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Abstract

Inferring contextually-relevant and diverse001
commonsense to understand narratives remains002
challenging for knowledge models. In this003
work, we develop a series of knowledge mod-004
els, DIFFUCOMET, that leverage diffusion005
to learn to reconstruct the implicit semantic006
connections between narrative contexts and007
relevant commonsense knowledge. Across008
multiple diffusion steps, our method progres-009
sively refines a representation of commonsense010
facts that is anchored to a narrative, produc-011
ing contextually-relevant and diverse common-012
sense inferences for an input context. To013
evaluate DIFFUCOMET, we introduce new014
metrics for commonsense inference that more015
closely measure knowledge diversity and con-016
textual relevance. Our results on two different017
benchmarks, ComFact and WebNLG+, show018
that knowledge generated by DIFFUCOMET019
achieves a better trade-off between common-020
sense diversity, contextual relevance and align-021
ment to known gold references, compared to022
baseline knowledge models.023

1 Introduction024

Identifying the commonsense inferences that un-025

derlie narratives, such as stories or dialogues (Guan026

et al., 2019; Zhou et al., 2022), is crucial to under-027

standing those same narratives. For example, to028

understand why “Hank ... got the shopping bags”029

in the context in Figure 1, a model would need030

to infer that (1) Hank was not finished wrapping031

gifts, and so (2) would need to buy more wrapping032

paper. However, comprehensively inferring these033

diverse, yet implicit, commonsense inferences that034

are relevant to a context remains a challenging task.035

Recent methods for identifying contextually-036

relevant commonsense inferences (Bosselut et al.,037

2021; Tu et al., 2022; Peng et al., 2022) use knowl-038

edge models (Bosselut et al., 2019; West et al.,039

2022) to generate commonsense facts. While040
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Figure 1: Overview of our diffusion-based contextual
commonsense knowledge generation.

knowledge models have been less brittle than pre- 041

vious retrieval-based methods for commonsense 042

inference, they have two major shortcomings. First, 043

they are trained to verbalize tuples from general 044

commonsense knowledge graphs (Sap et al., 2019; 045

Hwang et al., 2021), leading them to produce valid, 046

but often contextually-irrelevant, commonsense in- 047

ferences when applied out-of-the-box to real nar- 048

ratives. Second, because they are trained using au- 049

toregressive training objectives, they subsequently 050

decode high-likelihood, non-diverse sequences that 051

only identify limited collections of commonsense 052

inferences relevant to an input context. 053

In this work, we address these challenges 054

of contextual commonsense knowledge genera- 055

tion by developing Diffusion (Ho et al., 2020) 056

COMmonsEnse Transformer (Bosselut et al., 057

2019) models. DIFFUCOMET models (shown in 058

Figure 1) uses diffusion-based decoding to gener- 059

ate relevant knowledge embeddings that are con- 060

strained to the narrative context. Over multiple it- 061
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erations of constrained diffusion, our models refine062

a latent representation of the semantic connections063

between a context and its relevant facts, ensuring064

that it generates commonsense knowledge that is065

more contextually relevant to the narrative. At the066

same time, by jointly refining multiple fact embed-067

dings during diffusion, DIFFUCOMET also gener-068

ates more diverse inferences than comparable-size069

autoregressive knowledge models.070

We evaluate DIFFUCOMET models using tra-071

ditional NLG metrics (e.g., BLEU; Papineni et al.,072

2002) commonly used for evaluating knowledge073

models. However, these metrics focus on surface074

form matching to gold references, and fall short075

of measuring the diversity of commonsense infer-076

ences and their semantic relevance to real narrative077

contexts. Our second contribution is a novel set078

of metrics that assess the diversity and contextual079

relevance of knowledge generated by knowledge080

models. Using both the traditional evaluation met-081

rics and our new suite, we evaluate our models on082

a commonsense inference linking benchmark (Gao083

et al., 2022a) that covers both social and physical084

knowledge, and a second knowledge generation085

benchmark that involves extracting RDF triplets086

from language, WebNLG+ (Ferreira et al., 2020).087

Our result show that DIFFUCOMET models088

generate knowledge that achieves a better balance089

of diversity and contextual relevance compared to090

other knowledge models. DIFFUCOMET models091

also more robustly generalize to generate knowl-092

edge for out-of-distribution narratives, and are bet-093

ter at producing novel knowledge tuples that are not094

in their initial training set. Finally, on our second095

benchmark, WebNLG+, we verify that our diffu-096

sion modeling method also generalizes well to a097

completely new factual knowledge generation task098

beyond the commonsense domain.099

2 Background: Diffusion Models100

Diffusion models learn to construct synthetic data101

from random noise. They use a forward process to102

gradually corrupt real data samples with additive103

noise, and learn a reverse process to recover (or104

de-noise) the corrupted data samples. Through105

the de-noising of corrupted data, diffusion models106

learn to map from a random noise distribution to107

their target data distribution, which grounds their108

synthetic data generation.109

In this paper, we adopt the DDPM1 (Ho et al.,110

1Denoising Diffusion Probabilistic Models

2020) formulation of the forward and reverse diffu- 111

sion processes. Specifically, based on a sample z0 112

from a continuous input data distribution q(z0), the 113

forward process constructs noisy sample zt over a 114

sequence of time steps t ∈ {1, 2, ..., T}. In DDPM, 115

zt is sampled from a Gaussian distribution condi- 116

tioned on the previous sample zt−1, given by: 117

q(zt|zt−1) = N (zt;
√
1− βtzt−1, βtI) (1) 118

where βt is a noise schedule hyperparameter 119

unique to each diffusion step. 120

In the reverse process, diffusion models learn an 121

inverse distribution q(zt−1|zt) to de-noise samples 122

created by the forward process. To more precisely 123

couple the intermediate states of the reverse process 124

with the final de-noised sample z0, Diffusion-LM 125

(Li et al., 2022) reformulates the task of predicting 126

zt−1 as directly predicting z0 (based on zt), and 127

uses a mean-squared error training loss on the z0 128

prediction at each time step2: 129

Lz0-mse =
T∑
t=1

E∥z0 − fθ(zt, t)∥2 (2) 130

where fθ(zt, t) = ẑt−1
0 denotes the model’s learned 131

prediction of z0 at the reverse stage of step t to t−1. 132

To formulate ẑt−1
0 as a refinement of the former 133

reverse stage’s output ẑt0, Bit-Diffusion (Chen et al., 134

2022) improves the model function of predicting 135

z0 with self-conditioning, i.e., ẑt−1
0 = fθ(ẑ

t
0, zt, t). 136

At inference time, the noisy sample at step t is 137

predicted from ẑt0 via the Eq. (1) forward process, 138

denoted as ẑt to replace the unknown gold input 139

zt, while the initial input zT is pure Gaussian noise 140

sampled from N (0, I). 141

3 Contextual Knowledge Diffusion 142

In this section, we first introduce the task of contex- 143

tual commonsense knowledge generation, and then 144

propose DIFFUCOMET, our diffusion approach 145

for this task. The overview of our method is pre- 146

sented in Figure 1. 147

Task Description Given a narrative sample S 148

as context, e.g., a story snippet or a dialogue, the 149

model needs to generate commonsense inferences 150

as a set facts K = {k1, ..., kn, ..., kN}, which are 151

relevant for understanding the situation described 152

in the context. Each fact kn = (hn, rn, an) is repre- 153

sented as a triple containing a head entity hn, a tail 154

2We include more detailed formulation of the reverse dif-
fusion training in Appendix A.

2



Contextualized 
Commonsense 

Knowledge Diffusion

Knowledge 
Embedding

𝒇𝜽𝒆
Knowledge 
Decoding

𝒇𝜽𝒈

COMMONSENSE KNOWLEDGE ( 𝓚 )

DiffuCOMET-Fact DiffuCOMET
-Entity

wrapping
paper store

at location

store

wrapping
paper

at location

Relation 
Prediction

DiffuCOMET
-Entity

store

wrapping
paper

and then

𝒇𝜽𝒛

NARRATIVE CONTEXT ( 𝓢 )

Context 
Encoder

𝒇𝜽𝒔

Figure 2: Knowledge diffusion based on facts or enti-
ties. Dashed arrows denote the forward process used for
constructing gold references at the training phase. Solid
arrows denote the reverse process used for generating
knowledge with attention to the narrative context.

(attribute) entity an, and a relation rn connecting155

them, e.g., (wrapping paper, used for, wrap gifts),156

as shown in Figure 1. We denote the set of unique157

head entities, relations and tail entities in K as H,158

R and A, respectively.159

Contextualization We ground knowledge dif-160

fusion on the given context S by using encoder-161

decoder cross attention, inspired by SeqDiffuSeq162

(Yuan et al., 2022). In particular, we use a BART163

(Lewis et al., 2020) encoder fθs to learn the context164

encoding that represents S as hidden state zS :165

zS = fθs(S) (3)166

Then, a BART decoder fθz , serving as the diffu-167

sion module, learns to predict the de-noised data168

sample z0. Given the context hidden state zS (via169

cross-attention to the encoder fθs), fθz makes a170

prediction of z0 at time step t-1 (i.e., ẑt−1
0 ) based171

on its former prediction ẑt0 and time step t’s noisy172

sample zt:173

ẑt−1
0 = fθz(ẑ

t
0, zt, t|zS) (4)174

Unlike traditional transformer decoders (Vaswani175

et al., 2017), the diffusion module fθz applies a176

bi-directional self-attention to ẑt0 and zt, since all177

positions of ẑt−1
0 are decoded simultaneously, i.e., 178

in non-autoregressive manner.3 179

Discrete Knowledge Diffusion We consider two 180

formulations for representing discrete knowledge 181

in continuous embedding spaces for diffusion: DIF- 182

FUCOMET-Fact, where we learn to reconstruct 183

continuous representations of facts kn using diffu- 184

sion, and DIFFUCOMET-Entity, where we use 185

separate diffusion processes to reconstruct head 186

hn and tail an representations and then predict the 187

relation between them to complete the fact. We 188

highlight these differences in Figure 2. 189

For diffusion on the fact-level embedding space 190

(DIFFUCOMET-Fact), we first pre-train a BART 191

encoder fθe to produce an embedding en of each 192

fact kn in the knowledge set K (with embedding 193

size d same as the hidden state size of BART): 194

en = fθe(kn) ∈ Rd (5) 195

where we input the concatenation of each fact’s 196

head, relation and tail tokens to the encoder fθe , 197

and take the output hidden state of a start token <s> 198

as the embedding of the fact. The initial input z0 of 199

the forward diffusion process is then sampled from 200

a Gaussian centered on the concatenation of all 201

fact embeddings e = [e1; e2; ...; e|K|] ∈ Rd×|K|, 202

formulated as qe(z0|e) = N (z0; e, β0I). 203

In the reverse process, the diffusion module fθz 204

is trained to generate the final output ẑ00 (using 205

time step 1’s input z1 and ẑ10) as its predicted fact 206

embeddings ê, i.e., ê = ẑ00 = fθz(ẑ
1
0, z1, 1|zS). 207

Finally, we pre-train another BART decoder fθg to 208

generate the synthetic fact k̂n with conditioned on 209

the diffusion module’s predicted n-th embedding 210

ên = ê[:][n], (n = 1, 2, ..., |K|)4: 211

k̂n = fθg(ên) (6) 212

For diffusion on the entity-level embedding space 213

(DIFFUCOMET-Entity), we use a pipeline to 214

generate head entities, tail entities and their rela- 215

tions. First, to generate head entities, we use a sim- 216

ilar process as in DIFFUCOMET-Fact, i.e., pre- 217

train a BART encoder to produce a gold embedding 218

of each unique head entity hi ∈ H (for training the 219

3More implementation details of the diffusion module fθz
are presented in Appendix B.1.

4At inference time, the maximum value of n (number
of generated facts) can be arbitrary depending on the user’s
choice. In Appendix B.2, we introduce how we control the
number of facts that our models generate for each context.
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diffusion module), and then pre-train a BART de-220

coder to generate synthetic head entities ĥi from221

the diffusion module’s predicted embeddings. Each222

predicted head entity ĥi is then appended to the223

context (i.e., S in Eq. 3), expanding the context to224

Si = [S, ĥi]. A second diffusion module predicts225

embeddings of synthetic tail entities âj related to226

Si (trained using gold embeddings of tail entities227

aj ∈ A that possess relations rij ∈ R to the gold228

head hi). A final BART model predicts the relation229

r̂ij between each pair of generated head and tail230

entities, grounded on the context.231

Embedding Module Training We pretrain the232

embedding modules (fθe , fθg ), which focus on233

modeling generic knowledge representations in-234

dependent to the context, before the diffusion mod-235

ules (fθs , fθz ), which learn the specific mapping236

from the context to its relevant knowledge. When237

training the diffusion modules, we freeze the pre-238

trained embedding modules.239

To pretrain the fact (or entity) embedding mod-240

ules, we minimize the decoder’s negative log-241

likelihood of re-constructing facts k (or entity h242

or a) in the full set of knowledge Kfull involved in243

the whole narrative dataset (or domain), based on244

its embedding given by encoder fθe :245

Lθe,θg = − log pθg(k|fθe(k)) (7)246

Diffusion Module Training We optimize a dual247

loss to train the diffusion modules. First, we con-248

sider the mean-square error loss of the diffusion249

module’s de-noised sample prediction ẑt0 at each250

time step t, compared to the reference sample z0251

(for t > 0) and gold embeddings e (for t = 0):252

Lmse
θs,θz = E∥e− ẑ00∥2 +

T−1∑
t=1

E∥z0 − ẑt0∥2 (8)253

We also use an anchor loss (Gao et al., 2022b) to254

supervise the final fact (or entity) generation. For255

each time step t, we minimize the negative log-256

likelihood of the embedding module decoder (with257

frozen parameters θg) generating each fact kn in258

knowledge set K, based on the diffusion module’s259

predicted de-noised sample ẑt0:260

Lgen
θs,θz

=
T−1∑
t=0

|K|∑
n=1

− log pθg(kn|ẑt0[:][n]) (9)261

where ẑt0[:][n] is the predicted de-noised represen-262

tation of kn. The final loss is Lθs,θz = Lmse
θs,θz

+263

γLgen
θs,θz

, where γ is a tunable hyperparameter.264

Inference At inference time, the reverse diffu- 265

sion process is initialized with noise sampled from 266

the Gaussian distribution N (0, I), while the em- 267

bedding module encoder fθe , which provides gold 268

diffusion references for training, is not used. 269

4 Evaluation 270

Prior work in commonsense knowledge generation 271

(Hwang et al., 2021; Da et al., 2021) evaluated 272

knowledge models using traditional NLG metrics 273

(e.g., BLEU; Papineni et al., 2002) in controlled 274

studies with KGs, where the inputs to the models 275

were head entities and relations and the knowl- 276

edge model produced tail attributes. In practice, 277

however, knowledge models are used to generate 278

implicit commonsense inferences for natural lan- 279

guage contexts (Ismayilzada and Bosselut, 2023), 280

requiring generated inferences to be relevant to a 281

more complex input than a basic KG head entity, 282

and necessitating diverse generated inferences that 283

comprehensively augment the context. However, 284

traditional NLG metrics fall short of measuring 285

these important dimensions because they measure 286

surface form overlap between model outputs and 287

references, which rewards generating facts with 288

similar or duplicated semantics, limiting diversity. 289

Motivated by these shortcomings, we propose 290

novel evaluation metrics that assess the diversity 291

and contextual relevance of generated knowledge. 292

First, to eliminate the effect of knowledge repe- 293

tition in generations, we cluster similar facts and 294

treat each fact cluster (instead of each single fact) 295

as a unit piece of knowledge. In particular, we 296

use the DBSCAN (Ester et al., 1996) algorithm to 297

group gold facts K = {k1, k2, ..., kN} and gen- 298

erated facts K̂ = {k̂1, k̂2, ..., k̂N̂} into clusters 299

C = {c1, c2, ..., cM} and Ĉ = {ĉ1, ĉ2, ..., ĉM̂}, re- 300

spectively. We test two methods for measuring 301

the similarity of facts for clustering: word-level 302

edit distance (Levenshtein et al., 1966), which mea- 303

sures the difference of two facts’ surface-form to- 304

kens, and Euclidean distance of Sentence-BERT 305

(Reimers and Gurevych, 2019) embeddings, which 306

measures the semantic difference of two facts. 307

Based on these clusters, we develop three metrics 308

to measure the diversity of generated facts, their 309

contextual relevance, and their alignment to gold 310

references, as shown in Figure 3. 311

Diversity. To measure the diversity of generated 312

facts (i.e., amount of distinctive knowledge being 313

generated), we count the number of fact clusters 314
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Figure 3: Illustration of clustering-based evaluation metrics for contextual commonsense knowledge generation.

(# Clusters), i.e., M̂ (or M for gold references).315

We also report the number of facts (# Facts), i.e., N̂316

(or N for gold references), to compare the number317

of fact clusters to the number of generated facts318

produced by the models.319

Relevance. We measure the relevance of the fact320

clusters to the narrative context using a fact linker5321

trained on the ComFact dataset (Gao et al., 2022a)322

that scores the relevance of each fact k̂n to the323

context S, denoted as rel(k̂n,S) ∈ [0, 1]. The324

relevance score of a fact cluster ĉm is defined325

as the average relevance score of its facts, i.e.,326 ∑
k̂n∈ĉm rel(k̂n,S)/|ĉm|. Finally, we measure the327

average relevance over all fact clusters in Ĉ:328

rel(Ĉ,S) = 1

M̂

∑
ĉm∈Ĉ

1

|ĉm|
∑

k̂n∈ĉm

rel(k̂n,S)

(10)329

We note that Relevance can be viewed as a pre-330

cision measure for generated facts, which tends331

to decrease as more facts are generated because332

irrelevant facts are more likely to be generated.333

Alignment measures the average similarity of334

generated facts to gold fact clusters. Specifically,335

we define a function sim(k̂i, kj) ∈ [0, 1] to mea-336

sure the pairwise similarity between a generated337

fact and a gold reference (using similar distance338

functions to define clusters above6). Using this339

function, we measure the maximum pairwise simi-340

larity of generated facts to references in each gold341

cluster cm∈ C, which serves as the alignment score342

to the gold cluster. Finally, we average the align-343

ment scores of generated facts to all gold clusters:344

sim(K̂, C) = 1

M

∑
cm∈C

max
k̂i∈K̂,
kj∈cm

sim(k̂i, kj) (11)345

5Fact linking models predict the relevance of knowledge
tuples to textual passages (Gao et al., 2022a)

6Further details on exact definitions are in Appendix C.1.

We note that Alignment can be viewed as the gener- 346

ated facts’ recall of gold fact clusters, which tends 347

to increase as more facts are generated because 348

more facts will be aligned to gold clusters. Given 349

this trade-off between Relevance and Alignment, 350

we also present the harmonic mean of Relevance 351

and Alignment as an overall evaluation of the two 352

dimensions, denoted as RA-F1. 353

5 Experimental Settings 354

Datasets First, we evaluate our approach on the 355

ComFact (Gao et al., 2022a) benchmark, where 356

models need to generate ATOMIC20
20 (Hwang et al., 357

2021) social commonsense facts that are relevant 358

to narrative contexts sampled from four diverse cor- 359

pora: PERSONA-CHAT (Zhang et al., 2018), Mu- 360

Tual (Cui et al., 2020), ROCStories (Mostafazadeh 361

et al., 2016) and CMU Movie Summary (Bamman 362

et al., 2013). We only use training data from the 363

ROCStories portion of ComFact, to enable the 364

evaluation of zero-shot generalization on the other 365

three partitions of the dataset. Our fact embed- 366

ding module is pretrained on the full ATOMIC20
20 367

knowledge base, which contains ∼ 972K common- 368

sense facts after preprocessing.7 We also evaluate 369

our approach in a conceptually different setting, 370

the WebNLG+ 2020 (Ferreira et al., 2020) dataset, 371

which consists of RDF (Ora, 1999) facts sampled 372

from the DBpedia (Lehmann et al., 2015) knowl- 373

edge base, with corresponding natural language 374

texts verbalizations. The task is to generate the 375

sampled RDF facts given their verbalizations. We 376

use ∼13k facts from the training data to pretrain 377

the fact embedding module. 378

Baselines We train DIFFUCOMET using BART- 379

base and BART-large as pretrained models, and 380

compare with three baselines developed on the 381

same backbones: a) a Greedy baseline that is 382

7More data preprocessing details are in Appendix D.
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Model # Facts # Clusters Relevance Alignment RA-F1 BLEU METEOR ROUGE-L
Greedy-COMET 1.96 1.19 61.42 50.64 55.51 18.01 52.32 54.96
Sampling-COMET 15.00 8.39 56.19 77.97 65.31 12.69 44.43 45.58
Beam-BART 15.00 4.60 64.35 71.35 67.67 13.11 47.70 46.35
Beam-COMET 15.00 5.09 65.03 71.64 68.18 16.97 47.39 47.19
Grapher 5.08 2.60 68.29 40.58 50.91 1.40 23.96 27.21

DIFFUCOMET-Fact 12.88 5.24 65.64 71.65 68.51 15.98 50.06 51.44
DIFFUCOMET-Entity 12.89 5.67 66.39 74.38 70.16 17.01 47.61 48.40

Gold 10.55 5.64 80.90 - - - - -

Table 1: Evaluation results on the ROCStories portion of ComFact. Both DIFFUCOMET models presented are
developed based on BART-large. Models with suffix “-COMET” and “-BART” are fine-tuned on COMET-BART
and BART-large. Presented results of our proposed metrics are based on fact clustering w.r.t. embedding Euclidean
distance. Best and second-best results (excluding Gold references) are bolded and underlined, respectively.

trained to autoregressively generate the concate-383

nation of all relevant facts,8 b) a Sampling base-384

line that uses nucleus sampling (Holtzman et al.,385

2019) to generate multiple individual facts in par-386

allel, and c) a Diverse Beam search baseline that387

uses diverse beam search to generate multiple in-388

ferences in parallel. We also compare our models389

trained using BART-large to baselines developed390

on models of similar scale: d) the aforementioned391

greedy decoding, sampling and beam search base-392

lines trained from COMET-BART (Hwang et al.,393

2021), a BART-large model further pre-trained on394

ATOMIC20
20 for commonsense knowledge comple-395

tion, and e) Grapher (Melnyk et al., 2022), which396

trains a T5-large (Raffel et al., 2020) model to gen-397

erate entities (nodes) related to the context, fol-398

lowed by a MLP classifier to predict the relations399

(edges) between entities.400

Metrics We evaluate these methods on our401

clustering-based metrics described in Section 4. As402

the clustering algorithm (i.e., DBSCAN) used in403

our metrics has an adjustable clustering granularity404

controlled by a distance threshold, we consider a405

range of distance thresholds and take the average406

of evaluation results across all thresholds in the407

range, allowing us to avoid biasing our metrics to408

a specific distance threshold.9 For ComFact, we409

also test on the metrics from Hwang et al., 2021 for410

evaluating commonsense knowledge generation, in-411

cluding BLEU (Papineni et al., 2002), METEOR412

(Banerjee and Lavie, 2005) and ROUGE-L (Lin,413

2004). For evaluation on WebNLG+ 2020, we414

also report the official metrics for this dataset’s415

challenge (Ferreira et al., 2020), which construct416

8Facts are concatenated by a special token <fsep>.
9We include more details of our clustering threshold selec-

tion in Appendix C.2.

optimal pairings between predicted facts and gold 417

references, and then compute precision, recall, and 418

F1 scores based on the surface-form matching of 419

paired facts. We denote these WebNLG metrics as 420

Web-Prec., Web-Rec. and Web-F1.10 421

6 Results and Analysis 422

Table 1 shows evaluation results on the ROCSto- 423

ries portion of the ComFact benchmark for our 424

DIFFUCOMET models developed based on BART- 425

large.11 On our new cluster-based metrics, DIFFU- 426

COMET models demonstrate a better balance be- 427

tween diversity and accuracy in contextual knowl- 428

edge generation. Specifically, DIFFUCOMET 429

models achieve Relevance and Alignment scores 430

that are both comparable to the best baseline re- 431

sults, contributing to their higher overall RA-F1 432

measures, while also producing a larger number 433

of distinct knowledge clusters. By contrast, the 434

Greedy, Sampling and Grapher baselines signifi- 435

cantly sacrifice one or two dimensions of diversity 436

and quality w.r.t. # Clusters, Relevance and Align- 437

ment. Beam baselines consistently underperform 438

DIFFUCOMET on cluster metrics. 439

For evaluation on the traditional NLG metrics, 440

we find that DIFFUCOMET models score higher 441

overall than most baseline models on metrics that 442

check the alignment with gold references, i.e., 443

BLEU, METEOR and ROUGE-L, except for the 444

Greedy decoding baseline, whose higher scores 445

are artificially high because it generates very lit- 446

tle knowledge, i.e., only ∼2 facts per context. We 447

also include further comparisons of models with 448

10More details of WebNLG metrics are in Appendix C.3.
11Presented results of our metrics are based on fact clus-

tering w.r.t. embedding Euclidean distance. Results based on
word-level edit distance are included in Appendix F.1, and
promote the same conclusions.
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Model Validity Relevance

Sampling-COMET 49.45 30.20
Beam-COMET 74.80 42.81

DIFFUCOMET-Fact 70.00 48.27
DIFFUCOMET-Entity 74.15 54.18

Gold 94.79 82.04

Table 2: Human evaluation results.

Model # Novel Facts # Novel Clusters

Sampling-COMET 0.26 0.19
Beam-COMET 0.27 0.17

DIFFUCOMET-Fact 0.30 0.20
DIFFUCOMET-Entity 0.30 0.24

Table 3: Novelty of generated knowledge.

BART-base backbones in Appendix F.1, where our449

models outperform baselines by a larger gap, i.e.,450

∼15% absolute RA-F1 improvement on average.451

We also test DIFFUCOMET’s ability to gen-452

eralize to out-of-domain contexts using the other453

portions of ComFact with contexts sampled from454

PersonaChat, MuTual and MovieSummaries. We455

report generalization results to the above three por-456

tions in Appendix Tables 8-13, and observe similar457

results where DIFFUCOMET-Entity outperforms458

baselines by ∼5% RA-F1 and produces ∼20%459

more knowledge clusters.460

The results of our automatic evaluation are also461

supported by our human evaluation. We hire Ama-462

zon Mechanical Turk workers12 to evaluate the463

validity and contextual relevance of models’ gen-464

erated knowledge on the ROCStories portion of465

ComFact. Specifically, given a narrative context466

and a list of commonsense facts that a model gen-467

erates about the context, we ask three workers to468

independently judge whether each fact is valid and469

relevant13 to the context, and take their majority470

vote as the assessment. In Table 2, we see that DIF-471

FUCOMET models produce valid facts at about472

the same rate as the best baseline, but produce facts473

that are far more relevant to the narrative context.474

Novelty DIFFUCOMET models also produce475

more novel commonsense inferences. A histori-476

cal advantage of knowledge models (e.g., COMET)477

was their ability to generate knowledge beyond the478

graphs they used for pretraining (Bosselut et al.,479

2019), making them powerful tools to generate480

12Details on workers and their payment are in Appendix E
13invalid facts are automatically labeled irrelevant

Number of Facts (# Facts)

Relevance (%)

Alignment (%)

Number of Clusters (# Clusters)

RA-F1 (%)

Backward Diffusion Steps at Inference Phase

Figure 4: DIFFUCOMET performance at different dif-
fusion steps during inference. Both DIFFUCOMET-
Fact and DIFFUCOMET-Entity are developed based on
BART-large and tested on the ROCStories portion of
ComFact. Beam-COMET performance is shown as a
baseline, with the number of decoded facts set to match
DIFFUCOMET-Entity at each diffusion step.

commonsense knowledge for unseen narratives. To 481

test the novelty of generated commonsense knowl- 482

edge from DIFFUCOMET, we develop a heuristic 483

method that identifies knowledge as novel if its 484

maximum pair-wise (Sentence-BERT embedding) 485

cosine similarity to ComFact gold references is 486

lower than 0.45. However, as this cut-off would 487

likely cause invalid and irrelevant facts to be consid- 488

ered novel, we only include facts whose relevance 489

score is higher than 0.97.14 In Table 3, we see that 490

DIFFUCOMET models produce more novel facts 491

and clusters compared to baselines.15 492

Diffusion Steps To investigate how DIFFU- 493

COMET’s multiple rounds of knowledge represen- 494

tation refinement through the diffusion process af- 495

fect the quality of generated knowledge, we record 496

the performance of our DIFFUCOMET models as 497

a function of diffusion steps conducted during in- 498

ference. Figure 4 shows how DIFFUCOMET’s 499

performance varies when knowledge is generated 500

at earlier time steps. 501

14Thresholds are tuned by a manual check of 100 sampled
results to ensure a decent cutoff of novel and relevant facts.

15We conduct analysis on some examples of novel facts in
a case study in Appendix F.3.
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Model Web-Prec. Web-Rec. Web-F1

Beam-BART 73.36 76.27 74.75
Grapher 71.20 73.00 71.90

DIFFUCOMET-Fact 76.30 78.07 77.19
DIFFUCOMET-Entity 80.68 82.89 81.74

Table 4: Results on WebNLG+ 2020. Official metrics
used for the benchmark challenge are presented.

We find that DIFFUCOMET models gradually502

produce more facts and more diverse facts (i.e.,503

# Clusters) as the number of diffusion steps in-504

crease, indicating that the multiple rounds of diffu-505

sion produce a more separable representation capa-506

ble of representing more facts. While the greater507

number of facts leads to a slight drop in contextual508

relevance across the generated facts, a greater corre-509

sponding increase in alignment to the gold clusters510

(as observed by the increase in Alignment and RA-511

F1) also emerges. On RA-F1, DIFFUCOMET-Fact512

surpasses Beam-COMET16 as the diffusion steps513

increase to larger than 200, and DIFFUCOMET-514

Entity consistently scores higher and continues ben-515

efiting from further diffusion, even after 1000 dif-516

fusion steps. These results shows that multi-step re-517

finement of facts via diffusion effectively improves518

contextual knowledge generation.519

6.1 WebNLG+ 2020 Benchmark520

Finally, to test whether our method generalizes521

outside the domain of generating commonsense522

inferences, we present our evaluation results on523

the WebNLG+ 2020 dataset in Table 4. DIFFU-524

COMET models achieve better performances on525

the WebNLG factual knowledge generation task,526

verified by the official metrics of the benchmark.17527

This results suggests that our diffusion approach to528

knowledge graph construction could be adapted to529

other knowledge generation tasks.530

7 Related Work531

Commonsense Knowledge Grounding To aug-532

ment NLP systems with commonsense knowledge,533

various systems for question answering (Zhang534

et al., 2022; Yasunaga et al., 2021, 2022) and nar-535

rative generation (Ji et al., 2020; Zhou et al., 2022)536

use retrieval methods based on heuristics to link rel-537

16To make the comparison intuitive, for each test context,
we dynamically set the beam size of Beam-COMET to the
number of facts generated by DIFFUCOMET-Entity.

17We also include the evaluation results on traditional NLG
and our proposed clustering-based metrics in Appendix F.4.

evant facts from commonsense knowledge graphs 538

(Speer et al., 2017; Sap et al., 2019; Gao et al., 539

2023). However, these systems typically have low 540

precision when adapted to more general and com- 541

plex commonsense linking (Hwang et al., 2021; 542

Jiang et al., 2021). Gao et al., 2022a developed 543

commonsense fact linking to improve retrieval pre- 544

cision, but this requires inefficiently traversing all 545

candidate facts to check their contextual relevance. 546

Due to above limitations of retrieval-based 547

knowledge grounding, one line of research (Bosse- 548

lut et al., 2021; Tu et al., 2022) uses knowledge 549

models (Bosselut et al., 2019; West et al., 2022) to 550

generate tail inferences from narrative statements. 551

However, these methods often produce irrelevant 552

facts as the knowledge models are pre-trained for 553

context-free knowledge graph completion. Finally, 554

developing new knowledge models to learn con- 555

textual commonsense generation turns out to be a 556

promising track of research, while current works 557

are limited to simple physical (Zhou et al., 2022) 558

or RDF-style factual (Melnyk et al., 2022) knowl- 559

edge. We build new models to address contextual 560

commonsense generation in a more general scope. 561

Diffusion Models Considerable recent works 562

(Gao et al., 2022b; Lin et al., 2022; Han et al., 2024) 563

have developed methods to improve text genera- 564

tion with diffusion models (Sohl-Dickstein et al., 565

2015; Song and Ermon, 2019; Ho et al., 2020). 566

However, the potential of diffusion models in text- 567

to-knowledge generation is still under-explored. In 568

this paper, we introduce diffusion models for the 569

task of contextual knowledge generation. 570

8 Conclusion 571

In this work, we leverage the power of diffusion 572

models for contextual commonsense knowledge 573

generation, and formulate novel metrics to high- 574

light important dimensions of diversity and contex- 575

tual relevance for this task. Our diffusion knowl- 576

edge models, DIFFUCOMET, outperform vari- 577

ous autoregressive knowledge models, producing 578

more diverse, novel, and contextually-relevant com- 579

monsense knowledge, and achieving better out-of- 580

distribution performance. Finally, our analysis re- 581

veals how DIFFUCOMET refines implicit knowl- 582

edge representations over the course of the diffu- 583

sion process to produce more relevant and diverse 584

inferences, hinting at our method’s potential benefit 585

in other text-to-graph generation tasks. 586
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Limitations587

We notice a few limitations in this work. First, nar-588

rative samples in our experimental datasets, i.e.,589

ComFact (Gao et al., 2022a) and WebNLG+ 2020590

(Ferreira et al., 2020), have short context windows591

(five sentences at maximum). Therefore, our knowl-592

edge models trained on these datasets may have593

limited inference capacities if applied to longer nar-594

ratives that involve richer commonsense grounding.595

Moreover, our models are trained on solely English596

corpora, and may need additional resources to be597

adapted to other languages or multilingual settings.598

Finally, our diffusion modeling method is tested599

on an encoder-decoder model structure, i.e., BART600

(Lewis et al., 2020), with maximum model size601

406M (BART-large). We leave the feasibility of602

our method on other model structures, e.g. decoder-603

only GPT (Radford et al., 2019), and larger model604

scales, to future work.605
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A Backward Diffusion Process 872

Inverting from the forward diffusion process for- 873

mulated as Eq.(1), the backward diffusion pro- 874

cess follows a Gaussian posterior distribution 875

q(zt−1|zt, z0): 876

q(zt−1|zt, z0) = N (zt−1; µ̃(zt, z0), β̃tI)

µ̃(zt, z0) =

√
αt−1βt
1− αt

z0 +

√
αt(1− αt−1)

1− αt
zt

β̃t =
1− αt−1

1− αt
βt

(12)

877

where αt = 1 − βt and αt =
∏t

i=1 αi are weight 878

hyperparameters of the posterior Gaussian defined 879

by the noise schedule βt. The posterior formulation 880

indicates that only the mean µ̃ of zt−1 is correlated 881

to the condition zt and z0. So the training loss for 882

diffusion models, derived from the KL-divergence 883

between gold and learned posterior distributions, is 884

typically defined as a mean-squared error loss on 885

the posterior Gaussian mean: 886

Lmse =
T∑
t=1

E∥µ̃(zt, z0)− µθ(zt, t)∥2 (13) 887

where model (with parameter θ) learns the function 888

µθ(zt, t) to predict the mean of zt−1. Diffusion- 889

LM (Li et al., 2022) further re-weights the mean- 890

squared error as Eq.(2) to enforce direct prediction 891

of z0 in every loss term, which is shown to be more 892

efficient at tuning the model to precisely predict 893

the final de-noised sample. 894

B Model Implementation Details 895

B.1 Diffusion Module 896

To conduct the diffusion process defined by Eq.(4) 897

using Transformers (Vaswani et al., 2017), zt and 898

11



ẑt0 are first concatenated at the hidden-state dimen-899

sion and projected by a MLP layer to form their900

joint representation. The positional encoding layer901

of Transformers is applied to the time step t (same902

for every position of self-attention), whose output903

time step embedding is added to the joint represen-904

tation of zt and ẑt0. The decoder fθz takes the joint905

representation (with time step embedding added)906

as its bi-directional self-attention input, to ground907

its decoding of refined z0 prediction ẑt−1
0 .908

B.2 Number of Generated Facts909

To enable our diffusion module (fθz ) to control910

the number of facts (or entities) generated for each911

context, we also pre-train our fact (or entity) em-912

bedding module (fθe and fθg ) to learn the represen-913

tation of a special token kend :=<eok>, by adding914

it as a special fact (or entity) to the pre-training915

data, which indicates the end of a knowledge set.916

During the training of diffusion module, kend is917

appended to the end of knowledge set K, whose918

embedding and decoding also contributes to the919

training loss. At inference phase, we post-process920

our model’s generations to keep only the facts that921

are at positions before kend.922

B.3 Noise Schedule923

For the noise schedule hyperparameter of diffusion924

process, we adopt the sqrt initialization (Li et al.,925

2022) to set αt = 1−
√

t/T + s, where s = 1e−4926

that sets the initial variance of noise (β0) to be 0.01.927

Based on that, we follow SeqDiffuSeq (Yuan et al.,928

2022) to implement an adaptive noise schedule,929

which dynamically adjusts αt for each sample po-930

sition n (n = 1, 2, ...|K|) of the knowledge set K931

(the adjusted αt for position n is denoted as αn
t ),932

according to the diffusion mean square error (MSE)933

loss Lmse
θs,θz

defined in Eq. (8). Specifically, for an934

adaptive noise schedule update, we first record the935

MSE loss at each time t and position n as:936

Ln
t = E∥z0[:][n]− ẑt0[:][n]∥2 (14)937

Then we use a linear interpolation function to up-938

date the adjusted noise schedule, formulated as:939

Fn
t (L) =

αn
t − αn

t−1

Ln
t − Ln

t−1

(L − Ln
t−1) + αn

t−1 (15)940

where new loss value Ln,new
t is re-arranged across941

time step t with equal interval between mint(Ln
t )942

and maxt(Ln
t ), which is finally given to the update943

function to get αn,new
t = Fn

t (L
n,new
t ). The noise944

schedule is adjusted every 2000 training steps.945

B.4 Model Training 946

For the loss weight hyperparameter γ used to com- 947

bine mean-square error and anchor losses defined 948

by Eq. (8) and (9), we use γ = 1 for training 949

our DIFFUCOMET models based on BART-base, 950

while γ = 0.01 for training our models with BART- 951

large backbone, which achieve the best conver- 952

gence results, respectively. For training DIFFU- 953

COMET based on BART-large, we also follow 954

Difformer (Gao et al., 2022b) to amplify the stan- 955

dard deviation of diffusion noise by a factor of 956

A = 4, i.e., to change the forward process as: 957

q(zt|zt−1) = N (zt;
√
1− βtzt−1, βtA

2I) (16) 958

where t = 1, 2, ...T , which effectively avoids 959

model collapse in training. The total diffusion steps 960

T is set to 2000. We use AdamW (Loshchilov 961

and Hutter, 2018) as our training optimizer, with 962

learning rate 1e−5 and no weight decay. A lin- 963

ear learning rate scheduler is adopted with warm- 964

up steps 2000 and total training steps 150000 and 965

300000 for models based on BART-base (139M) 966

and BART-large (406M), respectively. We train 967

our base-scale DIFFUCOMET on 4 Tesla V100- 968

SXM2 (32GB) GPUs with batch size set to 4, while 969

for large-scale DIFFUCOMET, we use 4 NVIDIA 970

A100-SXM4 (40GB) GPUs, with batch size set to 971

2 instead. 15 and 36 hours are required to train 972

base-scale and large-scale DIFFUCOMET models, 973

respectively. 974

For the pre-training of our fact embedding mod- 975

ule with loss described in Eq. (7), we adopt the 976

same hyperparameter setting as training our dif- 977

fusion module, except for learning rate changed 978

to 2e−6 and batch size set to 128 and 64 for base- 979

scale and large-scale models, respectively. For pre- 980

training large-scale (i.e., BART-large) fact embed- 981

ding module, we add a weight decay of 0.01, which 982

leads to better convergence. In DIFFUCOMET- 983

Entity, the two diffusion modules trained for gener- 984

ating contextual relevant head and tail entities share 985

the same pre-trained entity embedding module. 986

C Evaluation Metrics 987

C.1 Clustering and Similarity Function 988

For our evaluation based on fact clustering w.r.t. 989

edit distance, we define the similarity function 990

in our Alignment metric as sim(k̂i, kj) = 1 − 991

Edit(k̂i, kj)/MaxLen(k̂i, kj), where Edit de- 992

notes the word-level edit distance of two facts, and 993
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ComFact-
ROCStories

[0.15, 0.20, …, 0.75] [0.25, 0.30, …, 1.05]

ComFact-
PersonaChat

[0.15, 0.20, …, 0.80] [0.30, 0.35, …, 1.30]

ComFact-
MuTual

[0.15, 0.20, …, 0.80] [0.25, 0.30, …, 1.10]

ComFact-Movie
Summaries

[0.15, 0.20, …, 0.80] [0.35, 0.40, …, 1.30]

WebNLG+
2020

[0.15, 0.20, …, 0.80] [0.40, 0.45, …, 1.15]

Figure 5: Range selection (red square) of DBSCN clus-
tering thresholds for our proposed metrics.

MaxLen denotes the length of the longer fact of994

the two, i.e., the maximum possible edit distance995

for normalization. Our distance measure for clus-996

tering also adopts the normalized edit distance, i.e.,997

Edit/MaxLen. For evaluation based on fact clus-998

tering w.r.t. Sentence-BERT embedding, we define999

the similarity function in our Alignment metric as1000

sim(k̂i, kj) = max(CoS(k̂i, kj), 0), where CoS1001

denotes the cosine similarity of two facts’ Sentence-1002

BERT embeddings. We assume that facts with op-1003

posite meanings, i.e., negative similarity, are not1004

considered as aligned with each other, so we cut off1005

the negative values of cosine similarity. While for1006

the distance measure of clustering, we use the Eu-1007

clidean distance of two facts’ embeddings instead,1008

which is typically adopted in DBSCAN (Ester et al.,1009

1996) clustering algorithm.1010

C.2 Clustering Threshold Selection1011

For our proposed clustering-based metrics as de-1012

scribed in Section 4, we use DBSCAN (Ester et al.,1013

1996) algorithm to group facts into clusters. To1014

avoid bias on a specific clustering granularity, we1015

consider a range of DBSCAN thresholds and take1016

the average evaluation results across all thresholds 1017

in the range. We consider a range with equal inter- 1018

val of 0.05, where the number of gold fact clusters 1019

significantly changes from near the maximum (i.e., 1020

each fact as a cluster) to near the minimum (i.e., 1021

all facts grouped into one cluster). Figure 5 shows 1022

the number of gold clusters as a function of the 1023

DBSCAN clustering threshold, and our selection 1024

of threshold ranges (red square) on each dataset. 1025

C.3 WebNLG Metrics 1026

In the evaluation of WebNLG 2020 Challenge (Fer- 1027

reira et al., 2020), each generated RDF fact (i.e., 1028

subject-predicate-object triple) is paired to a gold 1029

reference to compute its precision, recall and F1 1030

based on named entity matching (Segura-Bedmar 1031

et al., 2013). Three types of matching criterias are 1032

considered, including: a) each named entity in gen- 1033

erated RDF needs to exactly match an entity in gold 1034

reference in order to be counted as true-positive, 1035

while its type in the RDF (i.e., whether it is in sub- 1036

ject, predicate or object) does not need to match 1037

(Exact Match), b) each entity in generated RDF 1038

only needs to partially match an entity in gold refer- 1039

ence, and its type does not matter (Partial Match), 1040

and c) each named entity in generated RDF needs 1041

to exactly match an entity in gold reference, and 1042

its type also needs to match (Strict Match). For 1043

each matching criteria, optimal pairing (with the 1044

highest F1 score) between generated facts and gold 1045

references is searched by enumerating all possible 1046

permutations. We report Strict Match scores in the 1047

main body of our paper in Table 4, and include all 1048

three kinds of match scores in Table 18. 1049

D Data Preprocessing 1050

ComFact (Gao et al., 2022a) benchmark con- 1051

tains social commonsense knowledge linked from 1052

ATOMIC20
20 (Hwang et al., 2021) knowledge base, 1053

which contains ∼1.33M facts covering physi- 1054

cal entities, daily events and social interactions. 1055

ATOMIC20
20 commonsense relations considered in 1056

our experiments are listed in Table 5. We prepro- 1057

cess ComFact and ATOMIC20
20 to filter out facts 1058

that have invalid tail entity “none” or contain fil- 1059

lable blank “___”, i.e., we do not consider facts 1060

with relation “IsFilledBy”. After preprocessing, 1061

∼972K facts are involved in the training of our fact 1062

embedding and diffusion modules. The original 1063

ComFact training data in the ROCStories portion 1064

only has ∼ 1K contexts with gold annotations 1065
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Type Relation Relation Description

Physical-

ObjectUse used for

Entity

AtLocation located or found at/in/on
MadeUpOf made (up) of
HasProperty can be characterized by being/having
CapableOf is/are capable of
Desires desires
NotDesires do(es) not desire

Event

IsAfter happens after
IsBefore happens before
HasSubEvent includes the event/action
HinderedBy can be hindered by
Causes causes
xReason because

Social-

xNeed but before, person X needs

Interaction

xAttr person X is seen as
xEffect as a result, person X will
xReact as a result, person X feels
xWant as a result, person X wants
xIntent because person X wants
oEffect as a result, others will
oReact as a result, others feel
oWant as a result, others want

Table 5: Commonsense relations in ATOMIC20
20 knowl-

edge base that are considered in our experiments on
ComFact benchmark.

of relevant facts. Due to the limited supervised1066

data, we augment the training data with ∼ 50K1067

additional contexts sampled from the ROCStories1068

corpus, and use a DeBERTa (He et al., 2020) fact1069

linker developed from the ComFact benchmark1070

to extract silver annotations of relevant facts from1071

ATOMIC20
20 to each additional context.1072

For preprocessing WebNLG+ 2020 (Ferreira1073

et al., 2020) dataset, we follow Grapher (Melnyk1074

et al., 2022) to remove underscores and surround-1075

ing quotes appeared in the dataset, and convert1076

non-English characters into their closest available1077

English characters, e.g., “õ” and “å” are mapped1078

to “o” and “a”. After preprocessing, We develop1079

our models based on the ∼ 35K WebNLG training1080

texts and their linked RDF facts.1081

E Human Evaluation Details1082

Our annotator pool for human evaluation contains1083

58 Amazon Mechanical Turk workers who are lo-1084

cated in the USA and have been previously qual-1085

ified by us for other similar tasks. To prepare the1086

workers for the new tasks of assessing the validity1087

and relevance of knowledge in a given context, we1088

share the instructions with them beforehand and do1089

a small pilot run where we evaluate the quality of1090

the worker annotations and give feedback if needed.1091

We pay each worker $0.10 for each task. Figure 6,1092

7 and 8 show screenshots of our acceptance/privacy1093

policy and instructions for knowledge validation 1094

and relevance tasks. Our data collection protocol 1095

follows Amazon Mechanical Turk regulations, and 1096

is approved by our organization in terms of ethics. 1097

F Full Results of Knowledge Generation 1098

F.1 ROCStories 1099

In Table 6 and 7, we present our full evaluation 1100

results of contextual commonsense knowledge gen- 1101

eration on the ROCStories portion of ComFact 1102

benchmark. For evaluating Sampling and Beam 1103

baseline models, we test two sampling or beam 1104

search sizes around the average number of gold 1105

facts per context, i.e., 10 and 15 as indicated 1106

by the suffix numbers, and adopt the size which 1107

achieves better F1 results. On both base and large 1108

model scales, DIFFUCOMET models achieve con- 1109

sistently better balance between the diversity (i.e., 1110

# Clusters) and accuracy (i.e., RA-F1) of knowl- 1111

edge generation, compared to baseline models that 1112

typically perform generation in the autoregressive 1113

manner. 1114

F.2 Context Generalization 1115

In this section, we present zero-shot evaluation 1116

results of models (trained on the contexts of ROC- 1117

Stories) generalizing to the contexts of other three 1118

ComFact portions, including PersonaChat (Ta- 1119

ble 8 and 9), MuTual (Table 10 and 11) and 1120

MovieSummaries (Table 12 and 13). 1121

We observe that both DIFFUCOMET models 1122

generalize well to the contexts of PersonaChat 1123

and MuTual, whose generated knowledge pos- 1124

sesses comparable diversity (i.e., # Clusters) and 1125

better accuracy (i.e., RA-F1) than the strongest 1126

baseline model Beam-COMET. More interest- 1127

ingly, we find that DIFFUCOMET-Entity achieves 1128

larger points of improvements over baselines on the 1129

more challenging MovieSummaries-style contexts, 1130

while DIFFUCOMET-Fact struggles to outper- 1131

form the strongest baseline Beam-COMET, show- 1132

ing that entity-level diffusion is more robust to 1133

the shift of narrative contexts, likely due to the 1134

more fine-grained multi-step learning of context- 1135

to-knowledge mapping. 1136

F.3 Case Study and Knowledge Types 1137

Table 14 showcases the knowledge generation re- 1138

sults of DIFFUCOMET models in a narrative con- 1139

text sampled from ComFact ROCStories, com- 1140

pared to the sampling and beam search baselines 1141

14



Figure 6: Screenshot of Amazon MTurk Acceptance and Privacy Policy

Figure 7: Screenshot of Amazon MTurk instructions for knowledge validation task.
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Figure 8: Screenshot of Amazon MTurk instructions for knowledge relevance task.
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Backbone Model # Facts Clustering w.r.t. Word-Level Edit Distance Clustering w.r.t. Embedding Euclidean Distance

# Clusters Relevance Alignment RA-F1 # Clusters Relevance Alignment RA-F1

BART

Greedy 2.48 1.08 32.04 31.98 32.01 1.09 32.11 48.59 38.67

(base)

Sampling-10 10.00 5.59 39.20 46.03 42.34 5.64 38.93 64.51 48.56
Sampling-15 15.00 7.64 37.18 49.78 42.57 7.82 36.86 68.00 47.81
Beam-10 10.00 2.63 38.30 44.96 41.36 2.83 38.87 59.58 47.05
Beam-15 15.00 3.48 41.46 48.04 44.51 3.97 42.88 63.14 51.07

DIFFUCOMET-Fact 13.40 4.74 59.75 54.07 56.77 5.85 60.32 73.38 66.21
DIFFUCOMET-Entity 10.08 4.51 62.27 54.61 58.19 5.24 61.77 71.54 66.30

BART

Greedy 2.20 1.38 60.45 36.11 45.21 1.37 60.22 52.31 55.99

(large)

Sampling-10 10.00 6.68 56.09 52.10 54.02 6.40 56.68 73.86 64.14
Sampling-15 15.00 8.89 56.24 55.18 55.70 8.56 56.57 76.30 64.97
Beam-10 10.00 3.32 64.94 50.72 56.96 3.51 64.37 69.14 66.67
Beam-15 15.00 4.17 64.18 53.66 58.45 4.60 64.35 71.35 67.67

DIFFUCOMET-Fact 12.88 4.47 65.82 54.18 59.44 5.24 65.64 71.65 68.51
DIFFUCOMET-Entity 12.89 5.09 67.00 58.22 62.30 5.67 66.39 74.38 70.16

COMET-

Greedy 1.96 1.14 61.27 34.76 44.36 1.19 61.42 50.64 55.51

BART

Sampling-10 10.00 6.45 56.79 53.36 55.02 6.30 56.60 73.64 64.01
Sampling-15 15.00 8.52 55.78 58.99 57.34 8.39 56.19 77.97 65.31
Beam-10 10.00 3.78 65.62 53.45 58.91 3.89 65.73 70.65 68.10
Beam-15 15.00 4.78 64.91 54.77 59.41 5.09 65.03 71.64 68.18

T5 (large) Grapher 5.08 1.75 67.82 33.07 44.46 2.60 68.29 40.58 50.91

- Gold 10.55 5.64 81.06 - - 5.64 80.90 - -

Table 6: Clustering-based evaluation results on the ROCStories portion of ComFact. Best results (excluding Gold
references) are in bold. Different numbers after Sampling and Beam denote various sampling numbers or beam
search sizes being tested.

Backbone Model Distinct-4 BLEU METEOR ROUGE-L

BART

Greedy 99.90 8.70 40.49 44.43

(base)

Sampling-10 85.29 7.16 37.78 39.20
Sampling-15 81.57 8.24 38.35 40.13
Beam-10 50.32 12.25 42.23 43.53
Beam-15 45.21 11.51 42.04 42.91

DIFFUCOMET-Fact 57.87 12.09 46.43 47.13
DIFFUCOMET-Entity 70.02 14.25 43.34 45.08

BART

Greedy 93.01 9.12 43.98 46.26

(large)

Sampling-10 86.33 9.89 43.85 43.69
Sampling-15 81.56 9.47 43.28 43.15
Beam-10 47.03 15.02 48.56 48.15
Beam-15 43.73 13.11 47.70 46.35

DIFFUCOMET-Fact 52.46 15.98 50.06 51.44
DIFFUCOMET-Entity 63.49 17.01 47.61 48.40

COMET-

Greedy 65.95 18.01 52.32 54.96

BART

Sampling-10 83.29 13.35 44.77 45.80
Sampling-15 79.01 12.69 44.43 45.58
Beam-10 51.13 19.89 50.14 50.48
Beam-15 47.27 16.97 47.39 47.19

T5 (large) Grapher 67.83 1.40 23.96 27.21

- Gold 80.45 - - -

Table 7: Evaluation results of natural language genera-
tion metrics on the ROCStories portion of ComFact.
Notations are same as Table 6.

Sample-COMET and Beam-COMET. Facts that1142

are novel (i.e., beyond the coverage of gold ref-1143

erences) and relevant to the context are labeled in1144

bold. We find that both DIFFUCOMET-Fact and1145

DIFFUCOMET-Entity can generate facts that are1146

rich in diversity, covering both physical entities1147

(e.g., baseball cap) and social events (e.g., go on va-1148

cation). Novel facts generated by DIFFUCOMET1149

models also uncover implicit inter-connections be-1150

tween entities or events in the narrative context,1151

e.g., “vacation” and “family” are associated be- 1152

cause “X goes on vacation” to “spend time with 1153

family”. By contrast, Beam-COMET model mainly 1154

generates simple facts about physical entities, and 1155

Sample-COMET model generates many facts that 1156

are irrelevant to the context, e.g., “field is used for 1157

playing baseball”. 1158

We also conduct a study on the proportion of 1159

different knowledge types that each model gener- 1160

ates per context, based on the ROCStories portion 1161

of ComFact benchmark. In particular, we divide 1162

commonsense facts into three types according to 1163

their relation groups under ATOMIC20
20 knowledge 1164

scheme, as shown in Table 5, including facts that 1165

are centered on physical entities, events and social 1166

interactions. Table 15 shows the results of knowl- 1167

edge proportion generated by DIFFUCOMET and 1168

baseline models, with gold references. Compared 1169

to Sampling-COMET and Beam-COMET baselines, 1170

DIFFUCOMET models generate a larger propor- 1171

tion of facts that reveal complex event or social 1172

inter-connections. The proportion of social-based 1173

facts generated by DIFFUCOMET even signifi- 1174

cantly surpasses the gold references. All above re- 1175

sults imply that diffusion models have the potential 1176

to uncover more in-depth and implicit common- 1177

sense inferences from narrative contexts, which 1178

may not be easily extracted from existing knowl- 1179

edge bases. 1180
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Backbone Model # Facts Clustering w.r.t. Word-Level Edit Distance Clustering w.r.t. Embedding Euclidean Distance

# Clusters Relevance Alignment RA-F1 # Clusters Relevance Alignment RA-F1

BART

Greedy 2.62 1.24 33.52 35.64 34.55 1.24 33.57 48.61 39.71

(base)

Sampling-10 10.00 5.23 29.35 44.49 35.37 4.63 28.26 58.85 38.18
Beam-15 15.00 3.65 31.11 47.01 37.44 3.49 30.41 58.90 40.11
DIFFUCOMET-Fact 13.73 4.97 44.25 52.81 48.15 5.24 44.76 69.24 54.37
DIFFUCOMET-Entity 11.40 4.99 50.39 54.84 52.52 4.94 49.36 68.55 57.39

BART
Beam-15 15.00 4.44 53.98 54.13 54.05 4.04 54.07 63.17 58.27

(large)
DIFFUCOMET-Fact 10.82 4.48 55.44 55.20 55.32 3.89 55.02 65.20 59.68
DIFFUCOMET-Entity 12.06 4.72 55.08 57.12 56.08 4.48 54.42 68.11 60.50

COMET-BART Beam-15 15.00 4.86 54.02 54.78 54.40 4.27 53.97 65.15 59.04
T5 (large) Grapher 4.53 1.68 47.74 30.51 37.23 1.57 47.94 36.18 41.24

- Gold 8.60 4.76 70.42 - - 4.28 70.42 - -

Table 8: Zero-shot clustering-based evaluation results on the PersonaChat portion of ComFact. Notations are
same as Table 6.

Backbone Model Distinct-4 BLEU METEOR ROUGE-L

BART

Greedy 97.83 8.72 44.44 46.52

(base)

Sampling-10 86.81 4.09 32.95 33.80
Beam-15 53.05 8.06 37.43 38.62
DIFFUCOMET-Fact 63.40 5.84 37.53 39.33
DIFFUCOMET-Entity 73.38 9.04 34.35 36.46

BART
Beam-15 47.64 8.71 41.40 40.44

(large)
DIFFUCOMET-Fact 57.23 8.05 45.83 47.11
DIFFUCOMET-Entity 68.54 11.11 38.88 40.04

COMET-BART Beam-15 50.13 10.25 43.47 42.38
T5 (large) Grapher 52.99 0.68 19.91 22.41

- Gold 84.96 - - -

Table 9: Zero-shot evaluation results of natural lan-
guage generation metrics on the PersonaChat portion
of ComFact. Notations are same as Table 6.

F.4 WebNLG+ 20201181

We present our full evaluation results on the1182

WebNLG+ 2020 benchmark in Table 16, 17 and1183

18. For evaluating Sampling and Beam baselines,1184

we set both sampling and beam search sizes as 5,1185

which is around the average number of gold facts1186

per context. Consistent with the evaluation results1187

on ComFact, DIFFUCOMET models keep achiev-1188

ing better performances on the WebNLG task of1189

factual knowledge generation, implying that our1190

method of diffusion-based contextual knowledge1191

generation can generalize well to knowledge be-1192

yond commonsense.1193

F.5 Comparison of Fact and Entity Diffusion1194

For the comparison in between our two diffusion1195

models, DIFFUCOMET-Entity in general outper-1196

forms DIFFUCOMET-Fact on our proposed met-1197

rics, which may benefit from more fine-grained1198

multi-step learning of knowledge construction in1199

pipeline. However, DIFFUCOMET-Fact is compu-1200

tational cheaper, i.e., only requires a single step of1201

fact diffusion instead of two steps of (head and tail)1202

entity diffusion and a relation prediction.1203

G Claim of Usage 1204

Our use of existing scientific artifacts cited in this 1205

paper is consistent with their intended use. Our 1206

developed code and models are intended to be used 1207

for only research purposes, any usage of our sci- 1208

entific artifacts that is outside of research contexts 1209

should not be allowed. 1210
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Backbone Model # Facts Clustering w.r.t. Word-Level Edit Distance Clustering w.r.t. Embedding Euclidean Distance

# Clusters Relevance Alignment RA-F1 # Clusters Relevance Alignment RA-F1

BART

Greedy 2.50 1.16 35.85 33.63 34.70 1.19 36.10 48.53 41.40

(base)

Sampling-10 10.00 5.68 43.77 45.76 44.74 5.88 43.98 63.75 52.05
Beam-15 15.00 3.55 41.27 49.72 45.10 4.08 42.27 63.17 50.65
DIFFUCOMET-Fact 13.11 4.54 57.64 52.25 54.81 5.57 57.51 70.10 63.18
DIFFUCOMET-Entity 10.63 4.60 60.08 54.65 57.24 5.27 59.08 68.88 63.60

BART
Beam-15 15.00 3.92 64.19 51.75 57.30 4.45 62.41 67.31 64.77

(large)
DIFFUCOMET-Fact 10.46 4.33 64.74 54.51 59.19 4.80 64.13 68.07 66.04
DIFFUCOMET-Entity 11.85 4.70 64.39 55.91 59.85 5.39 63.82 71.22 67.32

COMET-BART Beam-15 15.00 4.52 61.88 54.04 57.69 4.75 60.56 69.72 64.82
T5 (large) Grapher 4.50 1.70 73.30 32.74 45.26 1.78 73.33 43.13 54.31

- Gold 10.80 5.58 74.63 - - 5.79 74.77 - -

Table 10: Zero-shot clustering-based evaluation results on the MuTual portion of ComFact. Notations are same as
Table 6.

Backbone Model Distinct-4 BLEU METEOR ROUGE-L

BART

Greedy 97.47 14.05 49.89 50.78

(base)

Sampling-10 86.42 5.61 37.11 38.60
Beam-15 49.31 11.57 45.47 45.51
DIFFUCOMET-Fact 60.66 8.71 44.23 46.11
DIFFUCOMET-Entity 70.94 11.08 40.28 42.15

BART
Beam-15 43.91 11.37 46.86 46.75

(large)
DIFFUCOMET-Fact 52.00 12.33 49.50 50.97
DIFFUCOMET-Entity 66.12 12.68 45.11 45.73

COMET-BART Beam-15 47.40 12.40 49.12 48.57
T5 (large) Grapher 51.30 1.96 24.70 29.36

- Gold 80.99 - - -

Table 11: Zero-shot evaluation results of natural lan-
guage generation metrics on the MuTual portion of
ComFact. Notations are same as Table 6.
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Backbone Model # Facts Clustering w.r.t. Word-Level Edit Distance Clustering w.r.t. Embedding Euclidean Distance

# Clusters Relevance Alignment RA-F1 # Clusters Relevance Alignment RA-F1

BART

Greedy 2.59 1.12 33.50 25.28 28.82 1.11 33.38 37.95 35.52

(base)

Sampling-10 10.00 4.90 26.61 33.31 29.59 4.24 24.96 50.26 33.36
Beam-15 15.00 3.54 30.45 36.07 33.02 3.17 29.13 49.63 36.71
DIFFUCOMET-Fact 14.61 6.02 35.97 38.76 37.31 5.49 36.29 59.83 45.18
DIFFUCOMET-Entity 15.82 6.31 39.86 39.93 39.89 5.76 39.57 57.55 46.90

BART
Beam-15 15.00 4.46 42.92 32.79 37.18 3.70 42.52 50.46 46.15

(large)
DIFFUCOMET-Fact 8.29 3.01 41.50 30.47 35.14 2.89 40.82 46.59 43.51
DIFFUCOMET-Entity 13.50 6.28 44.08 40.46 42.19 5.84 42.70 61.56 50.42

COMET-BART Beam-15 15.00 5.06 41.97 34.63 37.95 4.04 41.54 51.24 45.88
T5 (large) Grapher 5.34 1.83 54.09 23.74 33.00 1.50 54.12 34.27 41.97

- Gold 9.00 5.64 58.55 - - 4.81 58.37 - -

Table 12: Zero-shot clustering-based evaluation results on the MovieSummaries portion of ComFact. Notations
are same as Table 6.

Backbone Model Distinct-4 BLEU METEOR ROUGE-L

BART

Greedy 95.18 5.14 34.24 36.53

(base)

Sampling-10 90.99 2.52 24.56 28.08
Beam-15 53.65 4.82 28.33 31.56
DIFFUCOMET-Fact 63.93 2.27 27.09 30.08
DIFFUCOMET-Entity 67.24 2.68 24.14 26.95

BART
Beam-15 47.57 4.89 31.41 33.19

(large)
DIFFUCOMET-Fact 43.68 5.26 34.55 38.80
DIFFUCOMET-Entity 67.13 3.83 26.63 29.32

COMET-BART Beam-15 50.29 5.18 31.36 33.39
T5 (large) Grapher 42.76 0.46 18.24 21.28

- Gold 87.39 - - -

Table 13: Zero-shot evaluation results of natural lan-
guage generation metrics on the MovieSummaries por-
tion of ComFact. Notations are same as Table 6.

20



Narrative

Dustin loved to wear his baseball cap everywhere he went.

Context

On vacation his family visited the windy city of Chicago.
Dustin’s baseball cap blew off his head and into the street.
His dad waited until it was safe before getting Dustin’s cap.
He loved his baseball cap even though it was a little dirty.

Gold

cap, used for, to wear on head
cap, used for, wear on their heads
head cap, used for, put on head
vacation, used for, have fun on
vacation, used for, fun
vacation, used for, relax out of work and school
family, is capable of, plan to go on vacation
X takes a family trip, because X wants, to go on vacation
X visits the city, X is seen as, traveling
dad, can be characterized by being, one of human’s parents

Sample

baseball cap, used for, protect the head

-COMET

baseball cap, used for, protect your head while playing baseball
baseball cap, used for, wearing over head
X ops for baseball, but before X needs, to find a baseball
X’s favorite baseball, because X wants to, enjoy the sport
baseball, used for, sport as a mascot
vacation, used for, have fun on
X chases the wind, because X wants, to walk around
port, used for, get vacation
field, used for, playing baseball
cap, used for, keep their head up
cap, used for, protection from wind
cap, used for, protect head while traveling
cap, used for, wear around head
jersey, used for, wear while playing

Beam

baseball cap, used for, wear while playing baseball

-COMET

baseball cap, used for, wear on their head
baseball cap, used for, wear on the head
baseball, used for, playing baseball with friends
baseball, used for, playing baseball with family
sport cap, used for, wear while playing
Chicago, can be characterized by having, many streets
Chicago, can be characterized by having, many cities
Chicago, can be characterized by having, many neighborhoods
cap, used for, wear on head while playing baseball
cap, used for, wear to the game with
cap, used for, protect head from wind
cap, used for, protect head from wind blows
cap, used for, keep the cap on
cap, used for, keep the cap clean

DIFFUCOMET

baseball cap, used for, to put on

-Fact

baseball cap, used for, to keep baseball cap on head
baseball cap, used for, wear
baseball cap, used for, to play baseball with
city, used for, live in
vacation, used for, relax
X takes a family trip, but before X needs, to spend time with family
X takes a family trip, because X wants, to enjoy family time
X goes on vacation, because X wants, to spend time with family
X is on vacation, because X wants, to spend time with family
dad, can be characterized by being, one of human’s parents
dad’s car, used for, to be safe
safe, used for, safe to wear

DIFFUCOMET

cap, used for, wear on head

-Entity

cap, used for, wear on the head
baseball cap, used for, look professional
baseball cap, used for, to play baseball with
X is wearing cap, but before X needs, have a cap
X is wearing cap, but before X needs, put on a cap
go on vacation, includes the action, take family to beach
go on vacation, includes the action, go somewhere nice
vacation, used for, enjoy your time off
X goes on vacation, because X wants, to spend time with family
dad, can be characterized by being, one of human’s parents
safe, used for, keeping things safe

Table 14: Examples of contextual knowledge generation.
Novel and contextually relevant facts are in bold. Model
notations are same as Table 1.

Model Physical Event Social
Sampling-COMET 46.17 4.01 49.82
Beam-COMET 60.72 2.36 36.92

DIFFUCOMET-Fact 41.00 4.66 54.34
DIFFUCOMET-Entity 35.75 4.53 59.72

Gold 43.54 7.32 49.14

Table 15: Proportion (%) of different types of
knowledge generation on the ROCStories portion of
ComFact. “Physical”, “Event” and “Social” denote
facts with relation types belonging to physical-entity,
event and social-interaction, respectively, as shown in
Table 5. Model notations are same as Table 1.
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Backbone Model # Facts Clustering w.r.t. Word-Level Edit Distance Clustering w.r.t. Embedding Euclidean Distance

# Clusters Relevance Alignment RA-F1 # Clusters Relevance Alignment RA-F1

BART

Greedy 1.69 0.88 83.16 50.26 62.65 0.88 83.16 71.71 77.01

(large)

Sampling-5 5.00 2.09 81.10 71.25 75.86 1.73 80.89 83.93 82.38
Beam-5 5.00 2.12 82.70 72.69 77.37 1.64 82.50 85.78 84.11
DIFFUCOMET-Fact 2.56 1.69 84.39 74.12 78.92 1.51 84.38 86.18 85.27
DIFFUCOMET-Entity 2.71 1.82 87.86 78.46 82.89 1.57 87.76 88.59 88.17

COMET-
Greedy 1.61 0.96 83.33 54.34 65.78 0.95 83.33 77.23 80.16

BART
Sampling-5 5.00 2.09 80.89 72.77 76.62 1.76 80.72 84.21 82.43
Beam-5 5.00 2.15 82.11 72.94 77.25 1.70 81.94 85.94 83.89

T5 (large) Grapher 2.10 1.39 83.48 70.66 76.54 1.29 83.46 82.21 82.83

- Gold 3.22 2.27 96.43 - - 1.91 96.43 - -

Table 16: Clustering-based evaluation results on the WebNLG+ 2020 benchmark. Notations are same as Table 6.

Backbone Model Distinct-4 BLEU METEOR ROUGE-L

BART

Greedy 87.29 81.12 84.57 84.92

(large)

Sampling-5 48.24 74.22 81.71 81.19
Beam-5 45.58 75.01 81.78 80.51
DIFFUCOMET-Fact 81.02 80.43 83.23 84.30
DIFFUCOMET-Entity 82.20 83.04 89.88 89.72

COMET-
Greedy 93.17 81.43 84.95 85.34

BART
Sampling-5 47.36 75.44 81.84 81.85
Beam-5 46.17 73.56 80.93 79.46

T5 (large) Grapher 89.95 76.17 79.61 80.89

- Gold 82.05 - - -

Table 17: Evaluation results of natural language gen-
eration metrics on the WebNLG+ 2020 benchmark.
Notations are same as Table 6.
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Backbone Model Exact Match Partial Match Strict Match

Web-Prec. Web-Rec. Web-F1 Web-Prec. Web-Rec. Web-F1 Web-Prec. Web-Rec. Web-F1

BART

Greedy 50.42 52.79 51.51 53.76 56.84 55.20 50.14 52.53 51.25

(large)

Sampling-5 73.65 76.73 75.11 79.57 83.89 81.66 72.37 75.45 73.83
Beam-5 75.32 78.39 76.76 81.32 85.72 83.38 73.36 76.27 74.75
DIFFUCOMET-Fact 76.59 78.35 77.47 79.17 81.52 80.35 76.30 78.07 77.19
DIFFUCOMET-Entity 80.80 82.97 81.84 83.72 86.48 85.07 80.68 82.89 81.74

COMET-
Greedy 52.55 54.82 53.62 55.99 58.95 57.39 52.30 54.59 53.37

BART
Sampling-5 74.96 77.87 76.33 80.31 84.41 82.18 73.77 76.67 75.15
Beam-5 75.95 78.88 77.03 81.66 85.84 83.15 73.80 76.61 74.85

T5 (large) Grapher 71.50 73.30 72.20 74.10 76.50 75.00 71.20 73.00 71.90

Table 18: Evaluation results on official metrics provided by the WebNLG+ 2020 benchmark challenge. We present
the results of Grapher as reported in its paper. Notations are same as Table 6.
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