
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FLASHSAMPLING: FAST AND MEMORY-EFFICIENT
EXACT SAMPLING WITH GROUP-GUMBEL-MAX

Anonymous authors
Paper under double-blind review

ABSTRACT

Sampling operations in discrete space are widely used in different fields such
as language models, reinforcement learning, VAE, GAN, and neural architec-
ture search. Current sampling methods involve computing the softmax operation
across the entire categories, leading to significant computational and memory re-
quirements, particularly when dealing with large sampling categories. This paper
presents a novel sampling approach known as FlashSampling, designed to allevi-
ate the computational and communication overhead by circumventing the compu-
tation of the softmax operation. Our method maintains mathematical equivalence
to conventional sampling strategies while demonstrating significantly enhanced
speed and memory efficiency. This is achieved by partitioning the category into
distinct groups for independent sampling and then leveraging the Gumble-Max
trick to eliminate the need for softmax computation. We substantiate the correct-
ness and efficacy of our method both through mathematical proofs and empirical
validation. Extensive experimental outcomes illustrate marked enhancements in
speed and memory utilization, with FlashSampling attaining up to 384% faster
sampling times and 1822% reduced memory consumption.

1 INTRODUCTION

Sampling in discrete spaces is fundamental to a wide array of machine learning domains, including
language modeling (Brown et al., 2020), reinforcement learning (Mnih et al., 2013), variational
autoencoders (VAE) (van den Oord et al., 2017), generative adversarial networks (GAN) (Yu et al.,
2016), and neural architecture search (Zoph & Le, 2017). In language models, discrete sampling is
indispensable for generating coherent and contextually relevant text by selecting words from a vast
vocabulary Sutskever (2014). Reinforcement learning algorithms rely on sampling actions from
policy distributions to explore and learn optimal strategies within complex environments Mnih et al.
(2015). VAEs and GANs employ sampling techniques to generate new data instances from learned
latent spaces, facilitating tasks like image synthesis and data augmentation van den Oord et al.
(2017); Yu et al. (2016). Neural architecture search utilizes sampling to efficiently explore a vast
space of possible network architectures, aiming to discover models with superior performance while
minimizing computational resources (Zoph & Le, 2017).

Typically, sampling from a categorical distribution involves computing the Softmax function to ob-
tain probabilities over all possible categories. As the number of categories increases, this approach
becomes computationally intensive and memory-demanding due to the need to calculate the Softmax
denominator and store the full set of probabilities for multinomial sampling. The complexity poses
challenges, particularly in auto-regressive architectures where each token is sequentially generated
based on previously produced tokens (Brown et al., 2020). While numerous acceleration algorithms
have been developed for continuous space sampling in diffusion models (Neal, 2012; Hoffman et al.,
2014; Tucker et al., 2017; Grathwohl et al., 2017; CORNUET et al., 2012), discrete space sampling
remains relatively under-explored (Jang et al., 2016; Kool et al., 2019).

The mainstream method still involves first using Softmax to compute probabilities and then per-
forming sampling. These challenges highlight the necessity for more efficient sampling techniques
that can bypass the computational bottlenecks of the Softmax operation, reduce storage overhead,
and maintain mathematical correctness and performance. This raises the question: can we address

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

𝑾

𝒙

𝒚

𝒑

𝒛

⊗

𝑺𝒐𝒇𝒕𝒎𝒂𝒙

Naive Sampling FlashSampling (Parallel) FlashSampling (Sequential)

𝒚𝟎 𝒚𝟏 𝒚𝒎−𝟏⋯

𝑾𝟎 𝑾𝟏 𝑾𝒎−𝟏⋯

𝒛𝟎, 𝒍𝟎 ⋯

𝑾

𝑮𝒖𝒎𝒃𝒆𝒍 −𝑴𝒂𝒙

𝑮𝒖𝒎𝒃𝒆𝒍 −𝑴𝒂𝒙

⊗

𝒛

𝒙

𝒛𝟏, 𝒍𝟏 𝒛𝒎−𝟏, 𝒍𝒎−𝟏

𝑊0 𝑾𝟏 𝑊𝑚−1⋯

𝑋

𝑾

⊗𝒙

𝒚𝒌

𝒛𝒌, 𝒍𝒌

𝑮𝒖𝒎𝒃𝒆𝒍 −𝑴𝒂𝒙

𝒛, 𝒍

loop over 𝒌 dim

𝒛, 𝒍
𝑮𝒖𝒎𝒃𝒆𝒍 −𝑴𝒂𝒙

𝒛

Figure 1: Operational illustration of FlashSampling. From left to right: naive sampling, Flash-
Sampling(parallel), and FlashSampling(sequential) using online computing. x ∈ Rd denotes em-
bedding, W ∈ Rd×V denotes category projection matrix, y denotes logits, p denotes probability, z
denotes the sampling result and l denotes the intermediate variables in the FlashSampling process.

both computational and memory issues simultaneously while performing accurate multinomial sam-
pling?

In this paper, we introduce the FlashSampling algorithm, an exact sampling method to sample cate-
gorical distribution that simultaneously addresses both computational efficiency and memory over-
head issues. To tackle the first issue—the significant computational burden of calculating the Soft-
max denominator—we employ the Gumbel-Max trick (Jang et al., 2016) This technique allows us
to sample from categorical distribution using only the logits (the values before applying Softmax),
eliminating the need to compute the Softmax function. To resolve the second issue of substantial
memory requirements, we implement a two-stage group sampling strategy. In the first stage, we
conduct intra-group sampling within each group; in stage two, we perform inter-group sampling on
the candidates selected from each group. This approach reduces the storage complexity from O(V)
to O(V/g) in the parallel version or even to O(g) in the sequential version, where V is the category
size and g is the number of groups. FlashSampling can be easily extended to a distributed version,
where the communication overhead is reduced to O(1). This significant reduction in communication
cost, independent of the category size, makes it highly efficient for distributed settings.

We validated the effectiveness of FlashSampling across various scenarios, including speed and mem-
ory tests as well as generation quality tests. Specifically, we conducted standalone tests (focusing
solely on the sampling function) and end-to-end tests (LLM inference) to compare FlashSampling
with the baseline in terms of speed and memory consumption. Additionally, in the end-to-end tests,
we evaluated the generation quality of FlashSampling against the baseline. FlashSampling demon-
strated faster performance, lower memory consumption, and comparable generation quality to the
baseline.

2 RELATED WORK

2.1 SAMPLING IN DEEP-LEARNING

Sampling in Contiguous Space. Various statistical methods have been developed to improve sam-
pling from continuous distributions. Building upon the foundation of Markov Chain Monte Carlo
(MCMC) (Gamerman & Lopes, 2006), advanced techniques such as Hamiltonian Monte Carlo
(HMC) Neal (2012) and the No-U-Turn Sampler (NUTS) Hoffman et al. (2014) enhance conver-
gence and efficiency by leveraging gradient information and adaptively adjusting path lengths during
sampling. For large-scale datasets, methods like Stochastic Gradient Langevin Dynamics (SGLD)
Welling & Teh (2011) and Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) Chen et al.
(2014) reduce computational overhead by incorporating stochastic gradients and mini-batch data
while still capturing model uncertainty.

Sampling in Discrete Space. Optimizing sampling for discrete variables and categorical distri-
butions presents significant challenges due to the absence of gradient information. To tackle these

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

challenges, methods such as Sequential Monte Carlo (SMC) Doucet (2001), Particle Gibbs sampling
Andrieu et al. (2010), REBAR Tucker et al. (2017), and RELAX Grathwohl et al. (2017) have been
developed. These methods aim to improve computational efficiency, reduce variance, and enable
gradient-based optimization in models with discrete variables. Additionally, Adaptive Importance
Sampling CORNUET et al. (2012) and enhanced categorical rejection sampling methods Neumann
(1951); Efraimidis (2015) increase efficiency by adjusting proposal distributions and optimizing
acceptance probabilities, particularly when dealing with high-dimensional categorical data. The
Gumbel-Max trick Jang et al. (2016) is another effective technique for sampling from categorical
distributions. It transforms the sampling process into a maximization problem by adding Gumbel
noise to the log probabilities of the categories and selecting the category with the maximum per-
turbed value. This approach is particularly useful for discrete latent variable models in variational
inference. Parallelization strategies such as Parallel Tempering and Replica Exchange MCMC Earl
& Deem (2005) enhance exploration efficiency by running multiple chains at different tempera-
tures in parallel. Furthermore, Variational Inference (VI) Blei et al. (2017) transforms the sampling
problem into an optimization task, providing faster convergence with some bias. Collectively, these
methods significantly enhance the practicality and scalability of sampling in deep learning.

2.2 MEMORY-EFFICIENT METHOD

Memory-efficient methods are extensively employed in attention computation, which is computa-
tionally intensive and involves significant memory I/O operations. Online softmax approach (Rabe
& Staats, 2021) is introduced to efficiently compute numerically stable attention scores sequentially
while maintaining linear memory usage. To address time and memory consumption during training,
FlashAttention (Dao et al., 2022; Dao, 2023) utilizes tiling strategies to minimize memory reads and
writes between the GPU’s high-bandwidth memory (HBM) and on-chip SRAM. xFormers also in-
troduces a similar technique (Lefaudeux et al., 2022). PagedAttention (Kwon et al., 2023) optimizes
the use of the KV cache memory by reducing waste and enabling adaptive sharing among batched
requests during inference. Furthermore, similar grouping and tiling approaches are used by tech-
niques such as Lightning Attention (Qin et al., 2024) and Flash Linear Attention (Yang et al., 2023;
2024; Zhang et al., 2024) to optimize GPU memory consumption in linear-complexity attention
mechanisms.

3 METHOD

Algorithm 1 FlashSampling(Parallel)

Input: x ∈ Rd, W ∈ Rd×V , group size g,
flag.
Divide W into m = n/g blocks
W0,W1, ...Wm−1 of size d× g each.
Compute yk = W⊤

k x ∈ Rg, k =
0, . . . ,m− 1.
Sample

zk = argmax
j

ykj − log(− log ukj),

ukj
i.i.d.∼ U(0, 1).

Sample

i = argmax
k

lk − log(− log ūk),

ūk
i.i.d.∼ U(0, 1).

if flag then
l = lse([l0, . . . , lm−1]).

else
l = −∞.

end if
Return z = zi, l.

Algorithm 2 Flash Sampling(Sequential)

Input: x ∈ Rd,W ∈ Rd×V , group size g,flag.
Divide W into m = n

g
blocks W0,W1, ...Wm−1 of size

d× g each.
Initialize l = −∞, z = 0.
for k = 0, . . . ,m− 1 do

yk = W⊤
k x ∈ Rg .

Sample
zk = argmax

j
ykj − log(− log ukj),

ukj
i.i.d.∼ U(0, 1).

lk = lse(yk).
l̄ = [l, lk].
Sample

ik = argmax
j

l̄j − log(− log ūj),

ūj
i.i.d.∼ U(0, 1).

. z = [z, zk]ik .
l = lse(l̄).

end for
if not flag then

l = −∞.
end if
Return z, l.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

In this section, we’ll explore sampling categorical distribution in deep learning and introduce our
proposed method FlashSampling using the Group-Gumbel-Max trick. We’ll examine its parallel,
sequential, and distributed implementations.

In the following discussion, we assume d represents the number of features, V represents the num-
ber of categories, x ∈ Rd denotes a column vector, and W denotes a matrix. We use C(p) to
represent a Categorical distribution, where p ∈ RV and

∑V−1
j=0 pj = 1. We use lse to represent the

‘LogSumExp‘ function, defined as lse(x) = log
(∑

j exp(xj)
)

.

3.1 SAMPLING CATEGORICAL DISTRIBUTIONS IN DEEP LEARNING

Algorithm 3 FlashSampling(Distrubuted)

Input: x ∈ Rd,W ∈ Rd×V , distributed world size n, group
size g.
Divide W into n blocks W0,W1, ...Wn−1 of size d×(V/n)
each.
zk, lk = flash sampling(x,Wk, g,True).
z, l = 0 ∈ Rn.
Gather(zk, z, dst = 0).
Gather(lk, l, dst = 0).
On rank0, sample i = argmaxk lk − log(− log uk), k =
0, . . . , n− 1.
Return zi.

Algorithm 4 Gumbel-Max sampling

Input: x ∈ Rd,W ∈ Rd×V .
Compute y = W⊤x ∈ RV .
Compute zk = yk − log(− log uk), uk

i.i.d.∼ U(0, 1), k =
0, . . . , V − 1.
Return z = argmaxk zk.

In deep learning, sampling categor-
ical distributions is typically per-
formed through the following steps:
first, we obtain features x ∈ Rd and
a categorical projection Wd×V from
the neural network. Using matrix
multiplication, we compute the log-
its y = W⊤x ∈ RV . Then, the
‘Softmax‘ function is applied to com-
pute the probability distribution p =
Softmax(y), and finally, sampling is
performed.

From the above process, it is clear
that in deep learning, before sam-
pling, we need to compute the prob-
ability distribution using ‘Softmax‘
and store it. This differs from typ-
ical sampling categorical distribu-
tions scenarios, where we are directly
given the probability distribution p =
(p0, . . . , pV−1), and there is no need to compute p.

This approach poses two main issues when the category size is large:

• Computing the probability requires computing the Softmax function, which introduces sig-
nificant computational overhead.

• The need to store the probability distribution p to perform sampling, leads to a high mem-
ory demand.

These challenges lead us to the following question: Can we address both of these issues and still
perform accurate sampling from Categorical distribution? In the following subsections, we will
discuss how to solve these two problems.

3.2 FLASHSAMPLING WITH GROUP-GUMBEL-MAX

3.2.1 USING GUMBEL-MAX TO AVOID COMPUTING SOFTMAX

Our first optimization is to use the Gumbel-Max (Jang et al., 2016) trick to avoid computing Softmax.
Sampling z ∼ C(p) is equivalent to:

z = argmax
k

[log pk − log(− log uk)] , uk
i.i.d.∼ U(0, 1) (1)

where U(0, 1) represents the uniform distribution over (0, 1), and i.i.d. stands for independent and
identically distributed.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Substituting pk = exp(yk)∑
j exp(yj)

into the equation, we get:

z = argmax
k

[log pk − log(− log uk)]

= argmax
k

log exp(yk)− log

∑
j

exp(yj)

− log(− log uk)

= argmax

k
[yk − lse(y)− log(− log uk)]

= argmax
k

[yk − log(− log uk)] , uk
i.i.d.∼ U(0, 1).

(2)

We summarize this in the following proposition:

Proposition 3.1. Sampling z ∼ C(p) is equivalent to:

z = argmax
k

[yk − log(− log uk)] , uk
i.i.d.∼ U(0, 1).

By using this proposition, we can perform sampling without needing to compute the Softmax func-
tion, although we still need to calculate the complete logits.

3.2.2 USE GROUP TECHNIQUE TO AVOID MATERIALIZING LOGITS

The second optimization is based on the following fact:

pk =
exp(xk)∑
j exp(xj)

=
exp(xk)∑
j∈A exp(xj)

·
∑

j∈A exp(xj)∑
j exp(xj)

.

where A is any subset that contains k. The intuitive meaning of this equation is that sampling
from category distribution can be decomposed into two steps: first, sampling a subset A, and then
sampling within subset A. Based on this fact, we present the following proposition:

Proposition 3.1.1. Given a Categorical distribution C(p) and group size g, sampling from C(p) is
equivalent to sampling zk from C(pk), k = 1, . . . , V/g − 1, sampling index i from C(p̄), and give
zi as the result. Where

pkj = ekj/ek, p̄k = ek/e,

ekj = exp(yAkj
), ek =

∑
j∈Ak

exp(yj), e =
∑
k

ej , pkj = ekj/e,

Ak = {kg, . . . , (k + 1)g − 1}, Akj = kg + j, k = 0, . . . , V/g − 1, j = 0, . . . , g − 1.

If the process of sampling zk from C(pk) is done in parallel, we obtain a parallel algorithm 5. If
done sequentially, we obtain a sequential algorithm 6. The proof of correctness for the sequential
version is as follows:

Proof of Algorithm 6.

P(z = Akj) = P(zk = Akj) ·P(ik = 1)

V/g−1∏
s=k+1

P(is = 0)

=
ekj
ek

· ek∑
s≤k es

V/g−1∏
s=k+1

∑
t≤s−1 et∑
t≤s et

=
ekj
ek

· ek
e

=
ekj
e

.

(3)

Algorithm 5, 6 allows for efficient sampling without materializing the complete distribution, reduc-
ing memory requirements.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 5 Group Softmax Sampling (Par.)

Input: x ∈ Rd,W ∈ Rd×V , group size g.
Divide
W into m = n

g
blocks W0,W1, ...Wm−1 of size

d× g each.
Compute
yk = W⊤

k x ∈ Rg, k = 0, . . . ,m− 1.
Compute
ekj = exp(ykj), ek =

∑
j ekj , e =

∑
k ek.

Compute
pkj = ekj/ek, p̄k = ek/e,pk =
(pk0, . . . , pk,g−1), p̄ = (p̄0, . . . , p̄m−1), k =
0, . . . ,m− 1, j = 0, . . . , g − 1.
Sample
zk ∼ C (pk), k = 0, . . . ,m− 1.
Sample i ∼ C (p̄).
Return z = zi.

Algorithm 6 Group Softmax Sampling (Seq.)

Input: x ∈ Rd,W ∈ Rd×V ,group size g.
Divide W into m = n

g
blocks W0,W1, ...Wm−1

of size d× g each.
Initialize l = −∞, z = 0.
for k = 0, . . . ,m− 1 do

yk = W⊤
k x ∈ Rg .

lk = lse(yk).
pk = exp(yk)/ exp(lk).
Sample zk ∼ C(p).
l′k = lse([l, lk]).
p̄k = [exp(l)/ exp(l′k), exp(lk)/ exp(l

′
k)].

Sample ik ∼ C(p̄k).
z = [z, zk]ik .
l = l′k.

end for
Return z.

3.3 PUT EVERY THING TOGETHER

It is important to note that in the previous section, both pk and p̄ are categorical distributions,
allowing us to apply the Gumbel-Max trick. By combining the two previously mentioned tricks, we
can derive FlashSampling(parallel) and FlashSampling(sequential). The complete algorithms are
detailed in Algorithm 1, 2.

3.4 EXTENSION: DISTRIBUTED VERSION

Scalability is becoming increasingly important, and FlashSampling naturally extends to a distributed
version.

Let’s first describe the traditional distributed sampling method: Suppose the number of categories
is V , W is the category projection matrix, x is the embedding, and the distributed world size is
n. In traditional distributed sampling, GPU with rank k stores a slice of the weight matrix Wk =
W[:, k × V/n : (k + 1) × V/n], k = 0, . . . , n − 1. Each GPU with rank k computes its logits yk
independently, followed by a ‘gather‘ operation where the logits are gathered to rank 0. Rank 0 then
performs the categorical sampling. The PyTorch-like code for this process is as follows:

def dist_sample(x, W):
y = F.linear(x, W)
y_array = [torch.empty_like(y) for _ in range(world_size)]
dist.gather(y, gather_list=y_array)
y = torch.cat(y_array, dim=-1)
prob = F.softmax(y, dim=-1)

return torch.multinomial(prob, num_samples=1)

As seen in the code, due to the need to communicate logits across GPUs, the communication com-
plexity is O(V), which results in significant communication overhead.

By leveraging the Group Technique, we can first perform local sampling on each GPU and then
communicate only the sampled results. Then, a sampling step can be performed to get the final
result. The PyTorch-like code for this approach is as follows:

def dist_sample(x, W):
id, l = flash_sampling(x, W)
id_array = [torch.empty_like(id) for _ in range(world_size)]
l_array = [torch.empty_like(l) for _ in range(world_size)]
dist.gather(id, gather_list=id_array)
dist.gather(l, gather_list=l_array)
id = torch.cat(id_array, dim=-1)
l = torch.cat(l, dim=-1)
output = gumbel_max_sampling(id, l)

return output

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 2: Time Comparison (measured in ms) of Naive and Parallel FlashSampling Across
Sequence Lengths and Hidden Dimensions for Batch Size 2048. Each sub-figure represents the
performance across hidden dimensions of 256, 512, 1024, and 2048. Dashed lines highlight where
FlashSampling significantly surpasses Naive Sampling in time efficiency. The smaller the metric,
the better.

8192 16384 32768 65536 131072 262144 524288
Num Categories

0

2500

5000

7500

10000

12500

15000

17500

Ti
m

e(
m

s)

3.
84

 x
 fa

st
er

Num Categories Vs Time (Batch 2048, Dim 256)
Naive
Flash(parallel)

8192 16384 32768 65536 131072 262144 524288
Num Categories

0

2500

5000

7500

10000

12500

15000

17500

Ti
m

e(
m

s)

3.
32

 x
 fa

st
er

Num Categories Vs Time (Batch 2048, Dim 512)
Naive
Flash(parallel)

8192 16384 32768 65536 131072 262144 524288
Num Categories

0

2000

4000

6000

8000

10000

12000

14000

16000

Ti
m

e(
m

s)

2.
17

 x
 fa

st
er

Num Categories Vs Time (Batch 2048, Dim 1024)
Naive
Flash(parallel)

8192 16384 32768 65536 131072 262144 524288
Num Categories

0

2500

5000

7500

10000

12500

15000

Ti
m

e(
m

s)

1.
37

 x
 fa

st
er

Num Categories Vs Time (Batch 2048, Dim 2048)
Naive
Flash(parallel)

Here, l represents the local logit at each GPU, and the complete algorithm is outlined in Algorithm 3.
Notice that with this method, the communication complexity is reduced to O(1), greatly improving
communication efficiency.

Table 1: Time Comparison of Naive Sampling, FlashSampling(Parallel), and FlashSam-
pling(Sequential) across category Sizes (8K-512K) in 128 and 256 Dimensions. Dashes indicate
out-of-memory errors, and times in the table are measured in seconds (s). The smaller the metric,
the better.

Method\Vocab. Dim 8,192 16,384 32,768 65,536 131,072 262,144 524,288

Naive 128 8.85 17.19 34.85 71.03 142.76 - -
Flash-Parallel 128 2.50 4.94 9.94 19.67 39.67 78.68 157.61
Flash-Sequential 128 9.20 18.40 36.71 72.62 144.88 291.25 580.35

Naive 256 10.18 19.35 39.18 76.34 150.67 - -
Flash-Parallel 256 3.13 6.23 12.70 25.20 50.89 100.53 202.73
Flash-Sequential 256 10.17 20.31 40.73 81.50 163.27 326.06 647.98

4 EXPERITMENTS

4.1 FAST SAMPLING: STANDALONE COMPARISON

In this section, we present a detailed standalone test comparison among FlashSampling(parallel),
FlashSampling(sequential), and Naive Sampling. We evaluate and contrast their performance by
examining variations in speed and memory consumption across different numbers of category sizes
and hidden dimensions. The detailed comparisons are vividly depicted in Fig. 2 and Fig. 3, with
extensive details provided in Table 1 and Table 2.

From the analysis of time and memory consumption illustrated in Fig. 2 and Fig. 3, it is evident
that FlashSampling(parallel) achieves a speed up to 3.8 times faster than Naive Sampling and uses

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: Memory Consumption (measured in GB) of Naive and Parallel FlashSampling
Across Sequence Lengths and Hidden Dimensions for Batch Size 2048. Each sub-figure repre-
sents the performance across hidden dimensions of 256, 512, 1024, and 2048. Dashed lines highlight
where FlashSampling significantly surpasses Naive Sampling in memory efficiency. The smaller the
metric, the better.

8192 16384 32768 65536 131072 262144 524288
Num Categories

0

1

2

3

4

5

6

M
em

or
y(

GB
)

18
.2

2
x

sm
al

le
r

Num Categories Vs Memory (Batch 2048, Dim 256)
Naive
Flash(parallel)

8192 16384 32768 65536 131072 262144 524288
Num Categories

0

1

2

3

4

5

6

M
em

or
y(

GB
)

10
.9

7
x

sm
al

le
r

Num Categories Vs Memory (Batch 2048, Dim 512)
Naive
Flash(parallel)

8192 16384 32768 65536 131072 262144 524288
Num Categories

0

1

2

3

4

5

6

7

M
em

or
y(

GB
)

6.
41

 x
 sm

al
le

r

Num Categories Vs Memory (Batch 2048, Dim 1024)
Naive
Flash(parallel)

8192 16384 32768 65536 131072 262144 524288
Num Categories

0

1

2

3

4

5

6

7

8

M
em

or
y(

GB
)

3.
83

 x
 sm

al
le

r

Num Categories Vs Memory (Batch 2048, Dim 2048)
Naive
Flash(parallel)

Table 2: Memory Consumption of Naive Sampling, Parallel FlashSampling, and Sequential
FlashSampling Across Vocabulary Sizes (8K-512K) in 128 and 256 Dimensions. Dashes indicate
out-of-memory errors. Memory values in the table are measured in gigabytes (GB) and must not
exceed 80GB. Lower values are preferred.

Method\Vocab. Dim 8,192 16,384 32,768 65,536 131,072 262,144 524,288

Naive 128 3.07 6.07 12.08 24.10 48.13 - -
Flash-parallel 128 0.10 0.13 0.20 0.34 0.63 1.19 2.31
Flash-sequential 128 0.07 0.07 0.08 0.09 0.13 0.19 0.31

Naive 256 3.10 6.11 12.13 24.16 48.22 - -
Flash-parallel 256 0.13 0.17 0.25 0.41 0.72 1.34 2.59
Flash-sequential 256 0.10 0.11 0.13 0.16 0.22 0.34 0.59

only 1/18 of the memory. As detailed in Table 1 and Table 2, FlashSampling(sequential) is slightly
slower than the baseline—within 10%—yet impressively consumes only 1% of the memory. Even
when scaling cagetory sizes up to 512K, FlashSampling(sequential) maintains memory usage below
1 GB. FlashSampling(parallel) consistently outperforms Naive Sampling by a significant margin.
However, due to limited parallelism, FlashSampling(sequential) experiences a slowdown in calcula-
tions, which is slated for optimization in the upcoming version.

4.2 FAST SAMPLING: END-TO-END COMPARISON

In this section, we delve into the outcomes of implementing FlashSampling for LLM inference on
the LLaMA-8B-Insturct (Dubey et al., 2024), conducted within an 8 H100 GPU environment with
tensor parallel size = 8 based on gpt-fast (Liang et al., 2024).

In LLM inference, the ‘LmHead‘ layer typically employs tensor parallelism, which splits along the
vocabulary dimension Kwon et al. (2023). For example, assuming a vocabulary size of 8k and a

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: Token per seconds (TPS) Comparison of Naive Sampling and FlashSam-
pling(distributed) across sequence Lengths and Batch Sizes in LLaMA-8B. Each sub-figure
displays performance for batch sizes of 4, 8, 16, and 32, with higher TPS values indicating better
performance.

512 1024 2048 4096
Sequence Length

1200

1220

1240

1260

1280

1300

1320

To
ke

n
Pe

r S
ec

on
ds

Token Per Seconds Vs Sequence Length (Batch 4)
Naive
Flash(distributed)

512 1024 2048 4096
Sequence Length

2100

2200

2300

2400

2500

To
ke

n
Pe

r S
ec

on
ds

Token Per Seconds Vs Sequence Length (Batch 8)
Naive
Flash(distributed)

512 1024 2048 4096
Sequence Length

3400

3600

3800

4000

4200

4400

4600

To
ke

n
Pe

r S
ec

on
ds

Token Per Seconds Vs Sequence Length (Batch 16)
Naive
Flash(distributed)

409620481024512
Sequence Length

5000

5500

6000

6500

7000

7500

8000

To
ke

n
Pe

r S
ec

on
ds

Token Per Seconds Vs Sequence Length (Batch 32)
Naive
Flash(distributed)

weight matrix W ∈ Rd×8000, with a tensor parallelism degree of 8 (and the same number of GPUs),
GPU with rank k will have the weight matrix slice W[:, 1000k : 1000k + 1000].

During sampling, each GPU (rank k) computes the logits for positions 1000k to 1000k+1000, fol-
lowed by a ‘gather‘ operation where GPU rank 0 gathers the complete logits and performs the sam-
pling. Using FlashSampling (distributed), we have significantly minimized communication over-
head, reducing it by a factor of 1000—or more specifically, V/num of tensor parallel size). The
advantageous outcomes of this strategy are demonstrated in Fig. 4 and Fig. 5. It can be seen that
FlashSampling (Distributed) significantly reduces memory usage while achieving faster speeds.

4.3 EMPIRICAL VERIFICATION IN LLM

In this experiment, we compare the generation outcomes obtained using Vanilla Sampling and Flash-
Sampling on LLaMA3-8B-Insturct. The prompt used for generating text was Hello, my name is.
The results indicate that the outputs from the FlashSampling method are comparable to Vanilla
Sampling, aligning with the theoretical analysis.

Vanilla Sampling :

<| begin of text |>Hello, my name is Somer. I wanted to share a little about my life . I ’m
a busy individual with a full schedule of work, family and personal

responsibilities . I love my pets and spending time with them. I also enjoy
spending time in my garden and trying to grow my own herbs and vegetables . I have
a huge passion for cooking and experimenting with new recipes . One of my favorite
things to do is to try out new recipes on my friends and family and see the looks
on their faces when they try something new and delicious . As for travel , I ’m an
avid adventurer and love to explore new places . I ’ve been to many beautiful
destinations and can’ t wait to add more to my list . My goal in life is to live a
life of purpose and to help others , whether it be through my cooking, my
gardening, or just simply being a good friend and family member. I believe that
life is too short to waste time and I strive to make the most of every moment.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 5: Memory consumption (measured in GB) of Naive Sampling and FlashSam-
pling(Distributed) Across Sequence Lengths and Batch Sizes in LLaMA-8B. Each sub-figure
displays performance for batch sizes of 4, 8, 16, and 32.

512 1024 2048 4096
Sequence Length

4

5

6

7

8

M
em

or
y(

GB
)

Memory Vs Sequence Length (Batch 4)
Naive
Flash(distributed)

512 1024 2048 4096
Sequence Length

4

6

8

10

12

M
em

or
y(

GB
)

Memory Vs Sequence Length (Batch 8)
Naive
Flash(distributed)

512 1024 2048 4096
Sequence Length

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

M
em

or
y(

GB
)

Memory Vs Sequence Length (Batch 16)
Naive
Flash(distributed)

409620481024512
Sequence Length

10

20

30

40

50

M
em

or
y(

GB
)

Memory Vs Sequence Length (Batch 32)
Naive
Flash(distributed)

FlashSampling :

<| begin of text |>Hello, my name is Somerotos. I am an artist and designer from Mexico.
I am a bitpace artist , which means that I work with a mix of traditional and
digital media. I lovekeleton and skeleton art , but I also enjoy working with other

themes and styles . I am a bit of a recommend artist , and I am always looking for
new ways to express myself and push the boundaries of what is possible with my
art . I am excited to share my art with you and hope that you will enjoy it .\nI am a
bit of a creative person , and I love to experiment with different techniques and
styles . I have been working as a artist for many years, and I have developed my
own unique style and voice . I am a bit of a recommend artist , and I am always
looking for new ways to express myself and push the boundaries of what is possible
with my art .

5 CONCLUSION

In this paper, we have introduced FlashSampling, a novel sampling method designed to mitigate
the computational and memory burdens of traditional softmax-based approaches in discrete spaces.
By partitioning categories into distinct groups and leveraging the Gumbel-Max trick, FlashSam-
pling circumvents the need for softmax computation while maintaining mathematical equivalence
to conventional sampling strategies. Our method is substantiated by both mathematical proofs and
empirical validations, demonstrating up to 384% faster sampling times and an impressive 1822%
reduction in memory consumption. These significant enhancements underscore the potential of
FlashSampling to optimize a wide array of applications—including language models, reinforcement
learning, VAE, GAN, and neural architecture search—offering a more efficient alternative for future
research and development.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

6 ETHICS AND REPRODUCIBILITY STATEMENT

This research presents FlashSampling, an algorithm designed to enhance computational efficiency
and reduce memory usage in machine learning sampling tasks. By minimizing resource require-
ments, FlashSampling can decrease energy consumption and make advanced computational tech-
niques more accessible. While we identify no direct ethical concerns with FlashSampling, we
recognize the potential for misuse and encourage users to consider the wider societal and ethical
impacts of their applications.

To ensure reproducibility, we will open-source the FlashSampling algorithm along with all related
code and experimental details upon publication. The publicly available datasets and detailed usage
instructions are also provided to help other researchers replicate our results and apply the methodol-
ogy to their own projects.

REFERENCES

Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle markov chain monte carlo
methods. Journal of the Royal Statistical Society Series B: Statistical Methodology, 72(3):269–
342, 2010.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisti-
cians. Journal of the American statistical Association, 112(518):859–877, 2017.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient hamiltonian monte carlo. In
International conference on machine learning, pp. 1683–1691. PMLR, 2014.

JEAN-MARIE CORNUET, JEAN-MICHEL MARIN, Antonietta Mira, and Christian P Robert.
Adaptive multiple importance sampling. Scandinavian Journal of Statistics, 39(4):798–812,
2012.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

A Doucet. Sequential monte carlo methods in practice, 2001.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

David J Earl and Michael W Deem. Parallel tempering: Theory, applications, and new perspectives.
Physical Chemistry Chemical Physics, 7(23):3910–3916, 2005.

Pavlos S Efraimidis. Weighted random sampling over data streams. Algorithms, Probability, Net-
works, and Games: Scientific Papers and Essays Dedicated to Paul G. Spirakis on the Occasion
of His 60th Birthday, pp. 183–195, 2015.

Dani Gamerman and Hedibert F. Lopes. Markov Chain Monte Carlo: Stochastic Simulation for
Bayesian Inference, Second Edition. Chapman and Hall/CRC, May 2006. ISBN 9780429183348.
doi: 10.1201/9781482296426. URL http://dx.doi.org/10.1201/9781482296426.

11

http://dx.doi.org/10.1201/9781482296426

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Will Grathwohl, Dami Choi, Yuhuai Wu, Geoffrey Roeder, and David Duvenaud. Backpropagation
through the void: Optimizing control variates for black-box gradient estimation. arXiv preprint
arXiv:1711.00123, 2017.

Matthew D Hoffman, Andrew Gelman, et al. The no-u-turn sampler: adaptively setting path lengths
in hamiltonian monte carlo. J. Mach. Learn. Res., 15(1):1593–1623, 2014.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Wouter Kool, Herke Van Hoof, and Max Welling. Stochastic beams and where to find them: The
gumbel-top-k trick for sampling sequences without replacement. In International Conference on
Machine Learning, pp. 3499–3508. PMLR, 2019.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Prin-
ciples, pp. 611–626, 2023.

Benjamin Lefaudeux, Francisco Massa, Diana Liskovich, Wenhan Xiong, Vittorio Caggiano, Sean
Naren, Min Xu, Jieru Hu, Marta Tintore, Susan Zhang, et al. xformers: A modular and hackable
transformer modelling library, 2022.

Yanbo Liang, Horace He, Michael Gschwind, Nikita Shulga, HDCharles, Artem Bolgar,
Ma Mingfei, Sergii Dymchenko, cpuhrsch, Jerry Zhang, Zhiqing Sun, Yifu Wang, Vik Paruchuri,
Srinivas Billa, Michael Feil, MDK8888, Keren Zhou, Ikko Eltociear Ashimine, Hunt Zhan, and
Hugo Sousa. pytorch-labs/gpt-fast. 9 2024. URL https://github.com/pytorch-labs/
gpt-fast.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Radford M Neal. Mcmc using hamiltonian dynamics. arXiv preprint arXiv:1206.1901, 2012.

Von Neumann. Various techniques used in connection with random digits. Notes by GE Forsythe,
pp. 36–38, 1951.

Zhen Qin, Weigao Sun, Dong Li, Xuyang Shen, Weixuan Sun, and Yiran Zhong. Lightning
attention-2: A free lunch for handling unlimited sequence lengths in large language models. arXiv
preprint arXiv:2401.04658, 2024.

Markus N Rabe and Charles Staats. Self-attention does not need o(n2) memory. arXiv preprint
arXiv:2112.05682, 2021.

I Sutskever. Sequence to sequence learning with neural networks. arXiv preprint arXiv:1409.3215,
2014.

George Tucker, Andriy Mnih, Chris J Maddison, John Lawson, and Jascha Sohl-Dickstein. Rebar:
Low-variance, unbiased gradient estimates for discrete latent variable models. Advances in Neural
Information Processing Systems, 30, 2017.

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-
ing, 2017.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th international conference on machine learning (ICML-11), pp. 681–688.
Citeseer, 2011.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. arXiv preprint arXiv:2312.06635, 2023.

12

https://github.com/pytorch-labs/gpt-fast
https://github.com/pytorch-labs/gpt-fast

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transform-
ers with the delta rule over sequence length. arXiv preprint arXiv:2406.06484, 2024.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial nets
with policy gradient, 2016.

Yu Zhang, Songlin Yang, Ruijie Zhu, Yue Zhang, Leyang Cui, Yiqiao Wang, Bolun Wang, Freda
Shi, Bailin Wang, Wei Bi, et al. Gated slot attention for efficient linear-time sequence modeling.
arXiv preprint arXiv:2409.07146, 2024.

Barret Zoph and Quoc Le. Neural architecture search with reinforcement learning. In International
Conference on Learning Representations, 2017. URL https://openreview.net/forum?
id=r1Ue8Hcxg.

13

https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg

	Introduction
	Related work
	Sampling in Deep-Learning
	Memory-Efficient Method

	Method
	Sampling categorical distributions in Deep Learning
	FlashSampling with Group-Gumbel-Max
	Using Gumbel-Max to Avoid Computing Softmax
	Use Group Technique to Avoid Materializing Logits

	Put every thing together
	Extension: Distributed Version

	Experitments
	Fast Sampling: Standalone comparison
	Fast Sampling: End-to-End comparison
	Empirical Verification in LLM

	Conclusion
	Ethics and Reproducibility Statement

