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ABSTRACT

Transformers can under some circumstances generalize to novel problem instances
whose constituent parts might have been encountered during training, but whose
compositions have not. What mechanisms underlie this ability for compositional
generalization? By reformulating multi-head attention as a hypernetwork, we
reveal that a composable, low-dimensional latent code specifies key-query specific
operations. We find empirically that this latent code is predictive of the subtasks the
network performs on unseen task compositions, revealing that latent codes acquired
during training are reused to solve unseen problem instances. To further examine
the hypothesis that the intrinsic hypernetwork of multi-head attention supports com-
positional generalization, we ablate whether making the hypernetwork-generated
linear value network nonlinear strengthens compositionality. We find that this
modification improves compositional generalization on abstract reasoning tasks. In
particular, we introduce a symbolic version of the Raven’s Progressive Matrices
human intelligence test, which gives us precise control over the problem composi-
tions encountered during training and evaluation. We demonstrate on this task how
scaling model size and data enables compositional generalization in transformers
and gives rise to a functionally structured latent space. 1

1 INTRODUCTION

Abstract reasoning is a cornerstone of human intelligence. Many intelligence tests in psychology
measure intelligence using abstract reasoning tasks (e.g. Wechsler, 1958; Binet & Simon, 1961;
Raven, 1962). Arising from the idea that combinatorial structures are central to human cognitive
abilities, the ability of connectionist models to reason has been debated for decades (e.g. Rumelhart
& McClelland, 1986; Fodor & Pylyshyn, 1988; Smolensky, 1991). However, with the success of
neural networks at scale, the capacity for reasoning has seemingly come into reach (Huang & Chang,
2023). Arguably key to this success is the ability for in-context learning paired with the capacity to
flexibly recombine learned skills and knowledge to unseen settings. While these capabilities emerge
at least partially from training large models on huge datasets (Brown et al., 2020), it is not clearly
understood how the resulting networks implement them - and why they still often fail.

A number of recent studies that aim to illuminate in-context learning abilities have found that
transformers can learn to perform gradient-based optimization within sequence (Dai et al., 2023;
Akyürek et al., 2023; von Oswald et al., 2023). They build on the insight that linear attention can be
understood as a fast-weight programmer (Schmidhuber, 1992), that learns to construct an implicit
model in-context, with weights given by a sum of input-dependent outer products (Schlag et al.,
2021). Complementing this perspective, (Hendel et al., 2023; Todd et al., 2024) have found that
in-context learning creates task vectors in the hidden activations of deeper layers of the network,
which summarize in-context information and modulate the forward computation. What is striking is
that learning in-context can under some circumstances lead to compositional generalization, that is

†Shared senior authors
1Code available at https://github.com/smonsays/hypernetwork-attention
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Figure 1: Hypernetwork attention. A A linear hypernetwork maps a latent code to a set of
parameters that configure a value network to process the input. B The attention scores along the head
index form the latent code of the hypernetwork. C Multi-head attention can be equivalently expressed
as a linear hypernetwork that configures key-query specific computations of a linear value network.

generalization to unseen combinations of previously observed constituents (An et al., 2023; Lake
& Baroni, 2023; Hosseini et al., 2022), a capacity that neural networks notoriously struggle with
(Srivastava et al., 2023; Press et al., 2023; Dziri et al., 2023). The mechanism behind this ability
however is not well understood. Here we aim to shed light on this question.

Our key finding is that through the use of multiple heads, the attention mechanism of transformers is
mathematically equivalent to a hypernetwork, a neural network that reconfigures the computation of
another neural network as shown in Figure 1. This results in a novel interpretation of the attention
scores along the head index as a compact latent code that specifies the operations the attention layer
applies to each input. Notably, we hypothesize that because multi-head attention shares the same
hypernetwork per layer, it is encouraged to reuse and recombine previously acquired operations.

In order to investigate whether this constitutes a faithful characterization of what transformers learn
in practice, we study in-context learning tasks that require recomposing knowledge obtained during
training. As one such task, we develop a challenging abstract reasoning task based on the Raven’s
Progressive Matrices human intelligence test (Raven, 1962) and show how multi-head attention
develops a structured latent code that captures information about the operations implemented.

Our main contributions can be summarized as follows:

• We reformulate standard multi-head attention from a hypernetwork perspective, revealing that
network computations are specified by a low dimensional latent code.

• We show that scaling up model size and data enables transformers to compositionally generalize on
abstract reasoning tasks and leads to a structured latent space that is predictive of network function.

• To test the hypothesis that the hypernetwork mechanism supports compositionality, we introduce a
simple modification to multi-head linear attention that makes the value network nonlinear without
introducing additional parameters, finding that it improves compositional generalization.

• We introduce SRAVEN, a challenging symbolic, abstract reasoning task whose difficulty can
be controlled parametrically and which offers precise control over the problem compositions
encountered during training in order to test for compositional generalization.

2 ATTENTION AS A HYPERNETWORK

In this section, we will first briefly recapitulate hypernetworks (Ha et al., 2017) and standard multi-
head dot-product attention (Vaswani et al., 2017) before showing how attention can equivalently be
expressed as a hypernetwork. We will then introduce Hypernetwork Linear Attention (HYLA) as
a simple modification of linear attention that renders the hypernetwork mechanism inside attention
more expressive.
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For notation, we will use bold lower-case letters for vectors (e.g. z), bold upper-case letters for
matrices (e.g. A) and bold, italic upper-case letters for learnable parameter matrices (e.g. WV ).

2.1 MULTI-HEAD ATTENTION

A hypernetwork is a neural network h(z;θ) parameterized by θ that takes as input a latent code z
and outputs parameters W that parameterize a value network f(x;W), which then processes the
inputs (see Figure 1A). The latent code z is typically low-dimensional and can be interpreted as a
specification of the computation performed by the value network. As we will see in the following,
multi-head attention can be viewed as a linear hypernetwork producing the weights for a linear value
network. Note that this is different from the observation that linear attention can be understood
as a fast weight programmer (Schlag et al., 2021), where the fast weights of a value network are
constructed as a sum of outer products over the key indices instead of the head indices.

Self-attention2 maps a sequence of inputs X ∈ RD×T to a sequence of outputs Y ∈ RD×T . For
each attention head h ∈ {1, . . . ,H}, the inputs are projected into keys Kh = W key

h X and queries
Qh = W query

h X using head-specific projection matrices W key
h ,W query

h ,W value
h ∈ RDhead×D with

Dhead = D
H . The attention matrix can then be obtained as

A = σ
( [

Ã1 Ã2 . . . ÃH

] )
with Ãh =

Q⊤
hKh√
Dhead

(1)

where A = (ah,q,k)h,q,k ∈ RH×T×T stacks the head-specific unnormalized attention matri-
ces (Ãh)h into a three-dimensional array and applies a normalization operation σ(·). For linear
attention, σ(·) = Id(·) is simply the identity whereas for softmax attention σ(·) = Softmax(·)
applies the softmax operation for each head and query index independently across the key indices.
Considering a single query index q ∈ {1, . . . , T} and xk ∈ RD the k-th column of X, multi-head
attention (MHA) can be equivalently expressed as a hypernetwork:

MHAq(X) :=W out
H⊕

h=1

T∑
k=1

ah,q,k W value
h xk (2)

=

H∑
h=1

W out
h

T∑
k=1

ah,q,k W value
h xk (3)

=

T∑
k=1

 H∑
h=1

ah,q,k︸ ︷︷ ︸
latent code

W out
h W value

h︸ ︷︷ ︸
hypernetwork

xk (4)

=

T∑
k=1

Wq,k︸ ︷︷ ︸
value network

xk (5)

where ⊕ denotes concatenation and the W out
h ∈ RD×Dhead

are defined as the slices of W out ∈ RD×D

such that W out =
⊕H

h=1 W
out
h . See Figure 1C for a diagram of the computation.

As a result, the key-query specific attention scores over the multiple heads form a latent code, where
the number of heads H corresponds to the latent dimension of a hypernetwork. Accordingly, the
dot products between any key-query pair over all heads can be interpreted as an amortized inference
process to configure the computation implemented in the linear value network.

The key significance of our finding is that it suggests that the use of multiple heads in attention allows
it to implement specialized, reusable operations through the latent code of a hypernetwork. It has
been theoretically and empirically shown that hypernetworks support compositional generalization
(Schug et al., 2024), providing a possible explanation for similar capabilities observed in transformers
(Lake & Baroni, 2023; An et al., 2023; Hosseini et al., 2022). Note that multi-head attention reuses
the same hypernetwork for every key-query index. Specifically, the hypernetwork linearly combines

2We focus on self-attention, but the same derivation holds for cross-attention, where the keys and values are
obtained as the output of an encoder and the queries come from a decoder.
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the same matrices (W out
h ,W value

h )h according to the weights given by ah,q,k. This incentivizes reuse
of latent codes and their associated operations implemented through the value network.

2.2 HYPERNETWORK LINEAR ATTENTION (HYLA)

If the perspective of multi-head attention as a hypernetwork indeed reflects how it operates in practice,
it should be possible to modify multi-head attention in a way that further reinforces the hypernetwork
mechanism. For instance, both the hypernetwork and the value network in multi-head attention are
simple linear networks and could be replaced by nonlinear networks. Furthermore, the normalization
operation σ(·) could be used to encode inductive biases such as competition or sparsity in the latent
code by imposing structural constraints.

Here, we focus on a simple modification to linear attention, where we make the value network
nonlinear and normalize the latent code along the head index (instead of along the key index as in
standard softmax attention). Specifically, we define Hypernetwork Linear Attention (HYLA) to use a
single hidden layer value network by adding a nonlinearity. This should increase the expressivity
of the subfunctions that are learned and recomposed by the layer. Noting that the output and value
projections W out

h ,W value
h already form a deep linear network in standard multi-head attention (c.f.

Eq. 4) this can be achieved without adding additional parameters as follows:

HYLAq(X) =

T∑
k=1

(
H∑

h=1

ah,q,k W out
h

)
ϕ

(
H∑

h=1

ah,q,k W value
h xk

)
(6)

=

T∑
k=1

W′
q,kϕ(Wq,kxk), (7)

where ϕ(x) is an element-wise nonlinearity; here we set it to be a ReLU, ϕ(x) = max(0, x).
Additionally, we use σ(·) = RMSHead(·), to normalize the attention scores for each key and query
index independently across the head indices using RMSNorm(x) = x√

1
n

∑n
i=1 x2

i

(without adding

a learnable scalar as in Zhang & Sennrich (2019)). This ensures that the parameters of the value
network generated by the hypernetwork maintain the variance preserving properties of neural network
initializations that have been found to be important for the stability of gradient-based training (Glorot
& Bengio, 2010). The resulting HYLA-layer is a simple drop-in replacement to standard attention.
Notably, since the normalization operation σ(·) is local to the query and key index, it requires no
communication across keys as opposed to softmax attention. By making the value network more
expressive, we allow the network to implement more complex operations for a given latent code
which we hypothesize strengthens the ability for compositional generalization.

3 COMPOSITIONAL GENERALIZATION ON FUZZY LOGIC FUNCTIONS

We start by developing a fuzzy logic task with compositional structure, inspired by a similar task
previously considered by Rahaman et al. (2021). Learning such tasks in an in-context learning setting
will allow us to study the ability of multi-head attention-based models to compositionally generalize
and analyze the structure of their latent code when solving each task.

Given a set of L scalars {x1, ..., xL} with xi ∈ [0, 1] we define fuzzy logic operators on the elements
of this set as the Zadeh operators (Zadeh, 1965):

xi ∧ xj := min(xi, xj), xi ∨ xj := max(xi, xj), x̄i := 1− xi (8)

These operators have the property that for boolean inputs xi ∈ {0, 1} the outputs coincide with the
outputs of the corresponding Boolean operation. Each task is then defined as a function in disjunctive
normal form consisting of K terms such as for example for L = 4 and K = 2

f(x1, x2, x3, x4) = (x1 ∧ x2 ∧ x3 ∧ x4)︸ ︷︷ ︸
Term 1

∨ (x̄1 ∧ x2 ∧ x̄3 ∧ x4)︸ ︷︷ ︸
Term 2

(9)

where each term is a conjunction of all variables with negations applied to some of them. In order to
test for compositional generalization, we index each of the 2L possible terms, generate all possible
combinations of K terms and hold out a fraction of the combinations for out-of-distribution (OOD)
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Figure 2: Compositional generalization on fuzzy logic functions. A We split fuzzy logic functions
according to their constituent terms into train and out-of-distribution (OOD) sets to measure composi-
tional generalization in a sequence model that learns these functions in-context. B The latent code
of the response token is predictive of the constituent terms underlying each task. Shown is the F1
score on unseen tasks of logistic regression classifiers for each layer and term, trained to predict the
terms underlying each task based on the attention scores across the head index for the response token
attending to itself. C Task performance on unseen tasks reported as OOD R2 for varying number
of in-context examples and fraction of tasks held-out during training. D tSNE visualization of the
latent codes (attention scores across the head index for the response token attending to itself) colored
according to the target label (top) and colored according to the first term of the fuzzy logic function
of each task (bottom).

testing, ensuring that their constituent terms have been encountered in some tasks during training.
For each task, we present N examples in-context (see Figure 2A) where each token has dimension
L+ 1, consisting of the concatenated inputs sampled uniformly from [0, 1] and the corresponding
target of the function for the current task. For the final token, we mask out the target and use the
output logits of the final token to predict the target, measuring the loss using the mean-squared error.

3.1 COMPOSITIONAL GENERALIZATION

We first investigate how well multi-head attention based transformer models are able to learn our
fuzzy logic tasks in-context and compositionally generalize to held-out tasks. We vary the number of
examples presented in context, as well as the fraction of combinations of fuzzy logic terms held-out
from the training set. Figure 2C compares standard multi-head softmax attention and linear attention,
as well as our HYLA model in terms of their coefficient of determination (R2) on held-out tasks.
We find that all models are able to solve the fuzzy logic task given sufficient examples are presented
in context. As the fraction of held-out tasks increases, compositional generalization performance
starts decreasing for all models. Interestingly, HYLA is less affected by this decline than softmax and
linear attention. We hypothesize that the more expressive value network allows to more efficiently
represent the nonlinear terms being composed and thereby strengthens the inductive bias towards
compositionality. Consistent with this interpretation, in-distribution the models show comparably
small differences in performance (see Figure A3B+D). In Appendix A.1 we conduct additional model
ablations that separate the contributions of the RMSHead normalization and the nonlinearity added to
the value network, showing that both components in combination are required to obtain the observed
performance improvements.

Our compositional split only contains novel combinations of known terms. A priori, it might be
possible that the system learns to compose the basic fuzzy logic operations in a way that allows it to
generalize to any fuzzy logic function, including those that contain novel combinations of unknown
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Figure 3: SRAVEN. A Illustration of SRAVEN task generation and the construction of the compositional
generalization split. B Example problem instance illustrating a key challenge of the original Raven’s
Progressive Matrices of finding correspondences (adapted from Carpenter et al. (1990)). When
attempting to solve this instance, different hypotheses over which figural elements are governed by a
consistent rule across rows are possible. This is akin to different orderings of the symbolic features.

terms. However, testing on functions obtained as novel combinations of K unknown terms, we find
that none of the models considered here is able to solve such a task (see Figure A3C).

3.2 LATENT CODE STRUCTURE

Next, we analyze the structure of the latent code for the different models solving the task. As
suggested by Eq. 4, the attention scores for a given key-query pair across the head dimension
configure the computation performed in the value network, and accordingly we would expect it
to reflect the fuzzy logic function that needs to be implemented to correctly predict the output of
the response token. To test this hypothesis, we collect the attention scores for the response token
attending to itself, obtaining a vector of dimension H for each layer and task. For this purpose, we use
the tasks held-out from training, varying the response token while keeping inputs shown in-context
fixed. In order to visualize the H-dimensional points we thereby obtain for each layer, we reduce
the dimensionality using tSNE (Maaten & Hinton, 2008). The results of this analysis are shown in
Figure 2D (for an extended figure showing all layers, see Figure A2). In line with our hypothesis, the
latent codes for each model form clusters. The structure of these clusters is only partially explained
by the specific output value of each function. Strikingly, coloring data points according to the fuzzy
logic terms that make up each function reveals that clusters in the latent codes correspond to the
terms. Indeed, it is possible to decode the terms underlying each function from the latent code using
a logistic regression classifier which is trained to predict the function terms given the latents and is
evaluated on held-out tasks as shown in Figure 2B.

4 SRAVEN: SYMBOLIC RAVEN

Next, we introduce an abstract reasoning task based on Raven’s Progressive Matrices (Raven, 1962),
we refer to as SRAVEN. We develop this task to provide a challenging benchmark that probes symbolic
reasoning capabilities while giving us fine-grained control over the constituent parts of each task in
order to assess compositional abilities and analyze latent code structure.

4.1 ABSTRACT REASONING BASED ON SYMBOLIC RAVEN’S PROGRESSIVE MATRICES

Raven’s Progressive Matrices are a classic human intelligence test that probes the ability to induce
abstract relations (Raven, 1962). It requires test subjects to generate and verify a potentially large
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Figure 4: Scaling data and model size on SRAVEN. A Compositional generalization measured by
OOD accuracy as a function of the number of training problem instances for different widths (scaling
embedding and key-query-value dimensions). B Same as A but increasing depth instead of width.

number of hypotheses over rules that can parsimoniously explain a given problem instance (Carpenter
et al., 1990). While there have been previous machine learning datasets inspired by Raven’s Progres-
sive Matrices (Wang & Su, 2015; Zhang et al., 2019; Barrett et al., 2018; Hu et al., 2021), we seek
to study a setting that is both symbolic, compositional and models a key difficulty of Raven tasks
referred to as finding correspondences by Carpenter et al. (1990) which requires searching through a
large number of possible hypotheses. We discuss existing Raven-based benchmarks in Section 6.

4.2 TASK DESCRIPTION

Figure 3A illustrates the generative process of SRAVEN. For each task, a matrix of eight context
panels is presented, and the goal is to predict the contents of the final response panel. In the original
Raven’s Progressive Matrices Test, each panel typically displays a combination of geometrical shapes,
as for instance shown in Figure 3B. For our symbolic version, each panel is defined as a tuple of K
integers that symbolically encode features (in our experiments we set K = 4 unless stated otherwise).
The K features within each row evolve according to K rules. Every rule is a function that takes
two integers as input and outputs an integer. Figure 3A lists all rules, and Appendix B.3 describes
each rule in detail. In order to maintain a finite set of possible symbols, we limit all tasks to contain
only integers {0, 1, 2, . . . , F − 1} (in our experiments, we set F = 8). Arithmetic rules such as
progression, addition or difference are therefore defined using modular arithmetic modulo F .

To create a task, we first sample K out of the R = 8 possible rules and then use each of the K rules,
to generate three sequences of length three given random inputs to each rule. As a result, we obtain
nine panels, where each row can be explained by the same set of K underlying rules. We use the
first eight panels as context panels and present them sequentially to a sequence model, which needs
to predict each feature of the response panel independently. A prediction is considered correct if
and only if all subpredictions were correct. In the original Raven task, a number of possible answer
panels are presented alongside the context panels and test subjects are asked to pick the one which
contains the correct answer (Raven, 1962). Since in our case, the correct answer will consist of
a combination of a finite set of known symbols, we can ask the agent solving the task to directly
predict the missing symbols. Conveniently, this helps avoid potential shortcuts for solving a task that
might arise from a biased generative process to create multiple-choice answers as a popular prior
Raven-based benchmark has been found to be affected by (Zhang et al., 2019; Hu et al., 2021).

One of the key features of SRAVEN is its compositional structure. Each task consists of a combination
of a finite set of rule combinations. To systematically test whether a system trained on a subset of
rule combinations can generalize to unseen combinations, we split all rule combinations into a train
set and a test set. Unless noted otherwise, we hold out 25% of all possible rule combinations for
evaluation in our experiments. Note that permutations of rule combinations (e.g. AB and BA) are
considered to be the same and will only appear in one of the two sets. This ensures that at test time,
the agent is confronted with instances of tasks whose underlying combination of rules it has never
encountered during training.

4.3 FINDING CORRESPONDENCES

Making the task symbolic instead of presenting images of geometric shapes comes with the advantage
of a smaller input space, allowing us to scale to larger model and data sizes in our experiments. How-

7



Published as a conference paper at ICLR 2025

ever, it removes the visual representation learning step of discovering the right symbolic abstractions.
We argue that while this is a difficult problem worth studying by itself, there is a major source of
difficulty that arises even with access to symbolic abstractions. As Carpenter et al. (1990) argue in
their theoretical account of the original Raven test, what makes many tasks difficult is the problem of
finding correspondences of rules to feature dimensions.

This is best illustrated when considering the example in Figure 3B showing an adapted version of
Figure 5 of Carpenter et al. (1990). When first attempting to solve this task, a test subject might
hypothesize that there is a rule guiding the numerosity and orientations per shape. For example, one
might try to find a rule that governs all curved shapes, one rule that governs all lines and one rule that
governs all rectangles. Translated into a symbolic encoding, this is akin to ordering symbols by the
shape and trying to find rules along each dimension in this ordering. However, this approach turns out
to not provide a parsimonious answer. The correct answer can instead be obtained by grouping the
objects by their orientations, i.e. by finding a rule that applies to all horizontal objects and a rule that
applies to all vertical objects. In the symbolic encoding this new correspondence of features amounts
to a new ordering of the same symbolic encoding where symbols are now ordered by orientation and
one needs to find rules guiding the numerosity and shape per orientation.

To model the property of finding correspondences in SRAVEN we similarly allow for permutations of
the features. Specifically, we sample and apply a column-specific permutation of the features when
generating each task, such that the entries of the tuples encoding each panel are permuted with a
consistent permutation for a given column across all rows. This makes finding the correct solution
more difficult, since a task can no longer be treated as K independent tasks with a single feature
and as a result the number of possible hypotheses grows significantly (see Appendix B.1 for more
details). Note that in principle, a problem instance might have multiple valid but divergent answers,
making the task ill-posed. In the settings considered here, this happens for less than half a percent of
the problem instances. See Appendix B.2 for more details on handling such ambiguities.

4.4 RESULTS

Scaling model size and data enables compositional generalization. We first evaluate to what
extent transformers can compositionally generalize on SRAVEN as we increase the number of problem
instances trained on and scale up the models both in terms of width and depth. Figure 4 shows the
results of these scaling experiments. Given sufficient data and model size, all model classes are able
to solve 80% of problem instances created from tasks held-out during training. The inductive bias
of making the value network more expressive by introducing a nonlinearity in HYLA seems to be
beneficial for this task. Especially when trained on fewer problem instances and for small model
sizes, it outperforms both linear and softmax attention.

Disrupting the hypernetwork mechanism hurts compositional generalization. Varying the
number of heads offers another way of manipulating the hypernetwork mechanism of multi-head
attention. Specifically in the case of a single head the mechanism degenerates, only allowing the
network to rescale the weights of the sole remaining value projection but no longer allowing it to
compose multiple value projections, c.f. equation (4). In line with this argument, we observe a
noticeable decrease in OOD performance in Figure 5C for the single head case.

The latent code is structured according to the rules of the task. We next analyze the latent
code for the different models solving the task. To this end, we collect the attention scores of the
response token attending to itself. Following the perspective of attention as a hypernetwork, we
expect latent codes corresponding to the same rule to form clusters. Indeed, Figure 5B reveals a
strikingly structured code for the final layer across models, with clusters closely matching the rule to
be inferred to correctly predict the output for each given task. In comparison, Figure 5A colors the
points in latent space by the magnitude of the inputs the response token needs to attend to, to make
the correct prediction. This tends to explain clusters more prominently in early layers, as shown in
the appendix in Figure A6 and for a 16 layer softmax transformer in Figure A7.

To obtain a better understanding of the semantics of the latent code, we explore the pairwise cosine
similarity between average latent codes for each rule across tasks for HYLA. Figure 5E shows that
semantically related rules like sum/difference can form clusters, suggesting that latent codes might
even be reused to solve related task operations. Finally, we train a logistic regression classifier
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Figure 5: Latent code structure of SRAVEN. A tSNE visualizations of the final layer latent codes for
the final response token colored by the magnitude of the predicted target value. B Same as A but
colored by the ground-truth rule the model needs to apply to generate the correct prediction. C OOD
accuracy for varying numbers of attention heads. For a single head, the hypernetwork mechanism
is absent, which hampers OOD generalization. D The difficulty of SRAVEN can be parametrically
controlled by varying, K, the number of features per panel . E Heatmap showing the pairwise cosine
similarity between the average latent code of each rule for HYLA revealing how semantically related
rules form clusters. For instance, rule F (addition) and G (difference) are implemented with a very
similar latent code, indicating that the same code might be reused by flipping the sign of the operands.
F Decoding performance of a logistic regression classifier trained to predict the ground-truth SRAVEN
rule based on the latent code at the final response token of training tasks and evaluated on unseen
OOD tasks, revealing that the latent code is predictive of the implemented rule.

to predict the ground-truth SRAVEN rule based on the latent code at the final response token of
in-distribution SRAVEN tasks and evaluate it on unseen OOD tasks. This reveals that, especially for
later layers, the latent code is strongly predictive of the subfunctions performed by the network.

Figure 6: Language mod-
eling. Performance of au-
toregressively trained decoder-
only transformer models with
50M parameters over the
course of training on the C4
dataset with 130B tokens.

5 LANGUAGE MODELING

Multi-head attention has proven especially effective for language
modeling. With language itself being highly compositional, it stands
to question whether the implicit hypernetwork mechanism in multi-
head attention might play a part in explaining its success. To shed
light on this question, we conducted language modeling experiments
and evaluate the performance of HYLA in comparison to linear
and softmax attention. We train decoder-only transformer models
with 50M parameters autoregressively for 130 Billion tokens on
the C4 dataset (Raffel et al., 2020). We find that strengthening the
hypernetwork mechanism via HYLA improves performance over
linear attention and performs closely to softmax attention despite
being a linear attention variant itself. This is noteworthy considering
the importance of softmax in language modeling hypothesized to
be due to its role in binding and associative recall problems on
which linear attention methods typically struggle (Arora et al., 2023;
Olsson et al., 2022; Schlag et al., 2021). The fact that reinforcing the
hypernetwork mechanism implicit in multi-head attention as done
by HYLA helps close the gap of linear attention to softmax attention
suggests that the hypernetwork mechanism might be of practical
relevance for understanding large-scale transformer models.
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6 RELATED WORK

The role of multiple heads in attention. Prior work that has studied the question of why the
attention mechanism benefits from multiple heads has counterintuitively found that it is possible to
prune almost all but one head in some layers after training, sacrificing only relatively small amounts of
performance (Voita et al., 2019; Michel et al., 2019). It has therefore been speculated that equipping
the attention mechanism with multiple heads primarily aids stability during training (Liu et al., 2021).
The hypernetwork perspective of attention offers an alternative account, suggesting that multiple
heads create a way of configuring compositional computations in the value network. Seen from
this perspective, the observation of singular heads dominating could point to a connection to the
phenomenon of module collapse often observed when training modular systems in practice (Shazeer
et al., 2017; Kirsch et al., 2018; Rosenbaum et al., 2018; Mittal et al., 2022).
Compositional generalization. Consistent with our observation on scaling model size on the
SRAVEN task, Hosseini et al. (2022) find that as pretrained large language models are scaled, their
ability to compositionally generalize on in-context semantic parsing tasks improves. Similarly, outside
the in-context learning regime, Furrer et al. (2021) have demonstrated that pretrained large language
models outperform many architectures specialized towards compositional generalization. Still, to
what extent the ability for compositional generalization extends beyond the training distribution
remains openly debated (Srivastava et al., 2023; Press et al., 2023; Dziri et al., 2023).
Raven-based tasks. A number of Raven-inspired tasks have been introduced to assess abstract
reasoning capabilities of neural networks (Wang & Su, 2015; Zhang et al., 2019; Barrett et al., 2018;
Hu et al., 2021). Common to all these variants, including our version is an underlying generative
task model based on a finite number of possible rules that are applied on one or more of the feature
dimensions for each panel. Different from our version, these variants render the problem instances as
images using simple geometrical shapes resulting in larger datasets and computational demand. Still,
we argue that the so generated tasks are not necessarily harder than the tasks of SRAVEN, given that
SRAVEN models an additional difficulty of finding correspondences as detailed in Section 4.3 and its
difficulty can be controlled parametrically; for instance by increasing the number of features.

7 DISCUSSION

We have proposed a novel decomposition of multi-head attention, revealing that it can be interpreted
as a hypernetwork that composes value networks specific to each key-query pair. Consistent with this
perspective, we find empirically that the attention scores over the heads for each key-query pair form
a functionally structured space, identifying reusable subfunctions in two abstract reasoning tasks.
Furthermore, modifying multi-head attention to strengthen the hypernetwork mechanism improves
compositional generalization on these tasks.

Adopting the hypernetwork perspective more broadly, multi-head attention can be interpreted as
a particular choice for the level of granularity at which the hypernetwork parameterizes the value
network: The value networks are key-query specific and are followed by a pooling step that sums the
key-query specific outputs over the key index. In principle, other levels of granularity are possible.
For instance, the hypernetwork could parameterize a query specific value network which subsumes
the aggregation over the key index. In the extreme case, it could directly parameterize the full
sequence operation potentially facilitating the re-use of sequence-level operations. This also offers
an interesting connection to attention-based graph neural networks (Veličković et al., 2018; Shirzad
et al., 2023). Classically, a non-causal single layer transformer is seen as a fully connected graph
where each token corresponds to a node and aggregation is done via attention (Battaglia et al., 2018).
Our derivation suggests an alternative interpretation where the message function is a hypernetwork
that subsumes the attention weights while the aggregation becomes the sum operator. Given the
crucial role that aggregation plays in graph neural networks (Rosenbluth et al., 2023; Dudzik et al.,
2023), a natural question is whether different pooling operators should be considered more generally
for multi-head attention.

Limitations. We have focused our analysis on models trained from scratch in order to give us
fine-grained control over what data is encountered during training. Many interesting behaviors emerge
in large-scale models pretrained on diverse tasks. Investigating whether the resulting models form a
similarly structured latent code is an interesting avenue for future work.
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Algorithm 1 Multi-head softmax attention
Input: x
Require: emb_dim, heads, h_dim

1: q = Dense(shape=(heads, h_dim), axis=-1)(x)
2: k = Dense(shape=(heads, h_dim), axis=-1)(x)
3: v = Dense(shape=(heads, h_dim), axis=-1)(x)
4:
5: a = einsum("...qhd,...khd->...hqk", q, k)
6: a = softmax(a, axis=−1)
7:
8: z = einsum("...hqk,...khd->...qhd", a,v)
9:

10:
11: y = Dense(features=emb_dim, axis=(-2, -1))(z)
12:
13: return y

Algorithm 2 Hypernetwork linear attention
Input: x
Require: emb_dim, heads, h_dim

1: q = Dense(shape=(heads, h_dim), axis=-1)(x)
2: k = Dense(shape=(heads, h_dim), axis=-1)(x)
3: v = Dense(shape=(heads, h_dim), axis=-1)(x)
4:
5: a = einsum("...qhd,...khd->...hqk", q, k)
6: a = rms_norm(a, axis=−3)
7:
8: z = einsum("...hqk,...khd->...qkd", a, v)
9: z = relu(z)

10: z = einsum("...hqk,...qkd->...qhd", a, z)
11: y = Dense(features=emb_dim, axis=(-2, -1))(z)
12:
13: return y

Figure A1: Pseudocode comparing multi-head softmax attention to hypernetwork linear attention.
Differences between the two are highlighted in yellow.

A ADDITIONAL RESULTS

A.1 MODEL ABLATIONS

Compared to linear attention, HYLA introduces three modifications: (1) normalization of the attention
scores across the head indices using RMSHead, (2) applying the attention-weighted sum operation
also to the output projection and (3) inserting a nonlinearity in the value network (c.f. the pseudocode
for HYLA shown in Figure 1). To delineate the contributions of these modifications, we run an
ablation study on the fuzzy logic task and SRAVEN shown in Table A1. We find that while simply
applying RMSHead to linear attention (Linear Attention + RMSHead) and also the attention-weighted
sum operation without nonlinearity (HYLA − nonlinearity) both by themselves can slightly boost
performance, the full HYLA model generally performs best.

Increasing depth of the value network. To further test our hypothesis that it is the hypernetwork
mechanism inside multi-head attention which improves compositional generalization, we explore
making the value network configured by the hypernetwork deeper, adding an additional layer as
follows,

HYLA+
q (X) =

T∑
k=1

(
H∑

h=1

ah,q,k W out
h

)
ϕ

(
H∑

h=1

ah,q,k W value′
h ϕ

(
H∑

h=1

ah,q,k W value
h xk

))
, (10)

where W value′
h ∈ RDkey×Dkey

is a second layer value matrix which increases the number of parameters
of this model. Consistent with our hypothesis, this model also demonstrates strong OOD performance
as reported in Table A1.

Replacing RMSHead normalization with the softmax. We perform an additional ablation where
we replace the RMSHead normalization of HYLA with the standard softmax that normalizes across
keys but not across heads. As shown in Table A1 this model performs poorly.

Replacing feedforward layers with mixture of experts. Sparsely gated mixture of experts (MoE)
have been proposed as a replacement for the feedforward layer in the transformer block (Shazeer
et al., 2017). In this model, each token is routed to a sparse subset of k out of E experts

fMoE(x) =

E∑
i=1

Softmax(Top_k(W gatex)) ·W up
i ϕ(W down

i x).

Intuitively, this could allow individual experts to specialize on specific subtasks that can be composed
by the router. However, it is not well understood if MoEs improve compositional generalization of
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transformers in practice. Here, we perform additional experiments where we replace the feedforward
layers with MoEs on the SRAVEN and the fuzzy logic task reported in Table A1. While we find
moderate general improvements, these improvements seem to be similar to other increases of model
capacity such as increasing the width/depth as discussed in Section 4.4.

Table A1: Model ablations. Left column reports the OOD R2 score on the fuzzy logic task studied
in Figure 2 for a sequence length of 32 and 70% of tasks held out from training. Right column reports
the OOD accuracy on the SRAVEN task studied in Figure 4 for a 4-layer transformer trained on 20M
problem instances. We report the standard error over 3 seeds.

Fuzzy logic: SRAVEN:
OOD R2 OOD accuracy

Softmax attention 63.28± 2.31 56.56± 1.05
Linear attention 59.89± 5.22 56.30± 1.11
HYLA 81.13± 7.77 69.13± 1.90

Linear attention + RMSHead 68.93± 5.10 59.01± 2.50
Linear attention + RMSHead + nonlinear value 56.91± 4.25 55.38± 0.32

HYLA − RMSHead 81.27± 7.88 62.53± 5.73
HYLA − nonlinearity 84.54± 5.32 56.54± 0.21
HYLA − nonlinearity − RMSHead 79.42± 7.43 56.33± 1.41
HYLA − RMSHead + softmax 70.98± 7.08 38.21± 2.98
HYLA + deep value network 87.65± 4.54 66.59± 0.08

Softmax attention + MoE 63.83± 6.07 57.68± 1.31
Linear attention + MoE 60.09± 6.16 64.34± 4.3
HYLA + MoE 82.37± 6.55 66.94± 3.94
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Figure A2: tSNE visualization of the attention scores across the head index for the query token on
the fuzzy logic task for a sequence length of 32 and 70% of tasks held out from training colored
according to (A) target label (B) fuzzy logic function, (C) term 1 and (D) term 2.
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Figure A3: Fuzzy logic task performance metrics. Various task performance metrics on the fuzzy
logic task for varying number of in-context examples and fraction of tasks held-out during training.
A Coefficient of determination (R2) on tasks consisting of unseen combinations of seen terms (same
as Figure 2C) B Coefficient of determination (R2) on training tasks. C Coefficient of determination
(R2) on tasks containing terms not encountered during training. As expected all methods fail in this
setting. D Training mean squared error loss.
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Figure A4: Training loss when scaling data and model size on SRAVEN. A Training loss as a
function of the number of training problem instances for different widths (scaling embedding and
key-query-value dimensions). B Same as A but increasing depth instead of width.
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Figure A5: Varying the fraction of
OOD tasks on SRAVEN. OOD accuracy
on SRAVEN as varying fractions of tasks
specified by their rule combinations are
held-out during training.

Figure A6: Latent code on SRAVEN. A tSNE visualization of the latent code predicting the final
query token colored by the magnitude of the predicted target value for 4-layer transformers trained
on 40M problem instances. B Same as A but colored by rule.
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Figure A7: Latent code visualization in SRAVEN for a softmax transformer of depth 16. A tSNE
visualization of the latent code predicting the final query token colored by the rule to be inferred for a
softmax transformer of depth 16 trained on 40M problem instances. B Same plot as in A but colored
by the magnitude of the predicted target value.
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Figure A8: Detailed attention scores on SRAVEN. A Random sample of the attention scores / latent
codes for the final key-query pair on OOD SRAVEN tasks in the final layer of a transformer using
softmax attention, linear attention or HYLA. B Average attention scores / latent codes per rule. C
Pair-wise cosine similarities between all average latent codes per rule. Data from the same models as
shown in Figure A6)
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B SRAVEN

B.1 NUMBER OF POSSIBLE TASKS AND INSTANCES

In the general case, the number of possible tasks in SRAVEN is a product of the number of possible
rule combinations

(
R+K−1

K

)
and the number of possible unique permutations ((K!)G−1 −K) where

G is the number of columns of the grid (in Raven-based tasks typically G = 3). Figure A9A shows
the number of possible SRAVEN tasks and Figure A9B shows the number of possible SRAVEN problem
instances. Note specifically that the latter is orders of magnitudes larger than the number of training
examples in our experiments for K = 4, F = 8.

B.2 AMBIGUITY

In principle, a problem instance generated given a set of rules and permutations might have an
ambiguous answer. That is, there is at least one other set of rules and permutations that fit all context
panels but prescribe a different final query panel. One possibility is to check for such examples
when generating task instances and reject ambiguous ones. This process is prohibitively expensive,
as it requires a search over the exponentially many possible permutations. We therefore resort to
a Monte-Carlo estimation of the fraction of ambiguous instances. Table A2 shows the results for
various parameterizations of the SRAVEN task. In the setting we consider here, (K = 4, F = 8), the
probabilities are negligible, and we do not take measures to filter out ambiguous examples given the
computational overhead it produces in the data generation process.

B.3 RULES

sraven contains the following rules:

1. constant: Each row consists of a random but fixed integer in the range 1 to F .
2. progression (+1): The first element of each row is sampled uniformly at random and

incremented by 1 modulo F for each successive column.
3. progression (+2): The first element of each row is sampled uniformly at random and

incremented by 2 modulo F for each successive column.
4. progression (-1): The first element of each row is sampled uniformly at random and

decremented by 1 modulo F for each successive column.
5. progression (-2): The first element of each row is sampled uniformly at random and

decremented by 2 modulo F for each successive column.
6. addition: Two elements are sampled uniformly at random for each row and added modulo F

to obtain the last column.
7. subtraction: Two elements are sampled uniformly at random for each row and subtracted

modulo F to obtain the last column.
8. distribute three: Three elements are sampled uniformly at random and presented in three

independently sampled random permutations for each row.
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Figure A9: A Number of possible SRAVEN tasks as a function of the number of features (K). B
Number of possible SRAVEN problem instances as a function of the number of features (K) and the
number of feature values (F ).

Table A2: Monte Carlo estimation of fraction of ambiguous examples over 4096 problem instances
± standard error. Bold used to denote the setting used for all experiments in this paper.

Number of features (K) Number of feature values (F ) Estimated fraction of ambiguous examples

4 4 0.0642± 0.0038
4 8 0.0032± 0.0009
4 16 0.0005± 0.0003
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C EXPERIMENTAL DETAILS

Architecture. For all models we use a standard decoder-only transformer architecture where each
block is structured as

Z = MultiHeadAttention(LayerNorm(X)) +X

Y = FeedForward(LayerNorm(Z)) + Z.

MultiHeadAttention is either linear attention, softmax attention or hypernetwork linear at-
tention (HYLA) and uses T5-style relative positional embeddings (Raffel et al., 2020). For the
FeedForward layer, we employ a standard single-hidden layer MLP with GeLU nonlinearity
applied to each position in the sequence independently. For our language modeling experiments we
use rotary positional encodings (Su et al., 2024).

Tokenization. For the fuzzy logic task we directly use the concatenated input examples as tokens.
Similarly for SRAVEN we use one-hot encodings of the integer inputs as the input tokens. In both cases
the input tokens are mapped into the embedding space of the transformer using a fully connected
dense layer and another fully connect dense layer is used to produce the output logits. For the
language modeling experiment we use the default sentencepiece tokenizer (Kudo & Richardson,
2018) of NanoDo (Liu et al., 2024) with a vocabulary size of 32000 and use the transposed embedding
matrix to produce the logits.

Optimization. We use the AdamW optimizer (Loshchilov & Hutter, 2019) with linear warmup
starting from a learning rate of 0 followed by a cosine decay learning rate scheduler (Loshchilov &
Hutter, 2017) that decays the learning rate to 0.1 times the base learning rate. We exempt biases and
LayerNorm parameters from weight decay. In the fuzzy logic task we use the mean-squared error on
the logits of the query token whereas in SRAVEN we use the softmax cross-entropy loss on the logits
of all query tokens. The language modeling task uses an autoregressive softmax cross-entropy loss
with causal masking applied to the attention mechanism as well as mixed-precision training.

Hyperparameters. For all tasks and models we perform a grid search over the learning rate, weight
decay and warmup steps. We report the search grid as well as all other hyperparameters in Table A3.

Table A3: Hyperparameters for all tasks and methods. Lists of values indicates that a grid search over
all points contained in the list have been conducted and for each method the optimal combination has
been picked. The width factor multiplies the embedding dimension, key-query-value dimension and
MLP dimension.

Parameter Fuzzy logic SRAVEN Language modeling

batch_size 128 128 256
num_layers 2 4 / 8 / 16 6
width_factor 1 1 / 2 / 4 1
emb_dim 128 128 512
kqv_dim 16 64 64
mlp_dim 256 256 2048
num_heads 8 16 8
learning_rate [0.001, 0.003] [0.0003, 0.001] [0.001, 0.003]
weight_decay [0.03, 0.1] [0.1, 0.3] [0.1, 0.03]
warmup_steps 100 [1000, 3000] 1000
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D ADDITIONAL DETAILS

D.1 COMPUTE RESOURCES

We used a Linux workstation with two Nvidia RTX 3090 GPUs with 24GB of memory each for
development and conducted hyperparameter searches and experiments using 1 Linux server with 4
Nvidia RTX 3090 GPUs as well as a Slurm cluster equipped with Nvidia RTX 4090 GPUs. With a
single GPU of these two GPU models, a single run of the fuzzy logic task takes around 2− 3 minutes,
a single run on SRAVEN between 20 − 200 minutes. For the language modeling experiments, we
used 16 Cloud TPU v5e with a complete run taking 72-100 hours. In total, it takes around 24 GPU
hours to reproduce all fuzzy logic results on our hardware, around 10 GPU days to reproduce all our
SRAVEN results and approximately 163 TPU days to reproduce our results on C4.

D.2 SOFTWARE AND LIBRARIES

For the results obtained in this paper we built on free and open-source software. We implemented
our experiments in Python using JAX (Bradbury et al., 2018, Apache License 2.0), Flax (Heek et al.,
2023, Apache License 2.0), NanoDo (Liu et al., 2024, Apache License 2.0) and the Deepmind Jax
Ecosystem (Babuschkin et al., 2020, Apache License 2.0). We utilized WandB (Biewald, 2020, MIT
license) to monitor the progress and results of experiments, and Plotly (Inc, 2015, MIT license) for
generating the plots.
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