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ABSTRACT

Causality and explainability are intertwined in that they mutually inform each
other. For instance, incorporating knowledge on the causal structure of the data
into an explanation aligns the reasoning within said explanation with how the
data was generated. Surprisingly, this conceptual idea of generating explanations
mainly from a suitable causal representation, like Pearl’s Structural Causal Model
(SCM), has not been studied before. To this end we are going to present a first al-
gorithm within this new type of explanation that takes an SCM as input. We start
by identifying desiderata for this new approach by discussing shortcomings of
previous causal explainers. Our current key restriction are linear SCM, for which
we then define the set of possible questions before deriving the actual algorithm
step-by-step alongside an example. To better understand whether our so-called
Structural Causal Explanations (SCE) are sensible w.r.t. the initial desiderata we
asked 22 study participants to provide their guess of causal relations on simple,
every-day variables to then evaluate SCE on these SCM approximations. We find
that SCE is a suitable explanation scheme and followup our empirical study of
SCE with SCM approximations as discovered by popular graph learning algo-
rithms. In this second experiment we find that SCE reveals defficiencies of cur-
rent graph learning algorithms for which we then propose a naı̈ve regularizer that
incorporates SCE into learning.

1 INTRODUCTION

Artificial intelligence research dreams of an automation to the scientist’s manner (McCarthy, 1998;
McCarthy & Hayes, 1981; Steinruecken et al., 2019) and while causal interactions stand at the center
of human cognition (Penn & Povinelli, 2007), harnessing its prowess is still an ongoing endeavour
(Schölkopf, 2022) even in the face of more recent formalizations of causality (Pearl, 2009; Peters
et al., 2017). One key promise of causality for the sake of AI lies in explanations, since causality
and explanations are widely regarded as intertwined (Josephson & Josephson, 1996). For example
Miller (2019) describes explanations as consisting of two processes and a product. The first process
is a cognitive abductive inference step to determine the causes for a given event (possibly in refer-
ence to a counterfactual). The product is then the actual explanation. The second process is a social
part where the knowledge transfer between explainer and explainee occurs (usually people interact-
ing with each other). Now the question arises, what would constitute a suitable representation for
such an explanation? In their seminal book, Pearl & Mackenzie (2018) argue that counterfactual,
symbolic causal reasoning is the most important factor for machines to achieve true human-level
intelligence since it ultimately constitutes the way humans reason and explain. Suggesting that the
structural causal model (SCM) representation, which is at the center of Pearl’s counterfactual theory
of causation, is a suitable representation for explanations. Several works in cognitive science are in-
deed in support of Pearl’s formalism as a great tool to capture important aspects of human reasoning
(Gerstenberg et al., 2015; 2017) and thereby also how humans provide explanations (Lagnado et al.,
2013). Furthermore, questions of the form “What if?” and “Why?” have been shown to be used
by children to learn and explore their external environment (Gopnik, 2012; Buchsbaum et al., 2012)
and are essential for human survival (Byrne, 2016). These humane forms of causal inferences are
part of the human mental model which can be defined as the illustration of one’s thought process
regarding the understanding of world dynamics (see also discussions in Simon (1961); Nersessian
(1992); Chakraborti et al. (2017)). In the following, we will consider the definition of an explanation
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to be an answer to a why-question (Dennett, 1989), which is ultimately a counterfactual question
(thus a causal notion). Specifically, we will define what particular type of why-questions we answer
and devise a new generation scheme for answering such why-questions based on an SCM.

Overall, we make several contributions: (i) we derive a new type of explanation based on SCM
(called Structural Causal Explanations, short SCE) by reflecting on conceptual progress in prior
literature on combining causality and explanations in AI, (ii) we conduct a human study to assess
that SCE is sensible across various examples, (iii) we feed SCE with causal representations learned
from data to assess what the explanations reveal about the underlying graph learning methods, and
(iv) we present a naive regularization penalty to reduce the number of false links in learned graphs.

We make our code repository publically available at: https://anonymous.4open.
science/r/Structural-Causal-Explanations-D0E7/

1.1 SHORTCOMINGS OF PREVIOUS EXPLAINERS (SHORT CASE STUDY: CXPLAIN)

"Why is Hans' Mobility bad?" 
Query / Question

Hans
93.8,    58.8,   2.6,   26.2
Age,      Nutrition, Health, Mobility

Average Mobility in Population 35.6
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Figure 1: Conceptual Limitations of
Explaining Counterfactual Questions
Without Use of SCM. Refer to the text
on the left for a discussion of the limita-
tions. The figure shows a medical record
for patient Hans and a question concerning
the reasoning behind the sate of Hans’ mo-
bility. (Schwab & Karlen, 2019)’s method
provides positive feature importance scores
for the remaining variables. (Best viewed
in color.)

We start by reflecting on existing key ideas within
the realm of explainable AI that makes use of causal-
ity. Since a great deal of existing literature is con-
cerned with causal attribution we are going to dis-
cuss a representative case in the popular approach
by Schwab & Karlen (2019) called CXPlain. Fig.1
top shows a why-question in a medical data setting.
Particularly, patient Hans’ medical condition is cap-
tured by different covariates (age, nutrition, health,
mobility) and the question is concerned with why
Hans’ mobility value is lower on average than that of
other patients. Fig.1 bottom then shows the answer
given by CXPlain assigning three positive numeri-
cal scores to all variables except the one in question
with the highest value being given to age, then nu-
trition and finally health. We can interpret this result
as saying that all potential factors are actually being
deemed relevant and “causal” to Hans’ mobility. To
briefly explain the setup: Hans’ values were sampled
from a synthetic SCM which CXPlain had access to
while training its surrogate explanation model. We
trained 10 bootstrapped neural models using suitable
parameters for the masking operation and loss func-
tion. Returning to our score distribution, this sin-
gle observation makes apparent two important short-
comings of such causal attribution explainers: firstly,
from the output we cannot deduce which is a direct
(health in this case) and which are indirect (age and
nutrition mediated via health) causes. Secondly, we
have no information on the causal effect, that is, we
cannot tell in which way a variable with high attribution will affect the predicted variable, for exam-
ple the nutrition variable received a high importance score than age but age will have a detrimental
effect on mobility whereas nutrition will have a beneficial effect. Two further, less important but still
noteworthy, shortcomings are the following: thirdly, the attributions are deterministic. This might
first be considered a feature, however, the causal mechanism of an SCM are only deterministic up
to a realization of the exogenous variables. Therefore, we can have the exact same patient record
for different patients. This cannot be captured by these previous attribution methods. Fourthly,
when querying for random individuals we actually observe inconsistencies between the attributions
themselves which is illogical since the patient records are being generated by the same causal mech-
anisms. For example in the Hans case we had age, nutrition and then health ordered from highest to
lowest attribution. For a rather similar patient we observe that nutrition and age swap in importance.
For yet another patient we observe that suddenly age and nutrition, which previously played the most
important role, are not important anymore. The reader is invited to look at the plots highlighting the
last two deficiencies from Fig.6 of the appendix which shows the same setup as from Fig.1 but for
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different queries, that is, patients other than Hans. In conclusion, the four discussed deficiencies
we pose as desiderata for our new approach to resolve. In summary, our approach should ideally:
(Desideratum 1) differentiate direct from indirect causes, (D.2) capture qualtitative information on
causal effects and (D.3) cope with stochasticity. SCE satisfies the desiderata through its SCM.

2 PREREQUISITES & ASSUMPTIONS

We follow the formalism of (Pearl, 2009) for discussing causation but adapt a modern formalization
inline with works such as (Bongers et al., 2021). The key input to our explainer is going to be an
(approximation of an) SCM, which we define as:
Definition 1 (SCM). A structural causal model is a tupleM = (V,U,F,PU) forming a directed
acyclic graph G over variables X = {X1, . . . , XK} taking values in XXX =

∏
k∈{1...K} Xk subject

to a strict partial order <X, where

• V = {X1, . . . , XN} ⊆ X, N ≤ K is the set of endogenous variables.

• U = X \V = {XN+1, . . . , XK} is the set of exogenous variables.

• F is the set of deterministic structural equations, Vi := fi(X
′), where X′ ⊆ {Xj ∈ X |

Xj <X Vi} denoted by pa(Vi) are the parents of Vi.

• PU is the probability distribution over U.

For the causally curious reader we point to appendix Sec.A.2 for discussions of our framework in
the light of unobservable confounders and similar phenomena. To simplify the discussion around
causal effects and such later on when deriving SCE, we restrict the class of SCMs to that of the
well-studied linear SCMs. Formally, we have:
Assumption 1 (Linear SCM). The SCMs under consideration have linear structural equations, that
is, F ⊂ {f | f(pa(v)) = α⊤ pa(v),α ∈ R| pa(v)|}.

While the above assumption will be sufficient for the discussion of discrete random variables, our
results naturally extend to continuous random variables w.l.o.g. if the following assumption on the
exogenous variables holds:
Assumption 2 (Gaussian SCM). The SCMs under consideration have normally distributed exoge-
nous variables, that is, PU = N (µ,Σ) with µ ∈ R|U |,Σ ∈ R|U |2 .

Since an explanation demands the discussion of causes, a very useful object for actually capturing the
amount of influence a cause has on its effect is the causal effect which is defined as the interventional
distribution as follows:
Definition 2 (CE). For some target of interest Vi and a set of variables V′ ⊂ V an intervention
do(V′ = v′) replaces all original structural equations {fj}Vj∈V′ by the constant assignment V ′

j :=

v′j . The induced distribution p(vi | do(v′)) is called causal effect of V′ on Vi.

Lastly, to quantify the causal effect for any given random variable pair in a single scalar value, we
can resort to the average effect. We have that:
Definition 3 (ACE). For a pair of random variables (Vi,V

′) ⊂ V that satisfy

(D) ∀Vj ∈ V′, 1
k−l (E[Vi | do(Vj = k)] − E[Y | do(Vj = l)]) = αj with k, l ∈ Xj and

α = (αj)Vj∈V′ in the case that (Vi,V
′) are discrete random variables or

(C) ∂
∂v′E[Vi | do(v′)] = α where (Vi,V

′) are continuous

we call α the average causal effect of V′ on Vi.

Remember the notation of the expected value for a discrete random variable pair X,Y as E[Y |
x] :=

∑
y y · p(y | x) and for continuous RVs as E[Y | x] :=

∑
y y · p(y | x), where E[Y | do(X)]

then refers to the expected causal effect, that is, the expected value of Y under intervention do(X)
replacing the conditional distribution p(y | x) with the causal effect p(y | do(x)). In a last step, we
connect our assumptions with the definition of ACE.
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Observation 1. In SCMs that follow Assumption 1 the coefficients α of the structural equations are
average causal effects since Def.3(D) is satisfied. For continuous random variables SCMs following
Assumption 2 is necessary to satisfy Def.3(C).

This observation tells us that with the above definitions and assumptions when deriving our expla-
nations we will be able to simply treat our SCM as a weighted adjacency matrix of the endogenous
variables, which in turn will simplify computation immensely and make our explanations compatible
with a wide range of existing graph learning algorithms.

3 DERIVING A NEW TYPE OF SCM-BASED EXPLANATION

While acknowledging the difficulty of the problem and its philosophical nature, we address it prag-
matically in a step-by-step derivation that leverages qualitative knowledge on SCMs as defined in
the previous section. This connection will justify the naming as Structural Causal Explanation. Our
running example, that of patient Hans, is a homage to the famous fallacy in explainable AI and
psychology known as “Clever Hans” named after the 20th century Orlov Trotter horse Hans that
was wrongly believed to be able to perform arithmetic (Pfungst, 1911). A “Clever Hans” moment is
failure due to spurious associations in the data. For example, an image classifier that learns on water-
marked images will have high accuracy on the test data from the same distribution by predicting the
class using the watermark labels (that is, the model is “right for the wrong reasons”) and furthermore
fails completely when moving out-of-distribution (Lapuschkin et al., 2019). Some works such as
(Stammer et al., 2021) moved beyond basic methods (like heat maps for image data) by employing
expert intervention to move beyond such “Clever Hans” fallacies. Since explanations ought not only
be “clever” but also causal, we will refer to our running example as the “Causal Hans” example. In
the following, consider an SCM as before that generates medical records described by numerical rep-
resentations for age, nutrition, overall health and mobility respectively (V = {A,N,H,M}). Next,
let’s consider some samples from said SCM. E.g. we might observe the data set containing the indi-
vidual named Hans H = (HA, HN , HH , HM ) = (93.8, 58.8, 2.6, 26.2) where for sake of simplicity
each value could be associated with a discrete label e.g. HA = 93.8 would be 93 years old, whereas
HM = 26.2 could refer to a rather immobile person. The latter label is actually implicitly the assess-
ment HM < µM where µM = 35.6 is the population’s average mobility value, that is, we observe
Hans to be a rather immobile person when compared (or relative) to the other patients. The popula-
tion average values for our running example are µ = (µA, µN , µH , µM ) = (62.6, 32.8, 45.1, 35.6).
With this we are in the position to pose a question like

Q1:“Why is Hans’s Mobility bad?”

where the word “bad” refers to “bad relative to the population.” Formally, we can now define such a
question as:
Definition 4 (Why Question). A quantity Qi := R(vi, µi) with binary ordering R ∈ {<,>} where
Vi ∈ V and µi is the empirical mean value for Vi, is called why-question concerning Vi if the
ordering holds true, that is, 1R(Qi) = 1.

Remember the notation for the indicator function 1R(Qi) = 1 if (vi, µi) ∈ R and 0 otherwise.
Checking back with the definition, we see that Q1 defines a valid question for the Causal Hans
example since QM := HM < µM = 26.2 < 35.6 holds true in our example data. On another note,
we call Qi a why-question because it relates to the counterfactual scenario regarding the causes of
Vi, for example, how would’ve age, nutrition and health had to be if we were to think that Hans’
mobility was not bad. While the number of valid why-questions that can be asked seems limited
at first sight, the number scales linearly with the SCM as it is coupled to the endogenous variables.
Specifically it is O(|V |) thus we can potentially ask a question for any endogenous variable of an
arbitrarily large SCM.

Next, we will discuss the knowledge on the SCM that our explanation will leverage. Generally, the
true data-generating SCM M∗ is unobserved but we can realistically expect to have access to an
estimate of M∗. Let’s consider following SCM estimate M that contains the relations A

α→ N ,

A
β→ H , N

γ→ H , H δ→M where α, β, γ, δ denote the respective (average) causal effects. Further,
α, γ, δ > 0 while β < 0. That is, α > 0 means that increasing age by a single unit increases
nutrition by α units. Similarly, β < 0 means that for any unit increment of age we will have a β
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number of units decrement of health. Furthermore comparing between coefficients, β > γ means
that the causal effect of aging on health is greater in absolute terms than the causal effect of nutrition
onto health. Now when we intend on answering Q1 it seems reasonable to start with the queried
variable first, mobility in this case. Since we know that M is an effect of H with γ > 0 we expect
the below average mobility to be explained by an already below average health value. Indeed, this
expectation is met since HH < µH . Traversing the chain further to the causes of H , which are
A,N , we observe two different scenarios. Since A is above average as Hans is an elderly person
(HA > µA) and β < 0 we can conclude that HA is definitely an explanation for HH whereas N
with γ > 0 is actually a countering factor since Hans has a good diet (HN > µN ) beneficial to his
health. In summary, by exploiting the knowledge onM we have arrived at a causal explanation that
can be pronounced in natural language as:

Explanation 1 (for Q1). “Hans’s Mobility is bad because of his bad Health which is mostly due to
his high Age although his Food Habits are good.”

Explanation 1 is indeed an explanation as required by the definition of (Dennett, 1989) since it is an
answer to the why-question concerning Hans’ mobilitity. Furthermore, it is a causal explanation
since the used coefficients for deriving the explanation are based on SCM M that satisfies the
assumptions from Sec.2 thus qualifying the coefficients as causal effects. Our above explanation
captures two prominent modes of human reasoning, namely both the existence and the “strength”
of a causal relation. In the following we will capture and formalize our intuition that allowed us to
derive Exp.1, which in turn allows us to compute such causal explanations automatically.

When reflecting on the actual knowledge used in our argument above, then we realize that we can
abstract away four key aspects: (i) that there is a relative notion in the why-question QM like “why
. . . bad?” that implicitly compares an individual (here, Hans) to the remaining population of pa-
tients, (ii) the causal graph provides the structure of the explanation by following any previously
unexplained directed path to the target effect (here, mobility), (iii) the causal effect for any pair al-
lows us to assert whether the observed values for that pair are “surprising” in that they are consistent
with the mechanisms of the data-generating process or not, and (iv) that some causal effects are more
important or influental than others (here, age versus nutrition w.r.t. health). Following this reflection
we define sth. called causal scenario that will cover (i-iii) as point (iv) will be covered separately.

Definition 5. As before let Vi, Vj ∈ V and α denote the ACE from Vj onto Vi and µi, µj are the
averages of our data sample. The tuple Ci,j :=(α, vi, vj , µi, µj) is called a causal scenario.

With this convenient notation at hand, we are ready to abstract the logic of our explanation to general
rules. For this we will make use of first-order logic.

Definition 6 (Explanation Rules). Let Ci,j denote a causal scenario, Ri ∈ {<,>} be a binary
ordering relation and αpa

i be the set of all absolute parental ACEs onto Vi. We define FOL-based
rule functions as followed by indicating for each rule ERx: (Ci,j , R1, R2,α

pa
i ) 7→ {−1, 0, 1} how

the causal relation Vi ← Vj satisfies that rule.

(ER1) If R1 ̸= R2, then: ((α < 0) ∧ δ1) ∨ ((α > 0) ∧ δ2)

(ER2) If R1 ̸= R2, then: ((α > 0) ∧ δ1) ∨ ((α < 0) ∧ δ2)

with δ1 := R2(vj , µj) ∧R1(vi, µi) and δ2 := R2(vj , µj) ∧R2(vi, µi)

And as an extra, “modifier” rule in the case where |αpa
i | > 1 we simply consider the parent with

the highest ACE absolutely, V ∗
k = argmaxVk∈ pa(Vi) α

k
i , as the most important direct cause.

Since our rules only need qualitative knowledge on the causal effects (i.e., we simply test the sign of
the coefficients) it is possible to use techniques from partial identification which allows for bounding
causal effects using fewer necessary assumptions at the price of exact estimation (Balke & Pearl,
1994). These two plus one rules build the foundation for our new type of explanation. Having the
actual relation R as a return argument of each of the rules allows for a fine-grained explanation. In a
nutshell, it allows to extend a statement “Vi because of Vj” to a more detailed one like “Vi because of
Vj being low”. The general pronunciation scheme for the the three rules which we name excitation
(ER1), inhibition (ER2), and preference (ER3) are summarized in Tab.1. The pronunciation of the
details to the relation e.g. “low”/“high” is context-dependent in that these words might need to

5



Under review as a conference paper at ICLR 2024

ER1 Excitation “Vi because of Vj [being low/high]”
ER2 Inhibition “Vi although Vj [is low/high]”
ER3 Preference “mostly” + ER1 or ER2 pronunciation

Table 1: Pronunciation Scheme. Right shows the natural language reading of a rule’s activation.

replaced with adequate/corresponding words suitable for the context. To elaborate, “the mountain
top is cold because of the high altitude” is fine, while “the remaining car fuel is low because of
the driver’s bad driving style” requires the context-adaptation (what was “low” previously is “bad”
in this case). Another noteworthy detail to the SCE properties is the property of non-repeating
causes within explanations which reduces redundancy. Consider for instance our lead example on
Hans’s mobility (Exp.1), the SCM suggests that N can also be explained by A, since A → N .
However, the corresponding SCE does not give this reason because of the aforementioned property
which ensures that redundancy is being avoided. I.e., in the explanation step before we actually
explain H using both A and N , since {A,N} → H , therefore, making it irrelevant for the question
to explain the relation between the parents (A,N ). While we provided intuition on the derivation
of these basic FOL rules alongside the “Causal Hans” example, we now additionally motivate the
namings “excitation”, “inhibition” and “preference”. We took inspiration from neuroscience, where
the former two terms relate to the way neurons interface with each other using their synaptic-dendric
connections (He & Cline, 2019). The last term is a term to propose “relativity” and thus a preference
for one cause over the other. Returning to our derivation, to now show how these rules can generate
something like Exp.1, we will present our actual algorithm definition. We define the Structural
Causal Explanation algorithm as:
Definition 7 (SCE). Like before let Qi,M be a valid why-question and some SCM estimate respec-
tively. Further, let D ∈ Rn×|V | denote our n-samples data set. We define a recursion

E(Qi,M,D) = (
⊕

Vk∈pa(Vi)
ER(Vi ← Vk),

⊕
Vk∈pa(Vi)

E(Qk,M,D)) (1)

where ER(Vi ← Vk) is a shorthand for {ERx(Ci,j , R1, R2,α
pa
i )}i=1,2,3 that are given through

(M,D) and
⊕n

i=1 vi = (v1, . . . , vn) denotes concatenation. The recursion’s base case is being
evaluated at the roots of the causal path to Vi, that is, for some Vk∈V with a path Vk → · · · → Vi

we have
E(Qk,M,D) = ∅. (2)

We call E(Qi,M,D) Structural Causal Explanation for Vi based on (M,D).

The above algorithm is a simple recursion that traverses all possible directed, causal paths to the
target variable checking each of the rules ERx thus constructing a unique code that maps to a unique
answer following our previous pronunciation scheme. Since SCE answers a why-question, which is
counterfactual by nature, and does so by using qualitative knowledge of the SCM, which encodes
counterfactual knowledge, we can generally classify SCE as a counterfactual-type of explanation in
the broader scope of conceptually distinct ideas in causal explainable AI.

high Age good Nutrition

mostly
due

bad Health

Textual 
Interpretation:

"Hans' Mobility (M) is 
bad because of his bad 
Health (H) which is 
mostly due to his high 
Age (A), although his 
Nutrition (F) is good."

Graphical
Interpretation:

Figure 2: Interpreting the SCE Output
for Causal Hans. The example illustrates
all three rules. (Best viewed in color.)

Reconstructing the Causal Hans Example using
Def.7: To return one last time to our running exam-
ple, we apply the recursion step-by-step now. For
QM (corresponding to Q1) we arrive at:

E(QM ,M,D)

= ((ER1 = −1),
⊕

Vk∈{A,F} E(QH ,M,D))

= (. . ., (((ER1 = 1,ER3 = 1),E(QA,M,D)),

((ER2 = 1),E(QF ,M,D)))),

= (. . ., ((. . ., ∅), (. . ., ∅))).
So the recursion result is H → M : (ER1 =
−1,ER2 = 0,ER3 = 0), A → H : (ER1 =
1,ER2 = 0,ER3 = 1), F → H : (ER1 = 0,ER2 =
1,ER3 = 0). This result uniquely identifies the human-readable pronunciation of our causal ex-
planation in Exp.1. For the graphical interpretation refer to Fig.2 which highlights the recursive
traversal through each pair of parents while avoiding redundancy through duplicate paths.
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Figure 3: Measuring Agreement Between Beliefs of Human Subjects Regarding Causal
Graphs. Left, the graph estimate is the mode of the distribution of all predicted causal graphs.
Right, greedily pick each edge of the graph. (Best viewed in color.)

4 EMPIRICAL STUDY

Are SCEs Sensible Explanations? To get an understanding of whether SCE are sensible beyond
the running example we have shown, we have conducted a user study with N = 22 human subjects
that had to judge the qualitative causal structure of four “daily-life” examples using a questionnaire
specifically designed to provide us with the data necessary for constructing causal graphs represen-
tative of what the participants think about the presented concepts. Please refer to the Appendix for
the questionnaire and [Human Data] for the anonymized answers that we used for evaluating the
survey. The first question to answer is: how did we construct the graph estimates from human data?
In Fig.4 we show two ways that we considered: the “Mode” refers to the scheme where we simply
look at the different graphs and take the most frequently reoccurring graph as representative of the
population, or the “Greedy” approach where we look at the frequency at which edges are predicted
and then simply construct a graph from greedily taking the most probable edge each time. Greedy
comes at the cost that the predicted graph is not necessarily within the populaton. With the human
causal graphs at hand, we now investigate our intial question about SCE. For brevity, we will only
highlight the most important key observations with a prolonged discussion being provided in the
Appendix: Observation (i) the SCEs that we generate from the acquired causal graphs are sensible
in the sense that they lie close (or are even identical) to the apriori expectation of the study (the
proposed ground truth). Observation (ii) we observe a systematic approach and thereby non-random
approach to edge-/structure-selection by the subjects. Furthermore, there are only a few clusters
even with increasing hypothesis space. Both the systematic manner and the tendency to common
ground are evidence in support prior evidence that SCMs are a suitable representation for human
causal modelling. Observation (iii) we observe that the increase in hypothesis/search space (i.e.,
more variables) comes with an increase in variance. This variance increase can be argued to be
due to the progressive difficulty of inference problems as well as decreased levels of attention and
potential fatigue across the duration of the experiment, and observation (iv) some subjects implic-
itly assume a notion of time by assuming a cyclic relationship between e.g. treatment and recovery,
where the subject likely thought in terms of ‘increasing treatment increases the speed of recovery
which subsequently feeds back into a decrease of treatment’.

What Can SCEs Reveal About Graph Learning Methods? Having established the SCE algo-
rithm as a sensible way for producing explanations, the natural next step is to conisder how we can
incorporate SCE into learning. To this end, we start by considering SCEs based on popular graph
learning methods. Induction of inter-variable relationships based on available data, especially of
directed acyclic graphs (DAGs), is paramount in causality (Pearl, 2009). Unfortunately, due to the
combinatoric nature of the problem setting, learning DAGs from data is recognized to be an NP-
hard problem (Chickering et al., 2004). However, several works have tackled this difficult problem
and one solution for learning linear DAGs came from a method called NOTEARS (abbreviated NT,
Zheng et al. (2018)) who were able to re-formulate the traditional view into a continuous shape
such that any non-convex optimization can be applied for the graph estimation problem. The au-
thors propose the general formulation, minW∈Rd×d f(W) subject to h(W) = 0, where f is
a data-based score, e.g. a regularized least-squares loss is applied assuming a sparse linear model
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(possibly SCM). That is f(W) = ||X − XW||2F + ||W||1, and h is a smooth function with a
kernel (or null space) that only contains acyclic graphs, h(W) = 0⇐⇒W is acyclic. Differ-
ent variations of the same continuous counting mechanism using this acyclicity constraint have been
proposed, e.g., Zheng et al. (2020) proposed h(W) = tr(eW◦W)−d while Yu et al. (2019) proposed
h(W) = tr[(I+W ◦W)m]−m. Unfortunately, both suffer from cubic runtime-scalability in the
number of graph nodes, O(d3). While the aforementioned works have focussed on data originating
from (non-linear transformation) of linear SCM, there exists yet another sub-class of DAG-learning
methodologies that focuses on more general causal inference. Ke et al. (2019) made use of in-
terventional data to update their graph estimate while using masked neural networks to mimic the
structural equations. Brouillard et al. (2020) follows the same idea of leveraging causal information,
e.g. interventional data, for overcoming identifiability issues while staying close to the continuous
optimization formalism introduced by NT. Returning to our question: we looked at different data
sets including different graph learners and for each combination generated their respective SCE. We
considered several different why-questions for each of the four data sets: data set for the Causal Hans
example, weather forecast (W, real world, Mooij et al. (2016)), mileage (M, synthetic), and recovery
(R, real world, Charig et al. (1986)). To avoid cluttering in the main text we have moved the relevant
tables and figures to the the Appendix where we also provide an extended account, here we high-
light the most important insights (based on graphs from NT): Observation (i) matched expectations
on the W and M data sets, whereas differences on the R and H data sets. For R, the difference is only
subtle as the model’s explanation to the why-question “Why did Kurt not Recover?” is not “Kurt
did not Recover because of his bad Pre-condition, although he got Treatment.” but “[...], which were
bad although he got Treatment.” which is on the second recursion in the reasoning process i.e., the
treatment countering the state of condition and not affecting the condition itself. This difference
becomes apparent in the graphical structure where the arrow from Pre-conditions to Treatment is
inverted contrary to expectation. To illustrate one more drastic example using the data set of our
Causal Hans example, here the discrepancy revolves around a totally different graph structure e.g.
the learned model expects a direct cause-effect relation between age and mobility while also wrongly
assuming that food habits have a detrimental effect on health. Therefore the answer to the question
“Why is Hans’s Mobility bad?” suddenly becomes “Hans’s Mobility, in spite his high Age, is bad
mostly because of his bad Health which is bad mostly due to his good Food Habits.” which sounds
very absurd. The ground truth SCM for this data set contains non-linear causal relationships, while
NT makes linearity assumptions, which explains the wrongly learned graph structure. Observation
(ii) only by looking at the SCE, effectively using it as a graph distance or metric, we were able to
tell that the learned model is very different from what we had initially expected. Put differently, it
made apparent for the Causal Hans example that by simply adding an extra edge (here A,M ) and
flipping another (here N,H) we already get a big difference in what these graphs express/explain.

Does a SCE Regularization Penality Improve Graph Learning? While we have seen that SCEs
are sensible explanations but that graph learning methods are still far from perfect in predicting
graphs from data, in this final experiment we investigate how to use SCEs to improve learning.
Since SCEs contain (some) knowledge on causal relationships underlying the data, they should help
in improving the overall prediction and sample efficiency of graph learners. We take NT again as
graph learner and add a simple regularization term to its loss that penalizes inconsistent explanations.
We generate 70 random linear SCMs with respective observational distributions. Then we use graph
learning to infer 70 more graphs, making 140 graphs in total. For each graph we generate 50 random
why-questions to be answered, resulting in a data set of 7,000 explanations. All the details regarding
this learning setup, such as for instance how to make make SCE differentiable for it to function as
training signal, are being discussed in the Appendix. The graph learning is being performed in a data
scarce setting with only 10 data samples per graph. Thus to infer the true causal structure the method
ideally needs to perform sample-efficient learning. Fig.4 shows our results. The error distributions
over all of the graphs are shown both with and without the SCE regularization. We also highlight
the graph estimate upon which most improvement was observed. It can be observed that with the
regularization the method can both identify more key structures while significantly reducing the
number of false positives. For example many false links that pointed towards node H (like B to H
or G to H) were removed while some key structures could now be recovered like the directed edge
from node I to node A. While more experiments would be necessary to claim that indeed learning is
(significantly) improved through explanations, our naı̈ve learner already provides evidence in favor
of our initial hypothesis.
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Figure 4: Graph Learning Improves with Explanations. Left: error distributions when perform-
ing graph learning with/-out SCE regularization (which is simply an added penalty term for incon-
sistent explanations), next to is the ground truth graph. Right (boxes): the predicted graphs, showing
a decreased number of false positives. (Best viewed in color.)

5 RELATED WORK

A great body of work within deep learning has provided visual means for explanations of how a
neural model came up with its decision i.e., importance estimates for a model’s prediction are being
mapped back to the original input space e.g. raw pixels in the arguably standard use-case of computer
vision (Sundararajan et al.; Selvaraju et al., 2017; Schulz et al., 2020). To circumvent explanations
that are like “children that are only able to point fingers”, Stammer et al. (2021) proposed a neuro-
symbolic explanation scheme to revise behavior from learned models in an interactive loop following
the framework of (Teso & Kersting, 2019). On the causal end, (Schwab & Karlen, 2019) proposed
a model-agnostic approach that can generate explanations following the idea of Granger causality
(which is very different from Pearlian causality as it captures “temporal relatedness” which holds
in their setting as input precedes output). On the Pearlian side of explanations, the computation
of Causal Shapely Values (Heskes et al., 2020) or the LEWIS framework (Galhotra et al., 2021)
are explainers for numerical attribution that capture important distinctions within causality such as
direct vs. indirect causes or the necessity-sufficiency distinction of causes. Closest to our work
on a semantic level within Pearl’s causal framework are arguably works on fairness (Kusner et al.,
2017; Plecko & Bareinboim, 2022). For instance, Karimi et al. (2020) investigated how to best
find a counterfactual that flips a decision of interest e.g. an applicant for a credit is rejected and the
question is now which counterfactual setting (changes to the applicant) would have resulted in a
credit approval. Considering unit-level instead of population-level causality, our work can compare
to the definitions of Halpern (2016) for “actual causation”, where the key difference lies in the
relativity of our explanation approach to a given sample population in addition to the overall less
philosophical approach to causal explanations that shows in both how we generate the explanations
and then use them for learning.

6 CONCLUSIONS & FUTURE WORK

We’ve presented a conceptually new approach to causal explanations based on SCMs. By first dis-
cussing desiderata that followed from shortcomings of previous explainers from the literature, we
then derived an algorithm from first principles using our Causal Hans example. In our empirical
section we investigated the quality of SCEs and their integration with learning, which proved suc-
cessful. Finally, we reflected on the placement of SCE within the broader literature.

Since this work poses an arguably original approach to explanations, there is naturally a lot of op-
portunity for future work. A first natural step is the extension of SCE to time-series data, which
would require a generalization of our definitions of a why-questions, the explanation rules and the
actual SCE algorithm. An immediate difficult for such an extension would be the recursive explo-
sion w.r.t. number of time steps measured, that is, how to handle redundancy and the scope of an
explanation. Another route for future research would be the relaxation of the linearity assumption,
extending SCEs to non-linear SCM. On a conceptual note, making quantitative use of the knowledge
on causal effects instead of purely qualitative knowledge would likely allow for more expressive ex-
planations. Finally, we believe that interactive approaches to explanations are a promising paradigm
for the future and integrating SCE with XIL (Pfeuffer et al., 2023) seems valuable.
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REPRODUCIBILITY

We acknowledge the significance of reproducibility in scientific research and have taken multiple
steps to ensure the strength and replicability of our work.

Code: Our implementation is accessible on GitHub at https://anonymous.4open.
science/r/Structural-Causal-Explanations-D0E7/. We have used publicly avail-
able software and libraries to guarantee accessibility and have comprehensively described the ar-
chitecture, software, versions, and hyperparameters in the Appendix. Our code is deterministic,
incorporating seeds for all random number generators to guarantee the replicability of results. We
attempted to include most of the code used to create the result tables and figures in this manuscript.

Datasets: This study only utilizes publicly available datasets which have been correctly cited. Fur-
thermore, the authors contribute to an open source repository containing all the datasets used in this
work, which will be made available upon acceptance.

Algorithm Details: We have provided thorough descriptions and formulations of our algorithm
in the main text, supplemented by additional clarifications, and implementation details in the Ap-
pendix, ensuring a clear understanding of our contributions and facilitating reproduction. This doc-
umentation is intended to provide researchers with all the necessary information for an accurate
replication of our experiments.

Limitations. We’ve highlighted our key assumption of linearity of structural equations, which is an
arguably common assumption in causality, in our second main paper section. The second assumption
of Gaussianity is only necessary when further considering continuous instead of discrete random
variables.
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Stephan Bongers, Patrick Forré, Jonas Peters, and Joris M Mooij. Foundations of structural causal
models with cycles and latent variables. The Annals of Statistics, 49(5):2885–2915, 2021.
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A APPENDIX FOR ICLR 2024 SUBMISSION “GENERATING EXPLANATIONS
FROM LINEAR STRUCTURAL CAUSAL MODELS”
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A.5 Details for Feeding SCE with Graphs Learned from Data . . . . . . . . . . . . . . 17

A.6 Details for User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A.1 A PRIMER ON SCMS AND MENTAL MODELS

As a question of cognitive science and psychology, we have placed this section in the appendix for
the interested reader.

Our Hypothesis that SCMs are a Suitable Representation of Mental Models. It has been ar-
gued that at the core of a human mental model (abbreviated MM in the following) the illustration
of one’s thought process (regarding the understanding of world dynamics) is to be found (Simon,
1961; Nersessian, 1992; Chakraborti et al., 2017). The difficulty of said thought process illustration
is partly due to circular and abstract terms like explanation and interpretations for which we do not
provide an explicit definition as this is up to philosophical debates and ideally we keep the idea
more general than what has been done previously in explainable AI/ML where “explanation equals
pixel attributions” in many cases. Assuming the world dynamics to be governed by causality we
observe that humans are capable of modelling both causal relationships between endogenous vari-
ables and additionally information on the strength of said relationship. Put differently, MM model a
causal graph and corresponding causal effects akin to the formal notions from the previous section.
Consider the following real world example:

MM Example. At any given time a human has a state of overall health (relating to fat-
muscle ratio, allergies and diseases, etc.) and mobility (relating to the general freedom
and flexibility of movement, e.g., a gymnast is more mobile than the average person).
Now, the MM allows inferring (1) that mobility is being (partially) caused by something
else (for instance health, e.g., being overweight decreases one’s mobility) and (2) that dif-
ferent events can have different “strength” e.g., that an average car accident causes more
harm to the individual’s mobility than an average workout session causes good.

A natural candidate for capturing the two properties from the MM example formally are SCM,
thereby we hypothesize the following:

Hypothesis 1 (MM Conversion, short MMC). The parts of the MM that are being used for encod-
ing the causal relationships of the variables of interest can be formally captured by a corresponding
SCM, in short this “equivalence” can be denoted as MM ≡ SCM.

While the MMC hypothesis leaves room for notions not captured by mathematical rigor, it suggests
an equivalence to SCM regarding the causal aspects. The MM example has motivated the MMC
hypothesis which itself suggests a justification of using SCM in the first place.

Implications of MM≡ SCM. If we accept that MM≡ SCM, then we can use SCMs as an adequate
proxy to the MM. Furthermore, any useful property of SCM implies corresponding aspects back in
the MM. We immediately observe one such key property of SCM namely comparability. That is,
if one is given say two different SCMs that are defined over the same endogenous and exogenous
variables (so only differing in the actual parameterizations) then one can compare said SCMs i.e.,
there exists a notion of distance. For the linear case, we can easily prove this by construcing an
example metric space.
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Figure 5: MMC Hypothesis and Linear SCM Metric Space. Left: Accepting Hyp.1 means
that the MM of Hans is an SCM. Right: Different linear SCM (from different individuals) can
be compared, an example metric space for (M, d) is given by Prop.1. (Best viewed in color.)

Definition 8. We define a function d(M1,M2) =
∑

i̸=j |M1(j, i)−M2(j, i)|+ q(P1, P2) where
q is the square-root of the Jensen-Shannon Divergence (JSD), Mk = ⟨Uk,Vk,Fk, Pk(Ui)⟩ for
k ∈ {1, 2} such that V1=V2, U1=U2, Fk define linear functions in R, and in slight abuse of
notationMk(j, i) is the causal effect α from Vj to Vi.

Proposition 1. Let d be as in Def.8 and let M denote the set of all linear SCM defined over the same
exogenous and endogenous variables, U,V. Then (M, d) is a metric space.

Proof. The absolute difference on the real numbers is a metric (i.e., positive-definiteness, symmetry,
and triangle-inequality hold) therefore holding for the “dependency” terms from F . Furthermore, q
was chosen as the Jensen-Shannon-Metric. Finally, metrics are closed under summation.

Prop.1 is just one example of what might be considered a sensible metric space for a subset of all
SCMs. What it does is compare each of the linear coefficients for any causally related tuple of vari-
ables, aggregating the sum, and further adding a divergence term between the defined distributions
over the exogenous variables. This comparability and the visual intuition behind MMC are illus-
trated in Fig.5. We now state our first key observation following Hyp.1 and Prop.1: the existence
of a “true” SCM is in fact justified i.e., there exists an underlying data generating process for any
data and the MM of any person might or might not coincide with that SCM.

On another note, consider the fact that while the “true” SCM represents the concept of objectiveness,
oppositely, the MMs are of subjective nature (that is, every human has their own subjective life expe-
rience). Coming back to MM ≡ SCM, we see that Prop.1 further implies that MMs are also capable
of dis-/agreeing with each other. With this at hand, we now state our second key observation: in
most practical cases having access to many SCM-encodings of subjective MMs can ultimately lead
in their overlap-agreement to (parts of) the objective “true” SCM. There is certainly no guarantee
since all available MM-SCM samples can in fact be wrong, however, note the emphasis on in most
practical cases—therefore, identifying this overlap in MM (or SCM) for a specific problem is highly
valuable for AI/ML research.

Our final, third key observation is concerned with explanations. Existing literature views ex-
planations as derivable from MMs and thus implicitly containing some information on the MM
(Chakraborti et al., 2017) and since MM ≡ SCM, we argue that there must exist an equivalent of
the human notion of explanation within SCM. This justifies our further investigation on SCM-based
explanations, which eventually leads to the formalism of SCE. The benefits of an approach using
explanations derived from SCM are two-fold (1) that by construction they are human understandable
allowing for explainable ML in which models can reason about the learnt and (2) that the models
themselves become better, as they need to account for consistency in explanations, which is benefi-
cial to any downstream-task.

A.2 MULTIPLE NOTEWORTHY SHORT DISCUSSIONS

The Importance of MM ≡ SCM for SCE. While the MMC is a fundamental question that cuts
to the core of human thinking and remains to be proven right or wrong (although we believe it to
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Figure 6: Further Examples of CXPlain Shortcomings. Refer to the main text for details.

be true to the extent of representability through SCM), and while we used it to ultimately justify the
usage of SCM to then derive the causal explanations we call SCE, still, to the actual existence and
formalism of SCE the MMC’s truth value is invariant. Put blantly, if the MMC were to be wrong,
then the formalism of SCE and all proven properties remain the same. However, if MMC were to
be true, then SCE in fact become a “stronger” formalism for causal explanations since they’d have a
direct link to the MM. More importantly, one could make the case that they’d represent a “natural”
formal pendant to the vague human explanations.

Simpson’s Paradox Example. Consider the well-known Simpson’s paradox example for the med-
ical setting of Kidney stone treatments from (Charig et al., 1986). The setting is given by T,K,R
which are Treatment, Kidney Stone Size, and Recovery respectively, and further the graph is given
by T → R,K → {T,R}. It is known that T = 0 denotes open surgery and T = 1 denotes
Percutaneous nephrolithotomy (being a more involved procedure) and in the overall statistics for
recovery of the patient (denoted by R = 1) we observe 78% versus 83% respectively, suggesting
that T = 1 is the better option. Yet, when looking at the confounder K values of patient recovery,
we observe 93% versus 87% for a small kidney stone K = 0 and 73% versus 69% for a large kidney
stone K = 1 respectively, suggesting that in fact T = 0 is better instead. This is the “paradoxical”
situation, which is sensible from the causal perspective. If we now ask the single why-question for
patient i with say values T = 1, R = 0,K = 1 on why i did not recover ri < µR (where µR is
the mean recovery of the data set), then we obtain an SCE that reads as follows: “Patient i did not
recover because of the large kidney stone, although (s)he had Percutaneous nephrolithotomy.”

Hidden Confounders in Semi-Markovian Models. As we pointed out in the main text, SCE can
naturally handle/extend to semi-Markovian models. For illustration, consider the non-Markovian
alternative to the example from the paragraph above on Simpson’s paradox, where K is a hidden
confounder i.e., we only observe T → R as the graph. In a lot of practical settings we might at least
be aware of the fact that there is hidden confounding present between the two variables and thus have
an additional (dashed) bi-directed edge between T and R (case 1) and in the arguably worst case,
said variable is fully undetected (case 2, in this case it is not necessarily a hidden confounder but
simply a hidden cause, since we don’t know if it is confounding or not—confounding meaning the
same thing as common cause). Let’s consider both cases, in case 1, the SCE for the same question as
before would read as: “Patient i did not recover although (s)he had Percutaneous nephrolithotomy.”
We note that simply the reasoning on K is not being delivered, naturally, since K is not in the SCM
that the SCE process observes. For case 2, we’d observe the same reading due to the definition of
the SCE construction. Here, however, we note that this case allows for a natural extension of SCE
in which the reading could change to possibly, “Patient i did not recover because of an unknown
reason, although (s)he had Percutaneous nephrolithotomy.” Note that this semi-Markovian SCE
now allows for reasoning with “unknown reasons” since the hidden cause K will certainly have a
causal relation to R (since K is a cause) but the name of K will not be revealed (since K is hidden).
With this example, we thus conclude that Markovianity can be leveraged by SCE.

Algorithm for SCE Regularization. For sake of completion, we provide an explicit example
algorithm for the simple penalty term we added in our setup for improving graph learning with
available SCEs for the respective data set. For particular details consider the following section
on “Details for Using SCE as Regularizer”. When we write “SCM H” then what is meant is the
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weighted adjacency matrix where the weights represent the causal effects (that is, coefficients in
the linear structural equations) due to Assumption 1. Therefore, the causal graph can simply be
extracted through | tanh(H)|.

Algorithm 1: Learning w/ SCE Regularizer
Input: Data D, SCM learnerMθθθ, Optimizer O

Output: SCM H , Causal Graph G

while i ≤ |I| do
H, l←Mθθθ(D) ▷ estimate SCM & loss
QX , I∗ ← Ii ▷ sample Query-SCE pair
I ← E(QX , H,D) ▷ generate new SCE
lI ← ||I − I∗||22 ▷ compute penalty
θθθ ← O(l + lI , θθθ) ▷ parameter update

end while
H ←Mθθθ(D), and G← | tanh(H)|
return H,G

Technical Details and Code. All
experiments are being performed
on a MacBook Pro (13-inch, 2020,
Four Thunderbolt 3 ports) lap-
top running a 2,3 GHz Quad-
Core Intel Core i7 CPU with a
16 GB 3733 MHz LPDDR4X
RAM on time scales ranging
from a few seconds (e.g. evalu-
ating SCE in Exp.2) up to ap-
proximately an hour (e.g. SCE-
based learning in Exp.3). Our
code is available at: https:
//anonymous.4open.science/r/
Structural-Causal-Explanations-D0E7/README.md.

A.3 THEORETICAL PROPERTIES OF ER AND SCE

The concepts of why-question, causal scenarios and ERi rulest hat we had to develop for the in-
troduction of SCE algorithm, alongside SCE itself, come with several mathematical consequences
which we now discuss. All of the subsequent results are simple and can be proven easily, still, their
importance needs to be stressed since they make implications about the wide applicability of SCE.
Proposition 2. For any causal scenario the rules ER1 and ER2 will be mutually exclusive.

Proof. First, we code the binary ordering relations <,> to represent 0 and 1 respectively.
Second, we observe that ERi ∈ {<,>}, i ∈ {1, 2} always involves the triplet T =
(R(α, 0), R(vj , µj), R(vi, µi)). Third, let T := {0, 1}3 be the set of all such triples as their code
words, so T ∈ T. Looking at the total number of possible scenarios |T| = 23 = 8, we easily see that
ER1 covers codewords {010, 011, 100, 101, 000, 111} and ER2 covers the codewords {001, 110},
and together they cover all codewords ER1 ∪ ER2 = T. Since any single scenario Ci,j is uniquely
mapped to a codeword, it will either trigger ER1 or ER2 but never both.

Proposition 3. The SCE recursion always terminates.

Proof. The recursion’s base case is reached when a root node is reached i.e., a node i with pai = ∅.
An SCM implies a finite DAG, so root nodes are reached eventually.

Proposition 4. The output of any causal structure learning algorithm can be used to compute SCE.

Proof. The proof for this proposition is surprisingly simple in that the SCM M used in the SCE
recursion is only required to provide some kind of numerical value α for the relation of any variable
pair (Vi, Vj), that is, a matrix A ∈ R|V|×|V| which represents a linear SCM or a SCM where each α

represents a causal effect description. If the matrix A is an adjacency matrix living in [0, 1]|V|×|V|,
then we simply have no information about ER3 since all causal effects are assumed to be the same.
Since any causal structure learning algoirthm will produce a causal graph represented by a matrix,
we have that we can compute SCE.

The beauty of Prop.4 can be fully appreciated when being put into the context of practical AI/ML
research and application. It tells us that any causal graph learner ever invented and that will ever be
invented can provide causal explanations on any query of interest consistent with the learned model
thus reflecting the learnt. In practice this means that all prominent graph learning algorithms like
NT (Zheng et al., 2018), CGNN (Goudet et al., 2018), DAG-GNN (Yu et al., 2019) and NCM (Ke
et al., 2019) are all explainable1. On a concluding note to this section, we have a remark on SCM

1The DAG learner in NT can be interpreted as a linear SCM but there is no guarantee.
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that allow for hidden confounder. SCE as presented Def.7 do not cover hidden confounders and we
leave this for future work. However, we can always modify the algorithm to talk about “unknown
reasons” when giving knowledge on U. An extended discussion on this and also other noteworthy
aspects of SCE can be found in the Appendix.

A.4 DETAILS FOR USING SCE AS REGULARIZER

We made use of NT as representative of graph learners for this experiment in which we investigate
whether SCEs themselves can be used as a supervision signal to improve the quality of the learned
graph. To circumvent the non-differentiable nature of our recursive formulation of SCE we train a
neural network on a set of legal SCE to mimic the algorithm’s output while being fully differen-
tiable. Following Zheng et al. (2018), we generate 70 random linear SCMs following Erdos–Renyi
structures. We use graph induction to infer 70 more graphs, making 140 in total. For each graph we
generate 50 random why-questions to be answered, resulting in a data set of 7000 explanations. We
extend the NT loss composition with this neural approximation using a SCE regularization penalty
(to penalize SCE inconsistent graph estimates) and perform graph induction once with and once
without the regularization (where between 1 and 50 explanations are being observed). The graph
induction is being performed in a data-scarce setting with only 10 data samples per graph induction.
Thus to infer the true causal structure the method ideally needs to perform sample-efficient. Main
paper Fig.4 shows our empirical results on the error distributions for all the graphs while presenting
the qualitative difference in the estimated graphs for the most significantly improved example. It
can be observed that with the regularization the induction method can both identify more key struc-
tures while significantly reducing the number of false links, thereby appearing to be overall more
sample-efficient. An explanation would be that, as conjectured, the explanations contain valuable
information about the underlying SCM if the explanations themselves were generated by a similar
SCM, thereby striking structures that would lead to contradicting explanations.

A.5 DETAILS FOR FEEDING SCE WITH GRAPHS LEARNED FROM DATA

We select NT (Zheng et al., 2018) as a representative data-driven graph learner for the illustration
in Fig.7 which considers the previously covered data sets and why-questions i.e., weather forecast
(W, Mooij et al. (2016)), health (H), mileage (M), and recovery (R, Charig et al. (1986)). The
SCE generated using the learned causal semantics are identical for the DW and M data sets, while
differing only subtle for R and drastically for CH data sets. The former discrepancy occurs on
the second-level of reasoning i.e., the right top-level explaining answer is given to the question
(i.e., “Kurt did not recover because of the problematic pre-conditions”) but was contrasted wrongly
(i.e., the treatment countering the state of condition and not affecting the condition). The latter
discrepancy revolves around a totally different structure e.g. the learned model expects a direct
cause-effect relation between age and mobility while also wrongly assuming that food habits have a
detrimental effect on health. An explanation in the case of NT is clearly the violation of the linearity
assumption for the CH data set generating SCM.

While in Prop.4 we prove that graph learner are generally explainable in the sense of SCE, for
empirical illustration we also provide more examples of such graph learner-based SCE, as we did
with our lead examples for NT, in this case additionally for CGNN (Goudet et al., 2018) and DAG-
GNN (Yu et al., 2019). Figure 7 and Table 2 show an application to NT with graph visualizations
and of all methods to a superset of questions (that is, same and more) as the data used for NT. It
is crucial to note that the presented results have not been hyperparameter-optimized (HO). Take for
example CGNN, where candidate selection is exhaustive (brute force, and thus super-exponential in
the number of nodes) and the model selection heavily relies on the neural approximation, thereby,
HO is likely to be important. In a nutshell, the motivation behind Tab.2 is to present support for
our theoretical proof on SCE-interpretability of graph learner i.e., we also give empirical proof for
several methods in practice (opposed to pure theory). To assess the quality of the SCE, it is important
to note the assumptions made by the original method. E.g., NT and DAG-GNN assume linear SCM.
Thereby, we have no guarantees for running such a method in a non-linear data domain (which
we do with the data sets DW and CHD). Interestingly, these assumptions can in fact be exposed
by SCE. Consider the DW data set (Tab.2, first example), theory suggests that a linear model with
Gaussian noise will exist in both directions X → Y and Y → X , thus being non-identifiable
(Peters et al., 2017). Methods like NT and DAG-GNN therefore pose the assumption that the given
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(Left)
Ground Truth

(Right)
Learned

1 2 3 4
(A) Altitude, (T) Temperature (A) Age, (F) Nutrition, (H) Health, (M) Mobility (C) Tank Size, (S) Driving Style, (M) Fuel Savings (T) Treatment, (Z) Pre-Condition, (R) Recovery 

identical identical

1 “Why is the Temperature at the Matterhorn low?” (Question)
“The Temperature at the Matterhorn is low because of the high Altitude.” (Ground Truth)
“The Temperature at the Matterhorn is low because of the high Altitude.” (Learned)

2 “Why is Hans’s Mobility bad?”
“Hans’s Mobility is bad because of his bad Health which is mostly due to his high Age, although his Food Habits are good.”
“Hans’s Mobility, in spite his high Age, is bad mostly because of his bad Health which is bad mostly due to his good Food Habits.”

3 “Why is your personal car’s left Mileage low?”
“Your left Mileage is low because of your small Car and your bad Driving Style.”
“Your left Mileage is low because of your small Car and your bad Driving Style.”

4 “Why did Kurt not Recover?”
“Kurt did not Recover because of his bad Pre-condition, although he got Treatment.”
“Kurt did not Recover because of his bad Pre-Condition, which were bad although he got Treatment.”

Figure 7: Quality of Learned Interpretations. We chose the simple, popular NT from Zheng et al.
(2018) as our graph learner for generating the SCE. Subtle differences between explanations exist
e.g., the explanation 4 is right on the top-level but for the wrong reasons, that is T → Z instead of
T → R. Variable letters are capitalized. (Best viewed in color.)

data comes, in this case, from a linear model with Gaussian noise i.e., the identifiability problem is
being circumvented altogether. This is also the reason why different random seeds can lead to both
modellings (A→ T and T → A) for the DW data set (see in Tab.2 how the SCE flips forM3=DAG-
GNN for the two opposing DW queries). Another important note is that the uninformed SCEs “No
causal explanation ...” occur when the method’s SCM estimate does not contain a causal path to the
variable that is being queried by the why-question i.e., the SCM will actually contain a non-trivial
estimate of the underlying causal structure, even though the SCE returns a trivial/empty explanation
since the variable of interest can not be reached within the estimate’s structure with a directed path
(i.e., the base case in Def.7 is trivially triggered). In fact, these negative “no answer”-type of cases
are important since the model need also be able to know when there is nothing to be known. For this
case, we also pose why-questions to which the ground truth is already a “no answer” explanation
since there is no causal connection to the variable being queried by the why-question. The empirics
in Tab.2 suggest, as theoretically proven (Prop.4), that the graph learner are explainable and also that
all 3 rules (excitation, inhibition and preference) are being used for the graph learner-based SCE.
As a positive example, consider example #3 for the CH data set where M1 captures the complex
explanation correctly up to preference and falsely assuming that food habits (F ) have a negative
causal effect on health (H). A more interesting example (#8 for the R data set) shows that the main
reason being bad pre-conditions (Z) is being captured but the model falsely assumes that those are
because of the received treatment (T ). To consider a negative example have a look at example #4
again for CH where the actual answer is a “no causal explanation” since age (A) is a root node.
However,M3 claims that the age is high because of the food habits and mobility (M ), then again
because of health. While the statement is wrong and also feels exaggerated, inspecting closely one
can detect the correct existence of the causal edge between mobility and health (H → M ). I.e., the
model interprets wrongly, but its causal model is still partially valid.

A.6 DETAILS FOR USER STUDY

We instructed N = 22 participants to answer our questionnaire (see appendix Fig.9). The ques-
tionnaire asked the following questions: “Given a pair of variables, does a causal relationship exist
(existence)? If yes, then which is the cause and which is the effect (direction)? If there are mul-
tiple causes for a single variable, then how impactful is each of the causes (preference)?” All of
these questions, alongside their responses, are of qualitative and subjective nature. It is important
to note that the participants do not perform the actual induction from specific, provided data like the
algorithms do i.e., the human subjects are not given the variable names nor concrete data points that
would allow them to find the rules for the specific data sets. Instead, they were only given the vari-
able names/depictions, thereby having to induct from personal experience/understanding essentially.
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This approach to human induction is related to the experimental setups in (Griffiths & Tenenbaum,
2006; Hattori, 2016).

The motivating lead research questions we intended to answer, and in fact do answer successfully
with this experiment, are: What are SCM that (some) human could model? How does overlap for
human-based SCM occur? How do subsequent SCE (Def.7) between humans and algorithms differ?
In a nutshell, we wanted to investigate the similarity of SCMs between subjects in addition to the
similarity between subjects- and algorithm-based SCEs.

A caveat regarding the analysis and explanation of human judgements is that sample bias may distort
conclusions. Sample bias has long been identified within the behavioral and social sciences as
limiting the generalization of results obtained in a specific sample to the population. A common
methodological fix to counteract such biases is to increase the sample size, see (Daniel, 2017) for a
recent application and discussion. Certainly, the observed sample will affect the way the difference
(to e.g. algorithm-based SCE) turns out to be, but then again our research question is not concerned
with all possible human explanations, but any. Furthermore, we chose data sets that model very
general examples and thus offer accessibility to the general population since no single person might
be an expert. Ultimately, this way of designing our experiment, while not removing sample bias of
course, renders the bias’s qualitative effect onto our subsequent investigation negligible.

In the following we provide a discussion of several interesting and important insights discovered
through the human user study. Nonetheless, it is important to note that our results like most
modern day interpretations of human behavior are of conjectural nature – sensible, educated
guesses essentially. During this discussion, we will point to specific aspects of the descriptive
statistics displayed in appendix Fig.10. The actual human data is also being appended for the
sake of completion (click on the following link to access the anonymized human data: https:
//anonymous.4open.science/r/Structural-Causal-Explanations-D0E7/
Survey-Human-Data-Anonymized.pdf). The questionnaire contains four examples with
two, three, three, and four variables (or concepts) respectively that are being visually depicted in
addition to a concise textual description. We randomized the textual description of up to three
variables across all examples for any randomly selected participant. Doing so, we allow for the
randomized concept to reverse causal influence directions, thus, diminishing the bias of chance-
selecting said causal direction – in a nutshell, this randomization scheme helps us in controlling for
explanation variance (or leeway) of the subjects. Nonetheless, we still observed that for any variable
pair (X,Y ) the meanings of X and Y themselves could be interpreted differently, which ultimately
resulted in False Negatives regarding agreement i.e., people will disagree technically although they
actually agree. To give a concrete example, consider the following: pre-condition in Example 2
can be interpreted as “the length of the medical history of a patient” (negative; increasing implies
lower chance of recovery) opposed to “the state of well-being of a patient” (positive; increasing
implies higher chance of recovery), thereby some subjects might choose Z1 → R while others will
choose Z2 ← R where Zi are the different explanations of the “pre-condition” concept (and R
denotes recovery), yet all subjects agree on an existing relation between the two variables: Zi ↔ R.
Also, some variables/concepts were more stable in their explanation variance. To give yet another
specific example, altitude and temperature in Example 1 (appendix Fig.9) are stable concepts while
the aforementioned pre-condition in Example 2 is unstable (due to its explanation variance/leeway).
More importantly these different explanations due to the ambiguity inherent in language become
visible within the statistics. To stay inline with the previous example, consider the medical example
within appendix Fig.10 (second row, middle) and specifically consider the edges T → R and
Z → R. For the former relation the agreement between subjects is evident i.e., the majority of
human subjects will select this edge. For the latter relation, we clearly see the two previously
discussed explanations that subjects employ during edge decision. I.e., for some subjects the edge
between Z and R is positive and for some others it is negative, while naturally all agree upon there
being a relation between the variable pair (Z ↔ R) opposed to there being no relation (Z ̸↔ R).

We observe a systematic approach and thereby non-random approach to edge-/structure-selection
by the human operators, see any of the subplots within appendix Fig.10. Furthermore, there are only
a few clusters even with increasing hypothesis space. Both the systematic manner and the tendency
to common ground are evidence in support of the MMC hypothesis (MM ≡ SCM, Hyp.1) and its
implied argument on “true” SCM information reachable from the overlapping MM-based SCMs or
SCMs.
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Although we randomize the order of variables in addition to consistently presenting them in a simple
line with the intention of not inducing any specific sorting/structure to avoid bias, we still observed
apparent, unintended subject behavior. For instance, subject number 5 only considered pairs pre-
sented next to each other as being questioned although the other combinations are meant to be
queried as well. While additional research needs to corroborate these observations, our data sug-
gests that attention might have decreased over the course of the experiment for a subset of subjects
as suggested by e.g. subject number 7 where overall agreement with the subject majority is to be
found but eventually at the very last example “mistakes” occur (specifically, the subject highlighted
that “increasing age increases mobility”, in stark disagreement with the majority of participants).
We also observe that the increase in hypothesis/search space (i.e., more variables) comes with an
increase in variance. This variance increase can be argued to be due to the progressive difficulty of
inference problems as well as decreased levels of attention and potential fatigue across the duration
of the experiment (e.g. consider the duplicate plots, third column, in appendix Fig.10 where the
number of unique structures that are being identified increases significantly). Yet another interesting
observation concerns the aspect of time, consider subject number 17 where there is a cycle between
treatment and recovery where the subject likely thought in terms of “increasing treatment increases
speed of recovery which subsequently feeds back into a decrease of treatment (since the individual
is better off than before)” which seems like a valid inference but clearly considers the arrow of time.
Yet another observation, some subjects faced questions of variable scope e.g. if there is a causal
connection between food habits and mobility, then some subjects considered energy as the mediator
and since energy is not part of the variable scope, confusion might arise whether to place an edge
between food habits and mobility or not. In fact, for such a scenario the correct answer is to place an
edge, since there exists a causal path from food habits to mobility, via energy, even if energy is not
displayed. I.e., in causality, an edge can/will talk implicitly about all the more fine-grained variables
that are part of the causal edge/path.

The second data set is an instance of the famous Kidney Stone example (Peters et al., 2017), where
Z is a confounder that indicates the pre-conditions in terms of e.g. the size of the kidney stone,
and it also illustrates the famous Simpson paradox (Simpson, 1951; Pearl, 2009; Peters et al., 2017)
where the recovery will favor one treatment in the overall statistics while being better for all of
the non-consolidated views for the other treatment. We observe that not a single subject places the
edge pre-condition to treatment (Z → T ) which is arguably at the core of Simpson’s paradox. This
observation gives an additional cue on why the phenomenon is called paradox because no human
subject expects the existence of this connection and even actively neglect the existence.

We observe that the human-based SCE match the Ground Truth SCE perfectly up to the R data set
SCE, which is also the “Result” in Fig.4 i.e., the “Mode” approach returns the correct SCE while
the “Greedy” approach chooses the wrong edge type for Z and R. After further investigation, we
believe to have found several explanations for this “human” mistake that we discuss extensively in
the appendix. On another note, we observe that the overall flawless performance of human-based
SCE speaks for superiority over algorithmic graph learner-based SCE. To conclude this paragraph,
let us appreciate one such drastic difference in explanations, which in fact occurred on our lead
example “Causal Hans”:

Humans: “Hans’s Mobility is bad because of his bad Health which is mostly due to his
high Age, although his Food Habits are good.”
Machines: “Hans’s Mobility, in spite his high Age, is bad mostly because of his bad
Health which is bad mostly due to his good Food Habits.”
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Edge (i to j)
4 H1 “Hans’s mobility is bad because of his bad health which is mostly due to his high age, although his nutrition is good.”

H2 =H1
A “Hans’s mobility, in spite his high age, is bad mostly because of his bad health which is bad mostly due to his good nutrition.”

2 H1 “Kurt did not recover because of his bad pre-conditions, although he got treatment.”
H2 “Kurt did not recover although his pre-condition and the fact he got treatment.”
A “Kurt did not recover because of his bad pre-cond., which were bad although he got treatment.”

Figure 8: “Humans vs Machines”. Top: Edge plots per example where the bars denote the average
value of given relation and the errors confidence intervals. Bottom: The SCE generated for the two
human variants against a graph learner. Human explanations are (near-)identical to the ground truth
from Tab.7. (Best viewed in color.)
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Example 4

Example 3
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Example 1Questions

negative relation, B causes A

negative relation, A causes B

positive relation, B causes A

positive relation, A causes B

no relation between A and B

A B?

Is there a causal relation?
If yes, then is it positive or negative? 
If yes, then in which direction?

...

If there are multiple relations, what is the order of strength?

? ?

e.g. 1

2

most important cause

2nd most important cause

increasing B reduces A

increasing B increases A

increasing A reduces B

increasing A increases B

Figure 9: Experiment Setup for the Human Case Study. The participants are being asked two
questions: whether there is a directed relation between some variable pair A and B, and when there
are multiple causes how they behave relatively i.e., the order of strength in relations. We avoid bias
in drawing relations by randomizing the order and presenting the variables in a sequence. Induction
is being performed from personal “data”/experience, rather than by looking at a matrix of data
points. To avoid bias in drawing relations, we don’t provide any hints on a graph structure and we
randomize the sorting of the variables. To provide more clarity we depict the names of the concepts
with additional illustrations. The participants are asked to perform induction based on personal
data/experience i.e., they only see the orange and blue boxes. (Best viewed in color.)
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Structural Causal Explanation (Prop.4)

#1 Dataset: DW, Query: “Why is the temperature at the Matterhorn low?”
GT “The temperature at the Matterhorn is low because of the high altitude.”
M1 “The temperature at the Matterhorn is low because of the high altitude.”
M2 “The temperature at the Matterhorn is low because of the high altitude.”
M3 “No causal explanation for Matterhorn’s temperature.”
#2 Dataset: DW, Query: “Why is the Matterhorn so high?”
GT “No causal explanation for Matterhorn’s altitude.”
M1 “No causal explanation for Matterhorn’s altitude.”
M2 “No causal explanation for Matterhorn’s altitude.”
M3 “The altitude of the Matterhorn is high because of the low temperature.”
#3 Dataset: CH, Query: “Why is Hans’s mobility bad?”
GT “Hans’s mobility is bad because of his bad health which is mostly due to his high age,

although his nutrition is good.”
M1 “Hans’s mobility is bad because of his bad health which is bad because of high age and

mostly due to his good nutrition.”
M2 “Hans’s mobility is bad because of his good nutrition.”
M3 “No causal explanation for Hans’s bad mobility.”
#4 Dataset: CH, Query: “Why is Hans old?”
GT “No causal explanation for Hans being old.”
M1 “No causal explanation for Hans being old.”
M2 “No causal explanation for Hans being old.”
M3 “Hans is old because of his good nutrition and bad mobility, which is because of his bad health.”
#5 Dataset: CH, Query: “Why is Hans’s nutrition good?”
GT “Hans’s nutrition is good because of being older.”
M1 “Hans’s nutrition is good because of being older.”
M2 “No causal explanation for Hans’s nutrition.”
M3 “Hans’s nutrition is good because of his bad health and mobility.”
#6 Dataset: M, Query: “Why is your personal car’s left mileage low?”
GT “Your left mileage is low because of your small car and your bad driving style.”
M1 “Your left mileage is low mostly because of your small car and because of your bad driving style.”
M2 “No causal explanation for the left mileage.”
M3 “Your left mileage is low because of your small car and your bad driving style.”
#7 Dataset: M, Query: “Why is your personal car small?”
GT “No causal explanation for the car size.”
M1 “No causal explanation for the car size.”
M2 “Your personal car’s size is small because of your good driving style and fuel savings.”
M3 “No causal explanation for the car size.”
#8 Dataset: R, Query: “Why did Kurt not recover?”
GT “Kurt did mostly not recover because of his bad pre-conditions, although he got treatment.”
M1 “Kurt did not recover because of his bad pre-conditions which is because of the treatment he got.”
M2 “No causal explanation for Kurt’s recovery.”
M3 “No causal explanation for Kurt’s recovery.”
#9 Dataset: R, Query: “Why did Kurt get treatment?”
GT “Kurt got treatment because of his bad pre-conditions.”
M1 “No causal explanation for Kurt’s received treatment.”
M2 “Kurt got treatment because of his bad pre-conditions.”
M3 “No causal explanation for Kurt’s received treatment.”

Table 2: SCE Evaluation on Graphs Learned from Data. We prove Prop.4 for general graph
learners while pointing to some example methods from the existing literature on graph learners.
Here we show the results of running the methodsMi, 1:NT (Zheng et al., 2018), 2:CGNN (Goudet
et al., 2018), 3:DAG-GNN (Yu et al., 2019) on the four data sets weather forecast (W, Mooij et al.
(2016)), health (H), mileage (M), and recovery (R, Charig et al. (1986)) for the respective why-
questions. As suggested, the methods are explainable and reveal insights onto the learned causal
semantics, while varying significantly in quality in terms of accuracy relative to the ground truth
(GT). Independent of accuracy, “No causal explanation . . . ” occur when the SCM estimate ofMi

contains no causal path to the queried variable X i.e., paX = ∅ (supported through GT sparsity).
We also show GT explanations that require a negative “no answer” response byMi.
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Figure 10: Human Data Analysis: Qualitative, Quantitative, and Uniqueness. Statistics col-
lected from the human data (N = 22). The rows denote the four data sets: weather forecast (W,
Mooij et al. (2016)), recovery (R, Charig et al. (1986)), mileage (M), and our synthetic health data
set (H). The columns: qualitative edge distributions that show for each of the different edge type
how often it was chosen respectively (left). Qualitative because it incorporates ACEs. A green edge
denotes positive ACE, whereas red means negative ACE (i.e., increasing X would decrease Y ).
Quantitative edge distribution for each edge where the error bars denote confidence intervals (mid-
dle), and the unique structure counts where each bar depicts the frequency of a qualitative structure
discovered by the human subjects (right). Extensive elaboration on the setup, execution and results
of this human study are to be found in the corresponding appendix section. (Best viewed in color.
Since the plots get dense with increasing combinations of variable pairs, please consider zooming in
to read the labels for any detailed view of the results.)
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