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ABSTRACT

Recent studies have revealed the vulnerability of pre-trained language models to
adversarial attacks. Existing adversarial defense techniques attempt to reconstruct
adversarial examples within feature or text spaces. However, these methods strug-
gle to effectively repair the semantics in adversarial examples, resulting in unsat-
isfactory performance and limiting their practical utility. To repair the semantics
in adversarial examples, we introduce a novel approach named Reactive Pertur-
bation Defocusing (Rapid). Rapid employs an adversarial detector to identify
pseudo-labels for adversarial examples and leverage adversarial attackers to re-
pair the semantics in adversarial examples by adversarial attacks. Our extensive
experimental results, conducted on four public datasets, spanning various adver-
sarial attack scenarios, convincingly demonstrate the effectiveness of Rapid. To
address the problem of defense performance validation in previous works, we pro-
vide a demonstration of adversarial detection and repair based on our work, which
can be easily evaluated at https://tinyurl.com/22ercuf8.

1 INTRODUCTION

Pre-trained language models (PLMs) have achieved state-of-the-art (SOTA) performance in a variety
of natural language processing tasks (Wang et al., 2019a;b). However, recent studies (Li et al., 2019;
Garg & Ramakrishnan, 2020; Li et al., 2020; Jin et al., 2020; Li et al., 2021; Boucher et al., 2022)
showed that PLMs are highly susceptible to adversarial examples, a.k.a. adversaries, created by
subtly changing the selected words in a natural examples (a.k.a., clean examples) (Morris et al.,
2020). Despite a widespread acknowledgment of the critical importance of adversarial robustness in
the deep learning community (Alzantot et al., 2018; Ren et al., 2019; Zang et al., 2020; Zhang et al.,
2021; Jin et al., 2020; Li et al., 2021; Wang et al., 2022a), research dedicated to textual adversarial
defense remains comparatively underexplored compared to the field of computer vision (Rony et al.,
2019; Gowal et al., 2021; Wang et al., 2023; Xu et al., 2023). Existing works for textual adversarial
defense can be mainly classified into adversarial training-based (Liu et al., 2020a;b; Ivgi & Berant,
2021; Dong et al., 2021b;a) and reconstruction-based (Zhou et al., 2019; Jones et al., 2020; Bao
et al., 2021; Keller et al., 2021; Mozes et al., 2021; Li et al., 2022; Shen et al., 2023) approaches.

The crux of existing adversarial defense studies is that they cannot precisely distinguish the semantic
differences in natural and adversarial examples, let alone repair the semantics in adversaries. In other
words, the existing adversarial defense methods fail the guarantee semantic similarities between
natural examples and repaired examples. We provide an example to illustrate this phenomenon in
Figure 1. In this example, it is observed that RS&V (Wang et al., 2022b), one of the latest adversarial
defense works, cannot model the semantic differences in adversarial and repaired examples. This
is because augmentation-based defense methods are untargeted and do not truly learn to eliminate
adversaries. Another significant problem is that many existing studies (Mozes et al., 2021; Wang
et al., 2022b) are unable to efficiently pre-detect adversaries before the defense process. These
approaches indiscriminately treat all input texts, disregarding the necessity of discerning between
adversaries and natural examples for an optimal defense strategy. This obstacle not only incurs a
waste of computational resources but also results in an unnecessary defensive posture on natural
examples, potentially exacerbating performance degradation.

Keeping the above-discussed two challenges in mind, we propose a novel paradigm for adversary
defense. Firstly, we train an effective adversarial detector along with the victim model to achieve
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Figure 1: The visualizations of semantic
feature-based cosine similarity on binary clas-
sification datasets. The “Adversarial” and “Re-
paired” denote the cosine similarity distribu-
tion between adversarial-natural example pairs
and repaired-natural example pairs, respec-
tively. The visualizations are from Rapid and
RS&V (Wang et al., 2022b). respectively.

Ha! Adversarial! Injecting 
new Perturbations…

Hijack

AttackThis is the most interesting
investigation of alienation.

This is the most intriguing 
investigation of alienation.

This is the most intriguing 
exploration of alienation.

Figure 2: An example of reactive perturbation
defocusing in sentiment analysis. Rapid will
not apply defense unless an adversary is de-
tected. The original word in this example is ex-
ploration. Perturbation defocusing repairs the
adversary by introducing safe perturbations (in-
teresting) to distract the objective model from
the malicious perturbation (i.e., investigation).

fast ‘in-victim-model’ adversary detection, i.e., parallel adversary detection with standard modeling
(e.g., classification) of the victim model. In this way, we can pre-detect adversaries and alleviate
unnecessary repair processes on natural examples. Secondly, we propose a new adversary repair
method called reactive Rapid, which is based on adversarial attacks. Overall, our adversary defense
paradigm is characterized by the following three key aspects:

Adversarial Semantics Repair. Compared to augmentation-like methods, Rapid leverages adver-
sarial attackers to counterattack the adversaries, injecting a few safe perturbations into adversaries
to distract the victim model from malicious perturbations. Due to the principle of minimizing edits
(in this work, we refer to the semantics in adversaries as the features encoded by PLM for simplic-
ity), we can mitigate semantic shifts in repaired examples. The semantics of the repaired examples
encoded by the victim model are very similar to the original, natural examples, as evidenced by
Figure 1. Additionally, more examples can be viewed in the online click-to-run demo. We call this
method “perturbation defocusing” (PD). It aims to defocus the malicious perturbations to repair the
deep semantics instead of leading to further semantic shifts.

Reactive Adversarial Defense. Rapid uses the adversarial detector to concentrate its defensive
efforts primarily on pre-detected adversaries, thus minimizing any collateral impact on natural ex-
amples (Xu et al., 2022) and reducing resource waste in defending against natural examples. As
illustrated in Figure 2, PD introduces new perturbations into the adversary to create a repaired ex-
ample that repairs the previous mis-prediction of the adversary.

In-victim-model Adversarial Detector. To overcome the limitations associated with inefficient
adversary detection, Rapid builds an ‘in-victim-model’ adversarial detector, a binary classifier
grounded in PLM architecture. The adversarial detector is jointly trained with the victim model as
a multitask modeling task, allowing it to detect adversaries with no additional cost. In practice, this
adversarial detector can recognize adversaries produced by a range of attackers, thanks to its training
on a diversified set of adversaries from multiple adversarial attackers.

In conclusion, here are some findings from our experiments.

a) We illustrate a counterintuitive fact that adversarial attacks are efficient in repairing the adver-
saries. Rapid can maintain the deep semantics in repaired examples, which has been ignored
in previous research and is vital for adversarial defense.

b) Rapid use a pseudo-similarity filtering strategy to select repaired examples that can achieve up
to 99.9% repair accuracy of adversarial examples on binary classification datasets, significantly
surpassing text/feature-level reconstruction and voting-based methods.
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c) We present a simple but effective in-victim-model adversarial detector. The adversarial detector
can be transferred to unknown attackers according to our experiments. Our experiments show
that Rapid is robust in recognizing and defending against a wide range of unknown adversarial
attacks, such as Clare (Li et al., 2021) and large language models like ChatGPT-3.5 (Ope-
nAI, 2023).

Finally, we have successfully developed a user-friendly application interface to serve as a challeng-
ing benchmark tool for evaluating the performance of adversarial attackers under the defense of
Rapid. This is an important step to eliminate the evaluation variance among different codebases.
We will release this tool after the review process because the codes are hard to anonymize.

2 PROPOSED METHOD

Our proposed framework comprises two phases. Phase #1 is designed to train a joint model capa-
ble of performing both standard classification and adversarial detection. The adversarial detector’s
role is to identify adversaries and distinguish them from natural examples. Phase #2 is dedicated
to implementing pseudo-supervised adversary defense based on PD, to divert the victim model’s
attention from malicious perturbations and rectify the outputs without compromising performance
on natural examples.

We will elaborate on the methodology of our framework step by step in the following subsections.

2.1 PHASE #1: ADVERSARIAL DETECTOR TRAINING

To implement an effective adversarial detector to pre-detect adversaries before the defense, we in-
corporate a binary classifier (a.k.a., in-victim-model adversarial detector) during the victim model
training. We will show the adversarial detector’s generalizability against unknown attackers in the
experiment section.

Multi-Attack-based Adversary Sampling. This preprocessing step generates a set of adversaries
to compose the dataset used for training the adversarial detector. In order to enable the adversar-
ial detector to identify various unknown adversaries, we employ three adversarial attack methods:
BAE (Garg & Ramakrishnan, 2020), PWWS (Ren et al., 2019), and TextFooler (Jin et al., 2020),
to attack the victim classifier and sample adversaries, respectively. It’s worth noting that we collect
all adversaries, whether they were successful or failed attempts to deceive the victim model. In
practice, given a dataset D consisting of natural examples and a victim classifier FS trained on D,
for all (x, y) ∈ D, we apply each of the adversarial attack methods to sample three adversaries as
follows1:

(x̃, ỹ)i ← Ai (FS , (x, y)) , (1)

where Ai, i ∈ {1, 2, 3}, represents BAE, PWWS, and TextFooler, respectively. (x̃, ỹ)i is the
generated adversary. All the sampled adversaries and natural examples together constitute the ad-
versarial dataset D̃. We employ these three widely-used open-source adversarial attack methods for
a proof-of-concept evaluation. Please note the defender in Rapid is decoupled with the adversarial
detector and the sampling attackers do not influence the performance of the defender. The results
in Table 4 indicate that the adversarial detector can adapt to unknown attack methods, even when
trained on a small set of adversaries.

Joint Model Training. To improve the efficiency of adversary detection, we aim to train the ad-
versarial detector concurrently with the victim model. We collect the adversaries D̃ generated by
multiple attackers and combine them with the natural (i.e., original) examples D to create a syn-
thetic dataset D. In order to conduct joint model training, we propose three training objectives in
the following subsection.

Training Objectives. The training objectives used for training the joint model FJ include standard
classification, adversarial training, and adversarial detection, respectively.

Standard Classification Objective (Lc): Given that our experiments focus on text classification mod-
els, we employ the standard classification objective. To implement this objective, we denote the

1The formulation of word-level adversarial attack is available in Appendix A.
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original labels as y1, 0 ≤ y1 ≤ C, with C representing the number of categories in the original
dataset. It’s important to note that only the prediction results of natural examples in D are con-
sidered in the cross-entropy loss function. In other words, the y1 values for the adversaries in the
synthetic dataset D are set to a dummy value y1 = ∅ and are therefore ignored in this objective.
The Lc is calculated as follows:

Lc := −
C∑
i=1

[pi log (p̂i) + qi log (q̂i)] , (2)

where p and p̂ represent the true and predicted probability distributions of the standard classification
label (i.e., y1) of x̃. q and q̂ indicate any incorrect standard classification label and its likelihood.

Adversarial Detection Objective (Ld): This objective is used to train the adversarial detector, which
determines whether the input example is an adversary or not. The adversarial detector is a binary
classifier that requires another independent label y2, where y2 ∈ {0, 1}. This objective only calcu-
lates the binary cross-entropy for both the natural examples and adversaries in D, where y2 is 0 and
1, respectively.

Adversarial Training Objective (La): We also employ the adversarial training objective to enhance
the robustness of adversaries. The difference, compared to existing adversarial training works, is that
La uses an independent label y3, where 0 ≤ y3 ≤ C. Please note that this objective only calculates
the loss function for the adversaries. This means that y3 for natural examples is set to a dummy value
y1 = ∅ and is therefore ignored in this objective. This approach prevents the adversarial training
objective from negatively impacting the performance on pure natural examples and this problem are
very common in recent works (Dong et al., 2021a;b). The calculation of La is the same as Lc.

To accommodate these training objectives, each example (x,y) ∈ D is augmented with three dif-
ferent labels for the three training objectives, i.e., y := (y1, y2, y3)

⊤.

Overall Training Objective. Finally, the three training objectives mentioned above are aggregated
into a single loss function:

L := Lc + Ld + La + λ||θ||22, (3)
where Lc, Ld and La correspond to the losses for training a standard classifier, an adversarial detec-
tor, and adversarial training, respectively. λ denotes the L2 regularization parameter and θ represents
the parameters of the underlying PLM.

2.2 PHASE #2: REACTIVE ADVERSARIAL DEFENSE

In this section, we introduce a novel adversarial defense method. The adversarial defense in Rapid
is designed to be independent of adversarial detectors and can accommodate future adversarial de-
tection techniques. The defense method in Rapid includes the following components.

Adversarial Defense Detection. Prior approaches to adversarial defense often ignore pre-detect
adversaries and run defense for all input texts, but defending against all inputs can be resource-
intensive (Dong et al., 2021a;b). Therefore, we adopt a reactive adversarial defense mechanism
to mitigate resource consumption. For instance, the joint model can determine whether the input
example is adversarial using the following prediction:

(ŷ1, ŷ2, ŷ3)← FJ(x̂), (4)

where x̂ represents the input example, and ŷ1, ŷ2, ŷ32 are predictions based on the three training
objectives, respectively. FJ is the joint model trained in Phase #1. In Rapid, we only apply
adversarial defense to inputs identified as adversaries (i.e., ŷ2 = 1) by the joint model FJ . The
repair of adversaries is conducted through perturbation defocusing.

Perturbation Defocusing. The goal of the PD defense is employing any adversarial attacker ÂPD
3

to inject safe perturbations into the identified adversary x̂ by adversarial attacks. In other words,
we utilize an adversarial attacker to ‘attack’ the adversary, which actually repairs the semantics. In

2ŷ3 is not used in Phase #2.
3We choose PWWS because it is cost-effective, and it can be replaced by any (or an ensemble of) adversarial

attackers.
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equation (4), we can obtain the pseudo label ŷ1 of the adversary at an imperceptibly low cost. We
use ŷ2 to guide ÂPD in preventing repaired adversaries from retaining the same pseudo label. The
defense process can be formulated as follows:

(x̃r, ỹr1)← ÂPD (FJ , (x̂, ŷ1)) , (5)

where (x̃r, ỹr1) represents the repaired example and new prediction queried by ÂPD based on the
victim model.

Standard 
Classifier

Adversarial 
Detector

Input Example

Classification
Output

Perturbation 
Defocusing

Detection
Output

Similarity
Filtering

Output Adversarial Example

]Repaired 
Example #1

Figure 3: The visualization of the workflow
of adversary defense in Phase #2.

In PD, the perturbation introduced by the adversarial
attacker is considered ‘safe’ since it does not alter
the semantics of the adversary x̂. The rationale be-
hind this perturbation is to divert the standard clas-
sifier’s focus away from the malicious perturbations,
allowing the standard classifier to concentrate on the
adversary’s original semantics. In essence, the re-
paired examples can be correctly classified based on
their own robustness.

Pseudo-similarity Supervision. To prevent re-
paired adversaries from being misclassified, we pro-
pose a feature-level pseudo-semantic similarity fil-
tering strategy to mitigate semantic bias Rapid gen-
erate a set of k (i.e., we set k = 3 for efficiency)
repaired examples for an adversary, we denote the
set as S = {x̃r

1, · · · , x̃r
i, · · · x̃r

k}. We encode those
repaired examples to extract the semantic features
using FJ . We obtain the cosine similarity scores be-
tween x̃r

i and the rest repaired examples in S and
calculate the average cosine similarity scores si involving x̃r

i as follows:

si =

∑k
j=1 CosSim(Hi, Hj)

k
, (6)

where Hi and Hj are the hidden states encoded by the joint model FJ . CosSim is the function
for cosine similarity score calculation. After the defense, Rapid outputs the predicted label of the
repaired example which has the largest average similarity score, i.e., i-th repaired example x̃r

i in S,
where ∀j ∈ {1, · · · , k}, si ≥ sj .

3 EXPERIMENTAL SETTINGS

In this section, we introduce the experimental settings used in our experiments.

Table 1: The statistics of datasets
used for evaluating Rapid. We
use subsets from Amazon, AG-
News and Yahoo! datasets to eval-
uate Rapid as the previous works
due to high resource occupation.

Dataset Categories
Number of Examples

Training Valid Testing
SST2 2 6920 872 1821

Amazon 2 7000 1000 2000
AGNews 4 120000 0 7600
Yahoo! 10 1400000 0 60000

Victim Models. Any PLM can be used in a plug-in manner in
our proposed framework. Without loss of generality, here we
consider BERT (Devlin et al., 2019) and DeBERTa (He et al.,
2021), two widely used PLMs from transformers4, as both the
victim classifier and the joint model. The corresponding hy-
perparameter settings of BERT and DeBERTa can be found
in Appendix B.2.

Datasets. Three widely-used text classification datasets5 are
considered in our experiments, including SST2 (Socher et al.,
2013), Amazon (Zhang et al., 2015), and AGNews (Zhang
et al., 2015). Some of their statistics are listed in Table 1. SST2
and Amazon are binary sentiment classification datasets. AG-
News is a multi-categorical news classification dataset con-
taining four categories. Yahoo! is another multi-categorical dataset that contains 10 categories.

4https://github.com/huggingface/transformers
5We have released the detailed source codes and processed datasets in the supplementary materials.
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Adversarial Attackers. Three open-source attackers provided by TextAttack6 (Morris et al., 2020)
are considered in our experiments while their working mechanisms are outlined in Appendix B.1.
There are three roles of adversarial attackers are outlined as follows.

a) Adversary Sampling. BAE, PWWS and TextFooler are used to sample adversaries for training
the adversarial detector. These attackers represent different types of attacks, thus enabling the
training of a detector to be capable of recognizing a variety of adversarial attacks.

b) Adversary Repair. For perturbation defocusing, we employ PWWS as the attacker ÂPD in Sec-
tion 2.2. Compared to open-source adversarial attackers such as BAE, PWWS rarely alters the
semantics of natural examples in our observations and is slightly faster than other open-source
attackers, such as TextFooler.

c) Generalizability Evaluation. We use IGA (Wang et al., 2021a), DeepWordBug (Gao et al.,
2018), PSO (Zang et al., 2020) and Clareto evaulate Rapid’s generalizability.

Evaluation Metrics. In our experiments, we use the following five fine-grained metrics7 for text
classification to evaluate the adversarial defense performance.

Nat. Acc.: The natural accuracy is the victim’s performance on the target dataset that only contains
natural examples.
Att. Acc.: The accuracy under attacks denotes the victim’s performance under adversarial attacks.
Det. Acc.: The detection accuracy measures the defender’s performance of adversaries detection.
Def. Acc.: The defense accuracy denotes the defender’s performance of adversaries repair.
Rep. Acc.: The paired accuracy evaluates the victim’s performance on the attacked dataset after
being repaired.
Unlike previous research (Xu et al., 2022; Yang et al., 2022; Dong et al., 2021a;b) that only evaluated
a small amount of data extracted from the testing set, we evaluate the adversarial detection and
defense performance on the entire testing set.

Baseline Methods. The performance of our proposed Rapid is compared against the following six
adversarial defense baselines.

DISP (Zhou et al., 2019): It is an embedding feature reconstruction method for adversarial defense.
DISP uses a perturbation discriminator to evaluate the probability that a token is perturbed and
provides a set of potential perturbations. For each potential perturbation, an embedding estimator
learns to restore the embedding of the original word based on the context.
FGWS (Mozes et al., 2021): It uses frequency-guided word substitutions to exploit the frequency
properties of adversarial word substitutions for the detection of adversarial examples.
RS&V (Wang et al., 2022b): It is a text reconstruction method based on the randomized substitution-
to-vote strategy. RS&V accumulates the logits of massive samples generated by randomly substitut-
ing the words in the adversaries with synonyms.
We cannot compare with some methods, e.g., Textshield (Shen et al., 2023) because there is
no released source code or we cannot reproduce the experimental results. However, we can provide
additional experimental results provided that there are any questions.

4 MAIN EXPERIMENTS

Adversary Detection Performance. Our experimental results, as shown in Table 2, demonstrate
the effectiveness of the adversarial detector in Rapid. This in-victim-model adversarial detec-
tor, trained in conjunction with the standard classifier, accurately identifies adversaries across most
datasets. Compared to the previous adversary detection-based defense (Mozes et al., 2021; Wang
et al., 2022b; Shen et al., 2023), the in-victim-model adversarial detector identifies the adversaries
with no extra cost. On the other hand, our evaluation confirms a very low false positive rate (ap-
proximately 2%) of adversary detection on natural examples, resulting in a very slight performance
degradation on natural examples. Moreover, we showcase the adaptability of Rapid to previously
unseen attack methods in Table 4, highlighting the versatility of our adversarial detector. It excels at
identifying adversaries by detecting disruptions introduced by malicious attackers, such as grammar
errors and word misuse. However, it’s worth noting that detection performance on the AGNews

6https://github.com/QData/TextAttack
7The mathematical definitions of these evaluation metrics can be found in Appendix B.3.
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Table 2: The main adversarial detection and defense performance of Rapid on four public datasets.
The victim model is BERT and the results in bold font indicate the best performance. We report the
average accuracy of five random runs. The adversarial defense performance reported in previous
works varies from adversarial attackers’ implementations. For fair comparisons, all the baseline
experiments are re-implemented based on the latest adversarial attackers from the Textattack library
to avoid biases. “TF” indicates TextFooler.

Defender Attacker
AGNews (4-category) Yahoo! (10-category) SST2 (2-category) Amazon (2-category)

Nat. Att. Det. Def. Rep. Nat. Att. Det. Def. Rep. Nat. Att. Det. Def. Rep. Nat. Att. Det. Def. Rep.
Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc.

DISP

PWWS 32.09 55.49 57.82 68.23 5.70 61.67 54.95 50.24 23.44 38.93 34.46 35.33 15.56 41.90 45.92 59.80
TF 94.13 50.50 53.78 56.18 70.16 75.63 13.60 50.73 57.48 53.18 91.24 16.21 37.80 34.37 37.16 93.67 21.77 43.10 47.15 60.56
BAE 74.80 45.26 45.75 81.39 27.50 54.82 53.75 50.90 35.21 36.59 37.51 42.22 44.00 40.28 42.74 61.85

FGWS

PWWS 32.09 65.24 68.35 71.78 5.70 65.83 61.46 53.28 23.44 40.28 40.38 39.20 15.56 44.47 56.89 60.29
TF 94.25 50.50 68.88 70.71 73.40 76.24 13.60 68.57 65.17 54.53 91.34 16.21 42.79 41.05 41.53 94.26 21.77 45.75 58.74 61.51
BAE 74.80 44.29 47.95 83.57 27.50 58.63 56.33 52.94 35.21 43.83 48.37 44.90 44.00 42.26 43.04 64.63

RS&V

PWWS 32.09 83.67 84.96 83.80 5.70 65.01 65.22 57.22 23.44 36.90 37.10 38.54 15.56 29.60 45.30 46.17
TF 94.14 50.50 82.44 83.45 82.53 76.39 13.60 74.21 74.54 58.10 91.55 16.21 39.70 38.40 39.70 94.32 21.77 40.70 42.30 55.70
BAE 74.80 46.98 48.67 86.90 27.50 37.41 37.88 62.27 35.21 19.84 20.92 43.65 44.00 38.59 39.01 65.03

Rapid

PWWS 32.09 90.11 95.88 92.36 5.70 87.33 92.47 69.40 23.44 94.03 98.62 89.85 15.56 97.33 99.99 94.42
TF 94.30 50.50 90.29 96.76 92.14 76.45 13.60 87.49 93.54 70.50 91.70 16.21 94.03 99.86 89.72 94.24 21.77 93.85 99.99 93.96
BAE 74.80 57.55 96.25 93.64 27.50 82.46 96.30 73.06 35.21 78.99 99.28 89.77 44.00 80.55 99.99 93.89

dataset is lower due to the absence of news data in the BERT training corpus, as referenced in He
et al. (2021) (Table 8).

Adversary Defense Performance. In the realm of adversary defense, Rapid outperforms existing
methods across all datasets, as outlined in Table 2. When we focus on correctly identified adver-
saries, Rapid can effectively repair up to 92-99% of them, even on the challenging 10-category
Yahoo datasets. Our research also sheds light on the limitations of unsupervised text-level and
feature-level reconstruction methods, exemplified in studies such as Zhou et al. (2019); Mozes et al.
(2021); Wang et al. (2022b). These methods struggle to rectify the deep semantics in adversaries,
rendering them inefficient and inferior. Additionally, we find that previous methods are not robust
when defending against adversaries in short texts, as evidenced by their failure on the SST2 and
Amazon datasets. In contrast, Rapid consistently achieves higher defense accuracy, particularly
on binary classification datasets.

Table 3: The performance of Rapid with-
out pseudo-similarity filtering, with col-
ored numbers indicating performance de-
clines in the ablated Rapid. We omit the
metrics that are not unaffected by pseudo-
similarity filtering.

Dataset Attacker
Def. Rep.
Acc. Acc.

AGNews
PWWS 94.19 (- 1.69) 90.80 (- 1.56)
TF 94.26 (- 2.50) 91.35 (- 0.79)
BAE 92.98 (- 3.27) 91.44 (- 2.20)

Yahoo!
PWWS 88.04 (- 4.43) 65.38 (- 4.02)
TF 91.28 (- 2.26) 67.48 (- 3.02)
BAE 92.48 (- 3.84) 71.35 (- 1.71)

SST2
PWWS 98.12 (- 0.50) 87.80 (- 2.05)
TF 98.03 (- 1.83) 88.40 (- 1.32)
BAE 95.87 (- 3.41) 87.52 (- 2.25)

Amazon
PWWS 99.99 ( 0.00) 94.40 (- 0.02)
TF 98.92 (- 1.07) 93.31 (- 0.65)
BAE 98.53 (- 1.41) 93.62 (- 0.27)

In summary, Rapid employs adversarial attackers
to repair adversaries’ deep semantics and minimize
edits in text space, resulting in promising adversar-
ial defense performance. We emphasize the impor-
tance of dedicated deep semantics repair in the con-
text of adversarial defense against unsupervised fea-
ture space and text space reconstruction.

Ablation Experiment. We conducted ablation ex-
periments to assess the effectiveness of pseudo-
similarity filtering. Pseudo-similarity filtering exclu-
sively affects the defense process, so we have omit-
ted unaffected metrics, such as detection accuracy,
which can be found in Table 2. The experimental re-
sults are presented in Table 3. It is observed that the
adversarial defense performance of Rapid without
similarity filtering is notably inferior (approximately
1%) in most scenarios. Furthermore, the degradation
in defense performance is more pronounced in the
case of the AGNews and Yahoo! datasets compared
to the SST2 and Amazon datasets. This discrepancy is attributed to the larger vocabularies and
longer text lengths in the AGNews and Yahoo! datasets, resulting in diversified repaired examples
in terms of similarity.

4.1 RESEARCH QUESTIONS

We discuss more findings about Rapid by answering the following research questions (RQs).
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RQ1: How is the generalization ability of Rapid to unknown attackers?

Methods: To extensively assess the generalization ability of the in-victim-model adversarial detec-
tor in Rapid, we have conducted experiments among various state-of-the-art adversarial attackers:
PSO, IGA, DeepWordBug, and Clare. These adversarial attackers were not included in the train-
ing of the adversarial detector in Rapid. We hope our experiments can attract attention to the
generalization ability of adversarial detectors. It’s important to note that better adversarial detection
and defense performance against unknown adversarial attackers indicates the superior generalizabil-
ity of Rapid.

Table 4: The performance of Rapid for adver-
sarial detection and defense against unknown
adversarial attacks.

Dataset Attacker
Att. Det. Def. Rep.
Acc. Acc. Acc. Acc.

AGNews

PSO 14.83 68.46 67.82 90.39
IGA 26.87 76.74 74.59 92.33

DeepWordBug 45.53 72.73 87.23 89.33
Clare 8.46 62.78 61.54 64.78

Yahoo!

PSO 6.28 80.26 76.89 87.82
IGA 14.75 82.69 81.02 54.55

DeepWordBug 51.34 72.73 87.10 62.27
Clare 3.56 64.85 62.40 52.47

SST2

PSO 7.95 87.50 87.50 82.61
IGA 18.39 89.33 98.67 87.68

DeepWordBug 30.67 95.44 83.59 81.90
Clare 2.59 62.50 59.37 65.30

Amazon

PSO 5.76 90.48 90.48 91.55
IGA 14.91 92.31 92.31 94.65

DeepWordBug 43.43 87.04 85.19 86.87
Clare 3.25 60.44 59.37 62.94

Results: From the statistical comparison results
presented in Table 4, we observe that Rapid can
identify up to 98.67% of adversaries on both the
SST2 and Amazon datasets when considering ad-
versarial detection performance. In terms of ad-
versarial defense, Rapid is capable of repairing
a substantial number of adversaries generated by
various unknown attack methods (up to 87.68%
and 94.65% on the SST2 and Amazon datasets,
respectively). However, Rapid experiences a
decline in performance in identifying and defend-
ing against adversaries when facing the challeng-
ing Clare attack. This drop in performance is
likely attributable to the subpar accuracy of ad-
versarial detection, which could potentially be
improved by training Clare-based adversaries
for adversarial detection within Rapid. In sum-
mary, Rapid has demonstrated robust general-
ization ability, effectively detecting and repairing
a wide array of adversaries generated by unknown attackers.

RQ2: Does perturbation defocusing really repair adversaries?
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Figure 4: The box plots of semantic cosine
similarity score distributions on multi-categorial
datasets. Similar to Figure 1, Rapid is more
competent to repair semantics according to the
feature similarity score distributions.

Methods: To address this question, we inves-
tigate the discrepancy between adversaries and
their repaired counterparts in the feature space.
Specifically, we employ three attackers (i.e., BAE,
PWWS, TextFooler) to generate adversaries
and their corresponding repaired examples, con-
sidering a random selection of 1000 natural ex-
amples. Using the victim model, we encode these
examples into the feature space and evaluate the
cosine similarity between adversary-natural ex-
ample pairs and repaired adversary-natural exam-
ple pairs. The larger cosine similarity scores indi-
cate better performance in repairing the deep se-
mantics in the adversaries.

Results: Figure 1 and Figure 4 depict box plots
illustrating the similarity score distributions col-
lected from pairwise semantic similarity assess-
ments. The semantic similarity score distribu-
tions (e.g., the median similarity scores of re-
paired examples are always larger than the ad-
versaries) from these plots reveal a notable global
similarity between the natural examples and repaired examples by Rapid, which means Rapid
does repair the deep semantics of the adversaries. Conversely, it is apparent that the similarity scores
of the repaired examples obtained using RS&V are indistinguishable from the adversarial examples
across all datasets. This situation happens to many of the existing adversarial defense methods. In
conclusion, our observations show the ability of Rapid to effectively repair the deep semantics of
adversaries.
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RQ3: How does the inherent robustness of the victim model affect Rapid?

Table 5: The performance of Rapid on four
public datasets based on the victim model
DeBERTa. The numbers in red color indicate
performance declines compared to the BERT-
based Rapid.

Dataset Attacker
Nat. Att. Det. Def. Rep.
Acc. Acc. Acc. Acc. Acc.

AGNews
PWWS

96.69
62.77 96.47 98.47 93.12

TF 39.85 91.41 95.90 93.69
BAE 81.64 90.20 97.92 93.40

Yahoo!
PWWS

78.63
15.70 88.91 92.64 70.47

TF 6.19 89.32 92.60 69.96
BAE 47.50 90.25 93.74 72.12

SST2
PWWS

95.01
37.14 95.21 98.42 94.15

TF 22.59 93.06 99.08 94.58
BAE 38.84 80.82 98.59 94.16

Amazon
PWWS

95.51
22.72 97.62 99.99 94.55

TF 23.95 94.91 99.99 94.84
BAE 56.65 82.71 99.99 94.50

Methods: In this research question, we assessed
the impact of the inherent robustness of the vic-
tim model, focusing on DeBERTa, a cutting-edge
PLM utilized across various tasks. Specifically,
we trained a victim model based on DeBERTa,
replicating the experimental setup and evaluat-
ing the performance variation of Rapid based on
this DeBERTa victim model.

Results: The outcomes are elaborated in Table
5. When compared to the victim model built
on BERT, the DeBERTa-based victim model
demonstrates superior accuracy under adversar-
ial attacks, indicating higher inherent robustness
in DeBERTa compared to BERT. We observed
that our method based on DeBERTa generally ex-
cels in accurately identifying adversaries across
all classification datasets, especially on the binary
datasets, in comparison to BERT. The perfor-
mance in adversarial detection and defense fol-
lows a similar upward trajectory. Emphasizing the substantial influence of the victim model’s ro-
bustness on our method, particularly in enhancing adversarial detection and defense.

5 RELATED WORKS

Prior research on adversarial defense can be classified into three categories: adversarial training-
based methods (Miyato et al., 2017; Zhu et al., 2020; Ivgi & Berant, 2021); context reconstruction-
based methods (Pruthi et al., 2019; Liu et al., 2020b; Mozes et al., 2021; Keller et al., 2021; Chen
et al., 2021; Xu et al., 2022; Li et al., 2022; Swenor & Kalita, 2022); and feature reconstruction-based
methods(Zhou et al., 2019; Jones et al., 2020; Wang et al., 2021a). Some studies (Wang et al., 2021b)
also investigated hybrid defense methods. As for the adversarial training-based methods, they are
notorious for the performance degradation of natural examples. They can improve the robustness
of PLMs by fine-tuning, yet increasing the cost of model training caused by catastrophic forget-
ting (Dong et al., 2021b). Text reconstruction-based methods, such as word substitution (Mozes
et al., 2021; Bao et al., 2021) and translation-based reconstruction, may fail to identify semantically
repaired adversaries or introduce new malicious perturbations (Swenor & Kalita, 2022). Feature
reconstruction methods, on the other hand, may struggle to repair typo attacks (Liu et al., 2020a;
Tan et al., 2020; Jones et al., 2020), sentence-level attacks (Zhao et al., 2018; Cheng et al., 2019),
and other unknown attacks. There are some works towards the adversarial detection and defense
joint task(Zhou et al., 2019; Mozes et al., 2021; Wang et al., 2022b). However, these adversarial
detection methods may be ineffective for unknown adversarial attackers and can hardly alleviate
resource waste in adversarial defense. Another similar work to Rapid is Textshield (Shen
et al., 2023), which aims to defend against word-level adversarial attacks by detecting adversarial
sentences based on a saliency-based detector and fixing the adversarial examples using a corrector.
Overall, our study focuses on maintaining the semantics by introducing minimal safe perturbations
into adversaries, thus alleviating the semantic shifting problem in all reconstruction-based works.

6 CONCLUSION

We propose a novel adversarial defense method, i.e., perturbation defocusing, to defend against
adversarial examples. Our method almost addresses the semantic shifting problem in the previ-
ous studies. In our experiments, Rapid shows an impressive performance in repairing adversarial
examples (up to ∼ 99% of correctly identified adversarial examples). We argue that perturbation
defocusing has the potential to significantly shift the landscape of textual adversarial defense. While
further research is needed to fully explore the potential of perturbation defocusing, it is clear that it
holds promise for improving the accuracy and robustness of adversarial defense in the future.
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7 REPRODUCIBILITY

To encourage everyone interested in our work to implement Rapid, we have taken the following
steps:

• We have created an online click-to-run demo alailable at https://tinyurl.com/
22ercuf8 for easy evaluation. Everyone can input adversarial examples and obtain the
repaired examples immediately.

• We have released the detailed source codes and processed datasets that can be retrieved in
the supplementary materials. This enables everyone to access the official implementation,
aiding in understanding the paper and facilitating their own implementations.

• We will also release an online benchmark tool for evaluating the performance of adversar-
ial attackers under the defense of Rapid. This step is essential for reducing evaluation
variance across different codebases.

These efforts are aimed at promoting the reproducibility of our work and facilitating its implemen-
tation by the research community.
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A ADVERSARIAL ATTACK

A.1 WORD-LEVEL ADVERSARIAL ATTACK

Our focus is on defending against word-level adversarial attacks. However, our method can be easily
adapted to different types of adversarial attacks. Let x = (x1, x2, · · · , xn) be a natural sentence,
where xi, 1 ≤ i ≤ n, denotes a word. y is the ground truth label. Word-level attackers generally
replace some original words with similar words (e.g., synonyms) to fool the objective model. For
example, substituting xi with x̂i generates an adversary: x̂ = (x1, · · · , x̂i, · · · , xn), where x̂i is
an alternative substitution for xi. For an adversary x̂, the objective model F predicts its label as
follows:

ŷ = argmaxF (·|x̂) , (7)

where ŷ ̸= y if x̂ is a successful adversary. To represent adversarial attacks to F using an adversarial
attacker A, we denote an adversarial attack as follows:

(x̂, ŷ)← A(F, (x, y)), (8)

where x and y denote the natural example and its true label. x̂ and ŷ are the perturbed adversary and
label, respectively.

A.2 INVESTIGATION OF TEXTUAL ADVERSARIAL ATTACK

This section delves into an examination of textual adversarial attacks.

Traditional approaches, such as those noted by Li et al. (2019) and Ebrahimi et al. (2018), often
involve character-level modifications to words (e.g., changing ”good” to ”go0d”) to deceive models
by altering their statistical patterns. In a different approach, knowledge-based perturbations, exem-
plified by the work of Zang et al. (2020), employ resources like HowNet to confine the search space,
especially in terms of substituting words.

Recent research (Garg & Ramakrishnan, 2020; Li et al., 2020) has investigated using pre-trained
models for generating context-aware perturbations (Li et al., 2021). Semantic-based methods, such
as SemAttack (Wang et al., 2022a), typically use BERT embedding clusters to create sophisti-
cated adversarial examples. This differs from prior heuristic methods that employed greedy al-
gorithms (Yang et al., 2020; Jin et al., 2020) or genetic algorithms (Alzantot et al., 2018; Zang et al.,
2020), as well as gradient-based techniques (Wang et al., 2020; Guo et al., 2021) that concentrated
on syntactic limitations.

With the evolution of adversarial attack techniques, numerous tools such as TextAttack (Morris
et al., 2020) and OpenAttack (Zeng et al., 2021) have been developed and made available in the
open-source community. These resources facilitate deep learning researchers to efficiently assess
adversarial robustness with minimal coding. Therefore, our experiments in adversarial defense are
conducted using the TextAttack framework, and we extend our gratitude to the authors and contrib-
utors of TextAttack for their significant efforts.
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B EXPERIMENTS IMPLEMENTATION

B.1 EXPERIMENTAL ADVERSARIAL ATTACKERS

We employ BAE, PWWS, and TextFooler to generate adversaries for training the adversarial
detector. These attackers are chosen because they represent different types of attacks, allowing us
to train a detector capable of recognizing a variety of adversarial attacks. This detector exhibits
good generalization ability, which we confirm through experiments with other adversarial attackers
such as IGA, DeepWordBug, PSO, and Clare. Including a larger number of adversarial attackers
in the training process can further enhance the performance of the detector. We provide a brief
introduction to these adversarial attackers:

a) BAE (Garg & Ramakrishnan, 2020) generates perturbations by replacing and inserting tagged
words based on the candidate words generated by the masked language model (MLM). To iden-
tify the most important words in the text, BAE employs a word deletion-based importance eval-
uation method.

b) PWWS (Ren et al., 2019) is an adversarial attacker based on synonym replacement, which com-
bines word significance and classification probability for word replacement.

c) TextFooler (Jin et al., 2020) considers additional constraints (such as prediction consistency,
semantic similarity, and fluency) when generating adversaries. TextFooler uses a gradient-
based word importance measure to locate and perturb important words.

B.2 HYPERPARAMETER SETTINGS

We employ the following configurations for fine-tuning classifiers:

1. The learning rates for both BERT and DeBERTa are set to 2× 10−5.
2. The batch size is 16, and the maximum sequence modeling length is 128.
3. Dropouts are set to 0.1 for all models.
4. The loss functions of all objectives use cross-entropy.
5. The victim models and Rapid models are trained for 5 epochs.
6. The optimizer used for fine-tuning objective models is AdamW.

Please refer to our released code for more details.

B.3 EVALUATION METRICS

In this section, we introduce the adversarial defense metrics. First, we select a target dataset, referred
to as D, containing only natural examples. Our goal is to generate adversaries that can deceive a
victim model FJ . We group the successful adversaries into a subset called Dadv and the remaining
natural examples with no adversaries into another subset called Dnat. We then combine these two
subsets to form the attacked dataset, Datt. We apply Rapid to Datt to obtain the repaired dataset,
Drep. The evaluation metrics used in the experiments are described as follows:

Nat. Acc. =
TPD + TND

PD +ND

Att. Acc. =
TPDatt + TNDatt

PDatt
+NDatt

Det. Acc. =
TP ∗

Dadv
+ TN∗

Dadv

P ∗
Dadv

+N∗
Dadv

Def. Acc. =
TPDadv

+ TNDadv

PDadv
+NDadv

Rep. Acc. =
TPDrep

+ TNDrep

PDrep +NDrep

where TP ,TN , P and N are the number of true positives and true negatives, positive and nega-
tive in standard classification, respectively. TP ∗, TN∗, P ∗ and N∗ indicate the case numbers in
adversarial detection.
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B.4 EXPERIMENTAL ENVIRONMENT

The experiments are carried out on a computer running the Cent OS 7 operating system, equipped
with an RTX 3090 GPU and a Core i-12900k processor. We use the PyTorch 1.12 library and a
modified version of TextAttack, based on version 0.3.7.

C ABLATION EXPERIMENTS

C.1 DEFENSE OF LLM-BASED ADVERSARIAL ATTACK

Table 6: Defense performance of
Rapid against adversarial attacks
generated by ChatGPT-3.5.

Dataset Attacker
Def. Rep.

Acc. (%) Acc. (%)

AGNews ChatGPT
RS&V 59.0
Rapid 72.0

Yahoo! ChatGPT
RS&V 49.0
Rapid 61.0

SST2 ChatGPT
RS&V 37.0
Rapid 74.0

Amazon ChatGPT
RS&V 58.0
Rapid 82.0

Recent years have witnessed the superpower of large language
models (LLMs) such as ChatGPT (OpenAI, 2023), which
we hypothesize to have a stronger ability to generate adver-
saries. In this subsection, we evaluate the defense performance
of Rapid against adversaries generated by ChatGPT-3.5.
Specifically, for each dataset considered in our previous ex-
periments, we use ChatGPT8 to generate 100 adversaries and
investigate the defense accuracy achieved by Rapid.

From the experimental results shown in Table 6, we find that
Rapid consistently outperforms RS&V in terms of defense
accuracy. Specifically, in the SST2 dataset, RS&V records a
defense accuracy of 37.0%, however, Rapid impressively re-
pairs 74.0% of the attacks. Similar trends hold for the Amazon
and AGNews datasets, where Rapid achieves defense accu-
racy of 82.0% and 72.0% respectively, in contrast to the 58.0% and 59.0% offered by RS&V. In
conclusion, Rapid can defend against various unknown adversarial attacks which have a remark-
able performance in contrast to existing adversarial defense approaches.

C.2 PERFORMANCE OF RAPID BASED ON DIFFERENT ÂPD

In Rapid, PD can incorporate any adversarial attacker or even an ensemble of attackers, as the pro-
cess doesn’t require prior knowledge of the specific malicious perturbations. Regardless of which
adversaries are deployed against Rapid, PWWS consistently seeks safe perturbations for the current
adversarial examples. The abstract nature of PD is critical, allowing for adaptability and effective-
ness against a broad spectrum of adversarial attacks, rendering it a versatile defense mechanism in
our study.

In order to investigate the impact of ÂPD in Phase #2, we have implemented further exper-
iments to demonstrate the adversarial defense performance of PD using different attackers, e.g.,
TextFooler and BAE. The results are shown in Table 7. According to the experimental results,
it is observed that PWWS has a similar performance to TextFooler in PD, while BAE is slightly
inferior to both PWWS and TextFooler. However, the variance are not significant among different
attackers in PD, which means the performance of Rapid is not sensitive to the choice of ÂPD, in
contrast to the adversarial attack performance of the adversarial attacker.

C.3 PERFORMANCE OF RAPID WITHOUT ADVERSARIAL TRAINING OBJECTIVE

The rationale behind the adversarial training objective La in our study is founded on two key hy-
potheses.

a) Enhancing Adversarial Detection: We recognize an implicit link between the tasks of adver-
sarial training and adversarial example detection. Our theory suggests that by incorporating an
adversarial training objective, we can indirectly heighten the model’s sensitivity to adversarial
examples, leading to more accurate detection of such instances.

8ChatGPT3.5-0301
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Table 7: The adversarial detection and defense performance of Rapid based on different backends
(ÂPD). We report the average accuracy of five random runs. “TF” indicates TextFooler.

Defender Attacker
AGNews (4-category) Yahoo! (10-category) SST2 (2-category) Amazon (2-category)

Nat. Att. Det. Def. Rep. Nat. Att. Det. Def. Rep. Nat. Att. Det. Def. Rep. Nat. Att. Det. Def. Rep.
Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc.

Rapid (PWWS)

PWWS 32.09 90.11 95.88 92.36 5.70 87.33 92.47 69.40 23.44 94.03 98.62 89.85 15.56 97.33 99.99 94.42
TF 94.30 50.50 90.29 96.76 92.14 76.45 13.60 87.49 93.54 70.50 91.55 16.21 94.03 99.86 89.72 94.32 21.77 93.85 99.99 93.96
BAE 74.80 57.55 96.25 93.64 27.50 82.46 96.30 73.06 35.21 78.99 99.28 89.77 44.00 80.55 99.99 93.89

Rapid (TF)

PWWS 32.09 83.67 94.07 92.27 5.70 65.01 83.25 65.33 23.44 36.90 98.90 90.67 15.56 29.60 99.99 94.33
TF 94.30 50.50 82.44 96.46 92.67 76.45 13.60 74.21 92.96 71.00 91.55 16.21 39.70 99.98 90.73 94.32 21.77 40.70 99.99 94.33
BAE 74.80 46.98 92.68 91.00 27.50 37.41 86.49 72.67 35.21 19.84 99.98 91.33 44.00 38.59 99.99 94.33

Rapid (BAE)

PWWS 32.09 83.67 93.22 92.08 5.70 65.01 81.15 64.00 23.44 36.90 93.92 87.67 15.56 29.60 99.54 94.00
TF 94.30 50.50 82.44 95.96 92.33 76.45 13.60 74.21 87.79 67.33 91.55 16.21 39.70 96.55 89.00 94.32 21.77 40.70 99.61 93.64
BAE 74.80 46.98 95.12 91.33 27.50 37.41 83.78 72.00 35.21 19.84 97.55 90.00 44.00 38.59 99.15 93.80

b) Improving Model Robustness: We posit that an adversarial training objective can bolster the
model’s robustness, thereby mitigating performance degradation when the model faces an attack.
This approach is designed to strengthen the model against potential adversarial threats.

To validate these hypotheses, we conducted ablation experiments on the adversarial training objec-
tive. The experimental setup was aligned with that described in Table 2, and the results are outlined
in Table 8.

Table 8: The adversarial detection and defense performance of Rapid with (“w/”) and without
(“w/o”) the adversarial training objective. We report the average accuracy of five random runs.
“TF” indicates TextFooler.

Defender Attacker
AGNews (4-category) Yahoo! (10-category) SST2 (2-category) Amazon (2-category)

Nat. Att. Det. Def. Rep. Nat. Att. Det. Def. Rep. Nat. Att. Det. Def. Rep. Nat. Att. Det. Def. Rep.
Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc.

Rapid (w/ La)

PWWS 32.09 90.11 95.88 92.36 5.70 87.33 92.47 69.40 23.44 94.03 98.62 89.85 15.56 97.33 99.99 94.42
TF 94.30 50.50 90.29 96.76 92.14 76.45 13.60 87.49 93.54 70.50 91.55 16.21 94.03 99.86 89.72 94.32 21.77 93.85 99.99 93.96
BAE 74.80 57.55 96.25 93.64 27.50 82.46 96.30 73.06 35.21 78.99 99.28 89.77 44.00 80.55 99.99 93.89

Rapid (w/o La)

PWWS 11.10 82.88 92.07 90.70 3.46 78.43 87.42 63.79 10.70 91.41 99.62 89.60 16.5 96.50 99.30 93.60
TF 94.44 16.09 84.88 93.07 87.28 76.32 0.42 78.65 78.36 56.72 91.54 5.30 89.48 95.15 85.80 94.29 17.53 98.63 99.17 92.78
BAE 67.93 83.17 91.49 91.15 45.10 71.89 75.47 64.56 25.70 57.01 95.64 87.10 45.54 92.67 99.48 93.31

These experimental findings reveal that omitting the adversarial training objective in Rapid con-
sistently leads to a reduction in model robustness across all datasets. This reduction can be as
substantial as approximately 30%, adversely affecting the performance of the adversarial defense.
Additionally, adversarial detection capabilities also diminish, with the most significant drop being
around 20%. These results highlight the critical role of the adversarial training objective in Rapid,
confirming its efficacy in enhancing both model robustness and adversarial example detection capa-
bilities.

C.4 PERFORMANCE OF RAPID WITHOUT MULTITASK TRAINING OBJECTIVE

Before developing Rapid, we carefully considered the potential impact on classification perfor-
mance due to multitask training objectives. This consideration was explored in our proof-of-concept
experiments.

To delve deeper into this impact, we trained victim models as single-task models (i.e., no adver-
sarial detection objective and adversarial training objective), instead of multitask training, and then
collated detailed results for comparison with Rapid. In this experiment, we focused solely on
evaluating performance using pure natural examples. The results of this comparison are outlined in
Table 9. The symbols ”↑” and ”↓” accompanying the numbers indicate whether the performance is
better or worse than that of the single-task model, respectively.

Based on these results, it is apparent that the inclusion of additional loss terms in multitask training
objectives does impact the victim model’s performance on clean examples. However, this influence
is not substantial across all datasets and shows only slight variations. This finding suggests that the
impact of multitask training objectives is relatively minor when compared to traditional adversarial
training methods.
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Dataset Model Victim-S Victim-M
AGNews BERT 94.30 93.90 (−0.40 ↓)
Yahoo! BERT 76.45 76.61 (+0.16 ↑)
SST2 BERT 91.70 91.49 (−0.21 ↓)

Amazon BERT 94.24 94.24 (—)

Table 9: Victim model’s accuracy (%) on clean dataset based single-task and multitask training
scenarios, i.e., Victim-S and Victim-M respectively. The experiments are based on the BERTmodel.

C.5 PERFORMANCE COMPARISON BETWEEN RAPID AND ADVERSARIAL TRAINING
BASELINE

We have conducted experiments to showcase the experimental results of the adversarial training
baseline (AT). The victim model is BERT, and the experimental setup is the same as for Rapid,
including the number of adversaries used for training. We only show the metric of repaired accuracy,
as AT does not support detect-to-defense. The results (i.e., Rep. Acc. (%)) are available in Table 10.

Dataset Attacker Rapid AT
PWWS 92.36 60.10

AGNews TF 92.14 61.87
BAE 93.64 63.62
PWWS 69.40 40.21

Yahoo! TF 70.50 38.75
BAE 73.06 42.97
PWWS 89.85 32.46

SST2 TF 89.72 31.23
BAE 89.77 34.61
PWWS 94.42 51.90

Amazon TF 93.96 49.49
BAE 93.89 49.75

Table 10: The repaired performance of Rapid and the adversarial training baseline. We report the
average accuracy of five random runs. “TF” indicates TextFooler.

For these experiments, we used BERT as the victim model and maintained the same experimental
setup as for Rapid, including the number of adversaries used for training. It’s important to note that
we focus solely on the repaired accuracy metric, as AT does not facilitate detect-to-defense function-
ality. From these results, it becomes apparent that the traditional adversarial training baseline is less
effective compared to Rapid, which utilizes perturbation defocusing. Specifically, the adversarial
defense accuracy of AT is generally below 50%. This finding underscores the limitations of tra-
ditional adversarial training methods, particularly their high cost and reduced effectiveness against
adapted adversarial attacks.

C.6 EFFICIENCY EVALUATION OF RAPID

The main efficiency depends on multiple adversarial perturbations search. We have implemented
two experiments to investigate the efficiency of Rapid. Please note that the time costs for adver-
sarial attack and defense are dependent on specific software and hardware environments.

Time Costs for Multiple Examples. We have collected three small sub-datasets that contain dif-
ferent numbers of adversarial examples and natural examples, say 200:0, 100:100, and 0:200. We
apply adversarial detection and defense to this dataset and calculate the time costs. The results
(measurement: second) are available in Table 11.

Time Costs for Multiple Examples. We have also detailed the time costs per natural example,
adversarial attack, and adversarial defense in PDṪhe experimental results can be found in Table 12.

According to the experimental results, PD is slightly faster than the adversarial attack in most cases.
Intuitively, the perturbed semantics in a malicious adversarial example are generally not robust, as
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Attacker AGNews Yahoo! SST2 Amazon
200:0 100:100 0:200 200:0 100:100 0:200 200:0 100:100 0:200 200:0 100:100 0:200

PWWS 142.090 298.603 313.317 621.196 36.268 126.054 438.532 875.083
TF 1.188 146.654 293.542 1.157 314.926 642.206 1.092 51.303 137.795 1.138 329.075 665.052
BAE 141.434 260.231 352.186 876.606 52.626 138.325 349.256 655.264

Table 11: The efficiency of Rapid defending against different adversarial attacks with different
portions of natural and adversarial instances. The measurement is second.

Defender Attacker AGNews Yahoo! SST2 Amazon
Clean Attack Defense Clean Attack Defense Clean Attack Defense Clean Attack Defense

PWWS 2.081 1.356 4.958 3.308 0.529 0.588 4.745 3.678
Rapid TF 0.008 2.460 1.317 0.008 4.693 3.128 0.006 0.662 0.571 0.007 4.003 4.607

BAE 2.464 1.295 5.194 4.053 0.669 0.594 4.350 4.403

Table 12: The execution efficiency of inferring clean examples, generating, and defending against
adversarial examples.

most of the deep semantics remain within the adversarial example. Therefore, Rapidis able to
rectify the example with fewer perturbations needed to search.

D DEPLOYMENT DEMO

We have created an anonymous demonstration of Rapid, which is available on Huggingface Space9.
To illustrate the usage of our method, we provide two examples in Figure 5. In this demonstration,
users can either input a new phrase along with a label or randomly select an example from a supplied
dataset, to perform an attack, adversarial detection, and adversarial repair.

9https://huggingface.co/spaces/anonymous8/RPD-Demo
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Figure 5: The demo examples of adversarial detection and defense built on Rapid for defending
against multi-attacks. The comparisons between natural and repaired examples are available based
on the “difflib” library. The “+” and “−” in the colored boxes indicate letters addition and deletion
compared to the natural examples. It is observed that Rapid only injects only one perturbation to
repair the adversarial example, i.e., changing “screw” to “bang” in the adversarial example.
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