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Abstract

While Deep Learning excels in structured data as encountered in vision and natural
language processing, it failed to meet its expectations on tabular data. For tabular
data, Support Vector Machines (SVMs), Random Forests, and Gradient Boosting
are the best performing techniques with Gradient Boosting in the lead. Recently,
we saw a surge of Deep Learning methods that were tailored to tabular data but
still underperform compared to Gradient Boosting on small-sized datasets. We
suggest “Hopular”, a novel Deep Learning architecture for medium- and small-
sized datasets, where each layer is equipped with continuous modern Hopfield
networks. The modern Hopfield networks use stored data to identify feature-feature,
feature-target, and sample-sample dependencies. Hopular’s novelty is that every
layer can directly access the original input as well as the whole training set via
stored data in the Hopfield networks. Therefore, Hopular can step-wise update
its current model and the resulting prediction at every layer like standard iterative
learning algorithms. In experiments on small-sized tabular datasets with less than
1,000 samples, Hopular surpasses Gradient Boosting, Random Forests, SVMs, and
in particular several Deep Learning methods. In experiments on medium-sized
tabular data with about 10,000 samples, Hopular outperforms XGBoost, CatBoost,
LightGBM and a state-of-the art Deep Learning method designed for tabular data.
Thus, Hopular is a strong alternative to these methods on tabular data.

1 Introduction

Deep Learning has led to tremendous success in vision and natural language processing, where it
excelled on large image and text corpora (LeCun et al., 2015; Schmidhuber, 2015). While it yielded
competitive results on large tabular datasets Avati et al. (2018); Simm et al. (2018); Zhang et al.
(2019b); Mayr et al. (2018), so far it could not convince on small tabular data. However, in real-world
settings, small tabular datasets with less than 10,000 samples are ubiquitous. They are found in life
sciences, when building a model for a certain disease with a limited number of patients, for bio-assays
in drug design, or for the effect of environmental soil contamination. The same situation appears in
most industrial applications, when a company wants to predict customer behavior, to control processes,
to optimize its logistics, to market new products, or to employ predictive maintenance. On small-sized
and medium-sized tabular datasets with less than 10,000 samples, Support Vector Machines (SVMs)
(Boser et al., 1992; Cortes & Vapnik, 1995; Schölkopf & Smola, 2002), Random Forests (Ho, 1995;
Breiman, 2001) and, in particular, Gradient Boosting (Friedman, 2001) typically outperform Deep
Learning methods, with Gradient Boosting having the edge. In real world applications, the best
performing and most prevalent Gradient Boosting variants are XGBoost (Chen & Guestrin, 2016),
CatBoost (Dorogush et al., 2017; Prokhorenkova et al., 2018), and LightGBM (Ke et al., 2017).

Recently, research on extending Deep Learning methods to tabular data has been intensified. Some
approaches to tabular data are only remotely related to Deep Learning. AutoGluon-Tabular stacks
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small neural networks for tabular data (Erickson et al., 2020). Neural Oblivious Decision Ensembles
(NODE) generalizes ensembles of oblivious decision trees by hierarchical representation learning
(Popov et al., 2019). NODE is a hybrid of differentiable decision trees and neural networks. DNF-Net
builds neural structures corresponding to logical Boolean formulas in disjunctive normal forms, which
enable localized decisions using small subsets of the features (Abutbul et al., 2020). However, most
research focused on adapting established Deep Learning techniques to tabular data. Modifications to
deep neural networks like introducing leaky gates or skip connections can improve their performance
on tabular data (Fiedler, 2021). Even plain MLPs that are well-regularized work well on tabular data
(Kadra et al., 2021). Different regularization coefficients to each weight improve the performance of
Deep Learning architectures on tabular data (Shavitt & Segal, 2018). TabularNet consists of three
modules (Du et al., 2021). First, it uses handcrafted cell-level feature extraction with a language model
for textual data. Secondly, it uses both row and column-wise pooling via bidirectional gated recurrent
units. Thirdly, a graph convolutional network captures dependencies between cells of the table.

Many approaches that adapt Deep Learning methods to tabular data use attention mechanisms from
transformers (Vaswani et al., 2017) and BERT (Devlin et al., 2019). The TabTransformer learns
contextual embeddings of categorical features (Huang et al., 2020). However, continuous features are
not covered, therefore the feature-feature interaction is limited. The FT-Transformer maps features to
tokens that are fed into a transformer (Gorishniy et al., 2021). The FT-Transformer performs well
on tabular data but all considered datasets have more than 10,000 samples. TabNet uses an attentive
transformer for sequential attention to predict masked features (Arik & Pfister, 2021). Therefore,
TabNet does instance-wise feature selection, that is, can select the relevant features for each input
differently. TabNet also utilizes feature masking for pre-training, which was very successful in natural
language processing when pre-training the BERT model. Also semi-supervised learning has been
proposed for tabular data using projections of the features and contrastive learning (Darabi et al.,
2021). The contrastive loss is low if pairs of the same class have high similarity. Value Imputation and
Mask Estimation (VIME) uses self- and semi-supervised learning of deep architectures for tabular
data (Yoon et al., 2020). Like BERT, the network has to predict the values of the masked feature
vectors, where the target is always masked. The success of BERT feature masking confirms that Deep
Learning techniques must employ strong regularization to be successful on tabular data (Kadra et al.,
2021). A multi-head self-attentive neural network for modeling feature-feature interactions was also
used in AutoInt (Song et al., 2019). So far we mentioned work, where attention mechanisms extract
feature-feature and feature-target relations. However, also inter-sample attention can be implemented,
if the whole training set is given at the input. TabGNN uses a graph neural network for tabular data to
model inter-sample relations (Guo et al., 2021). However, the authors focus on large tabular datasets
with more than 40,000 samples. SAINT contains both self-attention and inter-sample attention and
embeds both categorical and continuous features before feeding them into transformer modules
(Somepalli et al., 2021). SAINT uses self-supervised pre-training with a contrastive loss to minimize
the difference between original and mixed samples. Non-Parametric Transformers (NPTs) also use
feature self-attention and inter-sample attention (Kossen et al., 2021). The feature self-attention
identifies dependencies between features, while inter-sample attention detects relations between
samples. As in previous approaches, BERT masking is used during training, where the masked
feature values and the target have to be predicted.

We suggest Hopular to learn with modern Hopfield networks from tabular data. Hopular is a Deep
Learning architecture, where each layer is equipped with continuous modern Hopfield networks
(Ramsauer et al., 2021; Widrich et al., 2020). Continuous modern Hopfield networks can store two
types of data: (i) the whole training set or (ii) the feature embedding vectors of the original input.
Like SAINT and NPT, Hopular can detect feature-feature, feature-target, sample-sample, and sample-
target dependencies via modern Hopfield networks. Hopular’s novelty is that every layer can directly
access the original input as well as the whole training set via stored data in the Hopfield networks.
In each layer, the stored training set enables similarity-, prototype-, or quantization-based learning
methods like nearest neighbor. In each layer, the stored original input enables the identification of
dependencies between the features and the target. Consequently, the current model and its prediction
can be step-wise improved at every layer via direct access to both the training set and the original
input. Therefore, a pass through a Hopular model is similar to standard learning algorithms, which
iteratively improve the current model and its prediction by re-accessing the training set. The number
of iterations is fixed by the number of layers in the Hopular architecture. As previous methods,
Hopular uses a feature embedding and BERT masking, where masked features have to be predicted.
Hopular is most closely related to SAINT (Somepalli et al., 2021) and Non-Parametric Transformers
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(NPTs) (Kossen et al., 2021), but in contrast to SAINT and NPTs, the whole training set and the
original input are provided via Hopfield networks at every layer and not only at the input.

Recently, it was reported that Random Forests still outperform standard Deep Learning techniques on
tabular datasets with up to 10,000 samples (Xu et al., 2021). In (Shwartz-Ziv & Armon, 2021), the
authors show that XGBoost outperforms various Deep Learning methods that are designed for tabular
data on datasets that did not appear in the original papers. Therefore, we test Hopular on exactly those
datasets to see whether it performs as well as XGBoost. Furthermore, we test Hopular on UCI datasets
(Ramsauer et al., 2021; Klambauer et al., 2017; Wainberg et al., 2016; Fernández-Delgado et al.,
2014). Hopular surpasses Gradient Boosting, Random Forests, and SVMs but also state-of-the-art
Deep Learning approaches to tabular data like NPTs.

2 Brief Review of Modern Hopfield Networks

We briefly review continuous modern Hopfield networks. Their main properties are: (i) retrieval
of stored patterns with only one update, and (ii) exponential storage capacity (Ramsauer et al.,
2021). We assume a set of patterns {x1, . . . ,xN} ⊂ Rd that are stacked as columns to the matrix
X = (x1, . . . ,xN ) and a state pattern ξ ∈ Rd representing the current state. The largest norm of a
stored pattern is M = maxi ∥xi∥. Continuous modern Hopfield networks with state ξ have energy

E = − β−1 log

(
N∑
i=1

exp(βxT
i ξ)

)
+ β−1 logN +

1

2
ξT ξ +

1

2
M2 . (1)

For energy E and state ξ (query), the update rule

ξnew = f(ξ;X, β) = X p = X softmax(βXT ξ) (2)

has been proven to converge globally to stationary points of the energy E, which are almost always
local minima (Ramsauer et al., 2021). The update rule Eq. (2) is also the formula of the well-known
transformer attention mechanism (Vaswani et al., 2017; Ramsauer et al., 2021). Therefore, Hopfield
retrieval and transformer attention coincide.

The separation ∆i of a pattern xi is defined as its minimal dot product difference to any of the
other patterns: ∆i = minj,j ̸=i

(
xT
i xi − xT

i xj

)
. A pattern is well-separated from the data if

∆i ≥ 2/βN + 1/β log
(
2(N − 1)NβM2

)
. If patterns xi are well separated, iterate Eq. (2) converges

to a fixed point close to a stored pattern. If some patterns are similar to one another and, thus, not well
separated, the update rule Eq. (2) converges to a fixed point close to the mean of the similar patterns.
This fixed point is a metastable state of the energy function and averages over similar patterns.

The next theorem states that the update rule Eq. (2) typically converges after one update if the
patterns are well separated. Furthermore, it states that the retrieval error is exponentially small in the
separation ∆i (for the proof see (Ramsauer et al., 2021)):
Theorem 2.1. With query ξ, after one update the distance of the new point f(ξ) to the fixed point x∗

i
is exponentially small in the separation ∆i. The precise bounds using the Jacobian J = ∂f(ξ)/∂ξ and
its value Jm in the mean value theorem are:

∥f(ξ) − x∗
i ∥ ≤ ∥Jm∥2 ∥ξ − x∗

i ∥ , (3)

∥Jm∥2 ≤ 2 β N M2 (N − 1) exp(− β (∆i − 2 max{∥ξ − xi∥, ∥x∗
i − xi∥}M)) . (4)

For given ϵ and sufficiently large ∆i, we have ∥f(ξ) − x∗
i ∥ < ϵ, that is, retrieval with one update.

The retrieval error ∥f(ξ) − xi∥ of pattern xi is bounded by

∥f(ξ) − xi∥ ≤ 2 (N − 1) exp(− β (∆i − 2 max{∥ξ − xi∥, ∥x∗
i − xi∥}M))M . (5)

The main requirement for modern Hopfield networks to be suitable for tabular data is the ability to
store and retrieve sufficient patterns. We want to store a potentially large training set in every layer of
a Deep Learning architecture. We first define what we mean by storing and retrieving patterns from a
modern Hopfield network.
Definition 2.2 (Pattern Stored and Retrieved). We assume that around every pattern xi a sphere Si is
given. We say xi is stored if there is a single fixed point x∗

i ∈ Si to which all points ξ ∈ Si converge,
and Si ∩ Sj = ∅ for i ̸= j. We say xi is retrieved for a given ϵ if iteration (update rule) Eq. (2) gives
a point x̃i that is at least ϵ-close to the single fixed point x∗

i ∈ Si. The retrieval error is ∥x̃i − xi∥.

3



As with classical Hopfield networks, we consider patterns on the sphere, i.e. patterns with a fixed
norm. For randomly chosen patterns, the number of patterns that can be stored is exponential in the
dimension d of the space of the patterns (for the proof see (Ramsauer et al., 2021)):

Theorem 2.3. We assume a failure probability 0 < p ≤ 1 and randomly chosen patterns on the
sphere with radius M := K

√
d− 1. We define a := 2/d−1(1+ln(2βK2p(d−1))), b := 2K2β/5, and

c := b/W0(exp(a+ln(b)), where W0 is the upper branch of the Lambert W function (Olver et al., 2010,
(4.13)), and ensure c ≥ (2/√p)

4/d−1. Then with probability 1− p, the number of random patterns that
can be stored is:

N ≥ √p c
d−1
4 . (6)

Therefore it is proven for c ≥ 3.1546 with β = 1, K = 3, d = 20 and p = 0.001 (a+ ln(b) > 1.27)
and proven for c ≥ 1.3718 with β = 1, K = 1, d = 75, and p = 0.001 (a+ ln(b) < −0.94).

This theorem motivates to use continuous modern Hopfield networks for tabular data, where we want
to store the training set in each layer of a Deep Learning architecture. Even for hundreds of thousands
of training samples, the continuous modern Hopfield network is able to store the training set if the
dimension of the pattern is large enough.

3 Hopular: Modern Hopfield Networks for Tabular Data

Hopular architecture. The Hopular architecture consists of an Embedding layer, several stacked
Hopular blocks, and a Summarization layer as depicted in Figure 1. As Hopular operates on features
as well as on targets, we more generally refer to them as attributes.

(i) The input to the Embedding Layer is an original input sample with d attributes, including a
masked target. Categorical attributes are encoded as one-hot vectors, whereas continuous attributes
are normalized to zero mean and unit variance. Then a mapping to an e-dimensional embedding
space is applied. The index of an attribute w.r.t. the position inside the sample as well as the attribute
type are conserved by separate e-dimensional learnable embeddings. All three embedding vectors are
element-wise summed and serve as the final representation of an input attribute. The original input
sample is then represented by the concatenation of all attribute representations. This concatenation
also initializes the current prediction vector ξ ∈ Rd·e – see Figure A.3 of the Appendix.
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Figure 1: Architecture overview of Hopular. Hopular consists of three different types of layers
or blocks. (I) Embedding Layer—each attribute of an original input sample is represented in an
e-dimensional space. The original input sample itself is then represented by the concatenation of all
of its attribute representations. (II) Hopular Block—the input representation is then refined by L
consecutive Hopular blocks. This is achieved by applying the two Hopfield modules Hs and Hf in an
alternating way. (III) Summarization Layer—lastly, this refined current prediction is summarized
by an attribute-wise mapping, leading to the final prediction.

4

http://dlmf.nist.gov/4.13


(ii) The current prediction vector serves as input to a Hopular Block. A Hopular block consecutively
applies two different Hopfield modules. Each of these Hopfield modules refines the current prediction
vector by updating the current predictions for all attributes and combining it with its input via a
residual connection. Thus, in addition to the target, also the features of the original input sample must
be predicted during training. Figure 2 illustrates the forward-pass of a single original input sample
with the masked target indicated by the question mark (?). All current attribute predictions are refined.
The masked target is transformed by the Hopular block to a corresponding prediction as indicated by
a check mark (✓). Also feature representations can be masked as with BERT pre-training.

(iii) The Summarization Layer summarizes the refined current prediction vector resulting from the
stacked Hopular blocks. The current prediction vector is mapped to the final prediction vector by
separately mapping each current feature prediction to the corresponding final prediction as well as
mapping the current target prediction to the final target prediction – see Figure A.4 of the Appendix.
In the following we describe the components (I)–(II) of a Hopular Block.

(I) Hopfield Module Hs. The first Hopfield module Hs implements a modern Hopfield network
for Deep Learning architectures similar to HopfieldLayer (Ramsauer et al., 2021, 2020) with the
training set as fixed stored patterns. The current input ξ (which is also the current prediction from
the previous layer) to Hopfield module Hs is interacting with the whole training data as described in
Eq. (7). This is the update rule of continuous modern Hopfield networks as given in Eq. (2).

Hence, the Hopfield module Hs identifies sample-sample relations and can perform similarity
searches like a nearest-neighbor search in the whole training data. Hs can also average over training
data that are similar to a mapping of the current prediction vector ξ.

Next, we describe Hopfield Module Hs in more detail. Let d be the number of attributes, e the
embedding dimension of each single attribute, h the dimension of the Hopfield embedding space, and
n the number of samples in the training set.

sample-sample
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Figure 2: A Hopular Block. The first Hopfield module stores the whole training set and identifies
sample-sample relations. The second Hopfield module stores the embedded input features and extracts
feature-feature and feature-target relations. The Hopfield modules refine the current prediction by
combining the aggregated retrievals of the M Hopfield networks with their respective input.
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The forward-pass for module Hs with one Hopfield network and current prediction vector ξ ∈ Rd·e,
learned weight matrices Wξ,WX ∈ Rh×(d·e), WS ∈ R(d·e)×h, the stored training set X ∈
R(d·e)×n, and a fixed scaling parameter β is given as

Hs (ξ) = WS WX Xsoftmax(β XT W T
X Wξ ξ) . (7)

The hyperparameter β allows to steer the type of fixed point the update rule Eq. (2) converges to,
hence it may further amplify the nearest-neighbor-lookup of the sample-sample Hopfield module
Hs. Hs may contain more than one continuous modern Hopfield network. In this case, the respective
results are combined and projected, serving as the modules final output. We have M separate Hopfield
networks Hi

s, where the module output is defined as

Hs (ξ) = WG

(
H1

s (ξ)
T
, . . . , HM

s (ξ)
T
)T

, (8)

with vector
(
H1

s (ξ)
T
, . . . , HM

s (ξ)
T
)T

and a learnable weight matrix WG ∈ R(d·e)×(M ·d·e).

(II) Hopfield Module Hf . The second Hopfield module Hf implements a modern Hopfield network
for Deep Learning architectures via the layer Hopfield (Ramsauer et al., 2021, 2020) with the
embedded features of the original input sample as stored patterns. The refined prediction vector from
the previous layer is reshaped and transposed to the matrix Ξ, which serves as input to the Hopfield
module Hf . Ξ interacts with the embedded features of the original input sample as described in
Eq. (9). Again, this is the update rule of continuous modern Hopfield networks as given in Eq. (2).
Therefore, the Hopfield module Hf extracts and models feature-feature and feature-target relations.
Current feature and target predictions are adjusted and refined after they are associated with the
original input sample feature representations.

Next, we describe Hopfield Module Hf in more detail. The matrix Ξ ∈ Re×d is a transposed and
reshaped version of current prediction vector ξ with respect to the embedding dimension e. Using
the learned weight matrices WΞ,WY ∈ Rh×e, WF ∈ Re×h, the embedded original input sample
Y ∈ Re×d, and a fixed scaling parameter β the forward-pass is

Hf (Ξ) = WF WY Y softmax
(
β Y T W T

Y WΞ Ξ
)
. (9)

Hf may contain more than one continuous modern Hopfield network, which leads to an analog
equation as Eq. (8) for Hs.

Hopular architecture and Modern Hopfield Networks. Deep Learning could not convince so far
on small tabular datasets, on the other hand iterative learning algorithms, like Gradient Boosting
methods, are the best-performing methods in this domain. Therefore, we introduce a DL architecture
that is able to mimic and extend these iterative algorithms by reaccessing the whole training set and
refining the current prediction in each layer. Modern Hopfield Networks directly access an external
memory in a content-based fashion as depicted in Eq. (2). Hopular populates this external memory
in two different ways: (a) Hopular uses the training set as an external memory, and (b) Hopular
uses the embedded feature representations of the original input sample as external memory. During
training, retrieval from the respective memory is learned whereas the type of fixed point of the modern
Hopfield network, as described in Section 2, specifies the type of retrieved pattern. Additionally,
modern Hopfield networks can retrieve patterns with only one update – see Theorem 2.1.

Furthermore, their exponential storage capacity (Theorem 2.3) makes it possible to retrieve patterns
from external memories with even hundreds of thousands instances. Because of these properties
Hopular can mimic iterative learning algorithms e.g. such based on gradient descent, boosting, or
feature selection that refine the current prediction by re-accessing the training set in contrast to
other Deep Learning methods for tabular data. Both NPTs and SAINT consider feature-feature and
sample-sample interactions via their respective attention mechanisms which solely use the result of
the previous layer. In contrast, Hopular not only uses the result of the previous layer but also the
original input sample and the whole training set. This imposes a strong inductive bias. For example,
our method can implement gradient boosting with a boosting step at each layer. The ability to mimic
iterative learning algorithms that are known to perform specifically well on tabular data makes modern
Hopfield networks a promising approach for processing tabular data. For the instantiation variant
that we use for our experiments the Hopfield module Hs identifies sample-sample relations and can
perform similarity searches like a nearest-neighbor search in the whole training data. In the Appendix
in Section A.6 we give further intuition on how Hopular can mimic iterative learning algorithms.
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Hopular’s Objective and Training Method. Hopular’s objective is a weighted sum of the self-
supervised loss for predicting masked features and the standard supervised target loss. In the following
we explain the feature masking as well as the objective in more detail.

Feature Masking. We follow state-of-the-art Deep Learning methods like SAINT (Somepalli et al.,
2021) and Non-Parametric Transformers (NPTs) (Kossen et al., 2021) that are tailored to tabular
data and use BERT masking (Devlin et al., 2019) of the input features. Masked input features must
be predicted during training. Feature masking is an especially beneficial self-supervised approach
when handling small datasets as it exerts a strong regularizing effect on the training procedure. The
amount of masked features during training is determined by the masking probability, which is a
hyperparameter of the model. In Hopular, both features and targets can be masked during training,
while for inference only the target is masked.

Objective. Hopular’s objective is a weighted sum of the masked feature loss Lf and the supervised
target loss Lt. The overall loss L is

L = γ Lf + (1 − γ)Lt , (10)

where Lt and Lf are the negative logloss in case of discrete attributes and the mean squared error
in case of continuous attributes with γ as a hyperparameter. In our default hyperparameter setting
γ is annealed using a cosine scheduler starting at 1 with a final value of 0. Another essential
hyperparameter for Hopular is β in Eq. (7) and Eq. (9). A small β retrieves a pattern close to the
mean of the stored patterns, while a large β retrieves the stored pattern that is closest to the initial
state pattern (Ramsauer et al., 2021). For module Hs a large β value emphasizes a nearest-neighbor
lookup mechanics. For module Hf a large β value leads to less diluted features. Thus, large β values
seem to be beneficial for Hopular. Experiments confirm this assumption (see Section 4).

Hopular Pseudocode. Algorithm 1 shows the forward pass of Hopular for an original input sample x.

Algorithm 1 Forward pass of Hopular
Require: Hopfield modules Hs and Hf , embedding layer E, summarization layer S, number of

features d, number of Hopular blocks L and original input sample x ∈ Rd

1: x← Mask(x)
2: ξ ← E(x)
3: for i = 1 to L do
4: ξ ← ξ +Hsi(ξ)
5: Ξ← Reshape(ξT )
6: Ξ← Ξ+Hfi(Ξ)
7: ξ ← Reshape(Ξ)T

8: end for
9: ξ ← S(ξ)

4 Experiments

Since Deep Learning methods have already been successfully applied to larger tabular datasets (Avati
et al., 2018; Simm et al., 2018; Zhang et al., 2019b; Mayr et al., 2018) we want to know whether
Hopular is competitive on small tabular datasets. In particular, we compare Hopular to XGBoost,
CatBoost, LightGBM, and NPTs (Kossen et al., 2021). Since NODE does not support categorical
variables, we exclude it from the comparisons. NPTs clearly outperform TabNet (Arik & Pfister,
2021), therefore we use NPTs as a reference. Gradient Boosting has the lead on tabular data when
excluding Deep Learning methods. NPTs represent state-of-the-art Deep Learning methods for
tabular data, as NPTs yielded very good results on small tabular datasets.

4.1 Small-Sized Tabular Datasets

In these experiments, we compare Hopular to other Deep Learning methods, XGBoost, CatBoost,
and LightGBM on small-sized tabular datasets.

Methods Compared. We compare Hopular, XGBoost, CatBoost, LightGBM, NPTs, and other 24
machine learning methods as described in (Klambauer et al., 2017). The compared methods include
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10 Deep Learning (DL) approaches. Following (Klambauer et al., 2017; Wainberg et al., 2016), 17
methods are selected from their respective method group as the model with the median performance
over all datasets within each method group. NPTs are used in a non-transductive setting for a fair
comparison.

Hyperparameter Selection. All hyperparameters are selected on seperate validation sets. For
NPTs we perform hyperparameter search as in Table A.5. This includes the hyperparameters that
have already been successfully used in (Kossen et al., 2021) on small- and medium-sized tabular
datasets. This selection also serves as a constraint on the computational resources invested for
Hopular. For XGBoost, CatBoost, and LightGBM, we apply the same Bayesian hyperparameter
optimization procedure as described in (Shwartz-Ziv & Armon, 2021). For LightGBM we use the
default hyperparameter ranges as specified by hyperopt-sklearn (Komer et al., 2014). Section A.3
of the Appendix describes the hyperparameter selection in more detail.

Datasets. Following (Klambauer et al., 2017), we consider UCI machine learning repository datasets
with less than or equal to 1,000 samples as being small. We select 21 of these datasets and give an
overview in Table A.3. The datasets themselves, the train/test splits, and the results for the remaining
methods are taken from (Fernández-Delgado et al., 2014). A detailed explanation of the dataset
selection process as well as a description of the datasets can be found in Section A.2 of the Appendix.

Table 1: Median rank of compared methods across the datasets of the UCI machine learning repository.
Methods are ranked for each dataset according to the accuracy on the respective test set. Hopular
achieves the lowest median rank of 7.5. therefore is the best performing method.

Method Rank Method Rank
Hopular (DL) 7.5 Rule-Based Methods 15.0
Support Vector Machines 9.5 Other Ensembles 15.0
Logistic and Multinomial Regression 10.0 BatchNorm (DL) 15.0
Random Forest 11.0 Boosting Methods 15.0
Self-Normalizing Networks (DL) 11.0 Generalized Linear Models 15.5
Non-Parametric Transformers (DL) 11.0 WeightNorm (DL) 15.5
Neural Networks (DL) 11.5 Discriminant Analysis 16.0
XGBoost 12.0 Other Methods 17.5
Multivariate Adaptive Reg. Splines 12.0 ResNet (DL) 19.0
Decision Trees 13.5 LayerNorm (DL) 19.0
MSRAinit (DL) 14.0 Partial Least Squares 19.5
Bagging Methods 14.0 Bayesian Methods 20.0
CatBoost 14.0 Nearest Neighbour 24.0
LightGBM 14.5 Stacking (Wolpert) 28.0
Highway Networks (DL) 14.5

Results. Table 1 shows the median rank of all compared methods across the datasets of the UCI
machine learning repository. Methods are ranked for each dataset according to the accuracy on the
respective test set. 17 method groups have been compared previously (Wainberg et al., 2016), to
which we add XGBoost (Chen & Guestrin, 2016), CatBoost (Dorogush et al., 2017; Prokhorenkova
et al., 2018), LightGBM (Ke et al., 2017), NPTs (Kossen et al., 2021), Self-Normalizing Networks
(Klambauer et al., 2017), and our Hopular. Deep Learning methods are indicated by “(DL)” and are
not grouped. Hopular has a median rank of 7.5, followed by Support Vector Machines with 9.5, while
NPTs, XGBoost, CatBoost, and LightGBM have a median rank of 11, 12, 14, and 14.5 respectively.
Hopular with modern Hopfield networks as memory performs better than other DL methods and in
particular better than the closely-related NPTs. Across the considered UCI datasets, Hopular is
the best performing method.

4.2 Medium-Sized Tabular Datasets

In these experiments, we compare Hopular to other Deep Learning methods, XGBoost, CatBoost,
and LightGBM on medium-sized tabular datasets. In (Shwartz-Ziv & Armon, 2021), the authors
show that XGBoost outperforms various Deep Learning methods that are designed for tabular data
on datasets that did not appear in the original papers. We want to know whether XGBoost still has
the lead on these medium-sized datasets.
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Methods Compared. We compare Hopular, NPTs, XGBoost, CatBoost, and LightGBM. NPTs are
used in a non-transductive setting for a fair comparison.

Hyperparameter Selection. All hyperparameters are selected on seperate validation sets. For
NPTs we perform hyperparameter search as in Table A.5. This includes the hyperparameters that
have already been successfully used in (Kossen et al., 2021) on small- and medium-sized tabular
datasets. This selection also serves as a constraint on the computational resources invested for
Hopular. For XGBoost, CatBoost, and LightGBM, we apply the same Bayesian hyperparameter
optimization procedure as described in (Shwartz-Ziv & Armon, 2021). For LightGBM we use the
default hyperparameter ranges as specified by hyperopt-sklearn (Komer et al., 2014). Section A.3
of the Appendix describes the hyperparameter selection in more detail.

Datasets. We select the datasets and dataset splits of (Shwartz-Ziv & Armon, 2021), where XGBoost
performs better than Deep Learning methods that have been designed for tabular data. We extend
this selection by two datasets for regression: (a) colleges was already used for other Deep Learning
methods for tabular data (Somepalli et al., 2021), and (b) sulfur is publicly available and fits with
its 10,082 instances well into the existing collection of medium-sized datasets. Table A.4 gives
an overview of the medium-sized datasets. A detailed description of the datasets can be found in
Section A.2 of the Appendix.

Table 2: Results of all compared methods on the subset of medium-sized tabular datasets (Shwartz-Ziv
& Armon, 2021). For classification tasks (C), the accuracy is reported. For regression tasks (R),
the mean squared error multiplied by a factor of 1000 is reported. The reported deviations are
the corresponding standard error of the mean. All values are computed on the respective test sets,
averaged over three replicates.

Dataset Hopular NPTs XGBoost CatBoost LightGBM
sulfur (R) ↓ 1.04±0.02 1.24 ± 0.02 1.23 ± 0.00 1.06 ± 0.01 1.16 ± 0.01
colleges (R) ↓ 21.18±0.09 25.67 ± 0.23 30.47 ± 0.00 26.40 ± 0.09 25.64 ± 0.09

eye (C) ↑ 53.56 ± 0.48 53.21 ± 0.12 57.43±0.00 56.35 ± 0.05 57.34 ± 0.28
gesture (C) ↑ 71.20±0.19 67.83 ± 0.06 68.05 ± 0.00 68.86 ± 0.21 69.01 ± 0.09
blastchar (C) ↑ 80.05 ± 0.11 79.98 ± 0.11 76.78 ± 0.00 80.13±0.12 79.92 ± 0.21
shrutime (C) ↑ 86.12 ± 0.09 85.62 ± 0.07 84.58 ± 0.00 86.39±0.04 86.18 ± 0.02

Results. Table 2 reports the results of Hopular, NPTs, XGBoost, CatBoost, and LightGBM on the
medium-sized datasets. The evaluation procedure is from (Shwartz-Ziv & Armon, 2021). Hopular
is the best performing method on 3 out of the 6 datasets. The runner-up method, CatBoost, is
twice the best method, whereas XGBoost once. The biggest performance difference is achieved by
Hopular on the two regression datasets, where the capabilities of an external memory are especially
advantageous. Directly deriving the underlying function for regression datasets may be a difficult task,
especially in absence of abundant data. Hopular is able to mitigate this shortcoming by incorporating
local neighbourhood information and iteratively refining its current prediction by memory lookups.
Hopular is the best performing method on 3 out of the 6 medium-sized datasets. Over the 6 datasets,
NPTs and XGBoost are tied in last place with a median rank of 4.5. CatBoost and LightGBM have a
rank of 2.5 and 2, respectively, and Hopular is in first place with a median rank of 1.5. On average
over all 6 datasets, Hopular performs better than NPTs, XGBoost, CatBoost, and LightGBM.
We also found that our method needs only a fraction of the memory compared to NPTs, which can be
seen in in Section A.4 with additional investigations in Section A.5.

5 Conclusion

Hopular is a novel Deep Learning architecture where every layer is equipped with an external memory.
This enables Hopular to mimic standard iterative learning algorithms that refine the current prediction
by re-accessing the training set. We validated the usefulness of this property both on small- and
medium-sized tabular datasets. Hopular is the best performing method across a broad selection
of specifically challenging small-sized UCI datasets. Additionally, Hopular is the best-performing
method on medium-sized tabular datasets among which CatBoost and LightGBM achieved very
competitive results. This makes Hopular a strong contender to current state-of-the-art methods like
Gradient Boosting and other Deep Learning methods specialized in small- and medium-sized datasets.
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A Appendix

A.1 Architecture
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Figure A.3: Embedding Layer. All attributes of an original input sample are mapped to an e-
dimensional embedding space. The position of an attribute within a sample and the attribute type
are conserved by separate e-dimensional embeddings. All three embedding vectors are summed
and serve as the final representation of an input attribute. The input sample is represented by the
concatenation of all its attribute representations.
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Figure A.4: Summarization Layer. The current prediction vector on the right is mapped to the final
prediction vector on the left by separately mapping each current attribute prediction to its respective
final prediction. This final prediction vector lives in the same space as the original input sample and
is used for the computation of the respective losses.

A.2 Datasets

A.2.1 UCI Dataset Selection

To assess the performance of Hopular and other Deep Learning methods on small datasets, we select
a subset of 21 datasets from (Klambauer et al., 2017). The sizes of these datasets range from 200 to
1,000 samples. We put the focus on smaller sizes, therefore we select 13 datasets with 500 samples
or less. Additionally, we select four datasets with 500 to 750 samples and four dataset with 750
to 1,000 samples. Small datasets typically have small test sets, which introduce a high variance
in their evaluations. This is especially true if they are overly small or unbalanced. Furthermore,
some test sets seem to be not sampled iid from the whole population. Thus, the method evaluation
may be highly dependent on the chosen train/test split and performance estimates may be skewed.
Problematic datasets in (Klambauer et al., 2017) are characterized by having a range of accuracy
values across well established methods of greater or equal 0.5 We exclude the problematic datasets
seeds, spectf, libras, dermatology, arrythmia, and conn-bench-vowel-deterding. The dataset spect is
excluded as its description in (Fernández-Delgado et al., 2014) is in conflict with the available UCI
version regarding the number of attributes and samples. The dataset heart-hungarian is excluded as
the dataset description is insufficient to distinguish between categorical and continuous attributes,
which is required by some methods. Since breast-cancer-wisc is practically solved (0.9859 accuracy),
it is excluded as it does not allow to distinguish the performances of the compared methods. We drop
heart-va, since the best reported method has only a low accuracy of 0.4.
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A.2.2 Small-Sized Dataset Description

Table A.3: Overview of small-sized datasets with their number of instances, number of continuous
features, and number of categorical features. All small-sized datasets are classification tasks.

Dataset Size
(N )

# cont.
features

# cat.
features

conn-bench 208 60 0
glass 214 9 0
statlog-heart 270 6 7
breast-cancer 286 0 9
heart-cleveland 303 6 9
haberman-survival 306 3 0
vertebral-column2 310 6 0
vertebral-column3 310 6 0
primary-tumor 330 0 17
ecoli 336 5 0
horse-colic 368 8 19
congressional-voting 435 0 16
cylinder-bands 512 20 19
monks-2 601 6 0
statlog-australian-credit 690 5 9
credit-approval 690 6 9
blood-transfusion 748 4 1
energy-y2 768 7 0
mammographic 961 1 5
led-display 1,000 0 6
statlog-german-credit 1,000 23 0

Below we give more precise descriptions of the datasets used in our small-sized experiments:
conn-bench-sonar-mines-rocks or Connectionist Bench (Sonar, Mines vs. Rocks): A classification

setting of 208 instances with 60 continuous features per instance. The task is to discriminate
between sonar sounds from metal vs. rocks.

glass or Glass Identification: A classification setting of 214 instances with 9 continuous features per
instance. The task is to discriminate between 6 types of glass.

statlog-heart: A classification setting of 270 instances with 6 continuous and 7 categorical features
per instance. The task is to predict the presence or absence of a heart disease.

breast-cancer: A classification setting of 286 instances with 9 categorical features per instance. The
task is to predict the presence or absence of breast cancer.

heart-cleveland or Heart Disease: A classification setting of 303 instances with 6 continuous and 7
categorical features per instance. The task is to predict the presence or absence of a heart
disease.

haberman-survival: A classification setting of 306 instances with 3 continuous features per instance.
The task is to predict whether patients survived longer than 5 years or not.

vertebral-column2, vertebral-column3 or Vertebral Column Dataset: Two classification settings of
310 instances each with 6 continuous features per instance. The task is to classify patients
into either 2 or 3 classes.

primary-tumor: A classification setting of 330 instances with 17 categorical features per instance.
The task is to predict the class of primary tumors.

ecoli: A classification setting of 336 instances with 5 continuous and 2 categorical features per
instance. The tasks is to classify proteins into 8 classes.

horse-colic: A classification setting of 368 instances with 8 continuous and 19 categorical features
per instance. The task is to predict the survival or death of a horse.

congressional-voting: A classification setting of 435 instances with 16 categorical features per
instance. The task is to predict political affiliation.
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cylinder-bands: A classification setting of 512 instances with 20 continuous and 19 categorical
features per instance. The task is to classify the band type.

credit-approval: A classification setting of 690 instances with 6 continuous and 9 categorical
features per instance. The task is to determine positive or negative feedback for credit card
applications.

blood-transfusion or Blood Transfusion Service Center: A classification setting of 748 instances
with 4 continuous and 1 categorical feature per instance. The task is to predict whether a
person donated blood or not.

statlog-german-credit: A classification setting of 1,000 instances with 23 continuous features per
instance. The goal is to determine credit-worthiness of customers.

mammographic or Mammographic Mass: A classification setting of 961 instances with 1 continuous
and 5 categorical features per instance. The task is to discriminate between benign and
malignant mammographic masses.

led-display: A classification setting of 1,000 instances with 6 categorical features per instance. The
task is to classify decimal digits from light-emiting diodes with noise.

statlog-australian-credit: A classification setting of 690 instances with 5 continuous and 9 categori-
cal features. The task to grant customers credit-approval or not.

energy-y2 or Energy efficiency Data Set: A classification setting of 768 instances with 7 continuous
features per instance. The task is to predict the cooling load for a given building.

monks-2 It is part of the Monk’s Problems Data Set. A classification task for 601 instances with 6
categorical features. The task is to discriminate between two classes.

A.2.3 Medium-Sized Dataset Description

Table A.4: Medium-sized datasets with their number of instances, number of continuous features,
and number of categorical features. Classification tasks are marked with (C), whereas regression tasks
are marked with (R).

Dataset Size
(N )

# cont.
features

# cat.
features

blastchar (C) 7,048 3 17
colleges (R) 7,064 33 12
gesture-phase (C) 9,873 31 0
shrutime (C) 10,000 2 9
sulfur (R) 10,082 5 0
eye-movements (C) 10,936 19 3

Below we give more precise descriptions of the datasets used in our medium-sized experiments:
shrutime: A classification setting of 10,000 instances with 2 continuous and 9 categorical features

per instance. The task is to predict whether a bank account is closed or not.

blastchar: A classification setting of 7,048 instances with 3 continuous and 17 categorical features
per instance. The task is to predict customer behavior.

gesture or gesture-phase or Gesture Phase Segmentation: A classification setting of 9,873 instances
with 31 continuous features per instance. The task is to classify gesture phases.

eye or eye-movements: A classification setting of 10,936 instances with 19 continuous and 3
categorical features per instance. The task is to discriminate between correct, irrelevant or
relevant answers.

colleges: A regression setting of 7,064 instances with 33 continuous and 12 categorical features per
instance. The task is to predict pell grant percentages for colleges in the USA.

sulfur: A regression setting of 10,082 instances with 5 continuous features per instance. The task is
to predict H2S concentration in a factory module.
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Table A.5: Complete listing of all evaluated hyperparameter settings for NPTs. For all experiments a
learning rate of 0.001 as well as a dropout probability of 0.1 is used. Settings marked with an asterisk
(*) are not performed on conn-bench-sonar-mines-rocks due to out-of-memory issues.

dataset
group

# netw.
layers

# att.
heads

label mask.
prob.

feature mask.
prob.

learn. rate
scheduler

emb.
dim.

small and
medium

8 8 1.0 0.15 cosine 32
16 8 1.0 0.15 cosine 32
8 16 1.0 0.15 cosine 32
16 16 1.0 0.15 cosine 32
8 8 0.1 0.15 cosine 32
8 8 0.5 0.15 cosine 32
8 8 1.0 0.20 cosine 32
8 8 1.0 0.15 cosine cyclic 32

small

8 8 1.0 0.15 cosine 128
16 8 1.0 0.15 cosine 128 *
8 16 1.0 0.15 cosine 128
16 16 1.0 0.15 cosine 128 *
8 8 0.1 0.15 cosine 128
8 8 0.5 0.15 cosine 128
8 8 1.0 0.20 cosine 128
8 8 1.0 0.15 cosine cyclic 128

A.3 Hyperparameter selection process

For the hyperparameter selection process for NPTs we follow (Kossen et al., 2021) and take exactly
the same hyperparameter settings that were successfully used among several datasets. We use these
hyperparameter settings for experiments on small- and medium-sized datasets. For small-sized
datasets we additionally use these settings with an increased embedding dimension of 128. Especially
for such datasets the discrimination among similar samples can be a challenging task. This problem
can be mitigated by mapping to a higher-dimensional embedding space where the samples have
greater distances between each other. NPTs follow a masking procedure similar to (Devlin et al.,
2019) which is realized by feature and label masking probabilities. Following the strategy in (Kossen
et al., 2021) we use the LAMB (You et al., 2020) optimizer for all NPT experiments, extended by a
Lookahead (Zhang et al., 2019a) wrapper with fixed values. For LAMB we use βL = (0.9, 0.999),
ϵ = 1e−6 and for Lookahead α = 0.5, k = 6. The hyperparameter settings for NPTs are shown in
Table A.5.

Table A.6: Complete listing of all evaluated hyperparameter settings for Hopular. For all experiments
a learning rate of 0.001 was used. The dropout probabilities pi, ph and po refer to the embedding
layer, Hopular Block and summarization layer, respectively. The three settings of the second group
(medium-sized) were performed in a non-exhaustive way w.r.t. to all medium-sized datasets.

dataset
group

# Hop.
blocks

# Hop.
nets

β-scaling
factor

mask
prob.

replace
prob.

weight
decay

dropout
pi ph po

small and
medium

4 8 10{0,2,3} 0.025 0.175 0.1 0.1 0.1 0.01
8 8 10{0,2,3} 0.025 0.175 0.1 0.1 0.1 0.01
4 16 10{0,2,3} 0.025 0.175 0.1 0.1 0.1 0.01
8 16 10{0,2,3} 0.025 0.175 0.1 0.1 0.1 0.01

medium 8 16 10{0} 0.000 0.000 0.0 0.0 0.0 0.00

For a fair comparison we upper bound Hopular’s capacity by the capacity of NPTs which results in
the settings shown in Table A.6. As Hopular provides an additional adjustable scaling factor for β,
we also test scaling factors of 100 and 1000 to further emphasize nearest-neighbor search. In our
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default setting the weighting term γ for our objective in Eq. (10) is annealed using a cosine scheduler
starting at 1 with a final value of 0. For medium-sized datasets we also perform experiments with
an initial γ value of 0.5. We use the original BERT masking as in (Devlin et al., 2019). Since we
store the training data in Hs we have to make sure that the model does not just learn to retrieve the
original input sample from the training set (like a database query). This is why we independently of
BERT masking always mask the corresponding sample in the training set. We use default values for
masking and dropout. For the medium-sized datasets we also test two different settings of weight
decay, and of dropout probabilities in the Embedding layer, Hopular block and Summarization layer.
In contrast to NPTs, we always mask all labels. In our experiments the Hopfield dimension h (as
described in Section 3) is fixed by the embedding size e, the number of features d and the number of
Hopfield networks M such that h = d · e/M . The LAMB (You et al., 2020) optimizer is used for all
Hopular experiments, extended by a method similar to Lookahead (Zhang et al., 2019a) but without
synchronization of fast and slow weights. This is analogous to the exponential moving average
used in (Grill et al., 2020). For LAMB we use βL = (0.9, 0.999), ϵ = 1e−6 and for Lookahead
α = 0.005, k = 1. NPTs and Hopular are both trained for 10,000 epochs with early stopping.

For XGBoost and CatBoost we use the package hyperopt and apply the same Bayesian hyperparam-
eter optimization procedure as described in Shwartz-Ziv & Armon (2021). For all Boosting methods
we thereby evaluate 1,000 different hyperparameter settings. More precisely, the hyperparameters
and their search spaces for XGBoost are defined in the following.

• Learning rate: Log-Uniform distribution [−7, 0]
• Max depth: Discrete uniform distribution [1, 10]

• Subsample: Uniform distribution [0.2, 1]

• Colsample bytree: Uniform distribution [0.2, 1]

• Colsample bylevel: Uniform distribution [0.2, 1]

• Min child weight: Log-Uniform distribution [−16, 2]
• Alpha: Uniform choice {0,Log-Uniform [−16, 2]}
• Lambda: Uniform choice {0,Log-Uniform [−16, 2]}
• Gamma: Uniform choice {0,Log-Uniform [−16, 2]}
• Number of estimators: 1000

It is important to mention that the package hyperopt defines the Log-Uniform distribution by the
exponents of the respective interval boundaries – e.g. Log-Uniform[−7, 0] is defined on [e−7, e0].
The hyperparameters and their search spaces for CatBoost are defined in the following.

• Learning rate: Log-Uniform distribution [−5, 0]
• Random strength: Discrete uniform distribution [1, 20]

• Max size: Discrete uniform distribution [0, 25]

• L2 leaf regularization: Log-Uniform distribution [log 1, log 10]

• Bagging temperature: Uniform distribution [0, 1]

• Leaf estimation iterations: Discrete uniform distribution [1, 20]

• Number of estimators: 1000

For LightGBM we use the default hyperparameter ranges as specified by hyperopt-sklearn (Komer
et al., 2014).

• Learning rate: Log-Uniform distribution [log 0.0001, log 0.5]− 0.0001

• Max depth: Discrete uniform distribution [1, 11]

• Number of leaves: Discrete uniform distribution [2, 121]

• Gamma: Log-Uniform distribution [log 0.001, log 5]− 0.0001

• Min child weight: Log-Uniform distribution [log 1, log 100]

• Subsample: Uniform distribution [0.5, 1]

18



• Colsample bytree: Uniform distribution [0.5, 1]

• Colsample bylevel: Uniform distribution [0.5, 1]

• Alpha: Log-Uniform distribution [log 0.0001, log 1]

• Lambda: Log-Uniform distribution [log 1, log 4]

• Boosting type: Uniform choice {gbdt, dart, goss}
• Number of estimators: 1000

A.4 Memory footprint and runtime estimates

In table A.7 we show the memory footprint of Hopular and NPTs for all medium-sized datasets
ranging from the smallest to the largest model. In all cases the whole training set is stored in the
memory of module Hs. Even in the full batch setting where all the data is used as model input
there is no prohibitive memory increase. In contrast, NPTs have a much higher memory memory
consumption in the full batch setting. There, for 3 datasets the larger models even run out of memory
on an NVIDIA A100 80GB GPU.

Table A.7: Memory footprint of Hopular and NPTs in gibibytes (GiB) for medium-sized datasets
ranging from our smallest to largest model. Settings with a memory footprint of 80.00+ are not
performed due to out-of-memory issues.

Dataset Hopular NPTs
single sample full batch single sample full batch

sulfur (R) ↓ 2.55 to 3.18 7.54 to13.14 1.55 to 1.59 35.95 to 80.00+
colleges (R) ↓ 3.13 to 3.90 6.58 to11.62 3.98 to 6.09 27.13 to 74.56

eye-movements (C) ↓ 2.68 to 3.28 10.19 to18.21 2.11 to 2.67 45.92 to 80.00+
gesture-phase (C) ↓ 2.77 to 3.41 8.92 to15.61 2.73 to 3.90 40.95 to 80.00+
blastchar (C) ↓ 2.38 to 2.75 4.83 to 7.61 1.97 to 2.38 20.49 to 56.17
shrutime (C) ↓ 2.60 to 3.23 7.53 to13.05 1.66 to 1.79 36.30 to 78.75

In table A.8 we perform measurements on training and inference times. We show the step time for
medium-sized datasets during training. Inference times are assumed to be much lower, as no gradient
computation and parameter updates need to be performed.

Table A.8: Step time of Hopular and NPTs in milliseconds (ms) during training.

Dataset Hopular NPTs
single sample full batch single sample full batch

sulfur (R) ↓ 52.71± 0.02 629.55± 0.04 59.44± 0.08 159.86± 0.28
colleges (R) ↓ 120.15± 0.09 824.34± 0.17 118.13± 0.13 321.32± 0.25

eye-movements (C) ↓ 76.94± 0.02 1,141.37± 0.03 84.21± 0.08 338.53± 0.18
gesture-phase (C) ↓ 95.40± 0.03 1,155.47± 0.06 99.38± 0.08 384.58± 0.16
blastchar (C) ↓ 73.69± 0.02 503.45± 0.08 81.74± 0.11 167.26± 0.25
shrutime (C) ↓ 61.90± 0.02 652.81± 0.04 68.18± 0.08 182.11± 0.16

A.5 Hopular: Memory footprint scaling

In figure A.5 we show the memory footprints of Hopular on the basis of an artificially generated
dataset X ∈ R(d·e)×n with an attribute embedding size of e = 8. The used reference model consists
of a single Hopular block, with a single continuous modern Hopfield network for each Hopfield
module. The memory footprints are in gibibytes (GiB) and measured for a batch size of 1. The
Hopfield module Hs stores the complete dataset X . The results clearly show that the driving factor
behind the memory consumption is the attribute count d, and not the training set size n.
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Figure A.5: Memory footprints of Hopular in gibibytes (GiB) measured on an artificially generated
dataset. Missing entries denote settings which do not fit on an NVIDIA A100 80GB GPU, i.e. run
out of memory. Best viewed in color.
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Figure A.6: Memory footprints of Hopular in gibibytes (GiB) measured on an artificially generated
dataset with a (TOP) varying d ∈ [100, 4000], and (BOTTOM) varying n ∈

[
102, 105

]
. Missing

entries denote settings which do not fit on an NVIDIA A100 80GB GPU, i.e. run out of memory.
Best viewed in color.
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A.6 Hopular Intuition: Mimicking iterative learning

In our first example we consider Nadaraya-Watson kernel regression (Watson, 1964; Nadaraya, 1964;
Benedetti, 1977; Weinberger & Tesauro, 2007). The training set is {(z1,y1), . . . , (zN ,yN )} with
inputs zi summarized by the input matrix Z = (z1, . . . ,zN ) and labels yi summarized in the label
matrix Y = (y1, . . . ,yN ). The kernel function is k(zi, z). The estimator g for y given z is:

g(z) =

N∑
i=1

yi
k(zi, z)∑N
i=1 k(zi, z)

. (11)

By using the RBF kernel we get:

k(zi, zj) = exp(− β/2 ∥zi − zj∥2) = exp(− β/2 (zT
i zi − 2 zT

i zj + zT
j zj)) . (12)

For normalized vector zi we have zT
i zi = ∥zi∥2 = 1, therefore

k(zi, zj) = exp(− β (1 − zT
i zj)) = c exp(β zT

i zj) . (13)

We obtain for Nadaraya–Watson kernel regression with the RBF kernel and normalized inputs:

g(z) = Y softmax(β ZT z) . (14)

Metric learning for kernel regression learns the kernel k which is the distance function (Weinberger
& Tesauro, 2007). A Hopular Block can do the same in Eq. 7 via learning the weight matrices WX

and Wξ. If we set in Eq. 14:

ZT = XT W T
X , z = Wξ ξ, Y = WS WX X (15)

then we obtain Eq. 7, with the fixed label matrix Y .

In the second example we show how Hopular can realize a linear model with the AdaBoost Objective.
The AdaBoost objective for classification with a binary target y ∈ {−1,+1} can be written as
follows – see Eq. 3 and Eq. 4 in (Shen & Li, 2010):

L = ln

N∑
i=1

exp(− yi g(zi)) . (16)

We use this objective for learning the linear model:

g(zi) = β ξTzi . (17)

The objective multiplied by β−1 with Y as the diagonal matrix of the targets {y1, · · · ,yN} becomes:

L = β−1 ln

N∑
i=1

exp(− β yi ξ
Tzi) = lse(β , − Y ZT ξ) , (18)

where lse is the log-sum-exponential function. The gradient of this objective is:

∂L

∂ξ
= − Z Y softmax(− β Y ZT ξ) . (19)

This is Eq. 7 with:

Y ZT = XT W T
X , Wξ = I, WS = I (20)

Thus, a Hopular Block can implement a gradient descent update rule for a linear classification model
using the AdaBoost objective function. The current prediction ξ comes from the previous layer.

These are two additional examples among the standard iterative learning algorithms which Hopular
can mimic.

A.7 Source code

Source code is available at: https://github.com/ml-jku/hopular
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