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Abstract

Fine-tuning is the primary methodology for001
tailoring pre-trained large language models to002
specific tasks. As the model’s scale and the003
diversity of tasks expand, parameter-efficient004
fine-tuning methods are of paramount impor-005
tance. One of the most widely used family of006
methods is low-rank adaptation (LoRA) and its007
variants. LoRA encodes weight update as the008
product of two low-rank matrices. Despite its009
advantages, LoRA falls short of full-parameter010
fine-tuning in terms of generalization error for011
certain tasks.012

We introduce Chain of LoRA (COLA), an iter-013
ative optimization framework inspired by the014
Frank-Wolfe algorithm, to bridge the gap be-015
tween LoRA and full parameter fine-tuning,016
without incurring additional computational017
costs or memory overheads. COLA employs018
a residual learning procedure where it merges019
learned LoRA modules into the pre-trained lan-020
guage model parameters and re-initialize opti-021
mization for new born LoRA modules. We pro-022
vide theoretical convergence guarantees as well023
as empirical results to validate the effective-024
ness of our algorithm. Across various models025
(OPT and Llama-2) and 11 benchmarking tasks,026
we demonstrate that COLA can consistently027
outperform LoRA without additional computa-028
tional or memory costs.029

1 Introduction030

Pre-trained language models have become instru-031

mental in natural language processing, demonstrat-032

ing remarkable performance across various fields.033

Large language model fine-tuning is a process for034

adapting pre-trained models to specific tasks, al-035

lowing for improved performance on various real-036

world applications, such as machine translation and037

code analysis (Lewis et al., 2019; Wang et al., 2021;038

Qin et al., 2023). Despite the notable benefits of039

full parameter fine-tuning, the computational ex-040

penses and memory requirements it entails present041

significant challenges, particularly in light of the 042

ever-growing size of large language models. 043

For this reason, parameter efficient fine-tuning 044

(PEFT) methods have received significant atten- 045

tion (Pfeiffer et al., 2020; He et al., 2021). Instead 046

of adjusting all the parameters of the model, PEFT 047

involves fewer adjustments to the original model 048

parameters to specialize its knowledge for a partic- 049

ular application (Houlsby et al., 2019; Lester et al., 050

2021). One of the most widely used paradigms in 051

parameter efficient fine-tuning is Low-Rank Adap- 052

tation (LoRA) (Hu et al., 2021). LoRA focuses on 053

modifying only a small, low-rank portion of the 054

model’s weights. This is achieved by adding low- 055

rank matrices to the weights of the model during 056

training. The advantage of LoRA is that it signifi- 057

cantly reduces the computational burden and time 058

required for fine-tuning, making it more efficient 059

and scalable, especially for very large models. De- 060

spite the significant computational advantage of 061

LoRA, it is inferior to full parameter fine-tuning in 062

terms of generalization error. 063

In this paper we investigate whether the general- 064

ization error gap between LoRA and full parameter 065

fine-tuning can be reduced albeit preserving the 066

computational efficiency. We do this by learning a 067

higher rank augmentation of the LLM weights by 068

the method of residual learning. The high-rank aug- 069

mentation is composed of several low-rank struc- 070

tures. Namely, we use an iterative procedure to 071

learn a low-rank addition to the existing approx- 072

imation, thereby increasing its rank. Hence, we 073

call the procedure “Chain of LoRA”, or COLA for 074

short. 075

This residual learning method is inspired by the 076

Frank-Wolfe algorithm as applied to matrix com- 077

pletion, which augments an existing completion 078

by a rank one addition. Over many iterations, this 079

residual learning procedure can be shown to pro- 080

duce an accurate higher rank completion. 081

Our contributions 082
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• We present an iterative optimization frame-083

work, COLA, for parameter-efficient fine-084

tuning. COLA is based on the Frank Wolfe085

method from mathematical optimization, and086

we formalize this relationship.087

• We demonstrate the effectiveness of COLA088

via extensive experiments across datasets and089

models. COLA consistently outperforms090

LoRA in terms of generalization error with091

no additional cost of computation. For exam-092

ple, fine-tuning OPT-1.3B with COLA brings093

a relative 6.47% test accuracy gain to LoRA094

on WSC. Llama2-7B experiments show up to095

4.36% relative test score improvement.096

• We provide theoretical analyses of the itera-097

tive learning framework employed in our pro-098

posed method, demonstrating the convergence099

to stationary points in the setting of smooth100

nonconvex optimization.101

2 Related Work102

Conventional full-parameter fine-tuning becomes103

computationally impractical as both model size104

and the number of downstream tasks increase. In105

response to this challenge, recent advancements106

in parameter-efficient finetuning methods suggest107

modifying only a small portion of parameters while108

maintaining the majority of pre-trained model pa-109

rameters unchanged.110

Adapter based methods Within this domain,111

a line of research known as adapter-based ap-112

proach involves inserting compact adapter mod-113

ules between transformer layers. Throughout the114

fine-tuning process, only the newly introduced115

lightweight adapters are trained, while the pre-116

trained model remains frozen and shared across117

tasks, thus significantly enhancing the practicality118

and efficiency of adapting large models to diverse119

tasks. Houlsby et al. (2019) propose a new bottle-120

neck adapter module and position it twice within121

each transformer layer (Vaswani et al., 2017). The122

adapter employs a bottleneck architecture, incorpo-123

rating a skip connection to effectively constrain the124

number of parameters involved in the module de-125

sign. Variant adapter architecture and placements126

are proposed in concurrent work (Bapna and Fi-127

rat, 2019; Stickland and Murray, 2019). Build-128

ing upon the success of adapter-based approaches129

for single-task adaptation, subsequent studies ex-130

tend the adapter-based architecture to the realm131

of multi-task learning scenarios (Mahabadi et al., 132

2021). AdapterFusion proposes a two-stage learn- 133

ing framework where task-specific adapters are 134

learned and then later combined in a separate 135

knowledge composition step (Pfeiffer et al., 2020). 136

Prefix tuning methods Alternative research in- 137

vestigates the incorporation of tunable parameters 138

into both the input and hidden layers, as explored 139

by Li and Liang (2021). These lightweight task- 140

specific vectors, commonly referred to as the pre- 141

fix, offer a notable reduction in the memory load 142

required for storing task-specific models. Addition- 143

ally, they outperform full fine-tuning, particularly 144

in scenarios with limited data availability. Efficient 145

prompt tuning further simplifies prefix tuning by 146

concatenating a trainable tensor (“soft prompt”) 147

with the model’s input embeddings (Lester et al., 148

2021). These “soft prompts” are learned through 149

backpropagation to perform downstream tasks. 150

LoRA and its variants The most closely re- 151

lated work to ours is LoRA (Hu et al., 2021), 152

which introduces trainable low-rank matrices to 153

approximate weight updates during fine-tuning. 154

Building on LoRA, numerous recent studies have 155

explored its variants from different perspectives. 156

QLoRA (Dettmers et al., 2023) further leverages 157

4-bit quantization to effectively and efficiently fine- 158

tune LLMs. To enhance parameter efficiency, Tied- 159

LoRA, introduced by Renduchintala et al. (2023), 160

incorporates weight tying and selective training. 161

Chen et al. (2023) propose LongLoRA to extend 162

the context sizes of LLMs with limited computation 163

cost. MultiLoRA (Wang et al., 2023) is designed 164

specifically for better multi-task adaptation. Con- 165

currently, Sheng et al. (2023) introduce S-LoRA, 166

offering a framework that enhances the scalable 167

serving of multiple LoRA adapters. Lialin et al. 168

(2023) 1 explores pre-training with multiple stages 169

of low-rank matrices to facilitate efficiency. 170

Optimization for fine-tuning LLMs has special 171

challenges, notably memory constraints. For this 172

reason, zero-order optimization methods were pro- 173

posed (Malladi et al., 2023). 174

3 Our Method 175

In this section we describe our method for fine- 176

tuning. It is divided into two parts, in the first we 177

present necessary background for our exposition, 178

and the second gives details of COLA. 179

1this is independent and concurrent work to our paper.
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Figure 1: An illustration of Chain of LoRA. Our approach starts with a frozen LLM, and learns a sequence of
low-rank matrices to approximate a high-rank augmentation to perform task adaptation. As shown in the dashed
line box, each residual learning procedure consists of three steps: (1) LoRA Tuning, (2) Tie a knot, and (3) Extend
the chain. In step 1, low-rank LoRA modules are fine-tuned, In step 2, the learned LoRA weights are merged into
the frozen model. In step 3, a new LoRA module is instantiated and the optimizer state is reset. These three steps
are repeated in this residual learning paradigm.

3.1 Preliminaries180

Low Rank Adaptation (LoRA) LoRA (Hu et al.,181

2021) aims to improve the efficiency of fine-182

tuning large language models by training much183

smaller low-rank decomposition matrices of certain184

weights. It hypothesizes a low “intrinsic rank” of185

weight updates at task adaptation and injects train-186

able low-rank decomposition matrices into each187

layer of the Transformer architecture. Consider a188

weight matrix Wfrozen from the pre-trained model,189

the weight update ∆W for task adaptation is rep-190

resented with a low-rank decomposition BA. The191

forward pass with LoRA is as follows:192

Wfrozenx+∆Wx = Wfrozenx+BAx,193

where Wfrozen,∆W ∈ Rd×k, A ∈ Rr×k, B ∈194

Rd×r and r ≪ min(d, k). During training,195

Wfrozen is frozen and only B, A are optimized.196

At deployment, the learned low-rank matrices can197

merge with the frozen pre-trained model weights.198

Frank-Wolfe The Frank-Wolfe method, also199

known as the conditional gradient method, is an200

optimization algorithm for solving constrained con-201

vex, and more recently nonconvex, optimization202

problems. The key feature of the Frank-Wolfe 203

method is how it handles the constraints. Instead 204

of projecting onto the constraint set via projections, 205

it uses a linear optimization oracle. Iteratively, the 206

method finds a linear approximation of the objec- 207

tive function within the feasible region and moves 208

towards the minimizer of this approximation. 209

The Frank-Wolfe algorithm is particularly suited 210

for problems in which linear optimization is eas- 211

ier than Euclidean projections. For this reason, 212

“projection free" methods were considered in the 213

machine learning community (Hazan, 2008; Jaggi, 214

2013; Hazan and Kale, 2012; Garber and Hazan, 215

2016). More recently nonconvex optimization 216

was considered using the Frank Wolfe method in 217

Lacoste-Julien (2016); Reddi et al. (2016). 218

3.2 Chain of LoRA 219

In this section we give the details of our optimiza- 220

tion framework. The key idea of our method is to 221

form a chain (sequence) of LoRAs and iteratively 222

learn the low-rank adaptation LoRA modules. As 223

illustrated in Figure 1, our method is comprised of 224

three stages: Tune LoRA, Tie a knot, Extend the 225

chain. We first introduce notations, followed by an 226

explanation of the three stages in the workflow. We 227
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also provide the detailed step-by-step procedure in228

Algorithm 1.229

Algorithm 1 Chain of LoRA (COLA)
1: Input: frozen pre-trained weights W , chain

knots {τ1, . . . , τm}, fine-tuning dataset D,
training objective L, total training iterations
T.

2: Initialize LoRA parameters to A0, B0

3: for t = 1, . . . , T do
4: Sample minibatch Bt ⊂ D
5: if t ∈ {τ1, . . . , τm} then
6: Tie knot: Merge LoRA to backbone

weights W = W +BtAt

7: Extend chain: Re-initialize LoRA pa-
rameters At = A0, Bt = B0 and opti-
mizer states

8: end if
9: forward pass with LoRA

10: backward pass and update LoRA parameters

(At, Bt) = (At−1, Bt−1)−ηt∗∇̂A,BL(W )

11: end for

For a pre-trained LLM weight matrix230

Wpretrained ∈ Rd×k, we denote the weights231

update occurred during fine-tuning as ∆W . Ideal232

adaptation yields the optimal weights W ⋆ tailored233

for the given task and the corresponding optimal234

weight update ∆W ⋆, as shown below.235

W ⋆ = Wpretrained +∆W ⋆236

In COLA, we propose to approximate ∆W ⋆237

with a chain (basically a sequence) of low-rank ma-238

trix decompositions {(A1, B1), . . . , (AM , BM )},239

where Ai ∈ Rri×k, Bi ∈ Rd×ri and ri ≪240

min(d, k) for 1 ≤ i ≤ M . Each low-rank tuple241

(Ai, Bi) is obtained by optimizing242

arg min
BiAi

L(Wpretrained +
i∑

j=1

BjAj),243

where L is the task-specific objective function.244

COLA follows an iterative residual learning245

paradigm. Fine-tuning each (Ai, Bi) can be246

viewed as learning the residual of ∆W ⋆ −247 ∑i−1
j=1BjAj , which is an easier optimization prob-248

lem compared to learning ∆W ⋆ from scratch. We249

hypothesize that
∑M

i=1BiAi approximates ∆W ⋆250

better than a single LoRA update BA, and we de-251

sign a chaining framework to achieve this with less252

computation compared to the baseline LoRA.253

COLA forms a chain of LoRAs by iteratively 254

tuning, merging, and extending LoRA modules, as 255

depicted in Figure 1. We denote the length of the 256

chain in COLA as the number of residual LoRA 257

modules optimized. For COLA with a chain length 258

of M, the three sub-steps in Figure 1 are repeated 259

M times. Below we describe the three sub-steps in 260

detail. 261

Tune LoRA In this step, we perform standard 262

LoRA tuning, i.e., learning only the A and B ma- 263

trices and leaving all other model parameters un- 264

touched. At initialization of COLA, this step learns 265

LoRA modules (A1, B1) on top of the frozen pre- 266

trained LLM weights Wpretrained. After the initial 267

phase of COLA, the LoRA modules (Ai, Bi) are 268

fine-tuned on top of fixed model weights incorpo- 269

rated with previously learned LoRAs’ weights. The 270

fixed model weights at the i-th iteration of COLA 271

is Wpretrained +
∑i−1

j=1BjAj . 272

Tie a knot After the current LoRA modules 273

(Ai, Bi) are trained, we merge them into the previ- 274

ously frozen LLM weights and we refer to this 275

step as "tie a knot". This way, we incorporate 276

the weight update, approximated by BiAi, into 277

the frozen model weights. The resulting frozen 278

model weights becomes Wpretrained+
∑i

j=1BjAj . 279

This allows learning only the residual information 280

∆W ⋆ −
∑i

j=1BjAj for the next iteration. Addi- 281

tionally, merging the LoRA modules into the frozen 282

LLM helps reduce memory burden under limited re- 283

source scenarios. Instead of storing a list of LoRA 284

modules introduced in the COLA, merging them to 285

the frozen model weights in a running fashion helps 286

keep the GPU memory consumption the same as 287

training LoRA only once. 288

Extend the chain We extend the COLA chain 289

by re-initializing a new set of LoRA module 290

(Ai+1, Bi+1) to learn the residual weights update 291

needed to adapt the LLM to certain task. In this 292

step, the newly introduced Ai+1 adopts Gaussian 293

initialization and Bi+1 is initialized to zero, follow- 294

ing Hu et al. (2021). Additionally, we reset all 295

of the optimizer states, including but not limited 296

to the parameters to be optimized and the gradient 297

history. 298

4 Convergence of COLA and the 299

Non-convex Frank-Wolfe method 300

The COLA algorithm described in Figure 1 is mo- 301

tivated by and closely related to the Frank Wolfe 302
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algorithm (Frank et al., 1956). To see this, notice303

that COLA is an iterative algorithm whose itera-304

tions are succinctly described by the equation305

W ←W + argmin
BA
L(W +BA).306

Taking the linear Taylor approximation we can307

write308

L(W +BA) ≈ L(W ) +∇L(W )×BA,309

and thus, a constrained minimization over a set310

K ⊆ Rd can be seen to be approximately311

arg min
BA∈K

L(W+BA) ≈ arg min
BA∈K

∇L(W )×BA.312

This is reminiscent of the Frank-Wolfe algorithm,313

which was historically developed in the context314

of linear programming. Below we analyze a vari-315

ant of the Frank Wolfe algorithm for stochastic316

non-convex smooth optimization. The algorithm317

pseudo-code is given in Algorithm 2, and it is writ-318

ten in COLA notations as an application to fine319

tuning of LLM. The stochasticity is captured in320

equation (1), where it is assumed that the direction321

of the gradient is approximated up to ε using a322

stochastic gradient method.323

Algorithm 2 Idealized COLA

Input: step sizes {ηt ∈ (0, 1], t ∈ [T ]}, initial
W1 ∈ K.
for t = 1 to T do

Approximate via stochastic optimization

Vt ∈ε arg min
W∈K

{
W⊤∇L(Wt)

}
(1)

Wt+1 ←Wt + ηt(Vt −Wt).
end for

Specifically, we assume that COLA performs324

gradient updates such that after every epoch we325

have that326

V⊤
t ∇L(Wt) ≤ arg min

W∈K

{
W⊤∇L(Wt)

}
+ ε.327

Notice that we have replaced the low rank matrices328

A,B with a single matrix W . This deviates from329

the exact specification of COLA, but can be justi-330

fied according to the following intuition. Linear331

optimization over the trace norm ball results in a332

rank one solution, as shown in the context of the333

Frank Wolfe method in Hazan (2008); Allen-Zhu334

et al. (2017). In COLA, we perform non-convex 335

optimization over A,B directly, and their rank can 336

be larger than one. 337

Below we give an analysis of this algorithm
which incorporates the stochastic approximation of
the iterates At, Bt. Henceforth, let ht = L(Wt)−
L(W ∗), and

gt ≜

{
max
V∈K
∇L(Wt)

⊤(V −Wt)

}
.

The latter quantity is a metric of convergence 338

in non-convex optimization, which is sometimes 339

called the Frank-Wolfe gap. Notice that gt is zero 340

if and only if the projected gradient of L at Wt is 341

zero. 342

The following theorem establishes that Algo- 343

rithm 2 guarantees average duality gap approaching 344

zero for stochastic smooth non-convex optimiza- 345

tion, as long as the distribution shift is bounded 346

sublinearly with time. 347

Theorem 4.1. Algorithm 2 applied to a sequence
of stochastic gradients of β-smooth non-convex
functions that are bounded in K by M , with step
sizes ηt =

√
M

D
√
βT

attains the following convergence
guarantee

1

T

T∑
t=1

gt ≤
2
√
MβD√
T

+ ε

Proof. We denote ∇t = ∇L(Wt). For any set of 348

step sizes, we have 349

ht+1 = L(Wt+1)− L(W ⋆) 350

= L(Wt + ηt(Vt −Wt))− L(W ⋆) 351

≤ L(Wt)− L(W ⋆) + ηt(Vt −Wt)
⊤∇t 352

+η2t
β
2 ∥Vt −Wt∥2 smoothness 353

≤ L(Wt)− L(W ⋆) + ηt(Vt −Wt)
⊤∇t 354

+η2t
β
2D

2 355

≤ ht + ηt(gt + ε) + η2t
βD2

2 . Vt choice. 356

Here we denoted by D the diameter of the set K. 357

We reached the equation gt+ε ≤ ht−ht+1

ηt
+ηt

βD2

2 . 358

Summing up over all iterations and normalizing we 359

get , 360

1

T

T∑
t=1

gt + ε ≤ h0−hT
ηT + ηβD2 361

≤ M
ηT + ηβD2 362

≤ 2
√
MβD√
T

, 363

which implies the Theorem. 364
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Task SST-2 WSC CB WIC BoolQ MultiRC RTE DROP SQuAD COPA ReCoRD

LoRA 93.16 56.53 75.35 63.47 70.70 68.94 72.49 30.89 83.23 75.80 70.80
COLA (ours) 93.32 60.19 76.42 64.26 72.08 70.63 74.15 31.49 83.56 76.80 71.02
relative gains 0.17% 6.47% 1.42% 1.24% 1.95% 2.45% 2.29% 1.94% 0.39% 1.31% 0.31%

Finetune 93.33 60.00 72.50 62.73 68.44 70.36 71.62 31.34 83.07 77.50 72.14

Table 1: Experiments on OPT-1.3B with 1,000 test examples over various tasks. Task performance is reported after
averaging over five random seeds. COLA consistently outperforms LoRA across all tasks.

5 Experimental Setup365

In this section, we initially outline the tasks and366

models, followed by an introduction to the methods367

under comparison in our study. Finally, we provide368

details on the implementation.369

5.1 Models and Tasks370

Models We experiment with OPT-1.3B (Zhang371

et al., 2022) and Llama2-7B (Touvron et al., 2023).372

We use the pre-trained checkpoints from Hugging-373

Face for both models.374

Datasets We evaluate the effectiveness of our375

method and compare it with the LoRA baseline376

on task adaptation across classification, multiple-377

choice, and generation tasks. Following the bench-378

mark selection in Malladi et al. (2023), we use SST-379

2, WSC, CB, WIC, BoolQ, MultiRC, and RTE for380

classification tasks. For multiple-choice tasks, we381

evaluate on COPA and ReCoRD. For generation382

tasks, we use DROP and SQuAD.383

Methods Compared We compare COLA with384

LoRA and full parameter fine-tuning. For Llama2-385

7B experiments, we also add in-context learning386

(ICL) and 0-shot performance.387

5.2 Implementation Details388

We implemented our method with the PyTorch and389

Transformers library (Wolf et al., 2020). All ex-390

periments are carried out on NVIDIA A100 (80G)391

GPU.392

For comprehensive experimental details, includ-393

ing information on the dataset, hyperparameters394

and LoRA implementations, please refer to Ap-395

pendix A.1.396

6 Results and analysis397

6.1 Main Results398

We report the test performance of our method and399

baseline across various tasks in this section. The400

experiment results on OPT-1.3B are detailed in Ta- 401

ble 1, and the results for Llama2-7B are provided in 402

Table 2. Notably, our method consistently outper- 403

forms LoRA on all datasets under the same training 404

budget and inference cost, showcasing its superior 405

performance. 406

Specifically, for OPT-1.3B experiments, COLA 407

brings a performance boost to LoRA by 3.66 (rel- 408

ative improvement of 6.47%), 1.38 (relative im- 409

provement of 1.95%), 1.66 (relative improvement 410

of 2.29 %) on tasks WSC, BoolQ and RTE, re- 411

spectively. For Llama2-7B experiments, COLA 412

boosts the test score on WSC from 57.30 to 59.80, 413

which corresponds to a 2.5 gain and 4.36% relative 414

improvement. 415

In our reported results, as detailed in Table 1 416

and Table 2, we maintain consistency by setting 417

the rank of all injected modules in the sequence to 418

8, aligning with the baseline LoRA setup. Addi- 419

tionally, we use an equal training epoch budget for 420

different methods and thus ensuring the same train- 421

ing computation cost, as explained in Appendix 422

A.5. 423

6.2 Ablation Study 424

Different number of LoRAs in the chain As de- 425

scribed in Section 3.2, COLA consists of repeated 426

iterations of LoRA tuning and merging. We de- 427

note the length of COLA as the number of LoRAs 428

learned and merged in the fine-tuning process. To 429

investigate the effect of the chain length of COLA 430

on task adaptation performance, we further con- 431

duct experiments by varying the length of COLA. 432

Specifically, we studied chain length of 1, 2, 3 and 433

present the findings in Table 3 and Figure 2. In 434

Figure 2, test score refers to test accuracy for tasks 435

WSC, CB, Copa, MultiRC and RTE. For SQuAD, 436

test score specifically denotes the f1 score. 437

Here, chain length of 1 corresponds to the base- 438

line LoRA fine-tuning. All experiments are con- 439

ducted with a total of 5 training epochs. For exam- 440

ple, in COLA experiments with chain length of 2, 441
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Task WSC CB RTE Copa SQuAD

LoRA 57.30 91.78 85.70 84.59 90.66
COLA (ours) 59.80 93.21 86.21 85.60 90.76
relative improvement 4.36% 1.56% 0.59% 1.19% 0.11%

Finetune 62.30 90.35 86.35 86.40 91.19
ICL 62.50 82.14 72.56 91.00 86.81
0-shot 36.53 32.14 62.09 79.00 55.84

Table 2: Experiments on Llama2-7B with 1,000 test examples over various tasks. Task performance is reported after
averaging over five random seeds. COLA consistently outperforms LoRA across all tasks.

WSC SQuAD MultiRC

length = 1 56.53 (± 7.67) 83.23 (± 1.42) 68.94 (± 3.06)
length = 2 59.81 (± 4.10) 83.28 (± 1.35) 69.44 (± 1.55)
length = 3 60.19 (± 3.77) 83.55 (± 0.80) 70.63 (± 2.12)

CB Copa RTE

length = 1 75.35 (± 4.84) 75.8 (± 2.40) 72.49 (± 2.39)
length = 2 76.78 (± 6.38) 76.8 (± 1.83) 72.63 (± 1.46)
length = 3 76.42 (± 4.97) 76.8 (± 1.60) 74.15 (± 1.36)

Table 3: Evaluation of COLA with varying chain length.
Test score across tasks is reported using 5 random seeds
and is presented in the “average (± standard deviation)”
format. The highest average performance for each task
is highlighted in bold.

the first LoRA training phase lasts from epoch 1 to442

epoch 3. After the first LoRA module merges with443

the pre-trained LLM weights and optimizer states444

reinitialize, the second LoRA starts from epoch 4 to445

epoch 5, which in total uses the same 5 total train-446

ing epochs. All experiments results are reported447

over five random seeds.448

As shown in Figure 2, there is a growing trend of449

test accuracy as the chain length increases across450

tasks. This is consistent with our hypothesis that451

residual learning of LoRA modules will lead to a452

better approximation of the optimal weight update453

to the fixed pre-trained LLM for task adaptation.454

For a majority of tasks, COLA is more robust in455

terms of generalization error compared to baseline456

LoRA, as shown by COLA’s smaller standard devi-457

ations.458

Different base optimizer We conduct experi-459

ments on the COLA framework with different base460

optimizers to show its effectiveness. We consider461

swapping the default AdamW optimizer with the462

SGD and AdaGrad (Duchi et al., 2011) optimizer.463

This ablation study is conducted on OPT-1.3B fol-464

lowing the same experiment setup in Appendix A.1.465

Figure 2: Test performance of COLA with varying chain
length across tasks. Results are reported after averaging
five different seeds and the shaded area corresponds to
standard deviation. The general trend is that the test
accuracy increases with the chain length.

We report the average test score over five random 466

seeds in Table 5. For both SGD and AdaGrad as 467

the base optimizer, COLA outperforms the baseline 468

LoRA across tasks, demonstrating the robustness 469

of our framework. 470

For fine-tuning with SGD, the learning rate grid 471

we searched is {2× 10−3, 5× 10−3, 1× 10−2, 2× 472

10−2, 5 × 10−2}. For Adagrad, we search learn- 473

ing rate from {1× 10−3, 8× 10−4, 5× 10−4, 1× 474

10−4, 5× 10−5}. 475

Rank step-down Since COLA operates on a 476

residual learning paradigm, we are interested in 477

exploring whether the residual weight updates can 478

be learned with even lower ranks. This could poten- 479

tially reduce the number of learnable parameters 480

and computational costs while maintaining satisfac- 481

tory test performance. Therefore, instead of using 482

a chain of LoRAs with a fixed rank of eight, as de- 483

scribed in Section 6.1, we conduct further studies 484

7



CB WSC WIC

Methods test score train FLOPs saved test score train FLOPs saved test score train FLOPs saved

LoRA 75.35 - 56.53 - 63.47 -

COLA (8, 8) 76.78 - 59.81 - 63.51
COLA (8, 6) 76.43 3.60×1011 58.26 4.28×1010 63.85 5.21×1011
COLA (8, 4) 75.35 7.20×1011 57.30 8.56×1010 64.04 1.04×1012
COLA (8, 2) 76.07 1.08×1012 57.30 1.28×1011 63.19 1.56×1012

Table 4: COLA rank step-down experiments. Test scores and train FLOPs saved compared to LoRA are reported.
Method COLA (r1, r2) indicates that the first iteration learns LoRAs with rank r1, and the second iteration learns
LoRAs with rank r2. All numbers are reported over five random seeds. COLA (8,8) uses the same amount of
training FLOPs as the baseline, as denoted by “-”.

WSC CB WIC Copa SQuAD

SGD LoRA 52.31 69.29 58.97 76.60 82.19
COLA (ours) 55.0 70.71 60.40 77.40 82.63

AdaGrad LoRA 56.73 69.29 63.42 76.60 83.09
COLA (ours) 61.92 73.21 64.23 76.60 83.24

Table 5: Experiments of COLA with different base
optimizers: SGD and AdaGrad.

on lowering the rank.485

Here, we consider a simple setting of COLA486

with length of two. We fix the rank to 8 for the487

first three epochs and set the rank for the remaining488

epochs to either 2, 4, 6, or 8. We show the results in489

Figure 3 and report the test performance in Table 4.490

Figure 3 shows that COLA with rank step-down491

outperforms LoRA with a fixed rank of 8 for all492

tasks (with the exception of one data point–WIC493

with rank 2). Thus COLA with rank step-down494

offers both superior generalization ability over stan-495

dard LoRA and lower computational cost. In ad-496

dition, our results indicate that the optimal rank to497

use for COLA is task-dependent. The CB and WSC498

tasks both benefit from higher rank LoRA modules499

in the second learning phase. The WIC task, on500

the other hand, surprisingly shows maximal test501

accuracy at a rank of 4 for (A2, B2).502

Computation comparison Table 4 provides a503

detailed comparison of the training computation504

cost between COLA of different rank step-down505

configurations and the baseline. We also include506

discussion on computational cost in Appendix A.5.507

The training FLOPs are obtained from the Hug-508

gingFace trainer state, and are reported as the ag-509

gregate over five random seeds. The baseline LoRA510

uses a fixed rank of 8 throughout training, while511

COLA starts with rank 8 and continues with dif-512

ferent ranks in the residual learning phase. As ex-513

Figure 3: COLA with rank step-down. Experiments are
conducted with COLA of length 2 where (A1, B1) has
a fixed rank of 8, and (A2, B2) rank is as shown in the
figure.

pected, stepping down the rank in the chain results 514

in higher FLOPs savings. Overall, COLA offers 515

lower generalization error with less compute. 516

Additional study We conduct additional abla- 517

tion studies on COLA, exploring low-resource and 518

large-scale settings, as well as the effects of aug- 519

mentation ranks. For detailed results, please see 520

Appendix A.2, A.3 and A.4. 521

7 Conclusions and future work 522

In this work, we introduce Chain of LoRA (COLA) 523

for efficient fine-tuning of large language mod- 524

els. The idea is to use an iterative low rank resid- 525

ual learning procedure to approximate the optimal 526

weight update needed for task adaptation. Exper- 527

imental results show that COLA consistently out- 528

performs LoRA albeit using the same, or less, com- 529

putational resources. 530

Future work may explore automating the selec- 531

tion of hyperparamters involved in the optimization 532

procedure such as the location to extend the COLA 533

chain and the learning rate schedule. For example, 534

one direction is to use the convergence behavior of 535

the loss to determine where and whether to intro- 536

duce additional LoRAs. 537

8



Limitations538

Due to the fine-tuning cost, we conduct experi-539

ments and evaluation on subsets of training, valida-540

tion and test data. For ablation study, we evaluate541

on representative tasks. Future work could involve542

investigating a wider variety of tasks.543
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A Appendix 698

A.1 Implementation Details 699

We adopt the experimental setup outlined in Mal- 700

ladi et al. (2023), where we randomly select 1000 701

examples for training, 500 for validation, and an- 702

other 1000 for testing across each dataset under 703

consideration. In COLA training, we use AdamW 704

(Loshchilov and Hutter, 2019) as the default base 705

optimizer and train for a total of 5 epochs. For a 706

fair comparison, we keep the total epoch number 707

consistent with our baseline. A linear learning rate 708

schedule is applied with the initial learning rate 709

selected from {1× 10−3, 8× 10−4, 5× 10−4, 1× 710

10−4, 5 × 10−5} for both COLA and LoRA ex- 711

periments. The batch size is set to 8 for OPT-1.3B 712

experiments and 4 for Llama2-7B experiments. For 713

the Llama2-7B full parameter fine-tuning baseline, 714

we report the best results by searching the learn- 715

ing rate from {1× 10−7, 5× 10−7, 8× 10−7, 1× 716

10−6, 5×10−6, 8×10−6, 1×10−5, 5×10−5, 8× 717

10−5}. For full parameter fine-tuning of OPT-1.3B, 718

the learning rate grid is set to {1 × 10−6, 5 × 719

10−6, 8 × 10−6, 1 × 10−5, 5 × 10−5, 8 × 10−5}. 720

The reported results represent the best score af- 721

ter hyperparameter grid-search for all experiments, 722

conducted over five random seeds. 723

In implementing LoRA, we adhere to the prac- 724

tice outlined in Hu et al. (2021), introducing train- 725

able linear low-rank modules to both query and 726

value projections within all self-attention layers. 727

While some research has explored the application 728

of LoRA to all projection matrices or all weight 729

matrices, the specific choice of where to apply 730

LoRA is not a pivotal aspect of our work (Zhang 731

et al., 2023). For OPT experiments, we incorpo- 732

rate bias into the injected LoRA modules, aligning 733

with the approach taken in Mahabadi et al. (2021). 734

Conversely, in Llama-2 experiments, we deliber- 735

ately disable bias in LoRA to ensure module key 736

matching with the pre-trained checkpoint "meta- 737

llama/Llama-2-7b-hf." We set the rank of LoRA 738

(denoted as "r") to 8 and α to 16, where the ratio 739

α/r is employed to scale the weight updates. 740

A.2 Performance of COLA in low data setting 741

In the preceding sections, we report performance 742

of COLA with the experiment setup detailed in 743

Appendix A.1, where we use 1000 training sam- 744

ples, 500 validation samples, and 1000 test samples 745

across each dataset under consideration. LoRA is 746

extremely effective in low-resource scenarios as 747
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Task

Model SST2 WSC CB WIC BoolQ MultiRC RTE SQuAD DROP Copa ReCord

100 data

LoRA 89.80 61.60 72.76 58.80 61.60 59.00 59.20 78.99 27.99 75.60 70.00
COLA 90.00 63.20 73.21 60.40 64.19 60.60 63.40 79.63 29.01 76.19 70.20
Relative gains 0.22% 2.60% 0.62% 2.72% 4.20% 2.71% 7.09% 0.81% 3.64% 0.78% 0.28%

50 data

LoRA 87.60 60.80 70.00 60.00 64.80 56.80 59.20 78.03 22.32 76.40 68.80
COLA 89.60 61.60 70.80 62.40 67.60 61.20 62.80 78.59 24.10 78.00 70.00
Relative gains 2.28% 1.31% 1.14% 4.00% 4.32% 7.75% 6.08% 0.72% 7.97% 2.09% 1.74%

Table 6: Performance comparison of LoRA and COLA under low-resource setting

WIC SST2 BoolQ

LoRA 68.18 94.56 77.02
COLA 69.53 94.89 77.66

Table 7: Performance Comparison of LoRA and COLA
with 5000 training samples.

well. Consequently, we extend our investigations748

of COLA under low-data conditions to assess its749

effectiveness.750

Specifically, we consider low-resource settings751

with 100 training samples and 50 training samples.752

We report the test results of OPT-1.3B in Table 6.753

For experiments with 100 training samples, we ran-754

domly select 100 test samples for evaluation. For755

experiments on 50 training samples, we randomly756

select 50 test samples.757

The test results in Table 6 conclusively demon-758

strate that COLA consistently surpasses the base-759

line performance under low-resource settings. For760

training with 100 samples, COLA achieves up to761

7.09% test score improvement on top of LoRA. For762

training with 50 samples, COLA achieves up to763

7.97% test score relative gains compared to LoRA.764

A.3 Performance of COLA in large scale765

setting766

To evaluate the scalability and efficacy of COLA767

in larger-scale tasks with substantial fine-tuning768

datasets, we conduct experiments involving 5000769

training samples while maintaining the experimen-770

tal setup as previously outlined.771

Notably, among the 11 benchmark tasks con-772

sidered in this research, only seven tasks possess773

training sets exceeding the 5000-sample thresh-774

old. We experiment on three representative tasks775

and present the average test scores with five ran-776

Tasks

SST2 WSC WIC RTE SQuAD

rank=16

LoRA 93.07 55.96 62.31 72.70 83.22
COLA 93.53 57.88 62.60 73.72 83.57

rank=32

LoRA 93.14 57.50 62.94 72.49 83.18
COLA 93.56 61.15 63.73 74.51 83.57

rank=64

LoRA 92.95 54.80 62.28 75.66 82.97
COLA 93.62 63.08 64.23 75.60 83.44

Table 8: Experiments with varying LoRA ranks. Test
score across tasks is reported using 5 random seeds. The
highest average performance for each task is highlighted
in bold.

dom seeds for COLA and LoRA in Table 7. As 777

the results show, COLA consistently outperforms 778

the baseline in larger-scale fine-tuning setting with 779

5000 training samples. 780

A.4 Effects of varying augmentation ranks 781

The main results reported so far are obtained with 782

the augmentation rank set to 8. This choice of 783

rank is primarily guided by empirical performance 784

considerations and aligns with the hyper-parameter 785

selection utilized in (Malladi et al., 2023). (Hu 786

et al., 2021) systematically explored the impact 787

of varying the augmentation matrix’s rank used in 788

LoRA. 789

In this context, we focus on evaluating our frame- 790

work’s performance under different rank settings. 791

To this end, we conduct three additional sets of 792

experiments with ranks set to 16, 32, and 64, as 793

demonstrated in Table 8. We present the baseline 794
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LoRA results corresponding to each rank across795

various tasks. For COLA’s performance under each796

rank, we report the test scores of the three-stage797

COLA configuration, wherein all stages employ a798

consistent rank.799

From Table 8, we observe consistent findings800

akin to those reported in (Hu et al., 2021), indi-801

cating that varying rank of LoRA offers competi-802

tive performance with the optimal rank being task-803

dependent. Nonetheless, COLA shows superiority804

to LoRA across tasks and ranks.805

A.5 Training and Inference cost of COLA806

The training cost of COLA is determined by the807

rank of the LoRA modules used to form the chain.808

The training computation for COLA is the same809

as LoRA when the rank is the same. In COLA,810

progressively lowering the rank of the LoRA mod-811

ules may be an effective strategy to approximate812

optimal residual weight updates for specific tasks813

and lower the overall training cost. We explore this814

direction in our experiment section. At inference,815

all of the learned BjAj can be integrated into the816

original model weights. Since Wpretrained has the817

same shape as BjAj , the final integrated model818

weight has the same number of parameters as the819

original pre-trained LLM. Therefore, no latency820

overhead is introduced during inference.821
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