing methodologies.

5 Experiments

In this section, we conduct extensive experiments to demonstrate the effectiveness of our proposed MDGCL.
In particular, we aim to answer the following research questions:
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Table 1: Statistics of datasets used in the paper
Dataset #Nodes #Edges #Features #Classes

Cora 2,708 10,556 1,433 7
citepSeer 3,327 9,228 3,703 6
PubMed 19,717 88,651 500 3
Photo 7,650 238,163 745 8

Computer 13,752 491,722 767 10
ogbn-arXiv 169,343 1,166,243 128 40

• RQ1 How does our proposed framework perform in terms of node classification accuracy in downstream
task?

• RQ2 Can our framework generate a more distinguishable distribution for false negative and true negative
samples?

• RQ3 Can our framework effectively select false negative samples for debiased contrastive learning?

5.1 Experimental Settings

Baselines. We compare our method with a variety of representative and state-of-the-art baselines: including
supervised graph learning methods GCN (Kipf & Welling, 2016a), GAT (Veličković et al., 2017), graph
autoencoders GAE and VGAE (Kipf & Welling, 2016b), augmentation-based GCL methods including DGI
(Veličković et al., 2019), MVGRL (Hassani & Khasahmadi, 2020a), CCA-SSG (Zhang et al., 2021), BGRL
(Thakoor et al., 2021b), COSTA (Zhang et al., 2022b) , GRACE (Zhu et al., 2020), GCA (Zhu et al., 2021),
ProGCL (Xia et al., 2021), ARIEL (Feng et al., 2022), HomoGCL (Li et al., 2023) and SpCo (Liu et al.,
2022), augmentation-free graph contrastive learning methods GMI (Peng et al., 2020), AFGRL (Lee et al.,
2021) and SUGRL (Mo et al., 2022). The detailed description of the baselines can be found in Appendix A.

Datasets. We assess the quality of representations after self-supervised pretraining on six node classi-
fication benchmarks, including three citation networks Cora, citepseer, Pubmed (Yang et al., 2016), two
co-purchase networks Amazon Computer and Amazon Photo (McAuley et al., 2015) and one large-scale net-
work ogbn-arXiv (Hu et al., 2021). We adopt the public splits for Cora, citepseer and Pubmed, and a 1:1:8
training/validation/testing random splits for the two co-purchase datasets. The statistics of the datasets are
provided in Table 1. We give the detailed descriptions in Appendix B.

Evaluation Protocol. We follow the linear evaluation scheme as introduced in (Veličković et al., 2019):
i) We first train the model on all the nodes in a graph without supervision, by optimizing the objective in
Equation 9. ii) After that, we freeze the parameters of the encoder and obtain node embeddings, which are
subsequently fed into a linear classifier (i.e., a logistic regression model) to generate a predicted label for
each node. In the second stage, only nodes in training set are used for training the classifier, and we report
the classification accuracy on testing nodes. The graph encoder f and g are standard two-layer GCN model
(Kipf & Welling, 2016a) for all the datasets. For all experiments, the threshold to filter out false negative
samples θ is as 0.9. For a fair comparison, the hyperparameters of all methods are tuned on the validation
set.

5.2 Performance Comparison

To answer RQ1, we compare node classification performance of our framework with the baselines on various
datasets. Each experiment is conducted 10 times. The averaged node classification results with standard
deviation are report in Table 2. From the table, we have the following observations:

• InfoNCE-based methods, i.e., GCA (Zhu et al., 2021), ProGCL (Xia et al., 2021), SpCo (Liu et al.,
2022) and ARIEL (Feng et al., 2022), cannot bring consistent and significant improvements over GRACE
(Zhu et al., 2020). Notably, HomoGCL (Li et al., 2023) consistently yields significant improvements over
GRACE. However, our framework surpasses even HomoGCL in performance, which can be attributed
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Table 2: Node classification results (accuracy(%)±std). The best and runner-up are marked with boldface
and underline, respectively.

Methods Cora CiteSeer PubMed Photo Computer
GCN 81.5 ± 0.4 70.2 ± 0.4 79.0 ± 0.2 92.42 ± 0.22 86.51 ± 0.54
GAT 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3 92.56 ± 0.35 86.93 ± 0.29
GAE 71.5 ± 0.4 65.8 ± 0.4 72.1 ± 0.5 91.62 ± 0.13 85.27 ± 0.19

VGAE 73.0 ± 0.3 68.3 ± 0.4 75.8 ± 0.2 92.20 ± 0.11 86.37 ± 0.21
DGI 82.3 ± 0.6 71.8 ± 0.7 76.8 ± 0.6 91.61 ± 0.22 83.95 ± 0.47

BGRL 82.7 ± 0.6 71.1 ± 0.8 79.6 ± 0.5 92.80 ± 0.08 88.23 ± 0.11
GMI 82.4 ± 0.6 71.7 ± 0.2 79.3 ± 1.0 90.73 ± 0.24 84.22 ± 0.52

SUGRL 83.4 ± 0.5 73.0 ± 0.4 81.9 ± 0.3 93.07 ± 0.15 88.93 ± 0.21
AFGRL 79.8 ± 0.2 69.4 ± 0.2 80.0 ± 0.1 92.71 ± 0.23 88.12 ± 0.27
COSTA 82.2 ± 0.2 70.7 ± 0.5 80.4 ± 0.3 92.43 ± 0.38 88.37 ± 0.22
MVGRL 82.9 ± 0.6 72.6 ± 0.5 79.8 ± 0.5 91.66 ± 0.42 87.07 ± 0.63

CCA-SSG 84.0 ± 0.4 73.1 ± 0.3 81.0 ± 0.4 92.84 ± 0.18 88.27 ± 0.32
GRACE 81.5 ± 0.3 70.6 ± 0.5 80.2 ± 0.3 92.15 ± 0.24 86.25 ± 0.25

GCA 81.4 ± 0.3 70.4 ± 0.4 80.7 ± 0.5 92.53 ± 0.16 87.80 ± 0.23
ProGCL 81.2 ± 0.4 69.8 ± 0.5 79.2 ± 0.2 92.39 ± 0.11 87.43 ± 0.21
ARIEL 83.0 ± 1.3 71.1 ± 0.9 74.2 ± 0.8 91.80 ± 0.24 87.07 ± 0.33

HomoGCL 84.3 ± 0.5 72.3 ± 0.7 81.1 ± 0.3 92.92 ± 0.18 88.46 ± 0.20
SpCo 82.7 ± 0.6 71.3 ± 0.8 81.0 ± 0.4 92.74 ± 0.17 88.14 ± 0.28

MDGCL 84.6 ± 0.5 73.1 ± 0.5 82.3 ± 0.5 93.26 ± 0.28 89.14 ± 0.22

that HomoGCL arbitrarily designates non-neighboring nodes as negative samples, thereby introducing
false negative pairs.

• Our superior performance compared to ProGCL (Xia et al., 2021) demonstrates the effectiveness of our
framework in generating distinguishable distributions for false and true negatives.

• Among augmentation-free methods such as GMI (Peng et al., 2020), SUGRL (Mo et al., 2022) and AFGRL
(Lee et al., 2021), SUGRL stands out with its competitive performance. While it almost outperforms all
other augmentation-based frameworks, it falls short only to our MDGCL. The result indicates that data
augmentation remains necessary in GCL, but we need to adopt debiased framework to learn better node
representations.

5.3 Results on Large-Scale OGB Dataset

To show that the scalability of the proposed framework, we also conduct an experiment on a large-scale
dataset ogbn-arxiv from OGB benchmark (Hu et al., 2021). Following (Hu et al., 2021), we extend the
backbone GNN encoder to 3 GCN layers, we report the classification accuracy on both the validation and
test sets, which is a convention for this task. The results are shown in Table 3. The results show our
framework outperforms all other unsupervised learning methods, which demonstrates the effectiveness and
scalability of the proposed method.

5.4 Distributions Comparison

To answer RQ2, in this subsection, we show empirical results of how distributions of false and true negative
samples shift when incorporating the knowledge of model discrepancy with our strategy. The results are
shown in Figure 5. Similar to Section III-B, our experiment initially involves pretraining both f and g,
followed by the computation of the similarity scores 1

2 (sf
ik + sg

ik) displayed on the left side of each subfigure.
On the right side of each subfigure, we present values obtained by multiplying these similarity scores by
(1 − dik), denoted as 1

2 (sf
ik + sg

ik) · (1 − dik). From the figure, we can observe that our strategy of combining
model discrepancy with similarity results in a reduced overlap between false negatives and true negatives.
This is advantageous for the task of distinguishing false negatives from true negatives efficiently.
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Table 3: Node classification results on ogbn-arXiv dataset (accuracy(%)±std). OOM indicates out-of-
memory.

Model Validation Test
MLP 57.65±0.12 55.50±0.23
GCN 73.00±0.17 71.74±0.29
GraphSAGE 72.77±0.16 71.49±0.27
Random-Init 69.90±0.11 68.94±0.15
DGI 71.26±0.11 70.34±0.16
GRACE full-graph OOM OOM
GRACE-Subsampling (k=2) 60.49±3.72 60.24±4.06
GRACE-Subsampling (k=8) 71.30±0.17 70.33±0.18
GRACE-Subsampling (k=2048) 72.61±0.15 71.51±0.11
ProGCL 72.45±0.21 72.18±0.09
BGRL 72.53±0.09 71.64±0.12
HomoGCL 72.85±0.10 72.22±0.15
MDGCL 72.93±0.12 72.33±0.13

Figure 5: Comparison of distributions using solely similarity and combining the knowledge of similarity and
discrepancy on (a) Cora and (b) citepseer.

5.5 Ability of Selecting False Negatives

To show that the proposed framework can effectively mitigate sampling bias, in this subsection, we conduct
experiments to quantify the percentage of false negatives sampled with Equation 7, which answers RQ3.
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Figure 6: Case study on the percentage of selected false negatives on (a) Cora and (b) CiteSeer.

Specifically, we first train our model then calculate the percentage of false negatives using the ground-
truth labels. Note that the labels are not used during model training but are only used when calculating
percentage of false negatives. We compare our method with the approach used in ProGCL (Xia et al., 2021),
which exclusively relies on similarity as the indicator for distinguishing false negatives from true negatives.
The results are shown in Figure 6. From the figure, we can observe that, when combining the measure of
discrepancy with similarity, our framework consistently samples a higher percentage of false negatives. This
increase in the proportion of false negatives enhances the effectiveness of our debiased objective function in
Equation 9, effectively bringing false negative samples with the same ground-truth label closer to the anchor.

5.6 Ablation Study

In this section, we conduct ablation study to understand the contribution of each component of MDGCL.
We compare the performance of our MDGCL with (i) MDGCL/M: MDGCL without model discrepancy
as additional knowledge for beta distribution estimation; and (ii) MDGCL/D: MDGCL without debiased
objective function but adopt the loss function in Eq. (10) in ProGCL (Xia et al., 2021). We only show the
results on Cora and Pubmed as similar trends are observed on other datasets. The results are presented in
Fig. 7. From this figure, we observe that: (i) Consistently, MDGCL outperforms MDGCL/D, underscoring
the effectiveness of the strategy of bringing false negative samples closer to the anchor. This approach proves
more successful than assigning lower weights to push them away from the anchor; (ii) MDGCL/D consistently
outperforms MDGCL/M, highlighting that a more distinguishable distribution forms the foundation of our
framework. This distinction is crucial because, without a discernible distribution, a significant portion of
true negatives might inadvertently be selected to be drawn closer to the anchor, potentially introducing
other noise into the process; and (iii) MDGCL consistently outperforms both MDGCL/M and MDGCL/D,
confirming that our approach of generating a discernible distribution and designing a denoising objective
function is indeed sound.

5.7 Hyperparameter Sensitivity Analysis

In this section, we conduct experiments to show how the negative sample selection threshold θ impacts the
performance of MDGCL. We vary the values of θ as {0.75, 0.8, 0.85, 0.9, 0.95} for both Cora and Pubmed.
We run experiments for each parameter five times and report the mean accuracy in Table 4. We have
observed the followings: (1) To filter out false negative samples while preserving true negative samples, it is
recommended to set θ ∈ [0.85, 0.95]. (2) When θ ≥ 0.85, our MDGCL typically achieves high performance,
which eases hyperparameter tuning.
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(a) Cora (b) Pubmed
Figure 7: Ablation Study on (a) Cora and (b) PubMed.

5.8 Time Complexity Analysis

Our framework is easily parallelizable, as the message passing process is independent for each network f
and g. Consequently, the time complexity of MDGCL can be reduced to be the same as that of GRACE
(Zhu et al., 2021). This proves that MDGCL has great potential in conducting scalable graph contrastive
learning.

Table 4: Node classification results (accuracy(%)±std) for Hyperparameter Sensitivity Analysis.

0.75 0.80 0.85 0.90 0.95
Cora 83.2 83.6 84.1 84.6 84.3

Pubmed 80.7 81.2 81.7 82.3 81.7

6 Conclusion

In this paper, we introduce a novel debiased graph contrastive learning framework aimed at mitigating the
prevalent issue of sampling bias. Central to our approach is the incorporation of model discrepancy, which
facilitates the generation of a more distinct distribution between false and true negative samples. This en-
hancement significantly improves our capacity to identify false negatives. Furthermore, we have developed a
unique loss objective that effectively draws false negatives towards the anchor while simultaneously repelling
true negatives. Through comprehensive experiments, our framework has demonstrated superior performance
in downstream node classification tasks, outperforming current state-of-the-art methods in terms of accu-
racy.
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A Baselines

• GCN (Kipf & Welling, 2016a), GAT (Veličković et al., 2017), GraphSAGE (Hamilton et al., 2018): GCN,
GAT, GraphSAGE are three popular supervised GNNs.

• GAE/VGAE (Kipf & Welling, 2016b): GAE and VGAE are graph autoencoders that learn node em-
beddings via vallina/variational autoencoders. Both the encoder and the decoder are implemented with
graph convolutional network.

• DGI (Veličković et al., 2019): It maximizes the mutual information between patch representations and
corresponding high-level summaries of graphs obtained from graph convolutional network.

• GMI (Peng et al., 2020): GMI applies cross-layer node contrasting and edge contrasting. It also generalizes
the idea of conventional mutual information computations to the graph domain.

• MVGRL (Hassani & Khasahmadi, 2020a): MVGRL maximizes the mutual information be- tween the
cross-view representations of nodes and graphs using graph diffusion.

• BGRL (Thakoor et al., 2021a): BGRL adopts asymmetrical structure to do the node-node level contrast
without negative samples to avoid quadratic bottleneck.

• AFGRL (Lee et al., 2021): It extends BGRL by generating an alternative view of a graph by discovering
nodes that share the local structural information and global semantics with the graph.

• CCA-SSG (Zhang et al., 2021): CCA-SSG leverages classical Canonical Correlation Analysis to construct
feature-level objective which can discard augmentation-variant information and prevent degenerated so-
lutions.

• COSTA (Zhang et al., 2022b): COSTA alleviates the highly biased node embedding obtained via graph
augmentation by performing feature augmentation.

• GRACE (Zhu et al., 2020): It adopts SimCLR which performs graph augmentation on the input graph
and considers node-node level contrast on both inter-view and intra-view levels.

• GCA (Zhu et al., 2021): GCA extends GRACE by considering adaptive graph augmentations based on
degree centrality, eigenvector centrality, and PageRank centrality.

• ProGCL (Xia et al., 2021): ProGCL extends GRACE by leveraging hard negative samples via Expectation
Maximization to fit the observed node-level similarity distribution.

• ARIEL (Feng et al., 2022): It extends GRACE by introducing an adversarial graph view and an infor-
mation regularizer to extract informative contrastive samples within a reasonable constraint.

• SUGRL (Mo et al., 2022): SUGRL uses multiplet loss to boost interclass variation by integrating structural
and neighbor information. It also adds an upper bound loss to limit the distance between positive and
anchor embeddings, thereby reducing intra-class variation.

• SpCo (Liu et al., 2022): It optimizes the contrastive pair with the original adjacency matrix and elevates
augmented graph’s high frequency while preserving its original low frequency structure.

• HomoGCL (Li et al., 2023): It is a model-agnostic framework that enhances the positive set with significant
neighbor nodes.

B Datasets

• Cora, CiteSeer, and PubMed (Yang et al., 2016): They are citation networks where nodes denote
papers, and edges depict citation relationships. In Cora and CiteSeer, each node is described using
a binary word vector, indicating the presence or absence of a corresponding word from a predefined
dictionary. In contrast, PubMed employs a TF/IDF weighted word vector for each node. For all three
datasets, nodes are categorized based on their respective research areas.
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• Amazon-Photo and Amazon-Computers (McAuley et al., 2015): In these networks, nodes correspond
to products, and edges indicate co-purchase instances. Each node is characterized by a raw bag-of-words
feature, which encodes product reviews, and is labeled according to its product category.

• ogbn-arXiv (Hu et al., 2021): It is a citation network encompassing all Computer Science arXiv papers
cataloged in the Microsoft Academic Graph. Each node is characterized by a 128-dimensional feature
vector, which is derived by averaging the skipgram word embeddings present in its title and abstract.
Additionally, the nodes are categorized based on their respective research areas.
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