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ABSTRACT

AI safety has emerged as a critical priority as these systems are increasingly de-
ployed in real-world applications. We propose the first domain-agnostic AI safety
ensuring framework that achieves strong safety guarantees while preserving
high performance, grounded in rigorous theoretical foundations. Our framework
includes: (1) an optimization component with chance constraints, (2) a safety
classification model, (3) internal test data, (4) conservative testing procedures,
(5) ζ-informative dataset quality measures, and (6) continuous approximate loss
functions with gradient computation. Furthermore, to our knowledge, we math-
ematically establish the first scaling law in AI safety research, relating data
quantity to safety-performance trade-offs. Experiments across reinforcement learn-
ing, natural language generation, and production planning validate our framework
and demonstrate superior performance. Notably, in reinforcement learning, we
achieve 3 collisions during 10M actions, compared with 1,000 - 3,000 for PPO-
Lag baselines at equivalent performance levels—a safety level unattainable by
previous AI methods. We believe our framework opens a new foundation for safe
AI deployment across safety-critical domains.

1 INTRODUCTION

As AI systems are increasingly deployed in safety-critical domains such as healthcare and trans-
portation, ensuring their safety has become a fundamental requirement rather than an optional
consideration. While recent works (Zou et al., 2023; Agnihotri et al., 2024; Liu et al., 2024a) mainly
focus on specific domains, they have a fundamental limitation: it is hard to enforce uniform safety
standards across different applications, especially for regulatory purposes, and they can struggle
when immediately applied to new AI systems that lack specialized safety techniques. Overcoming
these challenges, we propose a domain-agnostic AI safety ensuring framework that achieves
strong safety guarantees while preserving high performance, grounded in rigorous theoretical
foundations. To our knowledge, this is the first to propose a domain-agnostic AI safety framework
and validate it across multiple domains.

In this paper, we define safety as satisfying all user-specified constraints with user-specified probability
thresholds (e.g., ensuring a language model produces harmful outputs in less than 1% of cases). Our
key insight is to formulate AI safety as a constrained optimization problem by adding an optimization
component (Section 2.2). Given any AI model, we take its output and generate the final action by
optimizing the user-specified objective for high performance, while probabilistically satisfying safety
constraints. This requires two main steps: (1) estimating the probability that (a group of) action
candidates (e.g., the AI model’s output, or a fixed set) violate each safety constraint, and (2) solving
the subsequent optimization problem to find safe, high-performance actions.

How can we handle safety constraints? The fundamental challenge is that safety cannot be deter-
mined solely from AI model outputs—it depends on the true environment state. For example, in
reinforcement learning, action safety depends on the actual environment state rather than the agent’s
observations, which may contain sensor errors. We define environment state broadly: given this state,
an action’s safety and performance can be deterministically assessed.

Since perfect environment state prediction is impossible in most tasks, we formulate safety constraints
as chance constraints (Section 3.2): keeping constraint violation probabilities below user-specified
thresholds. To evaluate these chance constraints, our framework uses a safety classification model
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(Section 3.3) that generates a constraint-related output. In our experiments, these outputs are identical
to the environment states as the simplest choice; thus, the safety classification model directly estimates
the environment state. This prediction is then processed through a procedure that calculates the
posterior probability of the actual environment state given the predicted output state. These posterior
probability estimates are subsequently used for the optimization problem described above.

It is obvious that we need ground-truth safety-labeled data to run our framework. We refer to this
as internal test data (Section 3.4), which serves dual purposes: evaluating the chance constraints
through posterior probability calculations and eventually training the safety classification model.
However, using the same data for both training and evaluation creates statistical validity concerns,
particularly the risk of overfitting. Our conservative testing procedure (Section 3.6) addresses this by
deliberately overestimating safety risks by calculating the upper bound of posterior probability (thus,
the upper bound of chance constraint) estimates. The degree of overestimation (i.e., conservativeness)
in these estimates depends on what we define ζ-informative (Section 3.5): a measure of how well a
dataset covers the target probability distribution. Notably, high data quality (= good coverage = low ζ)
allows our framework to be less conservative while preserving safety guarantees. If the upper bound
of our chance constraints is still lower than user-specified probability thresholds, we can guarantee
that the system is safe.

Since we propose an entirely new framework, a natural question arises: Is this framework trainable?
This requires a loss function that is continuous with respect to the model outputs (rather than the
final actions after optimization) to enable backpropagation. To address this requirement, we propose
an approximate loss function that maintains continuity with respect to model outputs, along with
computation for tailored (virtual) gradients for training the safety classification model (and
optionally the AI model as well).

Furthermore, we mathematically establish and prove a scaling law between the quantity of internal
test data and the safety-performance trade-off—the fundamental trade-off where achieving stronger
safety guarantees typically requires accepting lower performance. For example, when fixing the
performance level, increasing the quantity of internal test data enables safer model behavior. To our
knowledge, this scaling law represents the first such theoretical relationship in AI safety research.
It demonstrates that our framework’s effectiveness scales predictably with the quantity of data,
indicating continued improvement potential beyond our experimental demonstrations.

Experiments across reinforcement learning, natural language generation, and production planning
validate our framework across diverse domains, demonstrating superior performance and empirically
confirming our scaling law. Notably, in reinforcement learning, we achieve 3 collisions during 10M
actions, compared with 1,000 - 3,000 for PPO-Lag (Ray et al., 2019) baselines at equivalent
performance levels. Building on these strong experimental results and rigorous theoretical foundations,
we believe our domain-agnostic, safety ensuring framework provides a foundation for deploying AI
systems in safety-critical applications and fosters the development of domain-agnostic AI methods.

2 PRELIMINARY

2.1 DOMAIN-AGNOSTIC AI SAFETY FRAMEWORK

In this paper, we propose a domain-agnostic framework for AI safety. We use the term domain-
agnostic to refer to a framework’s ability to work with any arbitrary AI model from any domain. To
our knowledge, this is the first work to propose a domain-agnostic AI safety framework and validate
it across multiple domains. We define a concept of AI safety that can be applied across various
domains—satisfying all user-specified constraints with user-specified probability thresholds. Thus,
we focus solely on scenarios where safety is well-defined. In this context, safety can be generally
defined in the form of constraints. Note that any form of action safety can be converted to a constraint.
For example, for an action u ∈ U ⊂ Rnu1 ×Znu21, we can use the constraint c(u) ≥ 0 with defining
c(u) = −1 when u is unsafe and c(u) = 1 otherwise.

2.2 PROBLEM SETUP & NOTATIONS

We begin by explaining the term environment state, which we denote as s ∈ S ⊂ Rns1 × Zns2 . We
define the environment state as: given this state, the safety and performance of an AI model’s final

1Rn⋆ is the space of n⋆-dimensional real vectors, and Zn⋆ is the space of n⋆-dimensional integer vectors,
where any dimension n⋆ may be zero.
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Figure 1: Our Framework. We propose a framework that chooses provably safe actions based on
any AI model’s output, while maintaining high performance.

action can be deterministically assessed. For example, in reinforcement learning, this includes the
information of the actual environment in which the agent is placed. Note that this is typically different
from the observations that the agent makes, since agent observations often contain errors (e.g., LiDAR
sensors in autonomous driving). In natural language generation, the environment state corresponds
to the ground-truth safeness of responses by the generator for a given prompt, which we cannot
know with certainty. For most tasks, obtaining the actual environment state for all possible cases is
fundamentally impossible.

We denote the input as y ∈ Y ⊂ Rny . Here, we think of y as a measurement of the environment
state s (i.e., measurement y follows a sampling-like function Samp(s)). Given an AI model f with
trained weights w ∈ Rnw and input y, the AI model produces a continuous vector f(y;w) ∈ Rnf

as output. This continuous vector is processed, and then the system outputs the final action u ∈
U ⊂ Rnu1 × Znu2 . Following the definition of safety in Section 2.1, when user-specified constraints
c : U → Rnc and user-specified parameters (including probability thresholds) r ∈ Rnr are given,
we want the system’s action u to satisfy ci(u; s, r) ≥ 0 for i = 1, . . . , nc under the probabilistic
environment state s. This can be formulated as:

min
u∈U

J(u; s, r) (1a)

subject to ci(u; s, r) ≥ 0, i = 1, . . . , nc (1b)

where J : U → R is the user-specified objective minimized to achieve high performance.

3 OUR FRAMEWORK: DEALING WITH SAFETY CONSTRAINTS

How can we deal with safety constraints? From Equation 1, both the objective J and constraints
ci are functions of the environment state s. However, as noted in Section 2.2, obtaining the actual
environment state is fundamentally impossible, making the calculation of J(u; s, r) and ci(u; s, r)
challenging. To address this challenge, we utilize a proxy objective and constraints in an optimization
component (Section 3.1), including chance constraints (Section 3.2). To evaluate these chance
constraints, we employ a safety classification model (Section 3.3) along with internal test data (Sec-
tion 3.4) and conservative testing (Section 3.6). ζ-informative (Section 3.5) is a concept we introduce
to measure the quality of a dataset, used for conservative testing. Comprehensive details are provided
in the Appendix (Sections A, B, C).

3.1 OPTIMIZATION COMPONENT

Our key insight is to formulate AI safety as a constrained optimization problem. Generalizing the
predict-and-optimize framework (Donti et al., 2017; Amos & Kolter, 2017; Kotary et al., 2021), we
add an optimization component that is guaranteed to select actions that satisfy safety constraints while
maintaining high performance, under the assumption of the existence of a safety-guaranteed default
action. Thus, given any AI model, we utilize its output and select the final action u while satisfying
user-specified constraints. We will formalize this optimization component later as Equation 6.

3
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3.2 CHANCE CONSTRAINTS

We formulate safety constraints as chance constraints by considering the probability of violating each
constraint. Thus, the safety constraints (Equation 1b) can be written as:

Pr(ci(u; s, r) < 0) ≤ rt,i, i = 1, . . . , nc (2)
where Pr indicates probability, and rt,i ∈ R is the user-specified probability threshold. Note that
chance constraints are optional; for example, they are not required for deterministic constraints.

3.3 SAFETY CLASSIFICATION MODEL

We use the subscript cr for ‘constraint-related’. Then, we divide the environment state s into two parts:
scr ∈ Scr is the necessary part to determine the constraints c, and sncr ∈ Sncr is the remainder.2
Similarly, since the AI model generates output o which is not related to the safety constraints, we
denote this as oncr ∈ Oncr.

Motivated by the need to estimate scr, we introduce a safety classification model that generates
ocr ∈ Ocr—the prediction that is constraint-related3. Since we cannot directly obtain scr and our
safety constraints are now formulated as probabilities (Equation 2), we aim to calculate the posterior
probability p(scr|ocr). Throughout this paper, for simplicity, we assume scr and ocr take discrete
values (e.g., in our natural language generation experiments, scr would be either “harmful”= 1 or
“harmless”= 0). Let Scr = {s̄1, . . . , s̄nscr

} and Ocr = {ō1, . . . , ōnocr
} denote the sets of possible

discrete values for scr and ocr, respectively. While Ocr does not need to be identical to Scr, for
simplicity, we use Ocr = Scr in our experiments.4 Thus, our safety classification model directly
estimates the environment state.

In practice, the safety classification model offers considerable flexibility in implementation; in our
experiments, we use the same structure or a reduced variant of the given AI model f . We denote the
weights of the AI model as wncr and weights of the safety classification model as wcr, giving us
f(y;wncr) and fcr(y;wcr), respectively.

3.4 INTERNAL TEST DATA

How can we calculate the aforementioned posterior probability p(scr = s̄i|ocr = ōj)? We intro-
duce internal test data, ground-truth safety-labeled data consisting of samples for which we know
the constraint-related environment state s. Let us denote the internal test data as measurements
yt1 , . . . ,ytnt , each associated with environment state labels st1cr, . . . , s

tnt
cr , respectively (we only use

the constraint-related part of s for internal test data, so we write it as scr). To compute the posterior
probability, we add internal test data to the input:

y = (yr,yt1 , · · · ,ytnt ) (3)
where yr is the user-given input (what we previously referred to as y). After processing this input y
through our safety classification model, we can count the total number of internal test cases for each
environment state as Nscr=s̄i =

∑nt

k=1 1(s
tk
cr, s̄i) and for each output and environment state pair as

Nscr=s̄i,ocr=ōj =
∑nt

k=1 1(s
tk
cr, s̄i) · 1(otkcr, ōj).5 Then, we can estimate the following probability:

p(ocr = ōj |scr = s̄i) ≃
Nscr=s̄i,ocr=ōj

Nscr=s̄i

(4)

Assuming that the user specifies the prior knowledge p(scr = s̄i), we can calculate the posterior
probability using Bayes’ rule:

p(scr = s̄i|ocr = ōj) =
p(ocr = ōj |scr = s̄i) · p(scr = s̄i)∑nscr

k=1 p(ocr = ōj |scr = s̄k) · p(scr = s̄k)
(5)

Since our goal is to replace the non-obtainable environment states s with our estimates o, we show
that Equation 1 can be converted into:

min
u∈U

J̄(u;o, r) (6a)

subject to c̄i(u;o, r) ≥ 0, i = 1, . . . , nc̄ (6b)

2ncr stands for non-constraint-related.
3Thus, (ocr,oncr) = o ∈ O ⊂ Rno1 × Zno2

4Note that our mathematical foundation throughout the paper is not constrained by this choice.
51(x1, x2) is the indicator function that equals 1 when x1 = x2 and 0 otherwise.
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where J̄ is J written in terms of o 6, and c̄i is ci written in terms of o as:

c̄i(u;o, r) := max
q1,...,qNe∈{0,1}∑

k p(scr=s̄k|ocr=or
cr)·qk≤rt,i

min
k

(
ci(u; s̄k, r) +M · qk

)
(7)

Here, M is a sufficiently big constant, following the big-M method (Cococcioni & Fiaschi, 2021).
All proofs and derivation details are provided in Section B.2.

During inference, internal test data enables posterior probability calculations while serving as final
validation that ensures the trained safety classification model remains reliable. This validation
addresses reliability concerns inherent in neural networks, with minimal computational overhead
since the inference of the model with respect to the internal test data is performed only once.

3.5 ζ-INFORMATIVE

The process of calculating posterior probabilities, described in Section 3.4, utilizes internal test data
to evaluate the safety classification model, and this same data will eventually be used to train the
framework (Section 4). This implies using the same data for both training and evaluation, creating
statistical validity concerns, particularly the risk of overfitting. Before introducing our solution to
address this challenge (conservative testing: Section 3.6), we will first present a concept ζ-informative,
which measures the quality of a dataset.

This concept measures how well a dataset covers the entire data space with respect to the target
probability distribution. Consider the entire data space, where each data sample (total ns) of a dataset
represents a point within this space. We can conceptualize ζ-balls centered at each dataset point
with radius ζ. We define a dataset as ζ-informative if, for every number k = 1, . . . , ns, an arbitrary
selection of k ζ-balls covers a proportion of the entire data space that is at least k/ns. If the dataset
points do not fully cover the probability distribution or are insufficiently dense, a high ζ value would
be required to satisfy this condition. Therefore, a dataset with a small ζ value (when the dataset is
ζ-informative) contains data samples that densely and comprehensively cover the entire probability
distribution, meaning the dataset follows the target probability distribution well.

We also prove Pr(lim|D|→∞ inf(ζ |D : ζ − informative) = 0) = 1: under mild conditions, sam-
pling sufficient data points from the probability distribution enables us to achieve a sufficiently high
quality. The mathematical definition of ζ-informative and all proofs are provided in Section C.1.

3.6 CONSERVATIVE TESTING

We introduce conservative testing to address the statistical validity concerns arising from using the
same data for both training and evaluation. Our approach deliberately overestimates safety risks by
adding a penalty term ξ to the intermediate results of the safety classification model (e.g., logit values
before the argmax function), making the safety constraints more conservative.

We assume and leverage the Lipschitz continuity property of AI models, which ensures that similar
inputs produce similar outputs with bounded differences. Building on the ζ-balls from Section 3.5,
we define ξ-balls B(ϕ0, ξ), centered at ϕ0 := f(ytk ;wcr) in the output (logit) space, which includes
the (image of) ζ-balls that are passed through the safety classification model. We define two indicator
functions 1+ξ and 1−ξ that capture the classification status within these ξ-balls: 1+ξ(ϕ0, ōj) equals
1 if any point in the ξ-ball B(ϕ0, ξ) would be classified as ōj , while 1−ξ(ϕ0, ōj) equals 1 only if all
points in the ξ-ball B(ϕ0, ξ) would be classified as ōj .7 Using these indicator functions, we define
ξ-versions of the likelihood (Equation 4) by:

N±ξ
scr=s̄i,ocr=ōj

:=

nt∑
k=1

1(stkcr, s̄i) · 1±ξ(otkcr, ōj), p
±ξ(ocr = ōj |scr = s̄i) :=

N±ξ
scr=s̄i,ocr=ōj

Nscr=s̄i

(8)

We prove that under mild conditions, the true likelihood is bounded as:

p−ξ(ocr = ōj |scr = s̄i) ≤ p(ocr = ōj |scr = s̄i) ≤ p+ξ(ocr = ōj |scr = s̄i) (9)

6For example, J̄(u;o, r) can be set as Es[J(u; s, r)|o]
7Mathematically, where argmax(ϕ) is the post-processing operator for the safety classification model,

1+ξ(ϕ0, ōj) := maxϕ∈B(ϕ0,ξ) 1(argmax(ϕ), ōj) and 1−ξ(ϕ0, ōj) := minϕ∈B(ϕ0,ξ) 1(argmax(ϕ), ōj).
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This allows us to calculate an upper bound of the posterior probability (Equation 5):

pξ(scr = s̄i|ocr = ōj) :=
p+ξ(ocr = ōj |scr = s̄i) · p(scr = s̄i)∑nscr

k=1 p
−ξ(ocr = ōj |scr = s̄k) · p(scr = s̄k)

(10)

We define the conservative constraints c̄ξi (u;o, r) by replacing p with pξ in Equation 7. Crucially,
smaller ζ-balls (= higher dataset quality) lead to smaller ξ-balls, enabling less conservative safety
constraints. Based on these conservative constraints, we establish and prove the following guarantees
under mild conditions: (1) every feasible solution under these conservative constraints also satisfies
the actual constraints, and (2) the actual loss is upper-bounded by the loss we achieve when optimizing
under conservative constraints. The first property ensures safety, and the second property directly
addresses concerns about overfitting. Unlike traditional overfitting, where training performance
improves while validation performance degrades, our approach provides an upper bound guarantee:
significant improvements in training loss under conservative constraints guarantee improvements in
actual loss, thus addressing overfitting. All conditions and proofs are provided in Section C.2.

4 TRAINING & RUNNING THE FRAMEWORK

This section details the training and deployment of our framework. The main challenge lies in
constructing a continuous loss function suitable for backpropagation. The user-given loss function
L(u,o; s, r) depends on the action u, where the process of selecting the optimal u can be discontinu-
ous with respect to model outputs o, and multiple optimal u may yield different loss values. These
factors make the overall loss likely non-differentiable with respect to model weights. We address this
problem by developing a continuous loss approximation (Section 4.1) and corresponding gradient cal-
culation methods (Section 4.2). Additionally, for practical deployment, we introduce a bias correction
technique that enables safety threshold adjustments without requiring retraining (Section 4.3).

4.1 APPROXIMATE LOSS FUNCTION

We extend prior work (Vlastelica et al., 2020), which presents an approximate loss function for
unconstrained problems with linear objective functions. Our contribution extends this approach to
general optimization problems with continuous objectives and constraints.

Our approximation introduces two key parameters: β ∈ Rnc to merge the constraints into the
objective function, and λ ∈ R to ensure that our approximate loss function L̃ converges to the true
loss L. This yields:

L̃(o; s, r,β, λ) =
1

λ

(
min
u∈U

(
λL(u,o; s, r) + J̄(u;o, r)− β⊤ min(c̄(u;o, r),0)

)
−min

u∈U

(
J̄(u;o, r)− β⊤ min(c̄(u;o, r),0)

)) (11)

We prove that under mild conditions, when λ is sufficiently small and β is sufficiently large, the
approximate loss function L̃, which is continuous with respect to o, converges to the true loss function
L∗(o; s, r) := L(u∗,o; s, r), where u∗ is the optimal solution of the optimization problem (Equa-
tion 6).8 All conditions and proofs are provided in Section D.

4.2 GRADIENT COMPUTATION

We compute the (virtual) gradients of the approximate loss L̃ and backpropagate them to train the
safety classification model and, optionally, the AI model. Given the input formulation in Equation 3,
we calculate gradients with respect to both the input yr and internal test data yt, then propagate
these through the model outputs o to the model parameters wcr and wncr. Gradient computation
is especially challenging when outputs are discrete or when L̃ is non-differentiable. We show in
Section E that under mild conditions, (virtual) gradients with respect to both yr and yt can be
calculated, despite these challenges.

8When multiple optimal solutions exist, we select u∗ as the one that minimizes L(u∗,o; s, r).
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4.3 BIAS CORRECTION WHEN RUNNING

Our framework enables threshold adjustments during deployment without requiring retraining, thanks
to the bias correction technique. We modify the safety classification model by adding a constant
bias vector v to the final layer: f ′cr(y;wcr) = fcr(y;wcr) + v. This produces adjusted outputs o′

cr
while preserving all theoretical properties of our framework. At deployment, we first run inference
on internal test data, then compute the bias vector v that makes the adjusted posterior upper bound
pξ(scr = s̄i|o′

cr = ōj) match the desired threshold values. More details could be found in Section G.

5 SCALING LAW

We mathematically establish a scaling law that characterizes the relationship between the quantity
of internal test data and the trade-off between safety and performance. This trade-off represents the
fundamental tension, where achieving stronger safety guarantees typically requires accepting lower
performance. For example, when the performance level is fixed, increasing the quantity of internal
test data enables safer model behavior. Specifically, our scaling law determines the number of internal
test data points required to bound both Type I errors (misclassifying unsafe actions as safe) and Type
II errors (misclassifying safe actions as unsafe). Under mild conditions, Theorem 3 formalizes this
relationship as:

Nreqit ≤ Aα−2ny (12)
where α is the upper bound of both Type I and Type II error, A is a constant, ny is the dimension of
measurement space, and Nreqit is the expected number of required internal test data. This theorem
establishes an inverse power-law relationship between the error bound and the number of internal
test data points required. Our scaling law demonstrates that the effectiveness of our framework
scales predictably with the quantity of data, indicating continued improvement potential beyond our
experimental demonstrations. The formal conditions and proof are provided in Section F.

6 EXPERIMENTS

We validate our framework in three diverse domains. First, we demonstrate effectiveness in reinforce-
ment learning using SafetyGym (OpenAI, 2019b), OpenAI’s RL safety benchmark (Section 6.1).
With abundant internal test data available through simulation, we achieve superior performance that
confirms our scaling law. We then demonstrate our applicability and superior performance on natural
language generation through simple experiments (Section 6.2). Finally, we experiment on production
planning, a major industrial problem, showcasing our framework’s general applicability across
various domains and the ability to handle very complex optimization problems (Section 6.3). For
each experiment, we present scatter plots that illustrate the performance-safety trade-off. Additional
details and computational analysis are provided in the Appendix (Sections H, I, J, K).

6.1 REINFORCEMENT LEARNING (SAFETYGYM)

Problem Setup. We use the ‘Safexp-PointGoal1-v0’ environment from SafetyGym (OpenAI,
2019b). The agent must navigate to a designated goal location while avoiding hazardous regions.
The measurement y consists of simulated LiDAR and IMU outputs, and the action u comprises
agent acceleration (range [−1, 1]) and angular velocity (range [−1, 1]). We define an action as unsafe
if it leads the agent to enter a hazard region (= collision) within 60 subsequent actions, yielding
Scr = Ocr = {0, 1}, where 0 represents “safe” and 1 represents “unsafe”.

Baselines. We compare against three baselines: PPO (Schulman et al., 2017), PPO-Lag (Ray et al.,
2019), and PPO-Barrier (Yang et al., 2023). PPO serves as an unconstrained baseline, trained solely
for goal achievement without safety considerations. PPO-Lag represents the standard approach for
constrained RL with safety requirements. PPO-Barrier is one of the current state-of-the-art methods
for SafetyGym environments.

Implementation. We integrate both PPO and PPO-Lag into our framework. These methods output
mean and standard deviation parameters, so oncr = (µ, σ), modeling the action distribution as
N (µ, σ2). We effectively discretize this continuous action space, remove unsafe candidates through
our framework, and sample the final action from the remaining safe options. To generate internal test
data, we pre-train PPO and PPO-Lag agents for 10,000 epochs each (one epoch equals a scenario
consisting of 1,000 actions), and collect internal test data through simulations, obtaining 5M unsafe

7
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A B

Figure 2: Reinforcement learning. (A) Our framework achieves dramatically low collision rates
with competitive performance. (B) Our framework demonstrates clear scaling properties.

and 5M safe data points each. We define a default action d̂ for cases when all action candidates
are classified as unsafe9. The optimization objective J̄ is set as J̄(d̂) > 0 and J̄(u) = 0 for other
actions, encouraging the agent to avoid default action usage and thus improve performance. We train
our framework starting from the 10, 000-epoch pre-trained PPO and PPO-Lag models as initial AI
models, which are fine-tuned jointly with the safety classification model using a safety probability
threshold of 10−4. For the safety classification model, we use a variant of the AI model architecture
that is around one-third the size.

Results. Figure 2-A illustrates the safety-performance trade-off. Each point represents the re-
sults of simulating trained agents for 10,000 epochs10. Multiple points are shown for methods
that handle different safety probability thresholds (our framework and its ablations) or cost limit
levels (PPO-Lag). Lower probability thresholds yield fewer collisions but reduced performance,
demonstrating the fundamental safety-performance trade-off. Our method efficiently explores differ-
ent thresholds (10−5−1.0) using the bias correction technique from Section 4.3. Compared baselines
include PPO and PPO-Lag trained for 10,000 or 30,000 epochs (to ensure fair comparison in terms of
data exposure), and PPO-Barrier trained for 10,000 epochs.11 Using extremely low thresholds, our
PPO-Lag-based framework (red-star points) achieves only 3 collisions during 10,000 epochs (10M
actions). To our knowledge, this represents a safety level unattainable by previous AI methods,
opening possibilities for safety-critical applications where even rare failures can be catastrophic.
Notably, at equivalent reward (performance) levels, standard PPO-Lag (yellow points) experiences
1,000 - 3,000 collisions. Figure 2-B validates our scaling law.

Ablation Studies. We conduct ablation studies (silver, gold points) by disabling AI model fine-
tuning and conservative testing. The safety classification model is trained using standard Cross-
Entropy loss instead of our approximate loss from Section 4.1. These ablations essentially reduce to
rejection sampling methods (von Neumann, 1951; Srinivasan et al., 2020). Our complete framework
outperforms these ablations, demonstrating the importance of components and the potential for
superior performance compared to rejection sampling-based methods.

6.2 NATURAL LANGUAGE GENERATION

Problem Setup and Implementation. We generate harmless responses u given input prompts
y. The AI model generates 16 candidate responses, where the environment state indicates the
harmlessness of each, yielding Scr = Ocr = {0, 1}16. The AI model is OPT-1.3B (Zhang et al.,
2022) fine-tuned with PPO-Lag on the SafeRLHF dataset (Dai et al., 2024). Each generated response
is concatenated with the input prompt y and processed through our safety classification model, for
which we LoRA fine-tune (Hu et al., 2022) OPT-350M12. Internal test data is generated using our
fine-tuned OPT-1.3B with a pre-trained safety cost model from SafeRLHF (Dai et al., 2024). We
define a default response d̂ for cases when all candidates are classified as unsafe13. Note that we only
trained the safety classification model for this experiment, with a threshold of 0.001.

9Default action policy: if current speed is high, decelerate; if current speed is low, stop.
10During each epoch: when the agent enters a hazardous region, the environment resets; when the agent

reaches the goal, only the goal location resets.
11PPO-Barrier trained for 30,000 epochs obtained negative rewards.
12We use LoRA fine-tuning and a smaller LLM to prevent overfitting and ensure stable training, following

standard practice of using less expressive networks for reward models (Ouyang et al., 2022).
13Default response: “I’m sorry, I regret I cannot respond to this question. ...”
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CA B

Figure 3: Natural language generation. (A) Our framework outperforms our baseline and abla-
tions (rejection sampling). (B) Our framework successfully achieves constraint violations lower than
designated thresholds. (C) Our framework demonstrates clear scaling properties.

Results. Figure 3-A illustrates the safety-performance trade-off. As in Figure 2-A, multiple points
are achieved using different safety probability thresholds. Our framework (red points) outperforms
the baseline AI model (OPT-1.3B fine-tuned with PPO-Lag, blue points). Similar to Section 6.1,
we conduct ablation studies (yellow, green points) by disabling conservative testing and training
the safety classification model with standard Cross-Entropy loss instead of our approximate loss,
effectively reducing to rejection sampling methods. Notably, our framework outperforms the ablation
with LoRA fine-tuning and achieves competitive performance compared to the ablation without
LoRA. This demonstrates the potential of our framework for superior performance compared to recent
rejection sampling methods.

6.3 PRODUCTION PLANNING WITH DEMAND PREDICTION

To demonstrate the general applicability and ability of our framework to handle complex optimization
problems, we experiment with production planning—a major industrial problem. The task involves
optimizing production decisions based on predicted demands from historical demand data. We
define “unsafe” as planning production (instead of stopping) when actual demand falls below a
specified threshold. Unlike most optimization problems that handle linear constraints, ours involves
challenging second-order cone constraints—which, to our knowledge, represents the first attempt to
jointly utilize such constraints with AI. We demonstrate that our framework achieves higher revenue
than baseline methods. Due to space limitations, detailed results are provided in Section H.

7 CONCLUSION

In this paper, we propose a domain-agnostic framework that ensures action safety while maintaining
high performance across arbitrary AI models and domains. We combine an optimization component
with the AI model and formulate safety constraints as chance constraints. We utilize a safety
classification model to evaluate chance constraints, along with internal test data and conservative
testing procedures. We introduce an approximate loss function and corresponding tailored gradient
computation for end-to-end training. Finally, we mathematically establish and prove the first scaling
law between the quantity of data and safety-performance trade-offs.

While our approach demonstrates broad effectiveness, several considerations merit discussion. The
framework requires sufficient data to achieve high performance, though it scales effectively with
increased data availability. The framework requires additional computational resources as discussed
in Section K, though the overhead is modest (e.g., only 18% for natural language generation infer-
ence). Adversarial attacks on unseen data may pose potential threats to safety guarantees; however,
continuous updates to internal test data, combined with user-provided and continuously updated prior
information, could enable rapid system adaptation and efficient attack mitigation. Performance may
also be constrained when applying bias correction with thresholds that are substantially different
from the training values.

Nevertheless, experimental validation across reinforcement learning, natural language generation,
and production planning demonstrates the framework’s broad applicability. The unprecedented safety
levels achieved while maintaining competitive performance suggest promising transferability to other
safety-critical domains. We expect this method to serve as a key milestone for safe and human-aligned
deployment of AI applications.

9
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ETHICS STATEMENT

Our domain-agnostic AI safety framework is designed to enhance safety across critical applications
by providing mathematical guarantees for constraint satisfaction. We believe that advancing rigorous,
mathematically grounded approaches to AI safety is essential for the responsible deployment of AI
systems. However, we emphasize that proper validation with sufficient internal test data is crucial
before deployment, as safety guarantees depend on the quality and representativeness of this data.
We encourage researchers to apply these techniques responsibly and recommend thorough testing in
controlled environments before considering real-world deployment in safety-critical applications.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide complete mathematical formulations, proofs, and algorithmic
details in the Appendix sections referenced throughout the paper. Implementation specifics for
all three experimental domains are detailed in the Appendix as well (reinforcement learning on
SafetyGym: Section I, natural language generation: Section J, production planning: Section H),
including hyperparameters, training procedures, data pre-processing steps, and experiment details. We
include anonymous source code as supplementary materials containing our framework implementation
and experimental scripts for generating the reported results. Note that a portion of the code for natural
language generation experiments has been omitted due to licensing issues.

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
ICML, 2017.

U.S. Energy Information Administration. Hourly electricity demand data for new york (ny) re-
gion, 2020-2023, 2020-2023. URL https://api.eia.gov/v2/electricity/rto/
region-data/data/.

Akhil Agnihotri, Rahul Jain, and Haipeng Luo. Acpo: A policy optimization algorithm for average
mdps with constraints. In ICML, 2024.

Mohammed Alshiekh, Roderick Bloem, Bettina Könighofer Rüdiger Ehlers, Scott Niekum, and Ufuk
Topcu. Safe reinforcement learning via shielding. In AAAI, 2018.

Brandon Amos and J. Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In ICML, 2017.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson,
Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson,
Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile
Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mercado,
Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec,
Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom
Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario Amodei,
Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional ai: Harmlessness
from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Marco Cococcioni and Lorenzo Fiaschi. The big-m method with the numerical infinite m. Optimiza-
tion Letters, 2021.

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel Liu, Yizhou Wang, and Yaodong
Yang. Safe rlhf: Safe reinforcement learning from human feedback. In ICLR, 2024.

Priya L. Donti, Brandon Amos, and J. Zico Kolter. Task-based end-to-end model learning in stochastic
optimization. In NeurIPS, 2017.

Python Software Foundation. Python/C API Reference Manual, 2024. URL https://docs.
python.org/3/c-api/.

10

https://api.eia.gov/v2/electricity/rto/region-data/data/
https://api.eia.gov/v2/electricity/rto/region-data/data/
https://docs.python.org/3/c-api/
https://docs.python.org/3/c-api/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda Askell, Yuntao Bai, Saurav Kadavath, Ben
Mann, Ethan Perez, Nicholas Schiefer, Kamal Ndousse, Andy Jones, Sam Bowman, Anna Chen,
Tom Conerly, Nova DasSarma, Dawn Drain, Nelson Elhage, Sheer El-Showk, Stanislav Fort, Zac
Hatfield-Dodds, Tom Henighan, Danny Hernandez, Tristan Hume, Josh Jacobson, Scott Johnston,
Shauna Kravec, Neel Nanda, Catherine Olsson, Sam Ringer, Eli Tran-Johnson, Dario Amodei,
Tom Brown, Nicholas Joseph, Sam McCandlish, Chris Olah, Jared Kaplan, and Jack Clark. Red
teaming language models to reduce harms: Methods, scaling behaviors, and lessons learned. arXiv
preprint arXiv:2209.07858, 2022.

Javier García and Fernando Fernández. A comprehensive survey on safe reinforcement learning. In
JMLR, 2015.

Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A. Smith. Realtoxi-
cityprompts: Evaluating neural toxic degeneration in language models. In EMNLP Findings,
2020.

Sebastien Gros, Mario Zanon, and Alberto Bemporad. Safe reinforcement learning via projection on
a safe set: How to achieve optimality? In IFAC, 2020.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. In ICML, 2017.

LLC Gurobi Optimization. Gurobi Optimizer Reference Manual, 2024. URL https://www.
gurobi.com.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 1997.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In ICLR, 2022.

Ashish Kumar Jayant. Ppo_lagrangian_pytorch, 2022. URL https://github.com/
akjayant/PPO_Lagrangian_PyTorch.

Jiaming Ji, Mickel Liu, Juntao Dai, Xuehai Pan, Chi Zhang, Ce Bian, Ruiyang Sun, Yizhou Wang,
and Yaodong Yang. Beavertails: Towards improved safety alignment of llm via a human-preference
dataset. In NeurIPS, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Beomjun Kim and Heejin Ahn. Chance-constrained control with imperfect perception modules. In
ACC, 2023.

Beomjun Kim, Jaehwan Kim, Kangyeon Kim, Sunwoo Kim, and Heejin Ahn. A computation-efficient
method of measuring dataset quality based on the coverage of the dataset. In AISTATS, 2025.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, and Bryan Wilder. End-to-end constrained
optimization learning: A survey. In IJCAI, 2021.

Lambda Labs. Lambda gpu cloud, 2025. URL https://lambda.ai/.

Jan Leike, Miljan Martic, Victoria Krakovna, Pedro A. Ortega, Tom Everitt, Andrew Lefrancq,
Laurent Orseau, and Shane Legg. Ai safety gridworlds. arXiv preprint arXiv:1711.09883, 2017.

Bolian Li, Yifan Wang, Anamika Lochab, Ananth Grama, and Ruqi Zhang. Cascade reward sampling
for efficient decoding-time alignment. arXiv preprint arXiv:2406.16306, 2024.

11

https://www.gurobi.com
https://www.gurobi.com
https://github.com/akjayant/PPO_Lagrangian_PyTorch
https://github.com/akjayant/PPO_Lagrangian_PyTorch
https://lambda.ai/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei Xiao. Autodan: Generating stealthy jailbreak
prompts on aligned large language models. In ICLR, 2024a.

Yi Liu, Gelei Deng, Zhengzi Xu, Yuekang Li, Yaowen Zheng, Ying Zhang, Lida Zhao, Tianwei
Zhang, Kailong Wang, and Yang Liu. Jailbreaking chatgpt via prompt engineering: An empirical
study. arXiv preprint arXiv:2305.13860, 2024b.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In ICLR, 2018.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman. Webgpt:
Browser-assisted question-answering with human feedback. arXiv preprint arXiv:2112.09332,
2021.

OpenAI. Safety starter agents. https://github.com/openai/
safety-starter-agents, 2019a.

OpenAI. Safety gym. https://github.com/openai/safety-gym, 2019b.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback. In NeurIPS,
2022.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep
reinforcement learning. OpenAI Blog, 2019. URL https://openai.com/index/
benchmarking-safe-exploration-in-deep-reinforcement-learning/.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Manajit Sengupta, Yu Xie, Anthony Lopez, Aron Habte, Galen Maclaurin, and James Shelby. The
national solar radiation data base (nsrdb). Renewable and Sustainable Energy Reviews, 2018.

Krishnan Srinivasan, Benjamin Eysenbach, Sehoon Ha, Jie Tan, and Chelsea Finn. Learning to be
safe: Deep rl with a safety critic. arXiv preprint arXiv:2010.14603, 2020.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Alpaca: An instruction-following llama model. Stanford CRFM
Blog, 2023. URL https://crfm.stanford.edu/2023/03/13/alpaca.html.

Ashwin K Vijayakumar, Michael Cogswell, Ramprasath R Selvaraju, Qing Sun, Stefan Lee, David
Crandall, and Dhruv Batra. Diverse beam search: Decoding diverse solutions from neural sequence
models. In AAAI, 2018.

Marin Vlastelica, Anselm Paulus, Vít Musil, Georg Martius, and Michal Rolínek. Differentiation of
blackbox combinatorial solvers. In ICLR, 2020.

John von Neumann. Various techniques used in connection with random digits. In Applied Mathe-
matics Series 12, 1951.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals,
Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models. TMLR,
2022.

Yujie Yang. Model-free safe reinforcement learning through neural barrier certificate. https:
//github.com/jjyyxx/srlnbc, 2023.

Yujie Yang, Yuxuan Jiang, Yichen Liu, Jianyu Chen, and Shengbo Eben Li. Model-free safe
reinforcement learning through neural barrier certificate. IEEE Robotics and Automation Letters,
2023.

12

https://github.com/openai/safety-starter-agents
https://github.com/openai/safety-starter-agents
https://github.com/openai/safety-gym
https://openai.com/index/benchmarking-safe-exploration-in-deep-reinforcement-learning/
https://openai.com/index/benchmarking-safe-exploration-in-deep-reinforcement-learning/
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://github.com/jjyyxx/srlnbc
https://github.com/jjyyxx/srlnbc


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J. Zico Kolter, and Matt Fredrikson. Universal
and transferable adversarial attacks on aligned language models. arXiv preprint arXiv:2307.15043,
2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A A General Controllable Predict+Optimize Framework 16

A.1 Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

A.2 Predict+Optimize Framework Formulation . . . . . . . . . . . . . . . . . . . . . . 16

B Dealing Constraints: Chance-Constrained Method 17

B.1 Constraints: How to deal? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

B.2 Chance-constrained method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

C Conservative Testing with Internal Test Data 21

C.1 Defining real performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

C.2 Conservative Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

D Construction of the Loss function for Training 29

E Computation of gradient 37

E.1 Real output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

E.2 Gradients for internal test data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

F Scaling Law 41

G Bias Correction to Tailor to User-Given Threshold in Utilization 44

H Production planning with demand prediction 45

H.1 Problem setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

H.2 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

H.3 Implemented methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

H.4 Code structure and execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

H.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

I Reinforcement learning in Safetygym 52

I.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

I.2 Pretraining PPO agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

I.3 Collecting the internal test data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

I.4 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

I.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

I.6 Scaling law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

J Natural language generation 58

J.1 Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

J.2 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

J.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

J.4 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

J.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

K Computational Cost Analysis 65

K.1 Reinforcement Learning (SafetyGym) . . . . . . . . . . . . . . . . . . . . . . . . 65

K.2 Natural Language Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

L Related Works 67

M Use of Large Language Models 67

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A A GENERAL CONTROLLABLE PREDICT+OPTIMIZE FRAMEWORK

This section addresses decision-making problems that rely on perception performed by an informa-
tion processing module, considering user-specified parameters. The information processing module
encompasses any computational system, including random forests, regression models, genetic al-
gorithms, neural networks, AI models, and other algorithmic approaches. The perception process
includes any methodology for acquiring and processing information from the environment.

Within this paper’s scope, we define these concepts as follows:

• Information processing module: The integrated computational system comprising both the
AI model and the safety classification model described in the main text.

• Perception: The complete process encompassing environment state measurement and all
subsequent computational steps required to generate the output o.

The user-specified parameters can be regarded as knobs for users and used for customization. Since
these parameters are a part of the optimization problem, which is more directly interpretable than
an AI-based information processing module, this method can offer intuitive customization of AI.
Moreover, our framework is a general form of an optimization problem, including continuous
and discrete variables, prediction results of the perception outputs, and user-given customization
parameters.

This section contains the following: First, we present our general problem setup. Second, we
formulate our general framework, in which user-given customization parameters are included in the
optimization problem.

A.1 PROBLEM SETUP

We want to minimize J(u; s, r) with variable u ∈ U ⊂ Rnu1 × Znu2 , which correspond to the
final action of our system, under user-given parameters r ∈ Rnr and environment state s ∈ S ⊂
Rns1 × Zns2 . Note that bold notations denote vectors. The real objective J can be unknown, and we
cannot directly handle it even if it is known, because it is a function of the environment state for which
we do not have full information. We can measure14 y that follows the function Samp(s), which is the
probability distribution of measurement from the environment state, and use it to obtain information
about the environment state s. Constraints ci(u; s, r) ≥ 0, i = 1, . . . , nc can also exist. Note
that some constraints may depend on the environment state s and others may not. Without loss of
generality, we assume that ci for i = 1, . . . , ncg does not depend on s and ci for i = ncg + 1, . . . , nc
depend on s.

A.2 PREDICT+OPTIMIZE FRAMEWORK FORMULATION

Our approach to the problem in Section A.1 consists of two parts: an information processing module
that processes measurement results and an optimization stage. The information processing module
takes the measurement result y as input and generates output o ∈ O. The processing information
processing module may consider the user-given parameters r for customization as input to obtain a
tailored output o, thereby achieving the best performance under r.

Then, we calculate optimal u according to the following optimization problem. Here, J̄(u;o, r)
is the objective of the optimization stage, which is normally similar to the real objective J(u; s, r)
provided that the output o is well processed. Similarly, we have constraints of the optimization
stage c̄i(u;o, r) ≥ 0, i = 1, . . . , nc̄, which may partially or fully reflect the real constraints
ci(u; s, r) ≥ 0, i = 1, . . . , nc.

min
u∈U

J̄(u;o, r) (13a)

subject to c̄i(u;o, r) ≥ 0, i = 1, . . . , nc̄ (13b)

Note that the final output of the whole system is the action u, and the performance of the entire
system depends only on u in general. Nevertheless, we deal with a highly general loss function that
can include the optimal objective of the optimization stage or the prediction accuracy (Section D).

14The input y could also be thought of as a measurement from the environment.
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B DEALING CONSTRAINTS: CHANCE-CONSTRAINED METHOD

Safety is one of the most significant concerns associated with AI-based decision-making. Pure
machine-learning-based algorithms are trained by minimizing loss functions only, and it is not
straightforward to directly enforce constraint satisfaction. Hence, their safety is difficult to guarantee
entirely. Some studies (García & Fernández, 2015; Gros et al., 2020) have been conducted to
ensure safety by projecting the results into a safe area to overcome this. However, they also have
the disadvantages of being suboptimal and failing to guarantee the satisfaction of nondeterministic
constraints. This highlights why pure deep learning-based methods may face challenges when
deployed in safety-critical applications such as autonomous driving of passenger cars.

This section presents the method that adopts chance-constrained optimization into our general
formulation to guarantee probabilistic constraint satisfaction. To ensure that the constraints are
satisfied above the given probability, the performance of the information processing module is
evaluated with labeled sample data before the optimization stage. The probability of each actual
situation (environment state) for each result of the information processing module (= posterior
probability) is calculated based on the prior probability of each situation, as specified by the custom
parameters, and the evaluation result. Reflecting on this, we determine how conservatively we decide
our action (control output) in the optimization stage to satisfy the constraint with a probability above
a given value. In the learning stage, the loss function is defined and learned based on the performance
of these conservative actions to ensure constraint satisfaction.

This section contains the following content: First, we provide a general discussion about dealing
with constraints in decision-making with perception. Second, we formulate our chance-constrained
method to guarantee safety in the framework presented in the previous section. Third, we present the
technique for obtaining conservative actions and prove the conditions under which it can be a valid
approach for training the chance-constrained method within this framework.

B.1 CONSTRAINTS: HOW TO DEAL?

In general, we have some constraints that our actions should satisfy. These constraints can be divided
into two groups according to whether they are deterministic. Deterministic constraints do not depend
on the environment state (s in the problem setup from the former section), thus we do not need to
measure s to know the constraint. Constraints in this group are generally easy to deal with because
they can be directly considered in the decision-making stage (optimization stage in our formulation).
Even though a method that cannot deal with constraints is used, such as pure machine learning,
the satisfaction of constraints in this group can be guaranteed by post-processing the action (e.g.,
projecting it to the constraint-satisfying region).

Conversely, some constraints can be nondeterministic. These constraints may depend on s; thus,
we should obtain the information about the environment state to satisfy the constraint. Note that
constraints that include pure randomness, such as random variables following a standard normal
distribution, are also classified in this group since such pure randomness can also be a part of s.
Nondeterministic constraints cannot be considered directly in the decision-making stage. Instead,
we can pursue satisfying them for probabilities larger than given probability values. The central
concept of this section is obtaining the posterior distribution of s and taking our action conservatively
to guarantee constraint satisfaction for these constraints over the given probabilities.

B.2 CHANCE-CONSTRAINED METHOD

In this subsection, we present the chance-constrained method to guarantee the satisfaction of envi-
ronment state-dependent constraints (ci for i = ncg + 1, . . . , nc). We divide the environment state
into two parts: one containing information needed to satisfy some constraints, and the other part
containing no constraint-relevant information:

s = (scr(∈ Scr), sncr(∈ Sncr)) (14)
where ci for i = ncg + 1, . . . , nc are functions only of scr. Then, the chance-constraint can

be described as follows. Note that the total probability of the dissatisfaction of the i-th original
constraint (i.e., the probability that our system’s action violates this constraint) is upper-limited as
rt,i. We assume that a (nc − ncg)-dimensional vector (rt,ncg+1, . . . , rt,nc) is also included in r.
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∀i, Pr(ci(u; scr, r) < 0) ≤ rt,i (15)

To clarify and calculate the left-hand side, we also divide the information processing module output
o into:

o = (ocr(∈ Ocr),oncr(∈ Oncr)) (16)
such that the former part includes information about scr and the latter part does not. We call the part
of the information processing module regarding safety classification as safety classification model.
Moreover, the measurement y is also divided into:

y = (ycr,yncr) (17)

ycr is defined as the part needed to obtain ocr, and yncr is defined as the remaining part. Thus, ycr
can include more information than scr. In this paper, for simplicity, we only deal with the case that
both Scr and Ocr are finite. This clearly implies that neither scr nor ocr has any continuous part.

We apply prior work (Kim & Ahn, 2023) to our framework (presented in the former section) to ensure
constraint satisfaction over the given probability. Specifically, we conduct perception for not only
the given environment state but also internal test data with which we already know the environment
state. Since it presents a challenge that internal test data will not be changed during training, and
thus can lead to overfitting, we will address this problem in Section C.2. Then, we use Bayes’ rule
to merge the results from internal test data with the user-given prior probabilities for each possible
environment state, obtaining the posterior probability distribution given the perception of the real
(unknown) environment state. Using these results, we solve the chance-constrained optimization
problem under the user-given threshold.

To avoid confusion, we use superscript r to denote real quantities (environment state, measurement,
etc.) and superscript ti to denote the i-th (internal) test data. For example, sr denotes the real
environment state of the control situation, and sti denotes the known environment state of the i-th
test data.

In addition to the measurement of the real environment state, we also measure the part that includes
information about constraints for each internal test data. Thus, letting nt denote the number of
internal test data, we define y as Equation 18:

y = (yr,yt1cr, . . . ,y
tnt
cr ), yr ∼ Samp(sr), yticr ∼ Sampcr(s

ti
cr) (18)

Note that Samp(s) denotes the measurement process, which can be treated as sampling from the
probability distribution given by the real environment state s. Since we only require the constraint-
related (cr) parts of the internal test data, we use the subscript cr for yt, where Sampcr denotes
applying Samp to these cr parts. Given that sticr are fixed, y still depends only on sr.

Then, we forward all measurement results in parallel into the information processing module, as
shown in Equation 19. Here, fcr(yticr; r) denotes the safety classification model, which is part of the
information processing module responsible for generating outputs that contain information about scr.
Thus, Equation 19 can be interpreted as a large information processing module made by merging one
original information processing module and nt safety classification models in parallel.

F((yr,yt1cr, . . . ,y
tnt
cr ); r) := (or,ot1cr . . . ,o

tnt
cr ) := (f(yr; r), fcr(y

t1
cr; r) . . . , fcr(y

tnt
cr ; r)) (19)

As the next step, we estimate the probability for each output ocr under each environment state scr.
We denote the elements of Scr and Ocr as:

Scr = {s̄1, . . . , s̄Ne}, Ocr = {ō1, . . . , ōNo} (20)

We can enumerate the elements as Equation 20 because we assumed that Scr and Ocr are finite. We
also let 1(a, b) as the indicator function that outputs 1 if a is the same as b and 0 otherwise. Then, the
total number of internal test data for each environment state is:

Nscr=s̄i =

nt∑
k=1

1(stkcr, s̄i) (21)
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The number of internal test data for each output and environment state is:

Nscr=s̄i,ocr=ōj
=

nt∑
k=1

1(stkcr, s̄i) · 1(otkcr, ōj) (22)

Then, the probability for each output under each environment state can be estimated using sample
proportions, as Equation 23.

p(ocr = ōj |scr = s̄i) ≃
Nscr=s̄i,ocr=ōj

Nscr=s̄i

(23)

We assume that r includes aNe-dimensional probability vector (rep,1, . . . , rep,Ne
) with 0 ≤ rep,k ≤ 1

and
∑Ne

k=1 rep,k = 1, representing knowledge about the prior probability of constraint-relevant
environment states. Using Bayes’ rule, we can compute the posterior probability of each environment
state given each safety classification model output as Equation 24:

p(scr = s̄i|ocr = ōj) =
p(ocr = ōj |scr = s̄i)p(scr = s̄i)

p(ocr = ōj)

=
p(ocr = ōj |scr = s̄i)p(scr = s̄i)∑Ne

k=1 p(ocr = ōj |scr = s̄k)p(scr = s̄k)

=
p(ocr = ōj |scr = s̄i)rep,i∑Ne

k=1 p(ocr = ōj |scr = s̄k)rep,k

(24)

We can now obtain the left-hand side of Equation 15 as shown in Equation 25 to replace an envi-
ronment state-dependent constraint, following the method used in (Kim & Ahn, 2023). Since the
measurement and processing for the real environment state are done and the resulting output or is
obtained, we can get the post-perception probability of each environment state based on Equation 24
and the test results. We ensure that the sum of probabilities for the neglected possible environment
states does not exceed the given threshold for the specific constraints.∑

k:c(u;s̄k,r)<0

p(scr = s̄k|ocr = orcr) ≤ rt,i (25)

We can modify Equation 25 based on the big-M method (Cococcioni & Fiaschi, 2021) to solve it with
a solver. With a sufficiently large number M , we adopt integer variables {qi} to identify the neglected
environment states (in our case, qi = 0 or qi = 1). Then, we can formulate a set of constraints to
replace the i-th (i = ncg + 1, . . . , nc) original constraint as:

c(u; s̄k, r) +M · qk ≥ 0, k = 1, . . . , Ne (26a)∑
k

p(scr = s̄k|ocr = orcr) · qk ≤ rt,i (26b)

Finally, we construct a replacement of the environment state-dependent constraints ci for i = ncg +
1, . . . ,nc by compressing the chance-constraint formulation (Equation 26). Then, the replacement of
the i-th original constraint (ncg + 1 ≤ i ≤ nc) can be written as:

c̄i(u;o, r) := max
q1,...,qNe∈{0,1}∑

k p(scr=s̄k|ocr=or
cr)·qk≤rt,i

min
k

(
ci(u; s̄k, r) +M · qk

)
(27)

Detailed explanation for our chance-constrained formulation (Equations 18, 19, 23, 24, and 27) can
be found in (Kim & Ahn, 2023). We conclude this subsection by noting that this formulation is a
case of the general framework presented in Section A.
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Proposition 1. When both Scr and Ocr are finite, our compressed constraint replacement (Equa-
tion 27) based on modified chance-constrained formulation (Equation 15) is included into our general
optimization problem (Equation 13). In addition, the whole procedure, including the processing
of the concatenated measurement result and calculation process (Equations 18, 19, 23, and 24), is
included in the general framework presented in Section A. Moreover, replacements of constraints are
continuous with respect to the continuous part of u and o, provided that the original constraints to be
replaced are continuous with respect to the continuous part of u.

Proof. First, since the environment states of internal test data are given, the entire measurement
depends solely on the environment state of the real situation and chance. Then, the measurement can
be treated as measuring the real environment state. In Equation 19, the information processing module
can be understood as a new large model to process the concatenated vector. Moreover, the results of
Equation 23 and 24 can be substituted in Equation 27. Since we assume that the constraint-related
part of the output is discrete, continuous outputs have no effect on Equation 27 and the replaced
constraints are stationary with respect to the continuous part of the information processing module
output. Furthermore, considering that Equation 27 is constructed by the maximum and minimum of
finite continuous functions with respect to the continuous part of u, it is continuous with respect to
the continuous part of u.

Note that constraints affected by the continuous part of the environment state s or related to the
continuous part of the information processing module output o can be handled as constraints in the
general framework Equation 13. In such cases, where our assumption of finite Scr no longer holds,
mathematical guarantees for constraint satisfaction cannot be provided. However, these constraints
can still be addressed based on the information processing module output, and we can reasonably
expect practical satisfaction when the perception capability of the information processing module is
sufficiently good.
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C CONSERVATIVE TESTING WITH INTERNAL TEST DATA

In this section, we present our novel method for training our safety classification model without
overfitting issues when using internal test data. We then prove its feasibility and validity under several
assumptions. When we train our safety classification model, it begins to depend on internal test data.
This may lead to statistical validity concerns. To theoretically guarantee improved safety classification
model performance when the loss sufficiently decreases, we make the chance-constrained optimization
in training conservative. This ensures that training loss becomes an upper bound of the loss when we
know the real performance of our safety classification model p(ocr = ōj |scr = s̄i). To achieve this,
we introduce a positive real number ξ as a conservativeness parameter that controls and guarantees
the conservativeness of chance constraints during training relative to reality. This parameter plays a
crucial role in maintaining or verifying the validity of the training technique. In practice (including
our experiments), this ξ can be treated as a hyperparameter with a value that efficiently inhibits
overfitting without considerable performance degradation, even though the value may be smaller than
required for theoretical guarantees.

C.1 DEFINING REAL PERFORMANCE

First, we mathematically define the real performance. We start at a general metric space Ω endowed
with metricM : Ω×Ω → [0,∞] and σ-algebra Σ. Then, to treat the measurement of the environment
state, we define a probability measure P : Σ → [0, 1]. Let Ycr denote the set of possible ycr (thus,
for both yr and yt). Then, the conditions for defining the real performance of the safety classification
model can be summarized as Condition 1.

Condition 1. 1. We can implement a metric MYcr
in Ycr.

2. We can choose a Borel σ-algebra ΣYcr .

3. For each scr, according to Sampcr(scr), a probability measure Pscr : ΣYcr
→ [0, 1] can be

defined.

4. The safety classification model classifies the data into finite potential outputs; that is, the model can
be defined as a finite partition of Ycr denoted as Yō1 , . . . , YōNo

15. Moreover, Yōj ∈ ΣYcr for each j.

Condition 1 is the essential property needed for mathematical analysis and holds in general. Under
Condition 1, the real performance of the safety classification model (i.e., the real probability of the
output ōj under environment state s̄i) can be defined as follows:

p∗(ocr = ōj |scr = s̄i) := Ps̄i(Yōj
) (28)

We can also obtain the replacement of constraints based on Equation 28, similar to Equations 26
and 27, as follows. Note that compared to Equation 27, p(scr = s̄i|ocr = ōj) is replaced with
p∗(scr = s̄i|ocr = ōj).

p∗(scr = s̄i|ocr = ōj) :=
p∗(ocr = ōj |scr = s̄i)rep,i∑Ne

k=1 p
∗(ocr = ōj |scr = s̄k)rep,k

(29)

c̄∗i (u;o, r) := max
q1,...,qNe∈{0,1}∑

k p
∗(scr=s̄k|ocr=or

cr)·qk≤rt,i

min
k

(
c(u; s̄k, r) +M · qk

)
(30)

During training, we assume that the measurements of the same set of internal test data remain
constant, thus we reuse the measurement results (yt1cr, . . . ,y

tnt
cr ) after the initial measurement. Since

(yt1cr, . . . ,y
tnt
cr ) does not depend on the information processing module, it is natural to define condi-

tions for good internal test data for training. The following definition describes how well the internal
test data covers the probability distribution over a given set:

15The safety classification model takes y as input and produces o as output. Yōj represents the set of all y
values that result in the output ōj .
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Definition 1. Given a compact metric space Ω endowed with metric M : Ω×Ω → [0,∞], σ-algebra
Σ that includes all open balls B, and a probability measure P : Σ → [0, 1], a finite sequence16

(ω1, . . . , ωns
) of elements in Ω is called ζ-informative if and only if the following statement holds

for all subsets X of {1, . . . , ns}.

P (
⋃
i∈X

B(ωi, ζ)) ≥
|X|
ns

(31)

This implies that the margin ζ is robust to the selection of the subset of data. The safety classification
model with discrete outputs classifies data, where each classification can be viewed as selecting a
subset. Thus, this definition provides robustness for any model or parameters.

Now, we introduce a proposition to guarantee that we can achieve ζ-informativeness for arbitrary ζ
by sampling sufficiently many internal test data from the probability distribution.

Proposition 2. If the support of each P is connected, when we sample dataset D following P , then
Pr
(
lim|D|→∞ inf({ζ|D : ζ−informative}) = 0

)
= 1.

Proof. Without loss of generality, for simplicity, we assume Diam(Ω) = 1.17 For any δ > 0,
{B(ω, δ8 )|ω ∈ Ω} is obviously an open cover of Ω. Thus, due to the definition of compact sets, the
following finite subcover exists: {

B
(
ω1,

δ

8

)
, . . . , B

(
ωnh

,
δ

8

)}
(32)

We define Hi as:

Hi :=

i⋃
j=1

B
(
ωi,

δ

8

)
\
i−1⋃
j=1

B
(
ωj ,

δ

8

)
(33)

{Hi} is a partition of Ω whose elements have a diameter of at most δ/4. Since we assume that each
P is well-defined on a σ-algebra that includes all open sets, each P is well-defined for Hi. Since
nh <∞, we can define ρ as:

ρ := min
i:P (Hi)>0

P (Hi) (34)

Due to the strong law of large numbers, provided that D ̸= ϕ:

Pr

(
lim

|D|→∞

|D ∩Hi|
|D|

= P (Hi)

)
= 1 (35)

This means, provided that D ̸= ϕ:

Pr

(
∃N, |D| > N → |D ∩Hi|

|D|
− ρ

nh
≤ P (Hi)

)
= 1 (36)

For any nonempty X ⊂ D, following the definition of Hi:⋃
x∈X

B

(
x,
δ

4

)
⊃
⋃
x∈X

⊔
i:x∈Hi

Hi =
⊔

i:X∩Hi ̸=ϕ

Hi.

Moreover, it is obvious that: ⋃
x∈X

B

(
x,

3δ

4

)
⊃
⋃
x∈X

B

(
x,
δ

2

)
(37)

16This definition can be also applied to a set.
17Thus, we set the maximum distance between any two points in Ω to be 1.
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Ω \
⋃
x∈X

B

(
x,

3δ

4

)
∩
⋃
x∈X

B

(
x,
δ

2

)
= ϕ. (38)

where overline indicates a closure including its boundary (thus B is a closed ball). Then,⋃
x∈X B(x, δ2 ) and Ω \

⋃
x∈X B(x, 3δ4 ) are disjoint open sets of Ω. By the assumption that the

support is connected, we show that at least one of the following statements holds:

S1. P

( ⋃
x∈X

B

(
x,

3δ

4

)
\
⋃
x∈X

B

(
x,
δ

2

))
> 0 (39)

S2. P

( ⋃
x∈X

B

(
x,
δ

2

))
= 0 (40)

S3. P

(
Ω \

⋃
x∈X

B

(
x,

3δ

4

))
= 0 (41)

For proof, let’s assume that all S1, S2, S3 don’t hold. Then,

int

( ⋃
x∈X

B

(
x,

3δ

4

)
\
⋃
x∈X

B

(
x,
δ

2

))
∩ supp(P ) = ϕ (42)

Thus,

supp(P ) ⊂ Ω \
⋃
x∈X

B

(
x,

3δ

4

)
∪
⋃
x∈X

B

(
x,
δ

2

)
(43)

where int(·) is the interior of the set and supp(·) is the support of measure. Let

J :=
⋃
x∈X

B

(
x,
δ

2

)
∩ supp(P ) (44)

and

K := Ω \
⋃
x∈X

B

(
x,

3δ

4

)
∩ supp(P ) (45)

Then, J ∩K = ϕ, J ∪K = supp(P ), and both are nonempty since their measure P is nonzero (since

we are assuming that S2 and S3 do not hold). Since
⋃
x∈X B

(
x, δ2

)
and Ω \

⋃
x∈X B

(
x, 3δ4

)
are

open sets in Ω \
⋃
x∈X B

(
x, 3δ4

)
∪
⋃
x∈X B

(
x, δ2

)
(because the complements, which is each other,

are closed), J and K are open sets in supp(P ) by definition. Thus, it contradicts the assumption that
supp(P ) is connected, and at least one of S1, S2, S3 should hold.

Since we assume that D is sampled according to P , the probability of S2 to hold is 0.18 Thus, we
neglect it. S3 implies:

P

( ⋃
x∈X

B (x, δ)

)
≥ P

( ⋃
x∈X

B

(
x,

3δ

4

))

= 1− P

(
Ω \

⋃
x∈X

B

(
x,

3δ

4

))
= 1 (S3)

(46)

18S2 implies that data can be sampled from balls B(x, δ
2
) with probability 0, contradicting the fact that x was

sampled.
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If S1 holds, let

T :=
⋃
x∈X

B

(
x,

3δ

4

)
\
⋃
x∈X

B

(
x,
δ

2

)
. (47)

Since {Hi|T ∩Hi ̸= ϕ} is a cover of T , ⊔
i:Hi∩T ̸=ϕ

Hi ⊃ T (48)

Considering that Hi are all disjoint, we obtain

∑
i:Hi∩T ̸=ϕ

P (Hi) = P

 ⊔
i:Hi∩T ̸=ϕ

Hi


≥ P (T )

> 0 (S1)

(49)

which implies that there exists Hk that satisfies Hk ∩ T ̸= ϕ and P (Hk) > 0. Considering that

Diam(Hi) ≤ δ
4 , Hk ∩ T ̸= ϕ implies Hk ∩ (

⋃
x∈X B(x, δ4 )) = ϕ and Hk ⊂

⋃
x∈X B(x, δ). Thus,

P

( ⋃
x∈X

B(x, δ)

)
≥ P (Hk) + P

( ⋃
x∈X

B

(
x,
δ

4

))
(monotonicity & additivity)

≥ ρ+ P

( ⋃
x∈X

⊔
i:x∈Hi

Hi

)
(monotonicity)

= ρ+ P

 ⊔
i:X∩Hi ̸=ϕ

Hi

 (set algebra)

= ρ+
∑

i:X∩Hi ̸=ϕ

P (Hi) (additivity)

(50)

Moreover, we have ∑
i:X∩Hi ̸=ϕ

|D ∩Hi|
|D|

≥ |X|
|D|

(51)

provided that D ̸= ϕ since {Hi|X ∩Hi ̸= ϕ} is a cover of X . Thus, by Equation 36, Equation 50,
and Equation 51, we obtain

Pr

(
∃N, |D| > N → P (

⋃
x∈X

B(x, δ)) ≥ |X|
|D|

)
= 1. (52)

Considering that the probability of satisfaction of Equation 40 is 0 and Equation 41 implies Equa-
tion 46, we can conclude that

Pr

(
∃N, |D| > N → P (

⋃
x∈X

B(x, δ)) ≥ |X|
|D|

)
= 1, (53)

holds for any X , equivalently,

Pr(∃N, |D| > N → D : δ−informative) = 1. (54)

Moreover, this implies that

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Pr(∃N, |D| > N → inf({ζ|D : ζ−informative}) ≤ δ) = 1. (55)

Therefore, considering that δ is an arbitrary positive real number, we obtain

Pr

(
lim

|D|→∞
inf({ζ|D : ζ−informative}) = 0

)
= 1. (56)

C.2 CONSERVATIVE TESTING

Since both Scr and Ocr are finite, we can use the idea of conservative testing—introducing a penalty
term in the continuous intermediate result of the safety classification model just before the discrete
output to obtain a robust evaluation result. We can let

ocr = gcr(fcr(y;wcr)), fcr(y;wcr) ∈ Rmcr (57)

and

1(otkcr, ōj) = 1(gcr(fcr(y;wcr)
tk), ōj) (58)

when fcr(y;wcr)
tk is fcr(y;wcr) for the k-th (internal) test data. Note that the intermediate output

of the safety classification model fcr(y;wcr) is a function of the input of the safety classification
model ycr. Here, we do not separate ocr (= fcr(y;wcr)) to their elements for simplicity.

To obtain the conservative result of chance-constrained optimization, we also calculate:

1+ξ(otkcr, ōj) = max
||ωcr−fcr(y;wcr)

tk ||≤ξ
1(gcr(ωcr), ōj) (59)

and

1−ξ(otkcr, ōj) = min
||ωcr−fcr(y;wcr)

tk ||≤ξ
1(gcr(ωcr), ōj) (60)

The intuition is to check whether all points in the ξ-ball centered on ωcr consistently lead or
consistently do not lead to the output value ōj . Note that calculating 1+ξ(otkcr, ōj) and 1−ξ(otkcr, ōj)
is easy since fcr is a simple function in general. Then, we also define the upper bound and the lower
bound of the number of internal test data for each output and environment state as

N+ξ
scr=s̄i,ocr=ōj

=

nt∑
k=1

1(stkcr, s̄i)1
+ξ(otkcr, ōj) (61)

and

N−ξ
scr=s̄i,ocr=ōj

=

nt∑
k=1

1(stkcr, s̄i)1
−ξ(otkcr, ōj) (62)

Using N+ξ
scr=s̄i,ocr=ōj

and N−ξ
scr=s̄i,ocr=ōj

, we can obtain the conservative replacement of the i-th
original constraint, as in the previous subsection:

p+ξ(ocr = ōj |scr = s̄i) :=
N+ξ

scr=s̄i,ocr=ōj

Nscr=s̄i

, p−ξ(ocr = ōj |scr = s̄i) :=
N−ξ

scr=s̄i,ocr=ōj

Nscr=s̄i

(63)

pξ(scr = s̄i|ocr = ōj) :=
p+ξ(ocr = ōj |scr = s̄i)rep,i∑Ne

k=1 p
−ξ(ocr = ōj |scr = s̄k)rep,k

(64)

c̄ξi (u;o, r) := max
q1,...,qNe∈{0,1}∑

k p
ξ(scr=s̄k|ocr=or

cr)·qk≤rt,i

min
k

(
ci(u; s̄k, r) +M · qk

)
(65)
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Note that Equation 65 is the replacement of ci(u; s̄k, r) to obtain action based on output o rather than
environment state s, and thus, we use ci(u; s̄k, r) with a minimum function in Equation 65. Since the
following is obvious:

1−ξ(otkcr, ōj) ≤ 1(otkcr, ōj) ≤ 1+ξ(otkcr, ōj) (66)
it is straightforward that:

pξ(scr = s̄k|ocr = orcr) ≥ p(scr = s̄k|ocr = orcr) (67)

and

c̄ξi (u;o, r) ≤ c̄i(u;o, r) (68)

We can then characterize the additional condition beyond Condition 1 that guarantees the conserva-
tiveness of Equation 65 as follows:

Condition 2. For some (ζ, ξ),

1. ΣYcr
includes all open sets (based on MYcr

).

2. For each s̄i, the subsequence (y
ta1
cr , . . . ,y

taNat
cr ) where {aj} = {k|stkcr = s̄i}, that is, the

subsequence consisting of sampled measurement results of environment state s̄i from the sequence
(yt1cr, . . . ,y

tnt
cr ), is ζ-informative in (Ycr,MYcr ,ΣYcr , Ps̄i).

3. For any υ1, υ2 ∈ Ycr, if MYcr
(υ1, υ2) < ζ, fcr(ycr;wcr) satisfies ||fcr(υ1;wcr) −

fcr(υ2;wcr)|| ≤ ξ.

Condition 2 is about the required quality of internal test data and the required property of the safety
classification model. The larger ζ is, the easier it is for sequences to be ζ-informative. Large ξ allows
many neural networks and large ζ to satisfy the condition. However, a large ξ makes our system
much more conservative. In contrast, only high-quality samples can be ζ-informative for small ζ,
and the information processing module must have low stiffness (i.e., be smooth enough that a small
ζ-ball can pass through the model and become a small ξ-ball) to satisfy the condition with small ξ.
However, a small ξ allows less conservative actions.

Now, we can prove the conservativeness of Equation 65 based on the conditions.

Theorem 1. Under Condition 1 and Condition 2,

p−ξ(ocr = ōj |scr = s̄i) ≤ p∗(ocr = ōj |scr = s̄i) ≤ p+ξ(ocr = ōj |scr = s̄i). (69)

Proof. For the first inequality, by definition, we obtain

p−ξ(ocr = ōj |scr = s̄i) =
|{k|stkcr = s̄i, gcr(B̄(fcr(y

tk
cr;wcr), ξ)) = {ōj}|

Nscr=s̄i

(70)

when B̄(ω, ξ) denotes the closed ball centered on ω with radius ξ. Meanwhile, by the third statement
of Condition 2, gcr(B̄(fcr(y

tk
cr;wcr), ξ)) = {ōj} implies B(ytkcr, ζ) ⊂ Yōj

. By substituting this in
Equation 70 and using the second statement of Condition 2, we obtain:

p−ξ(ocr = ōj |scr = s̄i) =
|{k|stkcr = s̄i, gcr(B̄(fcr(y

tk
cr;wcr), ξ)) = {ōj}|

Nscr=s̄i

≤
|{k|stkcr = s̄i, B(ytkcr, ζ) ⊂ Yōj

}|
Nscr=s̄i

≤ Ps̄i

 ⋃
s
tk
cr=s̄i,B(y

tk
cr ,ζ)⊂Yōj

B(ytkcr, ζ)


≤ Ps̄i(Yōj ) = p∗(ocr = ōj |scr = s̄i)

(71)
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For the second inequality, by definition, we obtain:

p+ξ(ocr = ōj |scr = s̄i) =
|{k|stkcr = s̄i, gcr(B̄(fcr(y

tk
cr;wcr), ξ)) ⊃ {ōj}|

Nscr=s̄i

= 1− |{k|stkcr = s̄i, gcr(B̄(fcr(y
tk
cr;wcr), ξ)) ⊂ {ō−j}|

Nscr=s̄i

(72)

when {ō−j} denotes {ō1, . . . , ōj−1, ōj+1, . . . , ōNo}. Similar to the first inequality, we can prove
the second inequality based on statements of Condition 2 as follows:

p+ξ(ocr = ōj |scr = s̄i) = 1− |{k|stkcr = s̄i, gcr(B̄(fcr(y
tk
cr;wcr), ξ)) ⊂ {ō−j}|

Nscr=s̄i

≥ 1−
|{k|stkcr = s̄i, B(ytkcr, ζ) ⊂

⋃
l ̸=j Yōl

}|
Nscr=s̄i

≥ 1− Ps̄i

 ⋃
s
tk
cr=s̄i,B(y

tk
cr ,ζ)⊂

⋃
l ̸=j Yōl

B(ytkcr, ζ)


≥ 1− Ps̄i

⋃
l ̸=j

Yōl

 = Ps̄i(Yōj
) = p∗(ocr = ōj |scr = s̄i)

(73)

Theorem 1 implies that we can use fixed internal test data within a safety classification model, and
conservative testing allows it to restrain the overfitting problem. Internal test data—a fixed dataset
separated from the training batch—can be used to design novel information processing module
architectures or loss functions based on comparisons or other calculations involving both types of
data (training batch and internal test data). We expect that this novel concept will be an ingredient in
a variety of new developments related to computational systems.

Corollary 1 is straightforward from Theorem 1 and the definitions of the replacements of the
constraints (Equations 65 and 30):

Corollary 1. Under Condition 1 and Condition 2,

c̄ξi (u;o, r) ≤ c̄∗i (u;o, r). (74)

Corollary 2. When the optimization problem Equation 13 with conservative testing (where the
constraints are replaced with c̄ξi ) has a feasible solution, it outputs the optimal solution that satisfies
the original chance-constraints (Equation 15). That is, the satisfaction of the user-provided safety
constraints is guaranteed for the user-specified probability thresholds.

We now present the condition under which the conservative replacement of constraints results in a
higher or equal loss. Since our loss function is defined separately from the optimization stage, there
can be some cases where an action based on conservative testing results in a smaller loss. This will
be especially natural when the loss is designed to encourage actions based on conservative testing.
Definition 2 describes how the loss function aligns well with the objective of the optimization stage
under a constraint.

Definition 2. For three functions π, χ, ψ : Rnreal × Zninte → R, we say π aligns well with χ under
constraint ψ ≥ 0 in set S ⊂ Rnreal × Zninte when the following statement holds:

For all α1, α2 ∈ S, when both χ(α1) ≤ χ(α2) and ψ(α1) < 0 ≤ ψ(α2) hold, then π(α1) ≤ π(α2).
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We can then configure the condition that guarantees a higher loss for the conservative testing
technique.

Condition 3. As functions of u, for any ci that needs to be replaced by the chance-constrained method
and any s̄k ∈ Scr, L(u,o; s̄k, sncr, r) aligns well with J̄(u;o, r) under constraint ci(u; s̄k, r) ≥ 0
in U .

Since J̄ is set to obtain high control performance and L is set to evaluate the performance, it is natural
to assume Condition 3. Note that Condition 3 is automatically satisfied when L is a non-decreasing
function of J̄ or conversely. Now, we can prove that the conservative testing technique results in
a loss greater than or equal to that obtained using the real performance value of the information
processing module under some conditions.

Proposition 3. Under Conditions 1, 2, and 3, the minimum of L with the optimal action19 is higher
or equal when the constraints are replaced with c̄ξi (conservative testing) than when the constraints
are replaced with c̄∗i (control based on the real performance).

Proof. We prove by contradiction. Let u∗
ξ and u∗

∗ denote the optimal solutions under conservative
testing (constraints c̄ξi ) and real performance (constraints c̄∗i ), respectively. Assume, for contradiction,
that L(u∗

ξ ,o; s̄k, sncr, r) < L(u∗
∗,o; s̄k, sncr, r).

Since u∗
ξ is optimal under stricter constraints (by Corollary 1), we have:

J̄(u∗
ξ ;o, r) ≥ J̄(u∗

∗;o, r) (75)

By Condition 3, for L(u∗
ξ) < L(u∗

∗) to hold when J̄(u∗
ξ) ≥ J̄(u∗

∗), we must have ci(u∗
∗; s̄k, r) ≥ 0

for every ci that satisfies ci(u∗
ξ ; s̄k, r) ≥ 0 and is needed to be replaced. However, by Corollary 1, the

reverse of this also holds. Therefore, both u∗
ξ and u∗

∗ satisfy exactly the same set of constraints ci.

Since both solutions are optimal for the same objective function J̄ under identical constraints, they
must achieve the same optimal value: J̄(u∗

ξ) = J̄(u∗
∗). When multiple solutions achieve the same

optimal J̄ value, our selection rule chooses the one minimizing L. However, we have L(u∗
ξ) < L(u∗

∗)
by our assumption, which contradicts that both u∗

ξ and u∗
∗ are optimal solutions.

To conclude the theoretical analysis of conservative testing and chance-constraints, we finally show
that this technique can also be incorporated into the general framework presented in Section A.

Proposition 4. When both Scr and Ocr are finite, our conservative testing technique for chance-
constrained formulation (Equations 63, 64, and 65) is included in our general framework presented in
Section A. Moreover, replacements of constraints are continuous with respect to the continuous part
of u and o provided that the original constraints to be replaced are continuous with respect to the
continuous part of u.

Proof. The part for obtaining 1+ξ(fcr(y
tk
cr;wcr), ōj)) or 1−ξ(fcr(y

tk
cr;wcr), ōj)) can be treated as

the change of the last layer of the safety classification model. The remaining steps follow the same
approach as in the proof of Proposition 1.

19If there are multiple optimal actions, we choose the one with the minimum L among them.
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D CONSTRUCTION OF THE LOSS FUNCTION FOR TRAINING

We need a loss function to train the information processing module in our framework. First, we
denote it as L(u,o; s, r). We define our loss function as a general function of u,o, s, and r that can
include any kind of functions regarding them. While J(u; s, r) is commonly used as L(u,o; s, r),
our framework permits any function of u,o, s, and r. For example, it can include the objective of the
optimization stage J̄ or traditional loss functions based on o and s that are used for perception, such
as cross-entropy loss or root mean square loss. This can be useful when the user of our framework
needs to explicitly improve the accuracy of the information processing module output for reasons
other than the system performance.

We need to obtain the gradient of our loss function to use it for training. However, since the loss
function is a function of u, the loss function with the actions L(u∗(o, r),o; s, r) depends on the
optimal solutions of the optimization stage u∗(o, r) that are not generally continuous functions of
information processing module output o. This typically causes the gradient to diverge or disappear
(See (Vlastelica et al., 2020) for further description). Moreover, when there are multiple optimal
solutions in the optimization stage, the corresponding values of the loss function can be different.
One fatal problem with this is that the loss cannot be well-defined as a function of only o, s, and
r. Even though we construct a well-defined function that has a minimum value of the loss function
among u, which is an optimal solution of the optimization stage, a similar problem remains because it
requires solving a two-stage minimization (i.e., minimization in the argmin set of another problem)
that is computationally hard. Since we deal with a general optimization problem, we cannot guarantee
that a closed-form solution to the optimal set of the problem exists. To our knowledge, no literature
explicitly addresses the possibility of multiple optimal solutions for the optimization stage.

As an alternative to the loss function L(u∗(o, r),o; s, r) that depends on actions, we use the approxi-
mated general loss function L̃, which is well-defined and continuous with respect to o and satisfies
L̃ ≃ L(u∗(o, r),o; s, r) with an action chosen by the optimization stage. Note that L̃ need not be
expressible in closed form and may involve some optimization problems. The only requirement is
that it be continuous with respect to the continuous part of o and final intermediate results just before
the discrete part of o.

To avoid two-stage minimization—where we minimize the loss function within the optimal solution
set of the optimization stage—we combine both stages into one. This is necessary because we
assume no specific relationship between the optimization problem and loss function, and the first-
stage minimization may not even have a closed-form solution. Before combining them later, we
should solve the continuity issue. To construct an approximate loss function that is continuous,
we utilize the property that the optimal objective of an optimization problem is continuous with
respect to parameters when the objective function is continuous with respect to the parameters and the
constraints are independent of the parameters. Thus, converting the optimization stage to a virtually
unconstrained optimization problem (constraints do not have any meaningful effect on the solution)
can be a good approach for the first stage of constructing such an approximated loss function. This
ensures the continuity with respect to output o before combining it with the loss function. As a
result, we transform the optimization problem into a virtually unconstrained one and prove that this
transformation is valid.

We convert the problem to an optimization problem with a compact feasible region that does not
depend on any parameters by merging constraints with coefficient β > 0 into the objective. We
need the compact feasible region to prevent J̄ from diverging to −∞. We can choose region U with
simple constraints such as ||u|| ≤M with a large constant M . Note that we can use any norm paired
with other mathematical concepts, such as compactness and continuity. The resulting converted
optimization problem can be written as Equation 76:

min
u∈U

J̄(u;o, r)− β⊤ min(c̄(u;o, r),0) (76)

This conversion cannot guarantee equivalence between the original and converted optimization
problems. The constraints may be nearly stationary (e.g., at a local maximum or minimum point)
at the boundary of the feasible region, which can lead to a solution that is infeasible in the original
optimization problem, even when βi is extremely large for all i.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Instead, since the output of the optimization layer is the optimal solution u, we check the distance
between the solutions of these two optimization problems. Considering that the loss function or real
performance mainly depends on actions rather than the optimal value in the optimization stage, the
conversion is valid if and only if it leads to similar actions (optimal solutions). We aim to make the
conversion have solutions sufficiently close to the original solutions under the given U by choosing
appropriate βi for all i.

To guarantee this, we need both J̄(u;o, r) and c̄i(u;o, r) for all i to be continuous with respect to x.
Moreover, in Equation 76, U should be a subset of X × Z20 that only consists of a finite number of
z with paired compact subsets (Xi ⊂ X for each zi) of X , and

⋃
i Xi × {zi} includes the region of

interest. Our assumptions can be summarized as Assumption 1. Note that from now on, we denote
the continuous part and the discrete part of u as x and z, respectively.

Assumption 1. J̄(u;o, r), c̄i(u;o, r), and U satisfy the following statements.

1. J̄(u;o, r) is continuous with respect to x.

2. For all i, c̄i(u;o, r) is continuous with respect to x.

3. U is a finite union of multiplications of different elements of Z and paired compact subsets of X .

That is, U can be written as
mu(<∞)⋃

1
Xi × {zi}, ∀i,Xi(⊂ X ) is compact, ∀i, j, zi ̸= zj .

4. U includes all optimal solutions of Equation 13.

For notational convenience, we denote the optimal solution space of the non-converted optimization
problem as:

S(o, r) := argmin
u

J̄(u;o, r) subject to c̄(u;o, r) ≥ 0 (77)

and the optimal solution space of x paired with a specific z as:

Sz(o, r) := {x : u ∈ S(o, r)} (78)

Then, Proposition 5 states that we can arbitrarily reduce the distance between solutions of the original
optimization problem and the converted problem by choosing sufficiently large β under given o and
r.

Proposition 5. When J̄(u;o, r), c̄i(u;o, r), and U satisfy Assumption 1, for any ϵ1 > 0, there
exists β(o, r, ϵ1) > 0 such that any β > β makes all solutions of the converted problem lies within
distance ϵ1 from a solution of the original problem with the same z. Specifically,

∀β > β, ∀(x̃, z) ∈ argmin
u∈U

{
J̄(u;o, r)− β⊤ min(c̄(u;o, r),0)

}
,

∃x∗ ∈ Sz(o, r) such that ∥x∗ − x̃∥ < ϵ1

(79)

Proof. For all z, we denote the union of ϵ1-balls21 centered on elements of Sz(o, r) as:

S̃z(o, r, ϵ1) =
⋃

x∈Sz(o,r)

B(x, ϵ1) (80)

For each z, S̃z(o, r, ϵ1) is open because it is a union of open balls. We also define:

S̃(o, r, ϵ1) =
⋃
z

S̃z(o, r, ϵ1)× {z} (81)

20X and Z corresponds to the R and Z part, respectively.
21 ‘a-ball’ indicates an open ball.
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and let:

Uz := U ∩ (X × {z}) (82)

Then, it is straightforward that Uz \ S̃(o, r, ϵ1) = Uz \ S̃z(o, r, ϵ1) is compact.

We denote the optimal value of the non-converted optimization problem as J̄∗(o; r) and the set of
points that lead to a smaller or equal objective than J̄∗(o; r) as:

H(o, r) = {u ∈ U|J̄(u;o, r) ≤ J̄∗(o; r)} (83)

Note that J̄∗ is the optimal value under constraints, while J̄ itself does not consider constraints. All
solutions of the converted optimization problem are included in H(o, r) regardless of β. Otherwise,
if some u with J̄(u) > J̄∗ were optimal in the converted problem, then any feasible u∗ achieving J̄∗

would have a strictly better converted objective value since J̄(u∗)− β⊤ min(c̄(u∗),0) = J̄(u∗) =
J̄∗ < J̄(u), yielding a contradiction.

Since J̄ is continuous, ensuring that small perturbations in the input produce only small changes
in the function value, H(o, r) is closed as the inverse image of a closed set under this continuous
mapping. Thus, Uz∩H(o, r) is an intersection of a closed set with a compact set and is thus compact.
As a result, (Uz ∩H(o, r)) \ S̃(o, r, ϵ1) is compact for any z.

Considering that all feasible solutions (satisfying constraints of the original problem) that are included
in H(o, r) are optimal, they are elements of S(o, r). It implies that all elements of (Uz ∩H(o, r)) \
S̃(o, r, ϵ1) make at least one of the constraints violated. Then, we can construct a function ϕ(u;o, r)
as:

ϕ(u;o, r) : (Uz ∩H(o, r)) \ S̃(o, r, ϵ1) → R+, ϕ(u;o, r) =
J̄(u;o, r)− J̄∗(o; r)

mini c̄i(u;o, r)
(84)

Note that ϕ(u;o, r) is not a function of ϵ1, and since its domain does not include any optimal solutions,
ϕ(u;o, r) ̸= 0. Since ϕ(u;o, r) is the ratio of two continuous functions and thus is continuous, we
can choose the maximum value of ϕ(u;o, r) due to the compactness of (Uz ∩H(o, r)) \ S̃(o, r, ϵ1).
Let us denote the maximum value of ϕ(u;o, r) with respect to x as µ(z;o, r, ϵ1) and define β as:

β(o, r, ϵ1) := max
z

µ(z;o, r, ϵ1) · 1 (85)

Then ∀β > β and ∀z ∈ Z , for any elements of (Uz ∩H(o, r)) \ S̃(o, r, ϵ1), we have:

J̄(u;o, r)− β⊤ min(c̄(u;o, r),0)

> J̄(u;o, r)−max
z′

µ(z′;o, r, ϵ1)1
⊤ min(c̄(u;o, r),0)

≥ J̄(u;o, r)− µ(z;o, r, ϵ1)1
⊤ min(c̄(u;o, r),0)

≥ J̄(u;o, r)− J̄(u;o, r)− J̄∗(o, r)

mini c̄i(u;o, r)
1⊤ min(c̄(u;o, r),0)

= J̄(u;o, r)− (J̄(u;o, r)− J̄∗(o, r))
∑
j

min(c̄j(u;o, r), 0)

mini c̄i(u;o, r)

≥ J̄∗(o, r)

(86)

Note that β⊤ min(c̄(u;o, r),0) is always non-positive. The first inequality is based on the definition
of β. The third inequality is based on the definition of µ. The last inequality holds because
J̄(u;o, r)− J̄∗(o; r) ≤ 0 in H(o, r) and mini c̄i(u;o, r) < 0 due to the definition of H(o, r) and
the optimality of J̄∗(o; r).

Therefore, all elements of (Uz ∩H(o, r)) \ S̃(o, r, ϵ1) cannot be a solution of the converted opti-
mization problem. Considering that all solutions of the converted optimization problem are included
in H(o, r), all solutions of the converted optimization problem are included in S̃(o, r, ϵ1) and this
implies Equation 79.
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This conversion allows us to use the continuity of the optimal objective, provided that the objective
function is continuous for both the variables and parameters. Now, similar to (Vlastelica et al.,
2020), we can construct the general approximate loss function L̃(o; s, r,β, λ) with the converted
optimization problem as follows.

L̃(o; s, r,β, λ) =
1

λ

(
min
u∈U

(
λL(u,o; s, r) + J̄(u;o, r)− β⊤ min(c̄(u;o, r),0)

)
−min

u∈U

(
J̄(u;o, r)− β⊤ min(c̄(u;o, r),0)

)) (87)

We need to assume that the objective, the constraints, and the loss are continuous with respect to
the variable x and the parameters conveyed by the information processing module o. Assumption 2
covers statements we need to assume but are not covered in Assumption 1.

Assumption 2. J̄(u;o, r), c̄(u;o, r), and L(u,o; s, r) satisfy the following statements:

1. J̄(u;o, r) is continuous with respect to o.

2. For all i, c̄i(u;o, r) is continuous with respect to o.

3. L(u,o; s, r) is continuous with respect to x and o.

4. U includes all optimal solutions of the following equation (identical with Equation 93) for all λ:

min
u∈U

λL(u,o; s, r) + J̄(u;o, r) (88a)

subject to c̄i(u;o, r) ≥ 0, i = 1, . . . , n̄c (88b)

Remark 1. The third statement concerns the continuity of L(u,o; s, r) with respect to x and o as a
function of (u,o). This is different from the continuity of L(u∗(o, r),o; s, r) with respect to o as a
function of o, which does not generally hold since obtaining u∗ may not be continuous.

Under Assumption 2, we can establish the desired properties of our approximated loss (continuous
with respect to o and convergence to the real loss) in the following theorem. Before the proof, we
define L∗(o; s, r) as below:

L∗(o; s, r) := min
u∈S(o,r)

L(u,o; s, r) (89)

The minimum of L is well-defined under Assumption 2 because Sz(o, r) is compact22and L is
continuous with respect to x. As noted earlier, direct calculation of Equation 89 is computationally
hard. Instead, we prove that our approximated loss function L̃(o; s, r,β, λ) approaches to L∗(o; s, r)
when β becomes sufficiently large and λ becomes sufficiently small.

Theorem 2. When J̄(u;o, r), c̄(u;o, r),U , and L(u,o; s, r) satisfy Assumptions 1 and 2, for any
(o, s, r) and ϵ2 > 0, the following two properties hold:

1. L̃(o; s, r,β, λ) is continuous with respect to the continuous part of o for any β > 0 and λ > 0.

2. There exist λ0(o, s, r, ϵ2) and β0(o, s, r, ϵ2, λ) such that for any λ < λ0 and β > β0, we have:

|L̃(o; s, r,β, λ)− L∗(o; s, r)| < ϵ2 (90)

22Sz(o, r) is the intersection of closed sets (since each set satisfying a constraint or optimality condition is
closed, being the inverse image of a closed set) and is contained in the compact set U , therefore it is compact.
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Figure 4: Conceptual illustration for Theorem 2.

Proof. At first, for any β > 0 and λ > 0, both:

min
u∈U

(
λL(u,o; s, r) + J̄(u;o, r) + β⊤ min(c̄(u;o, r),0)

)
(91)

and

min
u∈U

(
J̄(u;o, r) + β⊤ min(c̄(u;o, r),0)

)
(92)

are continuous with respect to the continuous part of o since they are the minimum of a contin-
uous function with respect to x, z, and the continuous part of o for a fixed compact set. Thus,
L̃(o; s, r,β, λ) is continuous with respect to the continuous part of o.

We define a preferred optimal solution of the optimization stage Equation 13 as an optimal solution
of Equation 89, and denote the set of preferred optimal solutions as S∗(o, s, r). Moreover, we can
define an integrated optimization layer as Equation 93:

min
u∈U

λL(u,o; s, r) + J̄(u;o, r) (93a)

subject to c̄i(u;o, r) ≥ 0, i = 1, . . . , n̄c (93b)

The proof of the second statement consists of two steps. The first step establishes that when λ is
sufficiently small, the minimum of J̄ + λL approaches the minimum of J̄ plus the minimum of L
restricted to the optimal solution set of J̄ . Specifically, for any ϵ2 > 0, we find λ0(o, s, r, ϵ2) > 0
such that

|λL(u∗,o; s, r) + J̄(x∗, z∗;o, r)− λL∗(o; s, r)− J̄∗(o; r)| < λϵ2
3

(94)

holds for all λ < λ0(o, s, r, ϵ2) where J̄∗(o; r) is the optimal value of the original optimization
stage (Equation 13), (x∗, z∗) is an optimal solution of the integrated optimization layer (Equation 93),
and L∗(o; s, r) is the minimum value of L over the optimal solution set that minimizes J̄ . The second
step addresses the constraint handling through penalty parameters. If constraints were absent, the
problem would reduce to Equation 93a without the penalty terms, which can be solved by subtracting
J̄∗ and dividing by λ. We find β0(o, r, λ, s, ϵ2) such that the minimum values of the first and
second minimization problems in Equation 87 are within distance λϵ2/3 of the minimum values of
Equations 93 and 13, respectively.

Step 1. Since L is continuous with respect to x and Uz is compact for all z, the function L is
uniformly continuous on Uz for each z. Therefore, we can choose δ1(o, s, r, ϵ2) > 0 such that for all
x1,x2 and z, if ||x1 − x2|| < δ1, then

|L(x1, z,o; s, r)− L(x2, z,o; s, r)| <
ϵ2
3

(95)
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We define S∗
z(o, s, r) as:

S∗
z(o, s, r) := {x : u ∈ S∗(o, s, r)} (96)

We fix a discrete variable z and denote S̃∗
z(o, s, r, δ1) as the union of δ1-balls centered on elements

of S∗
z(o, s, r). Then, by the same reason as explained in Proposition 5, Uz \ (S̃∗

z(o, s, r, δ1)× {z})
is compact. Since L is continuous with respect to x, we can find the minimum value of L in the
intersection of the two compact sets since S(o, r) is compact:

Sz(o, r) \ (S̃∗
z(o, s, r, δ1)× {z}) = (Uz ∩ S(o, r)) \ (S̃∗

z(o, s, r, δ1)× {z}) (97)

Let this minimum value as lz(o, s, r, δ1), and define l(o, s, r, δ1) as l(o, s, r, δ1) =

minz l(o, s, r, δ1, z). Since we subtracted S̃∗
z × {z}, this minimum value should be larger than

the optimal value L∗(o; s, r). By uniform continuity, we can find δ̄1 such that for all x1,x2 and z, if
||x1 − x2|| < δ̄1, then

|L(x1, z,o; s, r)− L(x2, z,o; s, r)| < l(o, s, r, δ1)− L∗(o; s, r) (98)

We define Ṽz(o, s, r, δ̄1) as the union of δ̄1-balls centered on elements of Sz(o, r)\ (S̃∗
z(o, s, r, δ1)×

{z}). By the definition of δ̄1, every element in Ṽz(o, s, r, δ̄1) has an L value strictly greater than
L∗(o; s, r). Note that our preferred optimal solutions, which are feasible for both the original
optimization problem and our integrated optimization layer (Equation 93), achieve the optimal values
J̄∗(o; r) and L∗(o; s, r) for the functions J̄ and L, respectively.

Let’s consider any feasible solution in Ṽz(o, s, r, δ̄1). For such elements, the J̄ value cannot be
smaller than J̄∗(o, r) due to the optimality of J̄∗, while the L value is strictly larger than L∗(o; s, r)

by the defining property of Ṽz. Therefore, any element in Ṽz(o, s, r, δ̄1) has an objective value
λL+ J̄ > λL∗(o; s, r) + J̄∗(o, r) with strict inequality, making it impossible for such elements to
be optimal solutions of the integrated optimization layer (Equation 93), regardless of λ.

It is clear that Uz \ (Ṽz(o, s, r, δ̄1) × {z}) is compact. Therefore, (Uz \ (S̃∗
z(o, s, r, δ1) × {z})) \

(Ṽz(o, s, r, δ̄1) × {z}) is also compact. We define the set of feasible solutions as F (o, r). Since
all constraints are continuous with respect to x, F (o, r) is an intersection of constraint-satisfaction
regions of each constraint. Since each constraint includes equality, the constraint-satisfaction region
is a continuous inverse image of a closed set and is thus closed. Then, F (o, r) is also closed and
Uz ∩ F (o, r) is compact for all z.

Next, we can find the minimum value of J̄ in the intersection of the two compact sets:

((Uz ∩ F (o, r)) \ (S̃∗
z(o, s, r, δ1)× {z})) \ (Ṽz(o, s, r, δ̄1)× {z}) (99)

Let q0(z,o, s, r, δ1) denote the minimum value (Note that δ̄1 is a function of z,o, s, r, δ1). We can
also find the maximum value l̄(z,o, s, r, δ1) and the minimum value l(z,o, s, r, δ1) of L(u,o; s, r)
in Uz ∩ F (o, r) because L(u,o; s, r) is continuous with respect to x. Thus, when we define
λz(o, s, r, ϵ2) as:

λz(o, s, r, ϵ2) :=
q0(z,o, s, r, δ1)− J̄∗(o; r)

l̄(z,o, s, r, δ1)− l(z,o, s, r, δ1)
(100)

and λ(o, s, r, ϵ2) as:

λ(o, s, r, ϵ2) := min
z∈ProjZ(U)

λz(o, s, r, ϵ2) (101)

for any positive λ < λ(o, s, r, ϵ2), there is no solution of the integrated optimization problem

Equation 93 in ((Uz∩F (o, r))\ (S̃∗
z(o, s, r, δ1)×{z}))\ (Ṽz(o, s, r, δ̄1)×{z}). Since any element

of Ṽz(o, s, r, δ̄1) cannot be an optimal solution of Equation 93, all optimal solutions of Equation 93
are elements of S̃∗

z(o, s, r, δ1) for some z. That is, all of them are at most in distance δ1 from a
preferred optimal solution of the original optimization stage (Equation 13). Thus, we can obtain the
inequalities below. Inequalities below are based on triangle inequalities and hold for any λ, including
negative numbers.
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min
u∈F (o,r)

(λL(u,o; s, r) + J̄(u;o, r)) = min
u∈S̃∗

z×{z}
(λL(u,o; s, r) + J̄(u;o, r))

≥ min
u∈S̃∗

z×{z}
λL(u,o; s, r) + min

u∈S̃∗
z×{z}

J̄(u;o, r)

= min
u∈S̃∗

z×{z}
λL(u,o; s, r) + J̄∗(o, r)

(102)

min
u∈F (o,r)

(λL(u,o; s, r) + J̄(u;o, r)) = min
u∈S̃∗

z×{z}
(λL(u,o; s, r) + J̄(u;o, r))

= − min
u∈S̃∗

z×{z}
(−λL(u,o; s, r))

+ min
u∈S̃∗

z×{z}
(−λL(u,o; s, r)) + min

u∈S̃∗
z×{z}

(λL(u,o; s, r) + J̄(u;o, r))

= max
u∈S̃∗

z×{z}
λL(u,o; s, r)

+ min
u∈S̃∗

z×{z}
(−λL(u,o; s, r)) + min

u∈S̃∗
z×{z}

(λL(u,o; s, r) + J̄(u;o, r))

≤ max
u∈S̃∗

z×{z}
λL(u,o; s, r) + min

u∈S̃∗
z×{z}

J̄(u;o, r)

= max
u∈S̃∗

z×{z}
λL(u,o; s, r) + J̄∗(o, r)

(103)

In conclusion, we have established that for any λ < λ(o, s, r, ϵ2), all optimal solutions of the inte-
grated optimization layer (Equation 93) must lie in S̃∗

z(o, s, r, δ1) for some z. From our inequalities:

min
u∈S̃∗

z×{z}
λL(u)+ J̄∗(o, r) < min

u∈F (o,r)
(λL(u)+ J̄(u;o, r)) < max

u∈S̃∗
z×{z}

λL(u)+ J̄∗(o, r) (104)

Since every element u ∈ S̃∗
z(o, s, r, δ1) × {z} is within distance δ1 of some preferred optimal

solution, and our choice of δ1 ensures that |L(u,o; s, r)− L∗(o; s, r)| < ϵ2/3, we obtain:

max
u∈S̃∗

z×{z}
λL(u,o; s, r) < λ

(
L∗(o; s, r) +

ϵ2
3

)
(105)

Subtracting λL∗(o; s, r) + J̄∗(o, r) from all parts of our sandwich inequality, we conclude that any
optimal solution u∗ of Equation 93 satisfies:

|λL(u∗,o; s, r) + J̄(x∗, z∗;o, r)− λL∗(o; s, r)− J̄∗(o; r)| < λϵ2
3

(106)

Setting λ0(o, s, r, ϵ2) = λ(o, s, r, ϵ2) completes Step 1.

Step 2. Now, we fix λ and find β0 that makes the minimum value of the first and the second
minimization problem of Equation 87 have distance less than λϵ2/3 from the minimal value of
their constrained (unconverted) versions. By Assumptions 1 and 2, both λL(u,o; s, r) + J̄(u;o, r)
and J̄(u;o, r) are continuous with respect to x, and our domain with respect to x can be restricted
to a compact set for any z. Then, these two functions are uniformly continuous, so we can find
δ2(o, s, r, ϵ2, λ) and δ3(o, r, ϵ2, λ) such that for all x1,x2 and z:

• if ||x1 − x2|| < δ2(o, s, r, ϵ2, λ) , then

|λL(x1, z,o; s, r) + J̄(x1, z;o, r)− λL(x2, z,o; s, r)− J̄(x2, z;o, r)| <
λϵ2
3

(107)

• if ||x1 − x2|| < δ3(o, r, ϵ2, λ), then

|J̄(x1, z;o, r)− J̄(x2, z;o, r)| <
λϵ2
3

(108)
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Since we can treat λL(u,o; s, r)+ J̄(u;o, r) as another J̄ and it satisfies Assumption 1 (as c̄ remains
the same and still satisfies Assumption 1), we can apply Proposition 5 to both Equation 93 and
Equation 13.

Thus, we can choose

• β
1
(o, s, r, ϵ2, λ) such that for any β > β

1
, the optimal solution of the first minimization

problem in Equation 87 lies within distance δ2(o, s, r, ϵ2, λ) of some optimal solution of
Equation 93.

• β
2
(o, r, ϵ2) such that for any β > β

2
(u,o, r, ϵ2), the optimal solution of the second

minimization problem in Equation 87 lies within distance δ3(o, r, ϵ2) of some optimal
solution of Equation 13.

Finally, when we set β0 as:

β0(o, r, λ, s, ϵ2) = max(β
1
(o, s, r, ϵ2, λ),β2

(o, r, ϵ2)) (109)

all β > β0(o, r, λ, s, ϵ2) satisfy the following:

λ|L̃(o; s, r,β, λ)− L∗(o; s, r)|

=

∣∣∣∣min
u∈U

(
λL(u,o; s, r) + J̄(u;o, r)− β⊤ min(c̄(u;o, r),0)

)
−min

u∈U

(
J̄(u;o, r)− β⊤ min(c̄(u;o, r),0)

)
− λL∗(o; s, r)

∣∣∣∣
=

∣∣∣∣(min
u∈U

(
λL(u,o; s, r) + J̄(u;o, r)− β⊤ min(c̄(u;o, r),0)

)
−λL(u∗,o; s, r)− J̄(x∗, z∗;o, r)

)
−
(
min
u∈U

(
J̄(u;o, r)− β⊤ min(c̄(u;o, r),0)

)
− J̄∗(o, r)

)
+
(
λL(u∗,o; s, r) + J̄(x∗, z∗;o, r)− λL∗(o; s, r)− J̄∗(o, r)

)∣∣

(110)

≤
∣∣∣∣min
u∈U

(
λL(u,o; s, r) + J̄(u;o, r)− β⊤ min(c̄(u;o, r),0)

)
−λL(u∗,o; s, r)− J̄(x∗, z∗;o, r)

∣∣
+

∣∣∣∣min
u∈U

(
J̄(u;o, r)− β⊤ min(c̄(u;o, r),0)

)
− J̄∗(o, r)

∣∣∣∣
+
∣∣λL(u∗,o; s, r) + J̄(x∗, z∗;o, r)− λL∗(o; s, r)− J̄∗(o, r)

∣∣
<
λϵ2
3

+
λϵ2
3

+
λϵ2
3

= λϵ2

Note that u∗ is an optimal solution of Equation 93 and J̄∗(o; r) is the optimal value of the original
optimization stage Equation 13. The first equality is from the definition of the approximated loss
function Equation 87, followed by the first inequality from the triangle inequality. The second
inequality is from the result of Step 1 and the definition of δ2, δ3. Therefore, the statement is proven.

Therefore, we can use L̃(o; s, r,β, λ) as our loss function for training since it is continuous with
respect to the continuous part of o and approaches to L∗(o; s, r) when λ→ 0 and β → ∞.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

E COMPUTATION OF GRADIENT

To train the information processing module (i.e., to update the parameters to minimize our approximate
loss function), we need to obtain the gradients of the approximated loss function with respect to
the model parameters. The link between the information processing module and the approximate
loss function is the information processing module output o ∈ O ⊂ Rnoc × N0

nod that has noc
continuous elements and nod discrete elements. Let oc ∈ Oc ⊂ Rnoc and od ∈ Od ⊂ N0

nod denote
the continuous and discrete part, respectively. Since we cannot backpropagate gradients through the
discrete part, we must handle them in an alternative way. We present the method for calculating the
gradients for the real output vector first, and then present the method for calculating the gradients
regarding the outputs from internal test data.

E.1 REAL OUTPUT

In this subsection, we deal with how to compute the gradient for the real output vector (including
discrete components). First, we present how to address the effect of the infinitesimal change of
parameters on the approximate loss function through the discrete part to train the information
processing module. We cannot directly define the gradient with respect to the discrete elements.
However, these discrete elements are generally computed as a result of rounding or classification. For
example, many classification models compute some real number associated with each class, and the
class with the largest value can be regarded as the classification output. Thus, since continuous values
are propagated between layers in information processing modules, discrete outputs can be considered
as a sole function of some continuous interim results of the information processing module.

We need to obtain the virtual partial derivative with respect to the continuous interim results to train
the information processing module. Although this is not the real gradient, this should be useful to
update the model parameters to potentially result in a smaller approximate loss function. Let

od = (od1, od2, . . . , odnod
) ∈ Od1 ×Od2 × . . .Odnod

(111)

with odi = gi(f(yi;wi)), f(yi;wi) ∈ Rmi and gi : Rmi → Odi. Since gi(f(yi;wi)) is clearly

discontinuous by definition and thus L̃(o; s, r,β, λ) is also discontinuous with respect to wi, we
need to obtain the softened approximated loss function that is continuous and differentiable with
respect to f(yi;wi). Note that we assume f(yi;wi) does not share elements with each other. If not,
we can treat it as if there are two copies of one variable, and then the effects of them will be added
when we back-propagate the (approximate) gradient.

We construct the softened approximated loss function (Equation 112) for each f(yi;wi) as an
expectation of L̃ with respect to the stochastic selection of odi via softened probability distribution
p(odi; f(yi;wi)) for gi(f(yi;wi)). The softened probability distribution p(odi; f(yi;wi)) can be
set by various methods, but it needs to be continuous and partial-differentiable with respect to
f(yi;wi) for any odi ∈ Odi. One example can be setting odi = gi(f(yi;wi) + µ) for µ following
standard normal distribution, i.e., µj ∼ N (0, 1), j = 1, . . . ,mi. Another example can be softmax.
Note that od−i denotes all elements of od other than the i-th element.

ELi(f(yi;wi);oc,od−i, s, r,β, λ) =
∑

odi∈Odi

p(odi; f(yi;wi))L̃(oc, odi,od−i; s, r,β, λ) (112)

Since p(odi;wi) is continuous and partial-differentiable with respect to f(yi;wi), we can well-define
a virtual partial derivative with respect to f(yi;wi) as follows.

V PDdi :=
∂

∂wi
ELi(f(yi;wi);oc,od−i, s, r,β, λ)

=
∑

odi∈Odi

∂p(odi; f(yi;wi))

∂f(yi;wi)
L̃(oc, odi,od−i; s, r,β, λ)

(113)

Gradient-descent method using this virtual partial derivative (Equation 113) decreases the probability
of high L̃ and increases the probability of low L̃. This enables the information processing module to
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produce output o, which results in a lower approximate loss function more frequently. Thus, we can
use the virtual partial derivative Equation 113 for training the information processing module as a
substitute for real gradients.

Now, we deal with the continuous elements. Theorem 2 guarantees only continuity, not differentiabil-
ity of L̃(o; s, r,β, λ). Thus, we need to obtain the virtual partial derivative of L̃, which can be used
as real gradients for training when it is not differentiable. Similar to the definition of gradient, we can
define our virtual partial derivative as Equation 114. Note that oc−i denotes all elements of oc other
than the ith element, and we can arbitrarily choose sufficiently small ρ.

V PDci :=
1

ρoci
(L̃(oci + ρoci,oc−i,od; s, r,β, λ)− L̃(o; s, r,β, λ)) (114)

In some cases, we can obtain the exact gradient by differentiating L̃(o; s, r,β, λ). For simplicity, we
let

P (u,o; s, r) := λL(u,o; s, r) + J̄(u;o, r)− β⊤ min(c̄(u;o, r),0) (115)
and

Q(u,o; r) := J̄(u;o, r)− β⊤ min(c̄(u;o, r),0) (116)

Then, a set of conditions sufficient for the analytical calculation of the gradient is presented in
Condition 4.

Condition 4. For a given s, r, and o0, there exists ϵ4(s, r,o0) > 0 that makes the following
statements satisfy in neighborhood B(oc0, ϵ4)× {od0} ⊂ O.

1. P (u,o; s, r) and Q(u,o; r) have gradients with respect to oc at oc = oc0.

2. P (u,o; s, r) andQ(u,o; r) have only one minimum (xp(o), zp(o)) ∈ U and (xq(o), zq(o)) ∈ U ,
respectively. That is,

{(xp, zp)} = argmin
u∈U

(
λL(u,o; s, r) + J̄(u;o, r)− β⊤ min(c̄(u;o, r),0)

)
(117)

{(xq, zq)} = argmin
u∈U

(
J̄(u;o, r)− β⊤ min(c̄(u;o, r),0)

)
(118)

3. xp(o) and xq(o) have gradients with respect to oc at o0.

4. zp(o) and zq(o) are constant.

5. (xp(o0), zp(o0)) and (xq(o0), zq(o0)) are in the interior of U .

Then, we derive the exact gradient of L̃(o; s, r,β, λ) with respect to o under Condition 4 in Theorem
6.

Proposition 6. Under Assumption 1, Assumption 2, and Condition 4, the gradient of L̃(o; s, r,β, λ)
with respect to oc at o0 can be calculated as follows.

∇oc
L̃(o; s, r,β, λ)(o0) =

1

λ
(∇oc

P (xp,o0)−∇oc
Q(xq,o0)) (119)

Proof. Under Assumption 1, Assumption 2, and Condition 4, Equation 120 is a direct result of the
chain rule. Note that the effect of the gradient of z with respect to o is 0 because of statement 4 of
Condition 4.

∇oc
L̃(o; s, r,β, λ)(o0) =

1

λ
(∇oc

P (xp,o0) +∇xP (xp,o0)∇oc
xp(o0)

−∇oc
Q(xq,o0)−∇xQ(xq,o0)∇oc

xq(o0))
(120)
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Then, by the fifth statement of Condition 4, constraints u ∈ U do not affect ∇oc
xp(o0) and

∇oc
xq(o0). Thus, as a sole minimality condition, we need to consider only stationarity with respect

to x, that is,

∇xP (xp,o0) = ∇xQ(xq,o0) = 0 (121)

Therefore, Equation 120 reduces to Equation 119.

Note that Condition 4 generally holds for problems we typically encounter. The reasons are as
follows: Most of the basic functions we work with (polynomial, exponential, trigonometric, etc.) are
differentiable, so statements 1 and 3 hold. The remaining statements are analogous to non-singularity
conditions that hold almost everywhere. The key point of Proposition 6 is the elimination of gradients
with respect to x, and this is the direct result of minimization in the definition of L̃. Since we can
choose an arbitrarily big U as long as it is bounded and the functions are well-defined, we can easily
satisfy the fifth condition that removes the effect of constraints.

As the final part of this subsection, we summarize the computational cost of calculating the (virtual)
gradient in terms of computational cost when solving the minimization problem in Proposition 7.
This is important since we do not constrain the type of our optimization problem, and thus, the
minimization can take significantly longer than other operations.

Proposition 7. When all Odi(1 ≤ i ≤ nod) are finite, the number of times we need to solve
minimization problems (of P or Q) to obtain virtual or exact gradients with respect to all elements of
the information processing module output is as follows.

1. When we use Equation 114 to obtain virtual gradients with respect to continuous elements:

2× (noc + 1 +

nod∑
i

|Odi|) (122)

2. When we use Equation 119 to obtain exact gradients with respect to continuous elements and
∇ocP and ∇ocQ are (locally) known analytically:

2× (1 +

nod∑
i

|Odi|) (123)

Proof. By the definition of virtual partial derivative with respect to a discrete element (Equation 113),
calculating it needs computation of L̃ for all odi. Thus, the calculation of the virtual partial derivative
with respect to all discrete elements requires 2 ×

∑nod

i |Odi| times of minimization since one
computation of L̃ needs two minimizations.

Meanwhile, Equation 114 needs a single computation of L̃ with the non-deviated value and one
additional computation of L̃ for each continuous element of o, which means that 2× (noc + 1) times
of minimization are needed. As a result, 2 × (noc + 1 +

∑nod

i |Odi|) times of minimization are
needed to find (virtual) gradients for the whole output when we use Equation 114.

In contrast, computation of Equation 119 requires only two times of minimization when we already
know the analytical expression of ∇oc

P and ∇oc
Q locally. This provides partial derivatives for all

continuous elements of o simultaneously. Therefore, we need only 2× (1 +
∑nod

i |Odi|) times of
minimization.

E.2 GRADIENTS FOR INTERNAL TEST DATA

In this subsection, we present techniques for computing the (approximate) gradient of the approximate
loss function using conservative testing procedures for training the chance-constrained method within
the framework. For simplicity, we define Nξ as (N+ξ, N−ξ). By starting from the definition
equation 113, we can calculate the virtual partial gradient for the chance-constrained part (with
conservative testing technique) as
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V PDξ
cr =

nt∑
k

∑
{Nξ

scr=s̄i,ocr=ōj
}

∂Prξ({Nξ
scr=s̄i,ocr=ōj

})
∂f(ytkcr;wcr)

L̃({Nξ
scr=s̄i,ocr=ōj

},oncr; s, r,β, λ)

(124)

when Prξ({Nξ
scr=s̄i,ocr=ōj

}) is defined as the probability of {Nξ
scr=s̄i,ocr=ōj

} under
p+ξ(ōj ; f(y

tk
cr;wcr)). Here, we stochastically assign 1+ξ(otkcr, ōj) and 1−ξ(otkcr, ōj) at the same

time, that is, 1−ξ(otkcr, ōj) implies 1+ξ(otkcr, ōj) and the latter solely occurs with probability
p+ξ(ōj ; fcr(y

tk
cr;wcr))− p−ξ(ōj ; fcr(y

tk
cr;wcr)).

Then, by using the chain rule and defining {Nξ,−k
scr=s̄i,ocr=ōj

} as the number of (internal) test cases
for each environment state and output without k th test case, we can convert it as

V PDξ
cr =

nt∑
k

∑
{Nξ

scr=s
tk
cr ,ocr=ōj

}

∂Prξ({Nξ

scr=s
tk
cr ,ocr=ōj

})

∂f(ytkcr;wcr)
E(L̃; {Nξ

scr=s
tk
cr ,ocr=ōj

})

=

nt∑
k

(
∑

{Nξ,−k

scr=s
tk
cr ,ocr=ōj

}

∑
l

∂p−ξ(ōl; f(y
tk
cr;wcr))

∂f(ytkcr;wcr)
Prξ({Nξ,−k

scr=s
tk
cr ,ocr=ōj

})

(E(L̃; {Nξ,−k
scr=s

tk
cr ,ocr=ō1

, . . . ,Nξ,−k
scr=s

tk
cr ,ocr=ōl−1

,Nξ,−k
scr=s

tk
cr ,ocr=ōl

+ (1, 1),

Nξ,−k
scr=s

tk
cr ,ocr=ōl+1

, . . . ,Nξ,−k
scr=s

tk
cr ,ocr=ōNo

})− E(L̃; {Nξ,−k
scr=s

tk
cr ,ocr=ōj

}))

+
∑

{Nξ,−k

scr=s
tk
cr ,ocr=ōj

}

∑
l

(
∂p+ξ(ōl; f(y

tk
cr;wcr))

∂f(ytkcr;wcr)
− ∂p−ξ(ōl; f(y

tk
cr;wcr))

∂f(ytkcr;wcr)
)Prξ({Nξ,−k

scr=s
tk
cr ,ocr=ōj

})

(E(L̃; {Nξ,−k
scr=s

tk
cr ,ocr=ō1

, . . . ,Nξ,−k
scr=s

tk
cr ,ocr=ōl−1

,Nξ,−k
scr=s

tk
cr ,ocr=ōl

+ (1, 0),

Nξ,−k
scr=s

tk
cr ,ocr=ōl+1

, . . . ,Nξ,−k
scr=s

tk
cr ,ocr=ōNo

})− E(L̃; {Nξ,−k
scr=s

tk
cr ,ocr=ōj

})))∑
{Nξ,−k

scr=s
tk
cr ,ocr=ōj

}

∑
l

(−∂p
+ξ(ōl; f(y

tk
cr;wcr))

∂f(ytkcr;wcr)
)Prξ({Nξ,−k

scr=s
tk
cr ,ocr=ōj

})

(E(L̃; {Nξ,−k
scr=s

tk
cr ,ocr=ō1

, . . . ,Nξ,−k
scr=s

tk
cr ,ocr=ōl−1

,Nξ,−k
scr=s

tk
cr ,ocr=ōl

+ (0, 0),

Nξ,−k
scr=s

tk
cr ,ocr=ōl+1

, . . . ,Nξ,−k
scr=s

tk
cr ,ocr=ōNo

})− E(L̃; {Nξ,−k
scr=s

tk
cr ,ocr=ōj

})))
(125)

when E(L̃; {Nξ

scr=s
tk
cr ,ocr=ōj

}) is the expectation of L̃ under {Nξ

scr=s
tk
cr ,ocr=ōj

} (with probabilistic

{Nξ
scr=s̄i,ocr=ōj

} for s̄i ̸= stkcr). We can approximate this by fixing the outputs for other internal
test data (thus, considering only the output of specific internal test data as stochastic) in computing
expectations (thus, collapsing expectations into deterministic values). Further details about the
technique are provided with empirical examples.

As an alternative way, we can make a continuous approximate function of L̃ for continuous:

Ñ+ξ
scr=s̄i,ocr=ōj

:=

nt∑
k=1

1(stkcr, s̄i)p
+ξ(ōl; f(y

tk
cr;wcr)) (126)

and

Ñ−ξ
scr=s̄i,ocr=ōj

:=

nt∑
k=1

1(stkcr, s̄i)p
−ξ(ōl; f(y

tk
cr;wcr)) (127)
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F SCALING LAW

To mathematically deal with the scaling law, we review the concept of ζ-coverage introduced in (Kim
et al., 2025).

Definition 3. [Modified from Definition 1 in (Kim et al., 2025)]

For ζ > 0, we call a dataset D is ζ-coverage if and only if D satisfies the following:⋃
ω∈D

B(ω, ζ) = Ω, (128)

whereB(ω, ζ) is an open ball with radius ζ centered at ω and Ω is a compact metric space of potential
inputs.

Note that ζ-coverage is a weaker version of ζ-informative (from Section C.1), considering only when
X is the full set. Now, we construct the safe set based on the internal test data with this concept. Our
main method for identifying the safe set is as follows:

We employ internal test data in the product of the input space and the action space (denoted as Ω∗).
Then, we consider a radius ζ that makes the internal test data be ζ-coverage, which is the condition
that the union of ζ-balls centered on the data contains the whole product space. Next, when we
classify all data within the ζ-range from internal test data as safe, our safe set classification can serve
as an estimate of the real safe set. The probability of Type I errors (misclassifying unsafe actions as
safe) and Type II errors (misclassifying safe actions as unsafe) is upper-bounded by the difference of
the probability of the real safe set and the ζ-inflated real safe set, and the difference of the probability
of the real unsafe set and the ζ-inflated real unsafe set.

When we use more internal test data, we can use a smaller ζ and the probability of a set difference
becomes smaller. Conversely, when we decide the probability bound, we can decide the appropriate
ζ to ensure it (with some condition of the real safe set). Then, we can compute the expectation of the
required number of internal test data to ensure ζ-coverage with such ζ. With the process, under the
following conditions, we can obtain the following theorem.

Condition 5. 1. Ω∗ is a compact metric space with endowed probability measure P ∗ that is defined
on a Borel σ-algebra.

2. There exists a well-defined safe set S that includes all pairs of input and action that satisfy the
constraint. That is, the safe and unsafe pairs of input and action can be completely distinguishable in
principle.

3. The safe set S and its complement Ω∗ \ S have finite boundary probability measure for dimension
d− 1, that is,

lim sup
r→0+

P ∗(
⋃
ω∈S B(ω, r) \ S)

r
, lim sup

r→0+

P ∗(
⋃
ω∈Ω∗\S B(ω, r) \ (Ω∗ \ S))

r
<∞ (129)

Condition 6. All open balls with radius r in the input space Ω∗ have a probability measure of at least
κrd with constant κ and the dimension of the input space d.

Theorem 3. Under Conditions 5 and 6, when we assume that we can define the safety classification
model as an arbitrary partition of Ω∗, as p decreases gradually, the expected number of required
internal test data Nreqit to upper-bound both Type I errors and Type II errors with p as

Nreqit ≤ Ap−2d (130)

where A is a constant and d is the dimension of the input space.
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Proof. For simplicity, let t1, . . . , tNsit
(∈ S) as safe internal test data and tNsit+1, . . . tNsit+Nusit

(∈
Ω∗ \ S) as unsafe internal test data (Nsit + Nusit = nt). For ζ that makes the internal test data
t1, . . . , tnt

be ζ-coverage of Ω∗, we classify pairs of input and action in
⋃nsit

i=1 B(ti, ζ) as safe.

Part 1: Computation of appropriate ζ to upper bound the error probabilities.

In this part, we compute the required ζ to upper bound the error probabilities to p. Type I and Type II
error probabilities are

P ∗(
⋃nsit

i=1 B(ti, ζ) \ S)
P ∗(Ω∗ \ S)

,
P ∗(S \

⋃nsit

i=1 B(ti, ζ))

P ∗(S)
(131)

respectively. Based on the ζ-coverage assumption, we have

P ∗ (S \
⋃nsit

i=1 B(ti, ζ))

P ∗(S)
≤
P ∗
(
S \

(
Ω∗ \

(⋃Nsit+Nusit

i=Nsit+1 B(ti, ζ)
)))

P ∗(S)

=
P ∗
(
S ∩

⋃Nsit+Nusit

i=Nsit+1 B(ti, ζ)
)

P ∗(S)

(132)

Since unsafe internal test data is not included in the safe set, we can obtain

P ∗
(
S ∩

(⋃Nsit+Nusit

i=Nsit+1 B(ti, ζ)
))

P ∗(S)
≤
P ∗
(
S ∩

(⋃
ω∈Ω∗\S B(ω, ζ)

))
P ∗(S)

=
P ∗
((⋃

ω∈Ω∗\S B(ω, ζ)
)
\ (Ω∗ \ S)

)
P ∗(S)

(133)

Conversely, since all safe internal test data is included in S, we can obtain

P ∗ ((
⋃nsit

i=1 B(ti, ζ)) \ S)
P ∗ (Ω∗ \ S)

≤
P ∗ ((⋃

ω∈S B(ω, ζ)
)
\ S
)

P ∗ (Ω∗ \ S)
(134)

By Condition 5, we have (ks, rs) and (kus, rus) that satisfy

∀r < rs, P ∗

(⋃
ω∈S

B(ω, ζ) \ S

)
< ksrs

∀r < rus, P ∗

 ⋃
ω∈Ω∗\S

B(ω, ζ) \ (Ω∗ \ S)

 < kusrus

(135)

respectively. Now, when ζ satisfies

ζ ≤ min

(
rs, rus,

pP ∗(S)

kus
,
pP ∗(Ω∗ \ S)

ks

)
, (136)

both Type I error and Type II error probabilities are lower than or equal to p.

Part 2: Computation of the expected number of required internal test data to achieve ζ-coverage with
such ζ.

In this part, we compute how much internal test data is needed to achieve ζ-coverage with

ζ := min

(
rs, rus,

pP ∗(S)

kus
,
pP ∗(Ω∗ \ S)

ks

)
(137)

Since Ω∗ is compact, we can obtain a finite subcover of the following open cover:
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{
B

(
ω,
ζ

4

)∣∣∣∣ ω ∈ Ω∗
}

(138)

Let this finite subcover as: {
B

(
ω1,

ζ

4

)
, · · · , B

(
ωnb

,
ζ

4

)}
(139)

and inductively define Hi as Hi := ϕ if B
(
ωi,

ζ
4

)
⊂
⋃i−1
j=1Hj , otherwise a ζ

4 -ball centered

somewhere in B
(
ωi,

ζ
4

)
\
⋃i−1
j=1Hj . Let {ω′

1, · · · , ω′
nh

} as the set of centers of His which is not ϕ.
It is clear that ⋃

i

B

(
ω′
i,
ζ

2

)
⊃
⋃
i

B

(
ωi,

ζ

4

)
⊃ Ω∗ (140)

and the distance between ω′
i and ω′

j for any i ̸= j is at least ζ/4 since we define each ω′
i outside

from
⋃i−1
j=1Hj .

Considering the ζ/8-balls centered on each ω′
i, the balls cannot overlap and each ball has a probability

measure of at least κζd/8d based on Condition 6. Since the sum of the probabilities of non-
overlapping sets cannot exceed 1, we can obtain

nh ≤ 8d

κζd
(141)

Additionally, based on Condition 6, B(ω′
i,
ζ
2 ) has a probability measure of at least κζd/2d. Then,

when we sample nt internal test data, each of the B(ω′
i,
ζ
2 )s has at least one sampled element with

probability at least 1 − (1 − κζd/2d)nt . By the union bound, for probability at least 1 − nh(1 −
κζd/2d)nt , all open balls in the subcover have at least one internal test data. Considering that the
radius of the open balls is ζ/2, all elements in the subcover are subsets of

⋃nt

i=1B(ti, ζ), and thus,
this internal test data is ζ-coverage.

Now, we can compute the expected number of the internal test data to be ζ-coverage as follows (with
a constant A).

Nreqit ≤
∑
nt

ntPrnt
({t1, . . . , tnt

}: ζ-coverage, {t1, . . . , tNt−1
}: not ζ-coverage)

=
∑
nt

Prnt({t1, . . . , tnt}: not ζ-coverage)

=
∑
nt

nh

(
1− κζd

2d

)nt

=
2dnh

κζd

≤ 16dnh

κ2ζ2d

=
16d

κ2 min(rs, rus,
pP∗(S)
kus

)2d

≤ Ap−2d

(142)
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G BIAS CORRECTION TO TAILOR TO USER-GIVEN THRESHOLD IN
UTILIZATION

Our framework enables users to set or change a threshold that differs from the one used during
training. For this purpose, in this section, we present how our framework can handle different
thresholds than the one used in training, by adding a term named ‘bias’ in the model output logit.

In the utilization (inference) stage, the computed posterior of outputs pξ(scr = s̄i|ocr = ōj) is
discrete since the number of possible constraint-related environment states and outputs is finite
by assumption. If we fix the perception procedure, the system based on our framework can only
tackle user-given thresholds in a step-like manner. For instance, if the threshold is lower than
mini,j p

ξ(scr = s̄i|ocr = ōj), we should satisfy all constraints included in chance-constraints. This
is inefficient because we cannot smoothly adjust the system according to the user-given threshold.

Alternatively, in the utilization stage, we modify our information processing module by adding a
constant vector v to the final layer output (i.e., the logit value before post-processing steps):

f ′(y;wcr) = f(y;wcr) + v (143)

Then, we can treat f ′(y;wcr) as the final layer output of a new information processing module and
obtain new outputs o′

cr. Note that v can be any constant vector that has the same dimension as
f(y;wcr). The whole theory we discuss through this document holds for any f ′(y;wcr) and o′

cr.
Thus, we may adjust the information processing module output to obtain better performance.

At the beginning of the utilization stage, we run inference for the internal test data first. Then, we can
find v that makes the computed posterior pξ(scr = s̄i|o′

cr = ōj) be desired values. For example,when
there is one environment state s̄ and the output is ō1, we can set v that makes pξ(scr = s̄|o′

cr = ō1)
the same as the threshold rt (if such v exists) to avoid the constraint associated with s̄ as much as
possible through ō1. We compute v whenever a different threshold is assigned during utilization,
thereby adjusting our model according to the threshold given by the user.

Implementation details we used for this process are provided in each experiment (Section H, I, J).
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H PRODUCTION PLANNING WITH DEMAND PREDICTION

As a first example, we apply our framework to production planning with demand prediction. We
address the combined challenging problem of optimizing production decisions based on predicted
demand. In this example, we use the OMEN HP 45L Gaming Desktop GT22-3000t PC equipped with
Intel Core Ultra9 285K and NVIDIA GeForce RTX 4090 GPU (personally replaced from NVIDIA
GeForce RTX 4070 Super). We use Gurobi (Gurobi Optimization, 2024) for our optimization.

H.1 PROBLEM SETUP.

We compute production quantities u ∈ R4 based on the demand data for prior 24 time steps y
that maximize revenue depending on unknown current demand s ∈ R4 while satisfying material
constraints and halting production when current demand is low (si < 3), and otherwise optimized to
maximize revenue. Considering that market price is influenced by supply and demand, the revenue is
formulated as

∑4
i=1(pi − ki(ui − si)) · ui where standard price (p1, p2, p3, p4) and price sensitivity

parameters (k1, k2, k3, k4) are given constants.

The system faces two types of constraints. First, deterministic material limitations are formulated as
Au+ |u| ≤ b, where A and b are fixed matrices and vectors representing material consumption rates
and availability limits. The element-wise absolute value |u| creates robustness against uncertainties
in the consumption rates, handling worst-case scenarios where actual consumption might deviate
from nominal values A. This robust formulation can be expressed as a second-order cone constraint.
Second, we introduce uncertain constraints: when the demand for the i-th product is too low
(si < 3, where demand is normalized to [0, 10]), production should cease (ui = 0) due to inefficient
distribution networks.

H.2 DATA PREPARATION

We obtain New York regional hourly electricity demand data for 2020-2023 from U.S. Energy
Information Administration (Administration, 2020-2023) and New York regional global horizontal
irradiance (GHI), relative humidity, and temperature data for 2020-2023 from the National Solar
Radiation Data Base (NSRDB) of the National Renewable Energy Laboratory (NREL) (Sengupta
et al., 2018). Then, we normalize the data to [0, 10]. We set the demand of the four products as
normalized values by assuming the products are related to weather or electricity. Thus, we use
demand series for the four products, which are normalized to [0, 10], as our ground truth.

We use data for 2020 as our training data, data for 2021 as our internal test data for training, data for
2022 as our internal test data for validation, and data for 2023 as our validation data. (Thus, using a
separate dataset for internal test data for training and validation, since the number of internal test data
is too small to completely overcome data leakage by conservative testing with a reasonable ξ.) Due
to the limited number of data, we cannot run a scaling-law experiment for this application.

H.3 IMPLEMENTED METHODS

For all methods except the mean-variance method, we use the following flow: For each product, we
adopt a 1-layer LSTM (Hochreiter & Schmidhuber, 1997) model with hidden layer size 64 and a
subsequent fully-connected layer with output size depending on the method. We put demand data for
24 prior time steps as the input y. Then, we process the final outputs for 4 products and compute the
production decision for them. In the training phase, we compute the gradient to improve the revenue
and back-propagate the networks. In back propagation, we use the Adam optimizer (Kingma & Ba,
2015).

Details for each method are elaborated in each sub-section.

H.3.1 PROPOSED METHOD

Figure 5 presents the structure of the method on the proposed framework. In this example, for each
product, we combine the AI model and the safety classification model, and predict demand and
whether demand is less than 3 by LSTM, based on the demand series for the last 24 time steps. Our
LSTM-based classifier for i-th product has 3 dimensional output whose first element is estimate of
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demand oncr,i (oncr = (oncr,1, oncr,2, oncr,3, oncr,4) is an estimate of s = (s1, s2, s3, s4) and other
two elements for binary classifier for whether si < 3 to obtain ocr = (ocr,1, ocr,2, ocr,3, ocr,4) ∈
{0, 1}4 when ocr,i = 1 indicates si < 3. Separation of the estimation part and classification part is
helpful for tailoring to each threshold because the estimated value does not indicate the probability of
the demand to be lower than 3. Then, we put ui = 0 or ui ≥ 0 when the (upper-bound of) posterior
probability of si < 3 conditional to the (conservatively tested) classification part output is larger or
smaller than the user-given threshold, respectively. Finally, we solve the optimization problem and
obtain the optimal action.

0.5

Demand history 

data4.2 2.4 7.8

0.5

Data

4.2 2.4

Estimation model

4.2

Input:  Demand history data

ClassifierInternal test cases
3.4 2.9 5.1

Posterior

probability
class 0 1

0.1 0.8

Output: Action (optimal solution    )

Optimization problem:

Figure 5: System structure based on the proposed framework for demand prediction-based production
decision.

The problem contains both a deterministic material constraint and an uncertain constraint. In
particular, the uncertain constraint encodes that when the demand is low (si < 3), production
should cease (ui = 0). We limit the probability of violating this constraint below a user-specified
threshold rt. We set u = 0 when the constraint is unsatisfied, and otherwise maximize revenue∑4
i=1(pi − ki(ui − si)) · ui, where standard price pi and price sensitivity ki are constants.

Now, the problem can be formulated as follows.

min
u∈[0,10]4

J̄(u;oncr) := −
4∑
i=1

(pi − ki(ui − oncr,i))ui (144a)

ci := rt − Pr(si < 3 and ui > 0|ocr,i) ≥ 0, i = 1, 2, 3, 4 (144b)

(c5, . . . , c9) := Āu+ 1|u| ≤ b (144c)

Note that demand state s is unknown and should be predicted by last 24 time steps of demand data and
other parameters p,k, Ā,b, rt are generated randomly based on a seed and fixed in one experiment
(we run 100 experiments with varying seeds).

At the beginning of each epoch, we run the forward call for the model (LSTM+fc network) and
obtain the 3-dimensional outputs for each product. Note that we use full batch (8760 data at once)
and the posterior is only computed once since it depends only on the internal test data (shared within
a batch). Then we construct the normal table, which is useful for calculating the posterior
probability of the current demand to be lower than 3 for each product. The table is structured as
(number of labels: 2) × (number of classes: 2) × 2 (+ξ and −ξ). For i-th label and j-th class,
the corresponding entries for each +ξ axis and −ξ axis indicate N+ξ

scr=s̄i,ocr=ōj
and N−ξ

scr=s̄i,ocr=ōj
,

respectively. The following procedure illustrates how the table is updated for each internal test data
during implementation23:

1. For j-th class, if adding ξ to the logit of a class results in that class having the highest value
among all logits, the corresponding label × j-th class × +ξ entry is incremented by 1.

23Note that ξ is inflated by
√
2 in experiment settings for practical reasons.
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2. For j-th class, if subtracting ξ results in that class having the highest value among all logits, the
corresponding label × j-th class × −ξ entry is incremented by 1.

After processing all internal test data, we calculate the posterior probabilities based on the completed
normal table. The following procedure illustrates the computation of the posterior probability for the
j-th class:

1. The denominator is calculated using the equation below. The value N−ξ
scr=s̄k,ocr=ōj

is precom-
puted and stored in the k-th label × j-th class × −ξ entry of the normal table.

∑
k

p−ξ(ocr = ōj |scr = s̄k)× prior =
∑
k

N−ξ
scr=s̄k,ocr=ōj

Nscr=s̄k

× prior (145)

2. The numerator of the i-th label posterior probability is implemented based on the following
equation. Similar to denominator calculation, we retreive N+ξ

scr=s̄i,ocr=ōj
from i-th label × j-th

class × +ξ entry in the normal table.

(For i-th label) p+ξ(ocr = ōj |scr = s̄i)× prior =
N+ξ

scr=s̄i,ocr=ōj

Nscr=s̄i

× prior (146)

Note that we set the prior as the portion of the demand under 3 of the data for 2020−2023. Moreover,
for efficient training, we schedule ξ linearly, starting from 0 and progressively increasing it to the
desired value throughout training. The computed posterior probabilities are stored in an array with
the structure (number of classes) × (number of labels).

Then, we compute the posterior as follows:

pξ(scr,i = 1|ocr,i = o) =

N+ξ
scr,i=1,ocr,i=o

Nscr,i=1
× prior(scr,i = 1)

N−ξ
scr,i=0,ocr,i=o

Nscr,i=0
× prior(scr,i = 0) +

N−ξ
scr,i=1,ocr,i=o

Nscr,i=1
× prior(scr,i = 1)

(147)

Next, we compute the action (production decision) and the approximated loss function. In principle
(and in validation), we allow production of a product ui > 0 only if the posterior is less than or equal
to the threshold (pξ(scr,i = 1|ocr,i = o) ≤ rt,i). However, in training, to expedite training of the
oncr part by ensuring nontrivial action to be obtained, we arbitrarily set our virtual threshold as the
lower posterior between two output classes, and thus, produce a product if it is classified as safer (low
risk for si < 3) class. Instead, to reduce the posterior of the safer class, we append an additional term
to our loss, which is naturally defined as the negative of the total revenue, penalizing the posterior
of class 0 (in this example, to reduce the instability, we arbitrary set class 0 to be induced to be
the safer class) higher than the given threshold. Moreover, we also add a small term to guide oncr
(implemented directly in the gradient calculation code). Thus, our loss function is finally defined as
(β = 1000)

−
4∑
i=1

(pi−ki(ui−si))ui+
4∑
i=1

β×log

(
max(

pξ(scr,i = 1|ocr,1 = 0)

rt,i
, 1)

)
+0.00005

4∑
i=1

(oncr,i−si)2.

(148)

Based on this loss function, the approximate loss function is obtained and implemented as follows
(λ = 0.005, note that the latter two terms are not functions of the optimal action u):

L̃ =
(J̄ − λ

∑4
i=1(pi − ki(ui − si))ui)

∗ − J̄∗

λ
+

4∑
i=1

β × log

(
max(

pξ(scr,i = 1|ocr,1 = 0)

rt,i
, 1)

)

+ 0.00005

4∑
i=1

(oncr,i − si)
2

(149)
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Since there are 8760 data (hours in a year) in the training dataset, we use the final loss and revenue
value as the sum of all hours. Note that we use variable name i for the hour and variable name l for
products, apart from the notation in this document.

We calculate the gradient for the model based on the approximated loss value. This process is divided
into three parts: the gradient for the oncr, the gradient for the ocr, and the gradient for internal test
data otkcr. We can compute the first one as

∂L̃

∂oncr,i
= −ki(ũ∗i − u∗i ) + 0.0001(si − oncr,i) (150)

when ũ∗i and u∗i are the minimizer of (J̄ − λ
∑4
i=1(pi − ki(ui − si))ui) and J̄ , respectively. The

virtual partial derivative with respect to the logit for the classification f(yi;wi) is defined as follows:

V PDcr,i :=
∑
ocr,i

∂p(ocr,i; f(yi;wi))

∂f(yi;wi)
L̃(ocr,i,od−i; s, r,β, λ) (151)

To compute this, we assign all possible classes to the i-th output and calculate the approximated loss
value, L̃(ocr,i,od−i; s, r,β, λ), using pre-computed posterior probabilities. These values are stored
in an array structured as (number of dense action candidates) × (number of classes). The final result
is obtained by multiplying the approximated loss values by the partial derivatives of the softmax
function for each class.

Next, for the internal test data, we calculate gradients by modifying entries in the normal table. More
specifically, we generate new normal tables by modifying the i-th label × j-th class × (+ξ or −ξ)
entry. The following describes the new normal tables and the corresponding approximated loss values
used in the implementation:

• plusoneone_approxloss[i][j]: Approximated loss based on a new normal table
where 1 is added to both the (i, j,−ξ) and (i, j,+ξ) entries.

• plusone_minusxi_approxloss[i][j]: Approximated loss based on a new normal
table where 1 is added only to the (i, j,−ξ) entry.

• plusone_plusxi_approxloss[i][j]: Approximated loss based on a new normal table
where 1 is added only to the (i, j,+ξ) entry.

• minusoneone_approxloss[i][j]: Approximated loss based on a new normal table
where 1 is subtracted from both the (i, j,−ξ) and (i, j,+ξ) entries. If either entry is non-
positive in the original table, the approximated loss remains unchanged.

• minusone_minusxi_approxloss[i][j]: Approximated loss based on a new normal
table where 1 is subtracted from the (i, j,−ξ) entry. If the entry is non-positive in the original
table, the approximated loss remains unchanged.

• minusone_plusxi_approxloss[i][j]: Approximated loss based on a new normal
table where 1 is subtracted from the (i, j,+ξ) entry. If the entry is non-positive in the original
table, the approximated loss remains unchanged.

Then, based on those approximated values, we can calculate the gradients for the j-th internal test
data by multiplying the partial derivative of the softmax function. Since we use a full batch and the
posterior does not vary over data within a batch, we compute this value for only the first data in the
batch. Moreover, due to the large number of internal test data, we divide the gradient by the number
of internal test data.

The loss function for the classification network is computed through element-wise multiplication of
the optimization phase gradients (clipped into between −106 and 106) and the logits. Additionally, a
regularization term, which is 10% of the sum of the squared logits, is added to the final loss.

In validation of the proposed method, since we train the proposed method with only one threshold
and validate it with various thresholds, we introduce a bias (see Section G for theoretical details)
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by adding or subtracting a specific value to or from the logit output of the classification network,
aligning the network output with the desired threshold. The following procedure outlines the abstract
process for computing the bias corresponding to each rt.

1. Identify the safe class as the one that minimizes the posterior probability for the unsafe label,
and record its corresponding posterior value.

2. If the posterior value is smaller than rt, add an appropriate unit value to the logit of the safe
class for all internal test data. Otherwise, subtract an appropriate unit value from the logits.

3. Recalculate the posterior probability. If the updated posterior still deviates significantly from rt,
repeat step 2.

4. Save the final bias value.

Next, we generate the logits from the classification network by inputting the concatenation of the
current observation and dense action candidates. Note that, during validation, the final bias value is
added to or subtracted from the logit corresponding to the safe class.

H.3.2 MEAN_VAR

Let µi and σi be the mean and the standard deviation for the demand data of the last 24 time steps,
respectively. Then, we solve the following problem to obtain our action (production decision).

min
u∈[0,10]4

J̄(u;µ) := −
4∑
i=1

(pi − ki(ui − µi))ui (152a)

ci :=

({
0, if µi − rt,iσi < 3

∞, otherwise

)
− ui ≥ 0, i = 1, 2, 3, 4 (152b)

(c5, . . . , c9) := Āu+ 1|u| ≤ b (152c)

Note that rt,i in this method is merely a coefficient for the standard deviation rather than a threshold.
Due to the deterministic nature of this method, there is no training phase required.

H.3.3 TWOSTAGE

In this method, for each product, we obtain a 1 one-dimensional output, oncr,i, which is the estimated
demand, from the model. Then, we compute our production decision based on the estimated demand
by solving:

min
u∈[0,10]4

J̄(u;oncr) := −
4∑
i=1

(pi − ki(ui − oncr,i))ui (153a)

ci :=

({
0, if oncr,i < 3

∞, otherwise

)
− ui ≥ 0, i = 1, 2, 3, 4 (153b)

(c5, . . . , c9) := Āu+ 1|u| ≤ b. (153c)

This is the traditional method, which trains the estimator first and then runs optimization based on the
estimation. In the training phase, we train the model with the following two-sided loss and gradient
(We penalize the overestimation more according to the user parameter (rt,i, not threshold) to reduce
the constraint violation):

L̃ := 0.5(si − oncr,i)
2 ×

({
1, if oncr,i < si
1 + rt,i, otherwise

)
(154)

∂L̃

∂oncr,i
:= (si − oncr,i)×

({
1, if oncr,i < si
1 + rt,i, otherwise

)
(155)
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H.3.4 END-TO-END

In this method, for each product, we directly obtain a 1 one-dimensional output to use as our final
production decision, ui := oncr,i, from the model. In the training phase, we train the model with
the following loss (user parameter rt,i is not the threshold but used to penalize the violation of the
uncertain constraint)

L̃ := L := J̄(u, s) + β

∑
i

{
u2i , if ui < 0

0, otherwise
+
∑
j

(Āju+ |u| − bj)
+


+
∑
i

rt,i

({
u2i , if si < 3 and ui > 0

0, otherwise

) (156)

We compute the gradient with respect to u (= oncr) by computing the difference as follows (λ =
0.005):

∂L

∂ui
≃ (L(ui + λ)− L(ui))

λ
(157)

H.4 CODE STRUCTURE AND EXECUTION

We implement each method as a C++ project with a Python API (Foundation, 2024), primarily defined
in User_api.h and User_api.cpp. Through these extensions, the project is linked to the neural
network components and several supporting Python functions defined in NN_function.py.

We implement data pre-processing ("or_data"), parallel execution ("or_run"), and result post-
processing ("or_results") code as separate projects, along with the projects for each method. We run
100 experiments with different random seeds through the execution code and report the average and
standard error of the results through the result postprocessing code. In each experiment, we run the
methods with various rt values (we use the same rt,i for all products, and thus, call it rt.) presented
in the following table. We train each method (except Mean_Var) for 500 epochs and validate it.

Table 1: Table of rt values used in the product planning experiment.

Method Proposed Mean_Var Twostage End-to-end
Phase Train Val Train Val Train Val Train Val
rt 0.001 1.0 – 10 0 0 0 0

0.5 1 1 1 1 1
0.2 0 3 3 3 3
0.1 -0.3 10 10 10 10
0.05 -0.6 30 30 30 30
0.02 -0.9 100 100 100 100
0.01 -1.2 300 300 300 300

0.005 -1.5 1000 1000 1000 1000
0.002 -1.8 3000 3000 3000 3000
0.001 -2.1 10000 10000 10000 10000
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H.5 RESULTS

Figure 6-A illustrates the performance versus constraint violation trade-off. We use rt = 0.001
for training and 0.001− 1.0 for validation. Our method achieves significantly higher revenue than
baseline approaches, particularly at low violation percentages. Figure 6-B shows that the constraint
violation percentage is lower than the threshold rt, confirming our safety guarantee.

C

F

A B

Figure 6: Production Planning. (A) Our method achieves significantly higher venue than baselines.
x-axis is the percentage of constraint violation cases where production continues despite low demands,
and y-axis is total revenue. (B) Our method achieves constraint violations lower than the designated
thresholds.
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I REINFORCEMENT LEARNING IN SAFETYGYM

We use the ASUS ESC8000A-E12 equipped with two AMD EPYC 9554 64-core processors
for the whole procedure in this application.

I.1 ENVIRONMENT

We use the Safety Gym environments (Ray et al., 2019) to evaluate a goal task
(Safexp-PointGoal1-v0), where the robot’s primary objective is to navigate toward a se-
ries of goal positions while avoiding hazards. All default settings (OpenAI, 2019b;a) are retained,
except that the environment resets when the robot enters a hazard zone that incurs a cost of 1, as
this is treated as a failure. Point robots receive a 60-dimensional vector as the observation from
the environment and have a two-dimensional action with range [−1, 1]: one is the force applied to
translational motion, and the other is the rotation velocity.

I.2 PRETRAINING PPO AGENTS

We use the provided code (Jayant, 2022) to pre-train the PPO agent and the PPO-Lagrangian agent in
our experiments. Additionally, we modify the provided code to implement the PPO-Barrier agent
(Yang et al., 2023) by referencing the original implementation (Yang, 2023). Each agent is trained
using 30 CPU cores with parallelization via mpi4py, as implemented in the provided code. Each core
executes 103 steps per epoch, leading to a total of 3 · 104 steps per epoch. For our framework, we use
104-epoch checkpoints as pretrained agents. Note that both 104-epoch checkpoints and 3 · 104-epoch
checkpoints are used as baselines for each agent.

I.3 COLLECTING THE INTERNAL TEST DATA

Before training our framework, we collect the internal test data for each agent using the 104-epoch
checkpoints. One important modification to the original checkpoint is that we reset the standard
deviation of the pretrained policy. This is because pretraining for 104 epochs often results in an overly
small standard deviation in the action distribution, reducing its plasticity and adaptability for our
framework. Therefore, the standard deviation is manually set to exp(−2) at the start of framework
training. Consequently, internal test data are also collected using PPO agents with this adjusted
standard deviation.

Each internal test data is composed of a concatenated observation, action, and safety label. A safety
label is assigned as 0 for safe cases and 1 for unsafe cases. Unsafe cases occur when a failure arises
during 60 steps. Otherwise, the case is labeled as safe. To avoid biased data collection, internal test
data are collected every 10 steps.

A total of 107 internal test data is collected per pretraining checkpoint: 5 · 106 for safe cases and
5 ·106 for unsafe cases. This dataset is used when initiating training for our framework. Once training
of our framework begins, new internal test data are queued to reflect the updated policy of each agent.
The total number of internal test data remains fixed at 107, with older data being replaced by new
entries.

Collection of internal test data for PPO includes 3 − 4 · 108 total environment interactions. For
PPO-Lagrangian, it includes 4 − 5 · 108 total environment interactions. Thus, internal test data
collection has a similar number of environment interactions with 104 − 1.7 · 104 additional epochs
with PPO or PPO-Lagrangian training. This suggests the PPO and PPO-Lagrangian agents that are
trained for 3 · 104 epochs are a fair comparison with the proposed method from the perspective of
data usage.

I.4 TRAINING

The main training is carried out by multiple Python processes using PyTorch. Each process
performs 103 steps per epoch, and with 30 CPU cores running in parallel, this results in a total of
3 · 104 steps per epoch. The training runs for 103 epochs in total. The training process of a single
step consists of three phases:
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1. Data batch preparation (Python)

2. Conservative testing & Optimization phase (C++)

3. Executing final action and Training (Python)

Python and C++ processes communicate via shared memory, with semaphores used to prevent race
conditions. Both shared memory and semaphores are implemented using sysv_ipc.

A 104 epoch pretrained PPO agent is loaded at the beginning of the training. Only the standard
deviation of the actor network is reset to a predefined value. Additionally, our framework employs a
fully connected classification network with a single hidden layer consisting of 128 input nodes and
128 output nodes. Table 2 provides a detailed description of the classifier architecture and parameters.
Note that both the pretraining PPO agents and the classification network are synchronized across all
30 Python processes.

Table 2: Detailed parameters for the classifier

Section Implementation Parameter Value

Classifier layer 1 torch.nn.Linear
in_features observation_dim
out_features 128

Layer 1 activation torch.nn.functional.relu – –

Classifier layer 2 torch.nn.Linear
in_features 128
out_features 128

Layer 2 activation torch.nn.functional.relu – –

Classifier layer 3 torch.nn.Linear
in_features 128
out_features class_dim

Optimizer torch.optim.AdamW
lr 1e-4
weight_decay 1e-6
amsgrad True

Learning Rate
Scheduler

torch.optim.lr_scheduler
.LinearLR

start_factor 1
end_factor 1e-3
total_iters 17100000

Scheduler with
Warmup

ignite.handlers
.param_scheduler

warmup_start_value 0
warmup_duration 900000

Internal test data are loaded into shared memory via mpi4py, enabling all Python processes to
access the same data. As the new internal test data are generated, they are queued in shared memory,
and the index of this queue is continuously updated in an additional shared memory.

I.4.1 DATA BATCH PREPARATION

At the beginning of each epoch, the environment provides an observation (i.e., the current state). We
extract the mean and standard deviation of the action distribution based on the given observation. The
action will be determined later during the optimization phase.

The data batch for the next step includes not only the mean and standard deviation but also additional
components derived from the observation. We extract two components from the observation: a
16-dimensional vector representing the robot’s proximity to hazards and a 1-dimensional vector
indicating the robot’s translation velocity. The proximity vector helps determine whether the robot is
near a hazard. If the robot seems to be in a hazard zone, a default action is assigned to guide it out of
the cost zone using information from the velocity component.

To complete the data batch, we also require logits generated by the classification network. To generate
these logits, we prepare action candidates that appropriately cover the action space by discretizing
each dimension within the range [−3, 3] at intervals of 1.6 · 10−2. We refer to these as base action
candidates. However, using base candidates in every phase of training can slow down the overall
training process. One major reason is that the classification network needs to generate logits for all
action candidates with a current observation, and the gradients for these logits must be computed
and used to update the network. To address this computational burden, we introduce dense action
candidates. For action dimensions measured in velocity units, we discretize the range [−1, 1] at
intervals of 1.6 · 10−2, just considering the possible actions on our environment. For dimensions
measured in force units, we simplify discretization by using only the values {−1, 1}. By adopting
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dense action candidates, we maintain the essential characteristics of base action candidates while
minimizing gradient calculations and other costly computations.

I.4.2 CONSERVATIVE TESTING & OPTIMIZATION PHASE

This part begins by retrieving the final data batch from shared memory. This batch contains key
elements such as the mean, standard deviation, classifier logits, and safety labels of the internal test
data. As part of pre-processing, all logits are divided by 2 as the parameter for softmax.

The first step in this phase is to construct the normal table, which is useful for calculating the posterior
probability of each action candidate. The table is structured as (number of labels) × (number of
classes) × 2 (+ξ and −ξ). For i-th label and j-th class, the corresponding entries for each +ξ axis
and −ξ axis indicate N+ξ

scr=s̄i,ocr=ōj
and N−ξ

scr=s̄i,ocr=ōj
, respectively. The following procedure

illustrates how the table is updated for each internal test data during implementation24:

1. For j-th class, if adding ξ to the logit of a class results in that class having the highest value
among all logits, the corresponding label × j-th class × +ξ entry is incremented by 1.

2. For j-th class, if subtracting ξ results in that class having the highest value among all logits, the
corresponding label × j-th class × −ξ entry is incremented by 1.

After processing all internal test data, we calculate the posterior probabilities based on the completed
normal table. The following procedure illustrates the computation of the posterior probability for the
j-th class:

1. The denominator is calculated using the equation below. The value N−ξ
scr=s̄k,ocr=ōj

is precom-
puted and stored in the k-th label × j-th class × −ξ entry of the normal table.

∑
k

p−ξ(ocr = ōj |scr = s̄k) · prior =
∑
k

N−ξ
scr=s̄k,ocr=ōj

Nscr=s̄k

· prior (158)

2. The numerator of the i-th label posterior probability is implemented based on the following
equation. Similar to denominator calculation, we retrieve N+ξ

scr=s̄i,ocr=ōj
from i-th label × j-th

class × +ξ entry in the normal table.

(For i-th label) p+ξ(ocr = ōj |scr = s̄i) · prior =
N+ξ

scr=s̄i,ocr=ōj

Nscr=s̄i

· prior (159)

Note that we set the prior as 0.5 for both the safe label and unsafe label. The computed posterior
probabilities are stored in an array with the structure (number of classes) × (number of labels).

Next, we compute the approximated loss function. The procedure begins by calculating the following
intermediate value (β=3):

L̄ = β · ln(max(
pξ(scr = 1|ocr = o)

threshold
, 1)) (160)

where o denotes one of the classes assigned by the classifier to the current observation concatenated
with the dense action candidates. For efficient training, we schedule ξ linearly, starting from 0 and
progressively increasing it to the desired value throughout training. The goal is to select the action
whose corresponding class minimizes L̄. The final approximated loss function is defined as

L̃ = L̄+ 5 · p− 0.0015 · no (161)

where p is the minimum posterior probability for scr = 0 among all classes and no is the number of
action candidates associated with class o. Note that the term p is included in the final loss to suppress
excessive type 2 error, thereby encouraging a broader range of safe actions to be classified into the

24Note that ξ is inflated by
√
2 in experiment settings for practical reasons.
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appropriate class. To prevent large loss values from destabilizing training, we initialize a default
minimum loss Ld = 30 and update it over time using:

Ld = 0.99999 · Ld + 0.00001 · (L̄+
30

L̄+ 1
) (162)

If no class yields a L̄ below the current Ld, or if the proximity vector indicates that the robot is in
a hazard zone, the loss is set to the default minimum loss Ld, prompting the robot to perform the
default action.

We reintroduce base action candidates to refine the optimization process further. These candidates
are used to build a conditional distribution over actions associated with the class that minimizes the
loss. Using the mean and standard deviation from the data batch, we calculate the probability of each
filtered action and sample one final action from this distribution.

We calculate the gradient for the classification network based on the approximated loss value. This
process is divided into two main parts: the gradient for the general output and the gradient for sampled
internal test data. We first describe the calculation of the general output gradient, followed by the
method used for internal test data.

The classification network generates a general output by feeding a concatenation of the duplicated
current observation and dense action candidates as input. Note that the virtual partial derivative with
respect to the logit of the concatenation of the current observation and i-th action in the candidates,
f(yi;wi), is defined as follows:

V PDcr,i :=
∑
ocr,i

∂p(ocr,i; f(yi;wi))

∂f(yi;wi)
L̃ (163)

To compute this, we assign all possible classes to the i-th output and calculate the approximated
loss value L̃ using precomputed posterior probabilities. These values are stored in an array of
shape (number of dense action candidates) × (number of classes). The final gradient is obtained by
multiplying the approximated loss values by the partial derivatives of the softmax function for each
class. This resulting value is then clipped between −5 · 10−4 and 5 · 10−4.

Next, for the sampled internal test data, we calculate gradients by modifying entries in the normal
table. More specifically, we generate new normal tables by modifying the i-th label × j-th class ×
(+ξ or −ξ) entry. The following describes the new normal tables and the corresponding approximated
loss values used in the implementation:

• plusoneone_approxloss[i][j]: Approximated loss based on a new normal table
where 1 is added to both the (i, j,−ξ) and (i, j,+ξ) entries.

• plusone_minusxi_approxloss[i][j]: Approximated loss based on a new normal
table where 1 is added only to the (i, j,−ξ) entry.

• plusone_plusxi_approxloss[i][j]: Approximated loss based on a new normal table
where 1 is added only to the (i, j,+ξ) entry.

• minusoneone_approxloss[i][j]: Approximated loss based on a new normal table
where 1 is subtracted from both the (i, j,−ξ) and (i, j,+ξ) entries. If either entry is non-
positive in the original table, the approximated loss remains unchanged.

• minusone_minusxi_approxloss[i][j]: Approximated loss based on a new normal
table where 1 is subtracted from the (i, j,−ξ) entry. If the entry is non-positive in the original
table, the approximated loss remains unchanged.

• minusone_plusxi_approxloss[i][j]: Approximated loss based on a new normal
table where 1 is subtracted from the (i, j,+ξ) entry. If the entry is non-positive in the original
table, the approximated loss remains unchanged.

Then, based on those approximated values, we can calculate the gradients for j-th internal test data
by multiplying the partial derivative of the softmax function.
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Finally, the selected action and the gradients for all classifier logits are written to shared memory and
passed to the next phase.

I.4.3 EXECUTING FINAL ACTION AND TRAINING

The loss function for the classification network is computed through element-wise multiplication
of the optimization phase gradients and the logits. In addition, a regularization term, which is the
average of the squared logits, is added to the final loss. Figure 7 illustrates an example of the gradient
and logit values for a single training case.

F

A B

Figure 7: Gradients and logit values for the internal test data. Internal test data labeled as safe are
shown in blue, while those labeled as unsafe are shown in red. (A) Initial gradient of the safety
classification network for a single training case. (B) Final logit values of the safety classification
network for the same training case.

At the end of each step, the environment is updated by executing the final action. This action is also
used to update the PPO agents during training.

I.5 VALIDATION

I.5.1 BASELINE VALIDATION

This section presents the baseline validation process. We begin by loading the checkpoint of pretrained
PPO agents in evaluation mode within the default environment. Each agent is evaluated over 104
epochs25, with 103 steps per epoch, without parallelization. We manually record three metrics:
reward, cost, and action.

In addition, using the pretrained PPO agents and a safety classification network trained with cross-
entropy loss, we validate our framework to serve as a baseline. We use ξ = 10−2 and ten values of
the threshold rt: 10−5, 10−4, 10−3, 10−2, 10−1, 0.5− 10−2, 0.5− 10−3, 0.5− 10−4, 0.5− 10−5,
and 1 + 10−5. The prior probabilities (scr = 0, scr = 1) used for this validation are set to
(150, 850) for the PPO agent and (90, 910) for the PPO-Lagrangian agent with a cost limit of 1.5.
The implementation details closely follow those described in the next section.

I.5.2 VALIDATION UTILIZING OUR FRAMEWORK

To validate an agent trained by our framework, we load a checkpoint containing the agent, the queued
internal test data, and the trained classification network. Similar to the baseline validation, we record
reward, cost, and action, while also recording the constraint violation metric. Specifically, we update
the numerator and denominator for constraint violation during each epoch and store their ratio. If the
robot enters a hazard, we increase the denominator by the number of steps taken after resetting the
environment and add up to 60 steps to the numerator, counting only the steps within the previous
60-step trajectory. Note that steps where the robot executes the default action are excluded from both
the numerator and the denominator.

25In few cases in baseline, due to technical issue during the experiment, the number of epochs are slightly
lower (between 9 · 103 and 104), but the effect in results is negligible.
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Next, we configure the ξ and rt values. We set ξ = 10−2 and use the same ten rt values as in the
baseline validation, which employs a pretrained safety classification model trained with cross-entropy
loss. The agent is evaluated over 104 epochs with parallelization, and each Python process is
executed for a specific ξ-rt pair. As a result, the number of CPU cores running parallel Python
processes equals the product of the numbers of the two variables. Similar to the training phase in
our framework, each Python process is linked to a corresponding C++ executable. These processes
communicate via shared memory and semaphores using the sysv_ipc library. Note that we use the
NVIDIA GeForce RTX 4090 GPU to perform inference on the classification network in this
process.

In contrast to the training phase, we construct the normal table and calculate the posterior probabilities
only once at the beginning of the validation in the Python processes. This is feasible because we
use a fixed set of 107 internal test data, and the classification network now produces the same logit
for identical inputs. Additionally, we introduce a bias (see Section

Note that we use the same prior probabilities as in the baseline validation, with an additional setting
of (30, 970) for the PPO-Lagrangian agent with a cost limit of 0.5

The validation process of a single step consists of two phases:

1. Data batch preparation (Python)

2. Selecting the final action (C++) and executing (Python)

In the data patch preparation phase, similar to Section I.4.1, we obtain the mean and standard deviation
of the action distribution from the PPO agents based on the current observation. We also extract a
16-dimensional hazard proximity vector and a 1-dimensional velocity vector. Next, we generate the
logits from the classification network by inputting the concatenation of the current observation and
dense action candidates. Note that, during validation, the final bias value is added to or subtracted
from the logit corresponding to the safe class. Finally, to complete the data batch, we include the
safe class that minimizes the posterior probability for the unsafe label, as determined during the bias
calculation process.

In the next step, based on the logits in the data batch, we identify actions that correspond to the
safe class among the dense action candidates. Then, using the base action candidates, we build a
conditional distribution over the selected actions based on the previously obtained mean and standard
deviation. We then sample the final action from this distribution. Note that if no actions match the
safe class, or if the proximity vector indicates that the robot is currently in a hazard zone, the default
action is selected. The final action is passed to the Python process via shared memory and executed
by the PPO agent.

I.6 SCALING LAW

We perform additional training and validation of both the PPO agent and the PPO-Lagrangian agent
with a cost limit of 1.5 to demonstrate the scaling law in this application. Each agent is trained not
only with the full set of 107 internal test data, as described in Section I.4, but also with varying
amounts of internal test data under the same settings: 104, 2 · 104, 5 · 104, 105, 2 · 105, 5 · 105, 106,
2 · 106, and 5 · 106.

The validation procedure for these agents is nearly identical to that described in Section I.5.2, except
that the bias calculation process is omitted. In this experiment, the value of ξ is scaled inversely
with the amount of internal test data, and is set to 105 divided by the number of internal test data
used in each training. For instance, when validating with 107 internal test data, we use ξ = 10−2,
which is consistent with the setting used in the previous validation. The results demonstrate the
effect of internal test data quantity on performance, as measured by the combined metric of reward
maximization and cost minimization, which is presented in the main paper.
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J NATURAL LANGUAGE GENERATION

In this section, we elaborate on the experimental setup, data preparation, training procedures, and
validation methodology for the natural language generation task presented in the main paper. We
have shared code related to the core components of our proposed safety framework, such as the
safety classification model training, conservative testing, and the optimization stage. However, the
code specifically for the language model training is not publicly released due to license-related
considerations. To compensate for this, we believe that the methods for these language model training
stages are sufficiently described throughout this supplementary material and the main paper to allow
for the reproducibility of the overall experimental approach. In this experiment, we use an NVIDIA
H100 Tensor Core GPU with 80GB SXM5 via 1x and 8x GPU instances of Lambda Lab (Labs,
2025).

J.1 PROBLEM SETUP

The primary objective of this experiment is to develop and assess a system that guides a large language
model (LLM) to generate responses u that are not only helpful to the user’s prompt y but also adhere
to specified harmlessness constraints. The goal is to ensure the probability of producing a harmful
response remains below a user-defined threshold, rt. In this experimental setup, the 7B parameter
reward model (Rϕ) and the 7B parameter cost model (Cψ), which were previously fine-tuned in the
SafeRLHF study (Dai et al., 2024), are utilized as proxies for human judgments on helpfulness and
harmlessness, respectively. Consequently, these models are considered to provide the ground truth
for the helpfulness and harmlessness objectives throughout our experiments.

Our proposed method utilizes pre-trained Open Pre-trained Transformer (OPT) models (Zhang et al.,
2022) and the SafeRLHF human preference dataset (Dai et al., 2024). Specifically, OPT-1.3B serves
as the base for the policy LLM, and OPT-350M is used for the safety classification model. The core
of our framework involves a policy LLM π, equivalent to f(y;wncr) in our framework and based
on OPT-1.3B. This policy LLM is fine-tuned using a PPO-Lag (PPO-Lagrangian) algorithm (Ray
et al., 2019) following (Zhang et al., 2022) to generate multiple candidate answers (oncr), guided
by the aforementioned 7B parameter reward model (Rϕ) and 7B parameter cost model from (Dai
et al., 2024). A safety classification model, built upon OPT-350M with LoRA (Hu et al., 2022), then
predicts the safety (ocr) of these candidates and is trained within our framework. An optimization
stage selects the final answer based on an objective function while ensuring the estimated probability
of harm—determined through conservative testing with ocr and internal test data—is below rt. The
ground truth safety labels for the internal test data and for the final validation of responses are also
provided by the 7B parameter cost model from (Dai et al., 2024).

To evaluate our framework, we compare it against two main baselines. The first approach involves
using the PPO-Lag fine-tuned policy LLM with different safety constraint thresholds, which helps
measure the benefit of our framework’s additional safety layers compared to a standard constrained
generation method. The second baseline is Rejection Sampling, where a conventionally trained safety
classifier filters candidates from π. We utilize the generated internal test data when training the
classifier to ensure a fair comparison. This comparison highlights the advantages of our framework’s
integrated optimization approach versus a simpler filtering mechanism. The performance of all
methods is evaluated on "Helpfulness" (Mean Reward from the 7B Rϕ) and "Safety" (Unsafe
Responses (%) based on the 7B Cψ). These experiments aim to demonstrate our system’s ability to
effectively balance helpfulness and safety, particularly under strict safety requirements.

J.2 DATA PREPARATION

J.2.1 BASE MODELS AND SUPERVISED FINE-TUNING (SFT) DATA

The experiment began with pre-trained Open Pre-trained Transformer (OPT) models (Zhang et al.,
2022) with 350 million (OPT-350M) and 1.3 billion (OPT-1.3B) parameters. These models served as
the foundation for subsequent fine-tuning stages. For the initial Supervised Fine-Tuning (SFT), we
utilized the Alpaca dataset (Taori et al., 2023) for general instruction following, augmented with safe
responses from the SafeRLHF dataset (Dai et al., 2024) to instill baseline safety awareness.
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J.2.2 PREFERENCE DATA FOR REWARD AND COST MODELS

The human preference dataset from the SafeRLHF study (Dai et al., 2024) was instrumental in the
prior fine-tuning of the 7B parameter reward model (Rϕ) and the 7B parameter cost model (Cψ),
which we utilize for PPO-Lag policy training and evaluation.

Specifically, the SafeRLHF dataset includes a helpfulness-related portion, DR = {xi, yiw, yil}Ni=1,
where for a given prompt x, response yw is preferred over yl in terms of helpfulness. It also
contains a harmlessness-related portion, DC = {xj , yjw, y

j
l , s

j
w, s

j
l }Mj=1. In DC , where yw denotes

the more harmful response compared to yl. This dataset further provides binary safety meta-labels
s(y) ∈ {+1,−1} for each response, indicating if it is harmful (+1) or harmless (-1), based on 14
predefined categories of harm.

J.2.3 INTERNAL TEST DATA FOR SAFETY CLASSIFICATION MODEL

The internal test data, essential for training and validating the safety classification model within our
framework, was generated through a specific pipeline26:

Prompt Source: A diverse set of prompts was utilized. These included prompts from the SafeRLHF
dataset (Dai et al., 2024) and, additionally, prompts from the BeaverTails project (Ji et al., 2023)
were used to generate responses. This combined set was chosen to cover a broad range of topics,
including those with the potential to elicit unsafe or problematic responses, thereby ensuring the
safety classifier is trained on relevant scenarios.

Candidate Generation: The OPT-1.3B model, after its fine-tuning as a policy π using PPO-Lag
(detailed in Section J.3), was employed to generate 16 diverse answer candidates for each prompt
in the selected set. To achieve this, we utilized a diverse beam search strategy (Vijayakumar et al.,
2018) where greedy decoding is performed within each beam group, and a diversity penalty is applied
between groups. This method aims to produce individually coherent candidates (due to greedy
decoding within groups) yet collectively diverse, providing a varied and plausible set of options for
the safety classification model and optimization stage, thereby increasing the likelihood of finding
an optimal safe and helpful answer. These 16 candidates per prompt constitute the oncr (and by
definition, sncr) part of the internal test data instances. The parameters for diverse beam search are
detailed in Table 3.

Table 3: Beam Search Parameters for Candidate Generation
Parameter Value
num beams 16
num beams group 16
diversity penalty 1.0
repetition penalty 1.0
max length 512
no repeat ngram size 2
early stopping False

Safety Labeling: Each of the 16 generated candidates was then assigned a safety label (scr) by the
7B parameter cost model from (Dai et al., 2024). This larger cost model, itself trained on extensive
human harmlessness preference data, acts as a robust proxy for human safety judgments. The scalar
output of this 7B cost model (where positive values indicate higher predicted harm and negative
values indicate predicted harmlessness) was thresholded (e.g., at zero) to create binary "harmful" /
"harmless" labels for the scr component of the internal test data. This curated dataset of (prompt, 16
candidates, 16 safety labels) was then partitioned as the internal test data for training and validation
phases of the safety classification model within our framework.

26We use 688,908 internal test data in this experiment
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J.3 TRAINING

The multi-stage training process involved developing the policy LLM and the safety classification
model integrated into our framework.

J.3.1 INITIAL SFT MODELS

We started with the supervised fine-tuned versions of the OPT-350M (SFT on Alpaca dataset (Taori
et al., 2023)) and OPT-1.3B (SFT on Alpaca (Taori et al., 2023) and SafeRLHF datasets (Dai et al.,
2024)) as our base LLMs, prepared as described in Section J.2.1.

J.3.2 PROVISION OF REWARD AND COST MODELS FROM PRIOR WORK

For guiding the PPO-Lag policy training, we utilized the 7B parameter reward model (Rϕ) and cost
model (Cψ) that were previously fine-tuned in the SafeRLHF study (Dai et al., 2024).

The 7B Rϕ was fine-tuned in that prior work on the helpfulness preference dataset DR (from the
SafeRLHF dataset) to assign higher scalar scores to responses humans found more helpful, typically
using a pairwise comparison loss (Equation (3) in (Dai et al., 2024)).

The 7B Cψ was fine-tuned in that prior work on the harmlessness preference dataset DC (from
the SafeRLHF dataset) using a specialized loss function (Equation (4) in (Dai et al., 2024)) that
incorporates both preference rankings for harmlessness and absolute safety labels s(y). This design
enables the cost model Cψ(y, x) to output positive values for harmful responses and negative values
for harmless ones, with magnitudes reflecting relative preference. We use these models, as developed
in the prior work, directly.

J.3.3 POLICY (AI MODEL π) TRAINING WITH PPO-LAGRANGIAN

The SFT OPT-1.3B model (fine-tuned on Alpaca and SafeRLHF datasets) was further fine-tuned
to serve as the policy π (also denoted f(y;wncr) in the main paper). This training employed the
Proximal Policy Optimization (PPO) algorithm with a Lagrangian method to handle constraints
(Ray et al., 2019) following (Dai et al., 2024). For the PPO-Lag algorithm, separate reward and
cost critic networks were utilized, both based on OPT-350M models. These critic models were
initialized by first training them as reward and cost models, respectively, using the SafeRLHF
dataset (Dai et al., 2024) as described in Section J.2.1, before their use as critics in PPO-Lag.
The objective was to maximize the expected helpfulness rewards provided by the 7B Rϕ while
ensuring that the expected harmlessness costs from the 7B Cψ remained below a predefined budget
d. This approach aims to maximize JR(θ) = E[Rϕ(y, x)] subject to a constraint on the cost
JC(θ) = E[Cψ(y, x)] + d ≤ 0. This constrained optimization is typically solved by addressing
the Lagrangian dual problem: minθmaxλ≥0[−JR(θ) + λ · JC(θ)]. The final output of this trained
policy π for a given prompt y is a set of 16 candidate answers, referred to as oncr, generated using
diverse beam search as described in Section J.2.3.

J.3.4 SAFETY CLASSIFICATION MODEL TRAINING (WITHIN OUR FRAMEWORK)

The safety classification model in our framework begins with the SFT OPT-350M architecture (fine-
tuned as described in Section J.2.1). The model is then further fine-tuned using Low-Rank Adaptation
(LoRA) (Hu et al., 2022) with the tailored gradients from our framework. Using a smaller model
(OPT-350M) and then applying LoRA for the framework-specific adaptation helps prevent overfitting
and allows for more stable training.

The model takes the original prompt y from an internal test data instance, concatenated with the 16
candidate answers (oncr) also from that same instance, as input. It then outputs ocr,pred ∈ {0, 1}16,
where each bit represents its binary classification (0 for harmless, 1 for harmful) for the corresponding
candidate answer.

This safety classification model’s LoRA weights are updated using the internal test data (which
contains pre-generated sets of 16 candidates and their true safety labels scr). The policy π is not used
to generate candidates during this LoRA fine-tuning phase; instead, the candidates are fixed according
to the internal test data. The LoRA weights are updated based on tailored gradients computed from
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an approximate loss function L̃. This L̃ is designed to penalize the classifier if its predictions (when
used to form the conservative posterior pξ, as described below) make it impossible to satisfy the
overall safety constraint pξ ≤ rt. The exact formulation of L̃ is detailed in Section 4.1 of the main
paper. For efficient training, we schedule ξ linearly, starting from 0 and progressively increasing it to
the desired value throughout the training process27.

J.3.5 TRAINING SIGNAL GENERATION FOR THE SAFETY CLASSIFICATION MODEL

During the training of the safety classification model, the training signal is derived as follows:

1. Conservative Posterior Estimation: For each training batch, the conservative posterior prob-
ability pξ(scr,u = 1|ocr = ocr,pred) is estimated. This estimation uses the current safety
classification model’s predictions (ocr,pred) on a set of 512 samples from the training portion
of the internal test data. This pξ quantifies the estimated risk associated with the classifier’s
predictions for a given output class ocr,pred.

2. Approximate Loss Calculation: An approximate loss L̃ is calculated. This loss function is
high if the conservative posterior pξ, corresponding to the "safest" possible classification the
model could output for an action (e.g., predicting "harmless"), still exceeds the target safety
threshold rt. This signifies that, based on the classifier’s current reliability as captured by pξ,
the system would be forced to refuse action to maintain safety. Conversely, the loss is lower if
pξ ≤ rt is achievable for this "safest" classification. The loss L̃ is thus a function of pξ, which
in turn depends on the classifier’s predictions ocr,pred on the 512 samples used for posterior
estimation. We also add a term to penalize type 2 error to suppress it, thereby encouraging a
broader range of safe actions to be classified into the appropriate class, resulting in the final
approximate loss as

J̄(u)− β

(
ln

(
min

(
rt

pξ(scr = 1|ocr = 0)
, 1

))
− 0.5pξ(scr = 0|ocr = 1)

)
. (164)

3. Gradient Computation and Update: Gradients of this approximate loss L̃ with respect to
the classifier’s predictions on the 512 internal test data samples (∂L̃/∂ocr,pred) are computed.
These gradients indicate how changes in the classifier’s predictions would affect the conservative
posterior and, consequently, the loss. These gradients are then used to update the LoRA weights
of the safety classification model. The aim is to improve its reliability such that its predictions
lead to posteriors that accurately reflect true safety and allow the system to meet its safety target
rt by enabling the selection of an implicitly assumed "safe" action.

This process trains the safety classification model by assessing its impact on the feasibility of the
downstream safety-constrained optimization, rather than by directly selecting from the 16 candidates
of each individual training instance during this phase.

J.4 HYPERPARAMETERS

Hyperparameters are provided in Table 6.

J.5 VALIDATION

The validation process was designed to rigorously assess the effectiveness of our framework in
enhancing safety while preserving helpfulness, in comparison to established baseline approaches.

J.5.1 METRICS

Performance was evaluated along two primary dimensions: Helpfulness, measured as "Mean Reward"
using the 7B parameter reward model (Rϕ) from (Dai et al., 2024), and Safety, quantified as "Unsafe
Responses (%)" using the 7B parameter cost model (Cψ) from (Dai et al., 2024) to determine if a
response was harmful. The trade-off is depicted in Figure 4-A of the main paper.

27Note that ξ is inflated by
√
2 in experiment settings for practical reasons.
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Table 4: Hyper-parameters for PPO-Lag.

Hyper-parameter Value
epochs 2
max length 512
temperature 1.0
top p 1
num return sequences 1
repetition penalty 1.0
prompt batch size 128
train batch size 128
actor lr 1.00× 10−5

actor weight decay 0.01
actor lr scheduler type cosine
actor lr warmup ratio 0.03
critic lr 5.00× 10−6

critic weight decay 0.0
critic lr scheduler type cosine
critic lr warmup ratio 0.03
lambda init (λ0) 1.0
lambda lr (α) 0.01
kl coeff (β) 0.05
clip range ratio (ϵ) 0.2
ptx coeff (γ) 16.0
bf16 TRUE
tf32 TRUE

Table 5: Hyper-parameters of Reward and Cost Model Training for Initialization.

Hyper-parameters Reward Cost
epochs 2 2
max length 512 512
train batch size 64 64
regularization 0.001 0.001
lr 2.00× 10−5 2.00× 10−5

lr scheduler type cosine cosine
lr warmup ratio 0.03 0.03
weight decay 0.1 0.1
bf16 TRUE TRUE
tf32 TRUE TRUE
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Table 6: Hyper-parameters for Safety Classification Training. We used different learning rates for
each method due to different gradients.

Hyper-parameters Ours RS - LoRA RS
epochs 10 10 10
max length 512 512 512
train batch size 192 192 192
regularization 0.000 0.001 0.001
lr 2.00× 10−4 1.00× 10−3 1.00× 10−6

lr scheduler type warmup warmup warmup
lr warmup ratio 0.03 0.03 0.03
weight decay 0.1 0.1 0.1
bf16 TRUE TRUE TRUE
tf32 TRUE TRUE TRUE
LoRA rank 1 1 –
xi 1722270

nt
– –

xi scheduler linear – –

J.5.2 OUR FRAMEWORK EVALUATION PROTOCOL

At the start of validation of our framework, since we train it with only one threshold and validate
it with various thresholds, we introduce a bias (see Section G for theoretical details) by adding or
subtracting a specific value to or from the logit output of the classification network, aligning the
network output with the desired threshold. The following procedure outlines the abstract process for
computing the bias corresponding to each rt.

1. Identify the safe class as the one that minimizes the posterior probability for the unsafe label,
and record its corresponding posterior value.

2. If the posterior value is smaller than rt, add an appropriate unit value to the logit of the safe
class for all internal test data. Otherwise, subtract an appropriate unit value from the logits.

3. Recalculate the posterior probability. If the updated posterior still deviates significantly from rt,
repeat step 2.

4. Save the final bias value.

The final bias value is added to or subtracted from the logit corresponding to the safe class.

The evaluation of our framework proceeded as follows for each prompt in the validation set:

1. The fixed, PPO-Lag trained policy π (OPT-1.3B model) generated 16 answer candidates oncr
using diverse beam search.

2. The trained safety classification model (LoRA OPT-350M) predicted their safety classifications
ocr.

3. Conservative Testing: The posterior probability pξ(scr,u = 1|ocr = o) – that a candidate u is
unsafe given its classification o – was computed. This utilized the conservative testing procedure
outlined in Equations (3), (4), and (5) of the main paper, applied to the validation split of the
internal test data. The parameter ξ for conservative testing was set as ξ = 1722270

nt
, where nt is

the size of the internal test data used during training of the safety classifier.

4. Optimization for Final Answer Selection: The final answer u was selected by solving the
optimization problem:

min
u∼πd

J̄(u) subject to log pξ(scr,u = 1|ocr = o) ≤ log rt (165)
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Here, πd = {U({oncr,1, ..., oncr,16}), d̂} represents a uniform distribution over the 16 candidates
and the default refusal answer d̂ ("Sorry, I can’t answer this question."). J̄(d̂) was assigned a
positive value to penalize refusal, while J̄(u) = 0 for the 16 candidates, effectively preferring a
candidate if it meets the safety constraint. This entire procedure was repeated for various safety
thresholds rt to map out the performance-safety curve.

J.5.3 BASELINE METHODS FOR COMPARISON

The performance of our framework was compared against:

PPO-Lag (Directly): This involved using the OPT-1.3B policy model π directly after its fine-tuning
with PPO-Lag, without the subsequent safety classification and optimization layers introduced by our
framework. To plot its performance curve, different safety budgets d (as defined in Section J.3.3)
were used during its PPO-Lag training/fine-tuning, and the resulting models were evaluated. The
final answer was generated by sampling from its output distribution (or by selecting the sequence
with the highest probability). This corresponds to "PPOLag" in Figure 4-A of the main paper.

Rejection Sampling: This baseline also started with the 16 candidates generated by the PPO-Lag
OPT-1.3B policy model π. Two versions of the safety classification model (OPT-350M), initialized
from the same SFT OPT-350M model that was then fully fine-tuned using a cost modeling approach
on the SafeRLHF dataset (as described in Section J.3.4 for our framework’s classifier initialization),
were trained for this baseline. These initialized models were then further trained on the same internal
test data using a standard cross-entropy loss: one using LoRA and another with full fine-tuning. For
each prompt, the 16 candidates were classified by one of these cross-entropy-trained classifiers. To
plot its performance curve, different rejection thresholds were used based on the classifier’s logit
output for the "harmful" class. Candidates classified as "harmful" according to the current threshold
were rejected. A final answer was then selected from the non-rejected candidates (e.g., the one with
the highest helpfulness score from the 7B Rϕ model (Dai et al., 2024), or chosen randomly). If all
16 candidates were rejected, the default refusal answer d̂ was issued. Figure 4-A of the main paper
refers to "Rejection sampling" (likely corresponding to the fully fine-tuned classifier) and "Rejection
sampling-LoRA" (corresponding to the LoRA-tuned classifier).

J.5.4 SAFETY GUARANTEE VERIFICATION

Figure 4-B of the main paper validates the probabilistic safety guarantee of our framework by
plotting the actual percentage of unsafe responses against the target safety threshold rt used in our
framework’s optimization. This aims to demonstrate that the observed unsafe response rate is indeed
at or below the specified rt. In contrast, baseline methods like PPO-Lag (Directly) and Rejection
Sampling do not offer such an a priori guarantee for a given rt. For these baselines, the safety budget
d (for PPO-Lag) or the rejection threshold (for Rejection Sampling) must be tuned empirically during
validation to achieve a desired safety level, rather than being able to target a specific rt directly
beforehand. Our framework, however, is designed to satisfy the given rt through its optimization
process.

J.5.5 SCALING LAW ANALYSIS

The impact of the quantity of internal test data (nt) on the safety-performance trade-off was inves-
tigated, with results shown in Figure 4-C of the main paper. The y-axis of this plot represents a
combined metric, Reward - dB(Cost), plotted against nt. The parameter ξ for conservative testing was
scaled inversely with the number of internal test data points for this analysis, specifically ξ = 2×105

nt
.

This experiment aimed to validate the theoretical scaling law presented in Section 5 of the main paper
empirically, which suggests that the safety-performance trade-off improves predictably with more
internal test data.
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K COMPUTATIONAL COST ANALYSIS

In this section, we present a comprehensive analysis of our computational costs.

K.1 REINFORCEMENT LEARNING (SAFETYGYM)

We report the computation time for the complete training and inference process (validation experiment
with 10M actions) in Tables 7 and 8. All experiments were conducted using 4×RTX 4090 GPUs.

We implement three variants of our approach to demonstrate the flexibility and scalability of our
framework:

1. Generalized: Our implementation designed for broad applicability across diverse domains,
serving as the foundation for our open-source release. This version prioritizes generalizability,
ease of adaptation, and debugging capabilities, making it ideal for research and development
purposes; however, it exhibits a slower execution speed28.

2. Efficient: A task-specific optimized version that maintains identical functionality while achiev-
ing significant speed improvements through targeted code optimizations for this task. This
variant provides a fair and direct comparison with (task-specific) baseline methods.

3. Fast: Building upon the Efficient version, this variant demonstrates the configurability of our
framework. By reducing internal test data size, model complexity, and training epochs, we
achieve substantial speedup at the cost of some performance degradation. This version illustrates
how users can flexibly balance computational efficiency with task performance based on their
specific deployment requirements and constraints. The performance of our Fast version is
detailed in Figure 8.

Table 7: PPO Computational Cost Analysis

Baseline (PPO) Ours

10K epochs 30K epochs Generalized Efficient Fast

Training (s) 48,462 + 101,389 + 109,279 + 47,016 + 8,907
Inference (s) 17,988 116,358 34,785 34,753

Table 8: PPO-Lag Computational Cost Analysis

Baseline (PPO-Lag) Ours

10K epochs 30K epochs Generalized Efficient Fast

Training (s) 45,332 + 141,463 + 111,014 + 47,706 + 9,142
Inference (s) 15,312 106,113 37,915 34,630

Note that training times indicate additional time beyond the Baseline with 10K epochs, denoted by
the + mark. Tables 7 and 8 demonstrate that our three variants (Generalized, Efficient, and Fast) offer
distinct computational trade-offs tailored to different use cases.

Our framework achieves significantly enhanced performance compared to baselines with General-
ized/Efficient versions, where the Efficient version requires only approximately 100% additional
training time compared to the baseline. Remarkably, our Fast variant still outperforms the baseline
with only 20% extra training time beyond the 10K epoch baseline, demonstrating the configurability
of our approach.

28Note that the explanation in this paper follows this implementation
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Regarding inference performance, our framework (Efficient version) exhibits approximately twice
the inference time of PPO/PPO-Lag baselines due to additional time required for internal test data
inference and bias correction (Section 4.3)—accounting for roughly 30% of the overhead—with
the remaining difference mainly arising from interpreter-related processing. Notably, the additional
time required for internal test data inference and bias correction constitutes a one-time cost that
significantly improves model safety, making it a worthwhile investment for industry deployments.

Figure 8: Performance of Fast version. Fast version still outperforms baselines, with only 20%
extra training time.

K.2 NATURAL LANGUAGE GENERATION

We report the computational time for the complete training and inference process (evaluated on 800
prompts) in Table 9. Most experiments were conducted using 4×RTX 4090 GPUs, while baseline
measurements (marked with ⋆) were performed on 8×H100 GPUs.

Table 9: Natural Language Generation Computational Cost Analysis

Baseline Ablation (Rejection Sampling) Ours

(OPT-1.3B) LoRA X LoRA O LoRA O

Training (s) 738⋆ + 23,089 + 21,353 + 23,333
Inference (s) 100⋆ 432 426 464 (118⋆)†

⋆ Measured on 8×H100. All others on 4× RTX 4090.
† Requires an additional 2,432 seconds (on 4×RTX 4090).

Most notably, our method incurs only an 18% overhead in inference time compared to the
baseline fine-tuned OPT-1.3B model (118 seconds vs. 100 seconds). This minimal additional cost is
particularly significant given the substantial performance improvements our method achieves.

An important consideration in our computational analysis is the additional time required for internal
test data inference and bias correction (Section 4.3). For our configuration, this process requires an
additional 2, 432 seconds on 4× RTX 4090 GPUs.While this represents additional computational
overhead, it is a one-time cost that significantly improves model safety, making it a worthwhile
investment, especially for industry deployments.
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L RELATED WORKS

AI safety has become a critical research priority as AI systems are increasingly deployed in high-
stakes applications. Although we could not find approaches specifically designed and affirmed
to ensure AI safety domain-agnostically, we introduce methods from related domains and discuss
general safety frameworks.

Constrained Reinforcement Learning. Safety in reinforcement learning has been extensively stud-
ied through constrained optimization approaches. Constrained Policy Optimization (CPO) (Achiam
et al., 2017) introduced trust region methods for safe policy learning with probabilistic constraints.
Proximal Policy Optimization-based methods have emerged as practical solutions, including PPO-
Lag (Ray et al., 2019), which uses Lagrangian methods for constraint satisfaction, and PPO-
Barrier (Yang et al., 2023), which employs neural barrier certificates. Other approaches include safe
exploration methods (García & Fernández, 2015), temporal-logic shielding (Alshiekh et al., 2018),
and reward shaping techniques for safety (Leike et al., 2017). While these methods can be adapted
across domains, they lack unified theoretical frameworks for safety guarantees across diverse AI
applications.

Large Language Model Safety. The safety of large language models has become increasingly
critical due to their widespread deployment (Wei et al., 2022). Constitutional AI (Bai et al., 2022)
introduces self-critique mechanisms for harmless responses. Reinforcement Learning from Human
Feedback (RLHF) (Ouyang et al., 2022) has become a standard approach for aligning language
models with human preferences. Recent work includes red teaming approaches (Ganguli et al.,
2022), instruction tuning for helpfulness (Li et al., 2024) and harmlessness (Ji et al., 2023), and
adversarial training methods (Zou et al., 2023). Domain-specific safety measures include content
filtering (Gehman et al., 2020) and prompt engineering for safety (Liu et al., 2024b). These approaches
often require substantial domain-specific customization and engineering.

General Safety Approaches. Rejection sampling (von Neumann, 1951) represents one of the few
domain-general safety techniques, applied in both RL (Srinivasan et al., 2020) and language model
contexts (Nakano et al., 2021). However, rejection sampling suffers from performance issues. Other
general approaches include uncertainty quantification methods (Guo et al., 2017) and robustness
techniques (Madry et al., 2018), but these focus on specific aspects of safety rather than providing
comprehensive frameworks with mathematical guarantees.

Scaling Laws and Safety. While scaling laws have been extensively studied for model perfor-
mance (Kaplan et al., 2020; Hoffmann et al., 2022), theoretical relationships between data quantity
and safety guarantees remain largely unexplored. Our work addresses this gap by establishing the
first scaling law relating internal test data quantity to safety-performance trade-offs.

Our framework generalizes and improves upon these approaches by providing a unified mathematical
foundation with provable safety guarantees. For example, our framework integrates with PPO-
Lag (Ray et al., 2019) in our experiments. Unlike existing approaches that may require extensive
domain-specific engineering, our method achieves safety through constrained optimization with
chance constraints, providing theoretical guarantees while maintaining practical applicability across
arbitrary AI models and domains.

M USE OF LARGE LANGUAGE MODELS

Large language models were used as writing assistance tools for grammar correction, sentence
structure improvement, and style refinement throughout the manuscript. LLMs were also employed
to assist in identifying and organizing relevant literature during the initial stages of the related work
review. All factual content, research contributions, methodology, and scientific claims remain the
original work of the authors.
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