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Abstract

Bayesian optimization (BO) is a principled ap-
proach to molecular design tasks. In this paper
we explain three pitfalls of BO which can cause
poor empirical performance: an incorrect prior
width, over-smoothing, and inadequate acquisi-
tion function maximization. We show that with
these issues addressed, even a basic BO setup is
able to achieve the highest overall performance
on the PMO benchmark for molecule design (Gao
et al., 2022). These results suggest that BO may
benefit from more attention in the machine learn-
ing for molecules community.

1. Introduction
Many problems in drug discovery can be summarized as
finding molecules with desirable properties. This is often
formalized as maximizing a property function f :M 7→ R,
whereM denotes the space of molecules. The challenge
of this problem is the immense size of the search spaceM:
out of an estimated 1060 possible molecules (Bohacek et al.,
1996), only a minuscule fraction can be tested experimen-
tally (perhaps 102–104). Therefore, algorithms for molecule
design must operate very efficiently, making the best use of
their experimental budget.

Despite the need for efficiency, the current most popular
algorithms for molecule design all seem to heavily rely on
random exploration. Genetic algorithms (GAs) and their
variants randomly mutate and combine known molecules
(Jensen, 2019; Nigam et al., 2020). Algorithms based on re-
inforcement learning (RL) such as REINVENT (Olivecrona
et al., 2017; Blaschke et al., 2020) and GFlowNets (Bengio
et al., 2021; 2023) instead make random perturbations to
a molecule generation policy. In both cases, because the
exploration is random it is likely to be inefficient.
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In contrast, Bayesian optimization (BO) stands out as a prin-
cipled alternative which performs deliberate exploration
(Garnett, 2023). By explicitly using prior knowledge to
model molecular properties, BO algorithms can make a pre-
cise trade-off between exploration (testing new molecules)
and exploitation (testing molecules similar to the best known
ones). Because of this, one might expect BO methods to
be state-of-the-art in this field. Surprisingly however, prior
work has shown that BO under-performs RL/GA methods
(Gao et al., 2022).

In this short paper, we argue that poor BO performance in
prior works may essentially be due to poor tuning of hy-
perparameters. To show this, we first introduce BO (§2)
and explain several ways in which certain choices of hy-
perparameters can lead to predictably poor optimization
performance (§3). Second, we show that with the right
settings a basic BO setup achieves the best reported perfor-
mance on the PMO benchmark for molecular optimization
algorithms (Gao et al., 2022). We conclude with a brief
evaluation of the pros and cons of BO, arguing that while it
is not perfect, it should likely receive more attention from
the community (§5).

2. Background on Bayesian optimization
Let X represent an input space. Let P denote the probability
of an event, E denote expected value, and V denote variance.
The most basic form of Bayesian optimization (BO) seeks

x∗ = argmax
x∈X

f(x) , (1)

namely an input which maximizes an objective function
f : X 7→ R. At the heart of BO is a probabilistic surrogate
model, which specifies a distribution over surrogate models
f̂ : X 7→ R for the objective function f . We will denote a
general probabilistic surrogate model by p(f̂).

BO uses p(f̂) to choose inputs to evaluate, typically choos-
ing an input x which maximizes an acquisition function
α. An intuitive example of an acquisition function is the
probability of improvement (PI) (Garnett, 2023, §7.5)

αPI

(
x; p(f̂), ybest

)
= Pf̂∼p(f̂)

[
f̂(x) > ybest

]
, (2)
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which measures the probability that f(x) will improve upon
the incumbent best measurement ybest: an intuitively reason-
able criterion to select points for evaluation.

Pseudocode for a general BO loop is given in Algorithm 1.
The key lines of this algorithm are line 2 (which defines
the probabilistic surrogate model) and line 3 (which uses
an acquisition function to select an input to evaluate).1 The
rest of this section will discuss these steps in more detail.

Algorithm 1 General Bayesian optimization loop.
Require: Input dataset D0 = {(x1, y1), . . . , (xn, yn)}, ac-

quisition function α
1: for i in 1, 2, . . . do
2: Fit pi(f̂) to dataset Di−1

3: Select xi = argmaxx αi(x; pi(f̂))
4: Acquire label yi for xi

5: Di ← Di−1 ∪ {(xi, yi)}
6: if computational budget is exhausted then
7: return Di {Terminate}
8: end if
9: end for

2.1. Gaussian process surrogate models

Gaussian processes (GPs) are the most commonly-used class
of probabilistic surrogate models, and therefore we will
introduce them briefly here. A GP assumes the that joint
distribution of the observed data is Gaussian, whose mean is
given by a mean function µ : X 7→ R, and whose covariance
is given by a positive-definite kernel function k : X ×X 7→
R. When X = Rn, a common choice of kernel function is
the RBF kernel, defined as

kRBF(x, x
′) = σ2 exp

(
−∥x− x′∥2

2ℓ2

)
. (3)

The hyperparameter σ is referred to as the kernel amplitude
(because the marginal prior distribution for every input is a
Gaussian with standard deviation σ), while ℓ is referred to
as the lengthscale.

The primary appeal of GP models is that their posterior
distribution has an analytic solution, evading the need for
approximate inference techniques like MCMC. The for-
mulas for the analytic solution can be found in numerous
textbooks (Rasmussen & Williams, 2006; Garnett, 2023).
This allows the model fitting step in line 2 to be performed
efficiently and reliably.

GP surrogate models will be used in the remainder of this
paper. However, we emphasize that BO does not require the
use of GP models: Bayesian neural networks or ensembles
are viable alternatives.

1To allow the acquisition function to vary over iterations, we
use the notation αi.

2.2. Acquisition functions

Despite its simplicity, the PI acquisition function in equa-
tion 2 is seldom used in practice, chiefly because it does
not account for the magnitude of the improvement (so large
improvements are treated the same as small improvements).
Instead, many people use expected improvement (EI)

αEI

(
x; p(f̂), ybest

)
= Ef̂∼p(f̂)

[
max

(
0, f̂(x)− ybest

)]
,

(4)
which measures the average amount by which f(x) is pre-
dicted to improve over ybest. Another common acquisition
is the upper confidence bound (UCB)

αUCB

(
x; p(f̂)

)
= Ef̂

[
f̂(x)

]
+ β

√
Vf̂

[
f̂(x)

]
, (5)

which is the mean prediction plus the standard deviation
weighted by β. There are many other choices of acquisition
function: Garnett (2023, Chapter 7) gives a good introduc-
tion to them.

Importantly, the acquisition function is not something which
should be chosen arbitrarily. Because the acquisition func-
tion specifies (implicitly or explicitly) the explore-exploit
trade-off, it should be chosen with that in mind. In gen-
eral, EI tends to be exploitative, while UCB becomes more
exploitative as β → 0 and more exploratory as β →∞.

3. Common Bayesian optimization pitfalls
While there is are no universal rules to optimally tune all
hyperparameters in BO, some hyperparameter settings have
intuitive and predictable failure modes. We explain three
possible failure modes with an illustrative example in 1D,
shown in Figure 1. This setup is chosen to be vaguely
analogous to molecule design: some molecules near a lo-
cal optimum are known, but other more promising optima
are unexplored. We use a GP with an RBF kernel as the
surrogate model (typically the default choice in most GP
libraries) with low observation noise.

0.0 0.5 1.0

x

0.0

0.5

f(x
)

Figure 1. 1D optimization task meant to be qualitatively similar
to molecular design tasks. Only a small number of data points are
known (black dots), none of which are near the global optimum of
the unknown function (red dashed line).
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Figure 2. Effect of prior width parameter σ in a GP model, illus-
trating “prior width” pitfall (§3.1). Low values of σ cause the
model to predict lower returns from exploration.

3.1. Pitfall #1: prior width

A model p(f̂) will imply a range of values that f is likely
to take, which we refer to as the prior width. For example,
with a GP model, the predictive standard deviation can be
interpreted as a prior width, and can be controlled by the pa-
rameter σ (equation 3). The prior width directly determines
the predicted gains from exploring away from the training
data. Figure 2 directly shows the consequence of this, using
prior widths of 0.1 and 1.0. When σ = 0.1, the points near
the left are predicted to be nearly optimal, and there is no
predicted gain from exploring the right side of the space.
In contrast, when σ = 1.0, the points near the right have a
reasonably high predicted probability of being better than
the points on the left.

It is straightforward to see that the same principles will also
hold outside of 1D examples. A general guideline is that if
σ is too high, then BO algorithms will anticipate large gains
from exploration and tend to be too exploratory. Conversely,
if σ is too low then BO algorithms will under-explore.

3.2. Pitfall #2: over-smoothing

The probabilistic surrogate model p(f̂) essentially encodes
how measurements of known input points influence those
of unmeasured points. For GPs in 1D, each point can be
thought of as having a “radius” of influence around it, which
is determined by the lengthscale of the kernel function (e.g.
ℓ in equation 3). If this radius is too high, it can lead to
overconfident predictions. Figure 3 illustrates this by show-
ing the GP posterior using an RBF lengthscale of ℓ = 0.05
and ℓ = 5.0. When ℓ = 50.0, the measurements on the
left suggest that the right side is not worth exploring, which
does not happen when ℓ = 0.05.

A general guideline is that over-smoothing will result in
under-exploration, while under-smoothing will result in
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Figure 3. Effect of lengthscale parameter ℓ in a GP model, illus-
trating “over-smoothing” pitfall (§3.2). High values of ℓ also imply
lower returns from exploring inputs near known inputs.

over-exploration.

3.3. Pitfall #3: inadequate search

Line 3 requires finding an input which maximizes the acqui-
sition function. Although in 1D this can be accomplished
via a comprehensive grid search, in combinatorially large
spaces like molecules inevitably only a small fraction of all
candidate points may be considered. Unfortunately, popular
search methods like generative models and GAs tend to
propose molecules similar to known molecules. In 1D, this
is a bit like only searching in a narrow interval around the
known points, akin to never considering inputs on the right
side of Figure 1.

Unlike the first two pitfalls, poor search should only ever
result in under-exploration. However, longer searches will
generally take more time.

4. Experiments: fixing these issues
substantially improves performance

In this section we consider the application of BO to the
PMO benchmark, which consists of 23 different objective
functions f :M 7→ [0, 1] over molecule space (Gao et al.,
2022). Very few works have applied BO to this benchmark,2

so we focus our attention to the “GP BO” baseline imple-
mented by Gao et al. (2022). Their implementation used a
basic Tanimoto kernel on molecular fingerprint features

k(x, x′) = σ2T (fp(x), fp(x′)) , (6)

where T denotes the Tanimoto coefficient3 function and
fp is a function producing molecular fingerprints. They
used a UCB acquisition function with random value of β

2Aside from Gao et al. (2022), we are only aware of Wang-
Henderson et al. (2023).

3Also called Jaccard similarity
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Figure 4. Two pairs of molecules whose binary Morgan finger-
prints of radius 2 are identical. The top pair is two alkanes of
different lengths, which only contain -CH3 and -CH2- groups.
The bottom pair is the anti-inflammatory drug molecule Celecoxib
and a larger analogue with many repeated substructures. SMILES
strings are given in Appendix C.

in each iteration, which was optimized using a Graph GA
algorithm (Jensen, 2019). However, a close inspection of
their implementation reveals potential signs of all 3 pitfalls
from Section 3:

1. Prior width: the kernel hyperparameters are chosen
by maximizing the marginal likelihood on the starting
data, which mainly consists of molecules with poor
scores. This is likely to select a lower value of σ.

2. Over-smoothing: a GP with a Tanimoto kernel over
binary Morgan fingerprints is used. Since binary fin-
gerprints track only the presence or absence of cer-
tain structures rather than their count, it is possible
for molecules of vastly different sizes to be judged as
highly similar. Figure 4 shows some examples.

3. Inadequate search: their Graph GA used a very small
number of iterations compared to the batch size, such
that for every molecule chosen only ≈ 6 molecules
were proposed by the GA. This is a relatively low num-
ber, especially as GAs tend to propose molecules which
are very similar to the starting molecules. Ultimately,
this likely resulted in significant under-exploration.

To address these issues, we created a modified implemen-
tation of GP BO. To ensure a suitable prior width, we set
σ = 1.0 for the GP kernel (equation 6) knowing that all
objectives in the PMO benchmark lie in the interval [0, 1].
This ensures that the model assigns a reasonable probability
to all possible values. To fix over-smoothing, we used count
Morgan fingerprints instead of binary fingerprints. Finally,
to improve the search, we tuned the genetic algorithm pa-
rameters to propose≈ 1000 molecules per molecule chosen.
We also decreased the batch size to 1 to allow for more
iterations. To keep computational costs reasonable, we only

ran BO for 1000 iterations (10% of the evaluation budget),
and chose the remaining 9000 molecules in one large batch
by maximizing the GP posterior mean. More details and a
link to our code can be found in Appendix A.

As recommended by Gao et al. (2022), we report the AUC
Top-10 metric, which is the normalized area under the curve
of the 10th best molecule over time. The AUC Top-10
results from out experiments is shown in Table 1. The
sum of AUC Top-10 scores for our GP BO method 16.303
which is not only higher than the best method from Gao et al.
(2022) (REINVENT, with a score of 14.196), but also higher
than subsequently reported results from Tripp & Hernández-
Lobato (2023) and Kim et al. (2024). Importantly, our
GP BO implementation improves upon the implementation
from Gao et al. (2022) by over 3.0 points, which is about
the same as the score difference between the best and 10th
best methods from Gao et al. (2022). This suggests that our
changes did have a significant impact.

5. Discussion
This short paper surveyed several potential failure modes
of BO (§3) and showed empirically that a basic BO im-
plementation with these issues resolved is able to achieve
state-of-the-art performance on the PMO benchmark (Gao
et al., 2022).

However, what this paper presents should best be thought of
as a very limited pilot study, rather than a full diagnosis of
potential issues in BO. Importantly, we do not claim that BO
will work well if the three pitfalls we present are avoided.
We also did not perform an ablation study, and therefore our
results do not provide insight into how much each compo-
nent of BO influences the overall result. Additionally, we
did not experiment with changing the acquisition function,
which in practice should significantly impact BO behav-
ior. Finally, it is unclear whether results from single-task,
noiseless, and unconstrained optimization will translate to
real-world problems which tend to be multitask, noisy, and
highly constrained.

Nevertheless, we think there are good reasons to continue re-
search into BO algorithms for molecule design. Aside from
empirical performance, the BO framework allows domain
experts to incorporate their knowledge into the probabilistic
surrogate model, and produces decisions which are inter-
pretable and correctable.4 These are highly desirable prop-
erties for practical molecule design problems. Improving
surrogate models and extending BO to more complex opti-

4Specifically, the question of why one decision was made over
another can be reduced to comparing the model’s predictions for
each decision, making them interpretable. If the user dislikes
a decision, they can correct it by either changing the model (to
change its predictions) or changing the acquisition function (to
change how decisions are made from predictions).
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mization settings are active research areas which plausibly
still have a lot of low-hanging fruit left. Overall, we hope
the reader concludes from this paper that BO is a promising
technique for molecule design, and finds the explanations
and fixes of common BO problems useful.
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A. Details of BO setup
Full code for our experiments is available at:

https://github.com/AustinT/basic-mol-bo-workshop2024

Our implementation used:

• An initial set of 10 molecules randomly sampled from the ZINC 250k dataset.

• A BO batch size of 1 (i.e. one molecule is selected every iteration)

• The default GA from the MOLGA package was used as the optimizer. It used a population size of 104, an offspring
size of 200, and 5 generations.

• To prevent excessively large molecules from being produced, molecules were limited to have at most 100 heavy atoms.

• A UCB acquisition function with random β values, (logarithmically) evenly distributed in [10−2, 100].

To reduce computational requirements, we ran the above procedure for 990 iterations, then selected the remaining 9000
allowable molecules randomly. This means that our results are likely an underestimate of BO’s potential.
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B. Full results
See Table 1. The full results (including dis-aggregated AUC values and log files) are available at:

https://github.com/AustinT/basic-mol-bo-workshop2024

Table 1. AUC top-10 scores on PMO benchmark (Gao et al., 2022). ∗Taken from Gao et al. (2022).
∗∗Taken from Tripp & Hernández-Lobato (2023). †Taken from Kim et al. (2024).

Method REINVENT∗ MolGA∗∗ Genetic GFN† Our GP BO

albuterol similarity 0.882 ± 0.006 0.896 ± 0.035 0.949 ± 0.010 0.964 ± 0.050
amlodipine mpo 0.635 ± 0.035 0.688 ± 0.039 0.761 ± 0.019 0.720 ± 0.061

celecoxib rediscovery 0.713 ± 0.067 0.567 ± 0.083 0.802 ± 0.029 0.860 ± 0.002
deco hop 0.666 ± 0.044 0.649 ± 0.025 0.733 ± 0.109 0.672 ± 0.118

drd2 0.945 ± 0.007 0.936 ± 0.016 0.974 ± 0.006 0.902 ± 0.117
fexofenadine mpo 0.784 ± 0.006 0.825 ± 0.019 0.856 ± 0.039 0.806 ± 0.006

gsk3b 0.865 ± 0.043 0.843 ± 0.039 0.881 ± 0.042 0.877 ± 0.055
isomers c7h8n2o2 0.852 ± 0.036 0.878 ± 0.026 0.969 ± 0.003 0.911 ± 0.031

isomers c9h10n2o2pf2cl 0.642 ± 0.054 0.865 ± 0.012 0.897 ± 0.007 0.828 ± 0.126
jnk3 0.783 ± 0.023 0.702 ± 0.123 0.764 ± 0.069 0.785 ± 0.072

median1 0.356 ± 0.009 0.257 ± 0.009 0.379 ± 0.010 0.415 ± 0.001
median2 0.276 ± 0.008 0.301 ± 0.021 0.294 ± 0.007 0.408 ± 0.003

mestranol similarity 0.618 ± 0.048 0.591 ± 0.053 0.708 ± 0.057 0.930 ± 0.106
osimertinib mpo 0.837 ± 0.009 0.844 ± 0.015 0.860 ± 0.008 0.833 ± 0.011
perindopril mpo 0.537 ± 0.016 0.547 ± 0.022 0.595 ± 0.014 0.651 ± 0.030

qed 0.941 ± 0.000 0.941 ± 0.001 0.942 ± 0.000 0.947 ± 0.000
ranolazine mpo 0.760 ± 0.009 0.804 ± 0.011 0.819 ± 0.018 0.810 ± 0.011

scaffold hop 0.560 ± 0.019 0.527 ± 0.025 0.615 ± 0.100 0.529 ± 0.020
sitagliptin mpo 0.021 ± 0.003 0.582 ± 0.040 0.634 ± 0.039 0.474 ± 0.085

thiothixene rediscovery 0.534 ± 0.013 0.519 ± 0.041 0.583 ± 0.034 0.727 ± 0.089
troglitazone rediscovery 0.441 ± 0.032 0.427 ± 0.031 0.511 ± 0.054 0.756 ± 0.141

valsartan smarts 0.178 ± 0.358 0.000 ± 0.000 0.135 ± 0.271 0.000 ± 0.000
zaleplon mpo 0.358 ± 0.062 0.519 ± 0.029 0.552 ± 0.033 0.499 ± 0.025

Sum 14.196 14.708 16.213 16.303

7

https://github.com/AustinT/basic-mol-bo-workshop2024


Diagnosing and fixing common problems in Bayesian optimization for molecule design

C. SMILES from Figure 4
Top pair:

CCCCC

CCCCCCCCCCCCCCCCCCCC

Bottom pair:

CC1=CC=C(C=C1)C1=CC(=NN1C1=CC=C(C=C1)S(N)(=O)=O)C(F)(F)F

Cc1ccc(-c2cc(C(F)(F)F)nn2-c2ccc(-n3nc(C(F)(F)F)cc3-c3ccc(-n4nc(C(F)(F)F)cc4-c4ccc
(S(N)(=O)=O)cc4)cc3)cc2)cc1
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