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Abstract

When fine-tuning pre-trained Large Language Models (LLMs) to align with hu-
man values and intentions, maximizing the estimated reward can lead to superior
performance, but it also introduces potential risks due to deviations from the ref-
erence model’s intended behavior. Most existing methods typically introduce KL
divergence to constrain deviations between the trained model and the reference
model; however, this may not be sufficient in certain applications that require tight
risk control. In this paper, we introduce Risk-aware Direct Preference Optimiza-
tion (Ra-DPO), a novel approach that incorporates risk-awareness by employing a
class of nested risk measures. This approach formulates a constrained risk-aware
advantage function maximization problem and converts the Bradley-Terry model
into a token-level representation. The objective function maximizes the likelihood
of the policy while suppressing the deviation between a trained model and the
reference model using a sequential risk ratio, thereby enhancing the model’s risk-
awareness. Experimental results across three open-source datasets: IMDb Dataset,
Anthropic HH Dataset, and AlpacaEval, demonstrate the proposed method’s supe-
rior performance in balancing alignment performance and model drift.

1 Introduction

Learning from human feedback, serving as a bridge to align LLMs with human preferences, is
crucial for ensuring that the generations are more helpful, factual, and ethical, among other desider-
ata [1, 2, 3, 4]. Alignment methods such as RLHF [2, 3] and DPO [5] have consistently proven more
effective than supervised finetuning (SFT) alone. Notably, DPO, featuring a simple and straightfor-
ward training process, directly uses the likelihood of the policy to define an implicit reward fitted
to the preference data, which has emerged as a popular alternative since it bypasses explicit reward
modeling challenges while delivering competitive performance. Subsequently, a variety of DPO
variants have been proposed, such as f-DPO [6], IPO [7], RDPO [8], and SimPO [9], to enhance
performance. However, a key limitation of these methods is that they only consider evaluation at the
sentence level, ignoring the fact that the generation of these responses occurs sequentially, following
an auto-regressive approach.

Recently, a fresh perspective on LLMs alignment has been introduced, specifically a sequential and
token-level direct preference optimization known as TDPO [10]. This method allows for examining
divergence in relation to a reference model on a more granular, token-by-token basis. Specifically,
inspired by Trust Region Policy Optimization (TRPO) [11] from reinforcement learning (RL) field
[12, 13], TDPO redefines the objective of maximizing restricted rewards in a sequential manner and
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bridges sentence-level reward to token-level generation through the Bellman equation. However,
since the objective at each step is to maximize the expected return, a risk-neutral criterion, which
neglects the characteristics of the reward distribution beyond the mean, TDPO cannot guarantee a
low risk of deviation from the reference model during alignment training. This could be catastrophic
for practical applications, as a significant deviation from the reference model typically implies the
degradation of superior decision-making and reasoning capabilities.

Fortunately, in the field of RL, a series of risk-sensitive methods [14, 15, 16] have been proposed that
achieve superior performance by introducing various risk measures. Recently, some researchers have
attempted to introduce this technology to align LLMs with human preferences. For instance, RA-
RLHF [17] introduces a static risk measure into the fine-tuning of RL, while KTO [18] introduces
prospect theory [19] to fit human choice behavior when faced with uncertain events. However, these
methods only consider the risk at the sentence level by analyzing the distribution characteristics of
the preference data, thereby overlooking the inherently sequential and auto-regressive process of
response generation.

In this paper, we focus on the risk in token-level generation when aligning LLMs with human values
and intentions. Specifically, from a risk-sensitive perspective, we investigate a novel direct prefer-
ence optimization method and provide corresponding theoretical and empirical results. Our main
contributions are summarized as follows.

• We design a new risk-aware, token-level objective function and prove that maximizing this
objective leads to policy improvements. Furthermore, by deriving the mapping from the
risk-aware state-action value function to the optimal policy and establishing the equiva-
lence between the Bradley-Terry model and the Regret Preference Model, we obtain an
optimization objective that is solely dependent on the risk-sensitive policy.

• We propose a novel Risk-aware Direct Preference Optimization (Ra-DPO) method. The
method maintains a natural and simple loss function, specifically, the sum of the DPO loss
and the negative sequential risk ratio (see Figure 1). This loss function maximizes policy
likelihood while suppressing deviation from reference model through the sequential risk ra-
tio, thereby enhancing risk-awareness in striking a balance between alignment performance
and model drift.

• Experimentally, we evaluate the effectiveness of our proposed method across various text
generation tasks and assess its sensitivity to the risk control parameter. The experimental
results demonstrate that our method can effectively suppress the risk of model drift while
enhancing its performance.

2 Preliminaries

2.1 Preference-based Policy Optimization

Considering a preference-based language model fine-tuning task, let x denote an input prompt (ques-
tion), and y denote the generated response (answer). The notation yw ≻ yl | x symbolizes the human
preference data, where yw (win) represents a response that is more preferred by humans compared
to yl (lose). Both x and yw/yl are sequences of tokens.

Bradley-Terry Model. In preference-based fine-tuning, to align with human preferences, a pref-
erence predictor adhering to the Bradley-Terry (BT) [20] model has been widely employed for pair-
wise comparisons. The likelihood of a preference pair is commonly expressed as:

PBT (yw ≻ yl | x) =
exp (r∗ (x, yw))

exp (r∗ (x, yw)) + exp (r∗ (x, yl))
, (1)

where r∗(x, yw) and r∗(x, yl) stand for the reward function at the sentence level from the preferred
and dispreferred answers, respectively.

Direct Preference Optimization. DPO [5] begins with the following RL objective:

max
πθ

Ex∼D
[
Ey∼πθ(·|x) [r (x, y)− βDKL (πθ(· | x)∥πref(· | x))]

]
, (2)

where D represents the human preference dataset, β is the coefficient of the reverse KL divergence
penalty, πref (· | x) is the policy of a fixed reference model (typically selected to be the model that
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has undergone post-supervised fine-tuning), and πθ (· | x) represents the policy of the trained model,
initialized with πθ = πref .

By reparameterizing the reward function in Equation (2), DPO establishes a direct functional map-
ping between the reward model and the optimal policy:

r(x, y) = β log
π∗
θ(y | x)

πref(y | x)
+ β logZ(x), (3)

where Z(x) is the partition function. Subsequently, Equation (2) can be reformulated as DPO loss:

LDPO (πθ;πref) = −E(x,yw,yl)∼D [log σ (u (x, yw, yl))] , (4)

where u (x, yw, yl) = β log πθ(yw|x)
πref (yw|x) − β log πθ(yl|x)

πref (yl|x) .

2.2 Preference-based Markov Decision Process

A Preference-based Markov Decision Process (Pb-MDP) can be formulated as a modification of the
classical MDP:M = ⟨S,A, r,P, γ, T ⟩, where S and A represent the finite state and action spaces,
respectively; P : S×A → S is the probabilistic transition function; r represents the reward function
over the entire prompt-response, which is defined as (S ×A)T → R; γ is the discount factor, and
T denotes the length of a trajectory or episode.

Specifically, for language generation, the state st = [x, y<t] ∈ S usually consists of the prompt and
the generated response up to the previous step, and action at = yt ∈ A corresponds to the current
generated token. Additionally, note that y<1 = [ ] is an empty sequence. Therefore, we denote
[x] = [x, [ ]] =

[
x, y<1

]
. For a given prompt x and the first t− 1 tokens y<t of the response y, the

probability distribution of the next token conditioned on [x, y<t] is denoted by πθ(· | [x, y<t]).

2.3 Risk Measure

It is more desirable to keep risk under control for language generation tasks rather than relying solely
on a risk-neutral criterion, which ignores the distributional characteristics of rewards, especially
in applications that may have potential broad societal impact. Therefore, we introduce the risk-
sensitive criterion [21, 22] to quantify potential hidden risks. More specifically, we provide an
introduction to the risk-sensitive function and nested risk measure as follows.

Risk-sensitive Function. In this paper, the risk-sensitive function is required to satisfy the
following properties for all Z,Z ′ ∈ Z: Concavity: ∀ λ ∈ [0, 1] : η (λZ + (1− λ)Z ′) ≥
λη (Z) + (1− λ) η (Z ′); Translation Invariance: ∀ ϵ ∈ R : η (Z + ϵ) = η (Z) + ϵ. This
class captures a broad range of useful objectives, including the popular Conditional Value-at-Risk
(CVaR) [23, 24, 25] and Entropic Risk Measure (ERM) [26, 27].

Nested Risk-measures. In the context of standard Pb-MDP, nested risk measures [28, 29, 30] can
be expressed in Bellman equation type as follows:

Qπ ([x, y
<t] , yt) = R ([x, y<t] , yt) + Φµ

(
Vπ

([
x, y<t+1

]))
,

Vπ ([x, y
<t]) = Eπ [Qπ ([x, y

<t] , yt)] ,

Vπ

([
x, y<T

])
= R

([
x, y<T

])
,

(5)

where Φ(·) is a nested risk measure function with a risk control parameter µ, Qπ ([x, y
<t] , yt)

and Vπ ([x, y
<t]) represent the state-action value and state value under the nested risk measures at

timestep t ∈ [1, · · · , T ], respectively.

Due to space constraints, we provide a detailed survey on risk measures in Appendix A.1 and the
expanded version of the value function definition in Appendix A.2.

3 Methodology

This section proposes a novel language model alignment method named Risk-aware Direct Prefer-
ence Optimization (Ra-DPO). Specifically, we first analyze the characteristics of nested risk mea-
sures and design a new risk-aware token-level objective function by reformulating the constrained
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reward maximization problem into a token-level form. Subsequently, we prove that maximizing the
objective function leads to policy improvements. Then, an optimization objective solely related to
the risk-sensitive policy is obtained by deriving the mapping from the risk-aware state-action func-
tion to the optimal policy and establishing BT model equivalence with the Regret Preference Model.
Finally, we conduct a formal analysis of this optimization objective in terms of derivatives and derive
the loss function for Ra-DPO.

3.1 Risk-aware Objective Function

In this subsection, we aim to design a new risk-aware objective function for preference-based lan-
guage model fine-tuning. Unfortunately, although the recursive Bellman equation under nested risk
measures was introduced in Subsection 2.3, it cannot be directly applied due to the following rea-
sons: (1) For the Pb-MDP setting, the algorithm can only obtain the reward (an implicit reward
fitted to the preference data) over the entire prompt-response and thus cannot compute the target
value at each step. (2) The nested risk-measures incorporate a Bellman-type recursion and are not
law-invariant [31], making them complex and difficult to compute.

To surmount these obstacles, a straightforward approach is to introduce the state augmentation
method, that is, to reconstruct an augmented Pb-MDP [30], where the state at each timestep includes
a prompt x and the first t−1 tokens y<t of the response. This approach has the property that the state
at the previous timestep is a subset of the state at the current timestep, i.e.,

[
x, y<t−1

]
⊂ [x, y<t].

This approach can reformulate the recursive Bellman equation into a classical Bellman equation
while satisfying the standard requirements for transformer-based long-sequence modeling in LLMs.
Therefore, in this paper, we directly define the state as a combination of the prompt and the gener-
ated response up to the current step to model the sequential and auto-regressive generation. Then,
the nested risk-aware objective’s Bellman equation in Equation (5) can be rewritten as:

Q̃π ([x, y
<t] , yt) = Φµ

(
Ṽπ

(
yt+1 ◦ ([x, y<t] , yt)

))
,

Ṽπ ([x, y
<t]) = Eπ

[
Q̃π ([x, y

<t] , yt)
]
,

Ṽπ

([
x, y<T

])
= R

([
x, y<T

])
,

(6)

where Q̃π ([x, y
<t] , yt) and Ṽπ ([x, y

<t]) represent the risk-aware state-action value and state value
under the policy π, respectively. The operator ◦ denotes the concatenation of the state and action.

It is noteworthy that there is a significant difference in the calculation of Ṽπ ([x, y
<t]) and

Vπ ([x, y
<t]). According to Lemma 3.6 in [30], we can obtain the following lemma, whose proof is

provided in Appendix B.1.
Lemma 3.1. For a given Pb-MDP, the reward over the entire prompt-response can be decom-
posed as r =

∑T
t=1 γ

t−1R ([x, y<t] , yt), the relationship between the state value function Equa-
tion (5) and Equation (6) is as follows: Ṽπ ([x, y

<t]) = Vπ ([x, y
<t]) + R1:t−1, where R1:t−1 =∑t−1

h=1 γ
h−1R

([
x, y<h

]
, yh
)

denotes the cumulative reward of the 1 ∼ t − 1 steps of the prompt-
response, and Vπ[x] and Ṽπ[x] are equivalent.

Subsequently, based on Equation (6), we define the risk-aware advantage function as follows.
Definition 3.2. For a risk-sensitive Pb-MDP that satisfies the Bellman equation in Equation (6), the
risk-aware advantage function can be defined as:

Ãπ

([
x, y<t

]
, z
)
= Q̃π

([
x, y<t

]
, z
)
− Φµ(Ṽπ

([
x, y<t

])
), (7)

where z ∼ πθ (· | [x, y<t]).

The definition is reasonable: its derivation is provided in Appendix B.2. Furthermore, based on the
definition of risk-aware advantage function in Definition 3.2, we propose a new risk-aware objective
function:

max
πθ

Ex,y<t∼D,z∼πθ(·|[x,y<t])

[
Ãπref

([
x, y<t

]
, z
)
− βDKL

(
πθ

(
· |
[
x, y<t

])
∥πref

(
· |
[
x, y<t

]))]
.

(8)
The objective function maximizes a risk-sensitive advantage function subject to a KL divergence
constraint, which accounts for risk during selecting the policy, thereby striking a better balance
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between alignment performance and model drift. It is worth emphasizing that maximizing the risk-
aware objective function in Equation (8) leads to policy improvements, as stated in the following
lemma, whose proof is provided in Appendix B.3.

Lemma 3.3. Given two policies π and π′, if for any state st = [x, y<t] ,Ez∼π′

[
Ãπ ([x, y

<t] , z)
]
≥

0, then we can conclude: Ex∼D

[
Ṽπ′([x])

]
≥ Ex∼D

[
Ṽπ([x])

]
.

3.2 Risk-aware Preference Optimization

In this subsection, we convert the BT model into risk-sensitive token-level representation, which is
divided into two steps: (1) derive the mapping from the risk-aware state-action function to the opti-
mal policy; (2) establish the equivalence between the BT model and the Regret Preference Model.

Specifically, starting from Equation (8), the mapping from the risk-aware state-action function Q̃π

to the optimal policy π∗
θ can be derived as stated in the following lemma.

Lemma 3.4. The constrained problem in Equation (8) has the closed-form solution:

π∗
θ

(
z |
[
x, y<t

])
=

πref (z | [x, y<t]) exp
(

1
β Q̃πref

([x, y<t] , z)
)

Z ([x, y<t] ;β)
, (9)

where Z ([x, y<t] ;β) = Ez∼πref (·|[x,y<t])e
1
β Q̃πref ([x,y

<t],z) is the partition function.

The proof is provided in Appendix B.4. Then, by rearranging Equation (9), we obtain the expression
of the risk-aware state-action function in terms of the policy:

Q̃πref

([
x, y<t

]
, z
)
= β log

π∗
θ (z | [x, y<t])

πref (z | [x, y<t])
+ β logZ

([
x, y<t

]
;β
)
. (10)

Subsequently, by utilizing the reward decomposition formula r =
∑T

t=1 γ
t−1R ([x, y<t] , yt) from

Lemma 3.1, we establish BT model equivalence with the Regret Preference Model as shown in the
following lemma, whose proof is provided in Appendix B.5.
Lemma 3.5. Given a reward function r(x, y) of the entire prompt-response, based on the relation-
ship between the token-wise rewards and the reward function r(x, y) =

∑T
t=1 γ

t−1R ([x, y<t] , yt),
we can establish the equivalence between the Bradley-Terry model and the Regret Preference Model,
i.e.,

PBT (y1 ≻ y2 | x) = σ

(
T1∑
t=1

γt−1Ãπ

([
x, y<t

1

]
, yt1
)
−

T2∑
t=1

γt−1Ãπ

([
x, y<t

2

]
, yt2
))

, (11)

where σ(z) = 1/ (1 + exp(−z)) is the logistic sigmoid function for any random variable z.

According to the definition of the risk-aware advantage function in Definition 3.2, we can directly
establish the relationship between the optimal solution in Equation (10) and preference optimization
objective in Equation (11). In this way, we reformulate the BT model to be directly tied to the
risk-aware optimal policy π∗

θ and the reference policy πref , which is summarized in the following
theorem, whose proof is provided in the Appendix B.6.
Theorem 3.6. Given prompts x and pairwise responses (y1, y2), and the risk-aware objective func-
tion in Equation (8), the Bradley-Terry model expresses the human preference probability in terms
of the risk-aware optimal policy π∗

θ and reference policy πref :
P ∗
BT (y1 ≻ y2 | x) = σ (u∗ (x, y1, y2)− δ∗ (x, y1, y2)) , (12)

where u (x, y1, y2) represents the difference in implicit rewards defined by the risk-aware policy π∗
θ

and the reference policy πref , weighted by β, represented as:

u (x, y1, y2) = β log
πθ (y1 | x)
πref (y1 | x)

− β log
πθ (y2 | x)
πref (y2 | x)

, (13)

and δ (x, y1, y2) represents the difference in sequential risk ratios between two pairs (x, y1) and
(x, y2), expressed as:

δ (x, y1, y2) = βDSeqRR (x, y2;πref | πθ)− βDSeqRR (x, y1;πref | πθ) , (14)

where DSeqRR (x, y;πref | πθ) =
∑T

t=1 Φ
µ
z∼πref

(
log

πref(z|[x,y<t])
πθ(z|[x,y<t])

)
.

5



3.3 Loss Function and Formal Analysis

Drawing on Theorem 3.6, we reformulate the BT model into a structure solely relevant to the
risk-sensitive policy, which enables us to formulate a likelihood maximization objective for a
parametrized policy πθ. The loss function is given by:

LRa-DPO1 (πθ;πref) = −E(x,yw,yl)∼D [log σ (u (x, yw, yl)− δ (x, yw, yl))] . (15)

In Equation (15), the sequential risk ratio is explicitly introduced into the loss function, which incor-
porates risk-awareness to balance alignment performance and model drift. To elucidate the benefits
of the proposed method, we conduct the further analysis of the loss function and its corresponding
gradient. For brevity, we use u to denote u (x, yw, yl), and δ to represent δ (x, yw, yl). By simple
calculations, we can derive the gradient of loss function in Equation (15) with respect to parameter
θ :

∇θLRa-DPO1 (πθ;πref) = −E(x,yw,yl)∼D [(−u+ δ) [∇θu−∇θδ]] , (16)
where (−u+ δ) serves as the weighting factor for the gradient.

From Equation (16), we can observe that the first part, (−u), corresponds to the weight factor in the
first part of loss function of TDPO. Its value increases when the language model makes prediction
errors relative to human preferences, i.e., log πθ(yl|x)

πref (yl|x) > log πθ(yw|x)
πref (yw|x) . The second part, δ, consists

of the difference between the sequential risk ratios of the dispreferred and preferred response subsets,
which is a distinctive component of our method. When selecting a convex function (risk-averse),
such as CVaR, as the risk measure, our method can automatically control the risk ratio balance.

Furthermore, building upon a common objective shared by our method and TDPO [10], i.e., reducing
risks stemming from model drift and ensuring training stability, we further provide a second version
of our method, Ra-DPO2. The loss function of Ra-DPO2 is given by:

LRa-DPO2 (πθ;πref) = −E(x,yw,yl)∼D [log σ (u (x, yw, yl)− αδ2 (x, yw, yl))] , (17)

where δ2 (x, y1, y2) = βDSeqRR (x, y2;πref | πθ) − sg (βDSeqRR (x, y1;πref | πθ)).

Figure 1: Comparison of loss functions for DPO, TDPO2
and Ra-DPO2 methods. The sg denotes the stop-gradient
operator.

The operator sg represents the stop-
gradient operator, which blocks the
propagation of gradients. The pa-
rameter β can control the deviation
between DSeqRR (x, y2;πref | πθ) and
(βDSeqRR (x, y1;πref | πθ)). Ra-DPO2
modifies the loss function of Ra-DPO1
by disabling the gradient propagation
of DSeqRR(x, yw;πref | πθ) and treat-
ing it as a baseline term for alignment
of DSeqRR(x, yl;πref | πθ). The aim
of the modification is to ensure training
stability, rather than to accelerate train-
ing speeding. To summarize, the com-
parison of the loss functions for DPO,
TDPO2, and Ra-DPO2 is shown in Fig-
ure 1. In addition, we provide a proce-
dure of our method, and provide its pseudocode (Algorithm 1) in Appendix B.7.

4 Experiments

We empirically evaluate our method on several open-source datasets and pre-trained models, aiming
to investigate the following questions: (1) How does the performance of our method compare with
that of existing methods, particularly in terms of risk sensitivity when handling challenging text
generation tasks? (2) How does the risk control parameter µ affect the performance of our method?

To answer these questions, we conducted experiments on IMDb Dataset [32], Anthropic HH
Dataset [33], and AlpacaEval [34] for three different text generation tasks. Based on the original
KTO implementation2, we trained Ra-DPO and baseline models using the same hyperparameters.

2Available at https://github.com/ContextualAI/HALOs
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Figure 2: The experiment on the IMDb dataset with GPT-2 Large serving as the base model. (a)
and (b) present the progression of sequential KL divergence (the lower the better) for both preferred
and dispreferred responses. (c) illustrates the reward accuracy curves (the higher the better).
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Figure 3: The experiment on the Anthropic HH dataset with Pythia-1.4B serving as the base model.
Left and Middle present the progression of sequential KL divergence (the lower the better) for
both preferred and dispreferred responses. Right illustrates reward accuracy curves (the higher the
better).

Specifically, for Ra-DPO, we employed nested risk measures based on CVaR [24] and ERM [27].
We compare our method against the following algorithms: (1) DPO [5], which considers evaluation
at the sentence level; (2) PPO [35], an offline PPO variant provided by the original KTO implemen-
tation; (3) TDPO1 and TDPO2 [10], which convert the BT model into token-level representations;
(4) KTO [18], which considers preferences in human decisions that are not aimed at maximizing
utility. Experimental setup and results are reported in Subsections 4.1-4.3 and Appendix C.

4.1 Experiments on IMDb Dataset

Experimental Setup: The IMDb dataset is a controlled semantic generation dataset within the con-
text of movie reviews, serving as a valuable resource for training and evaluating sentiment analysis
models. We employ GPT-2 Large [36] as the base model and use the model checkpoint insub/gpt2-
large-IMDb-fine-tuned3 as the SFT model. The results of the versions of Ra-DPO1 (CVaR) with risk
control parameter µ ∈ {0.99, 0.98, 0.97, 0.95} are shown in Figure 2.

Evaluation: Figure 2 shows that Ra-DPO1 can outperform or achieve reward accuracy similar to
the advanced TDPO algorithm while reducing model drift (i.e., lower sequential KL divergence),
demonstrating the risk-awareness of Ra-DPO1 in balancing alignment performance and model drift.

4.2 Experiments on Anthropic HH Dataset

Experimental Setup: Anthropic HH dataset contains 170k dialogues between a human and an
automated assistant, where each transcript ends with a pair of responses generated by an LLM
along with a preference label denoting the human-preferred response. We use Pythia-1.4B and

3https://huggingface.co/insub/gpt2-large-IMDb-fine-tuned
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Figure 4: The experiment on the Anthropic HH dataset with Pythia-1.4B serving as the base model.
Left and Middle presents the sequential KL divergence (the lower the better) for preferred and
dispreferred responses, while Right presents the reward accuracy curves (the higher the better) under
α = {0.3, 0.5, 0.7, 0.9}.

Pythia-2.8B [37] as the base models to test our method on Anthropic HH dataset, respectively. The
reference models are trained by fine-tuning the base models on chosen completions. The results are
depicted in Figure 3, Figure 4, and Appendix C.4.

Evaluation: Figure 3 shows the performance of TDPO2 and different versions of Ra-DPO2 with
respect to the risk control parameter µ while keeping coefficient α constant at 0.5. Figure 4 presents
the statistical results of different algorithms with coefficient α = {0.3, 0.5, 0.7, 0.9}, and the cor-
responding curve plots are provided in Appendix C.4. From Figures 3 and 4, we can observe that
Ra-DPO2 almost always achieves superior performance (higher reward accuracy) and maintains min-
imal model drift (lower sequential KL divergence), under both CVaR-based and ERM-based nested
risk measures. Additionally, Figure 4 illustrates that Ra-DPO2 is highly effective in suppressing
deviation from reference model, particularly when α takes on smaller values. We hypothesize that
this phenomenon may be attributed to the fact that the sequential risk ratio accumulates step-wise
risks through nested risk measures, enabling it to remain responsive to significant model biases even
when δ2 (x, y1, y2) in Equation (17) carries a relatively low weight.

4.3 Experiments on AlpacaEval

Table 1: The compare between different Al-
gorithms and gpt4_1106_preview.

Method Winrate Lc winrate

DPO 51.1± 1.9 44.7± 0.4
PPO 52.1± 1.8 51.9± 0.5
KTO 51.5± 1.8 50.2± 0.6
TDPO1 51.9± 1.8 53.0± 0.6
TDPO2 52.2± 1.6 52.2± 0.5
Ra-DPO1 53.5± 1.8 53.9± 0.5
Ra-DPO2 52.1± 1.8 55.7± 0.5

Experimental Setup: To comprehensively evalu-
ate Ra-DPO2 in terms of generation quality, we
conducted pairwise comparisons on AlpacaEval us-
ing models trained on the Anthropic HH dataset.
Following the official AlpacaEval implementation4,
we sampled responses with a temperature coef-
ficient of 0.7. The winrate comparisons based
on oasst_pythia_12b5 are summarized in Table 1
and Appendix C.4. Both winrate and length-
controlled winrate (Lc winrate) are evaluated based
on oasst_pythia_12b.

Evaluation: Table 1 reveals that under the two indi-
cators of winrate and length-controlled winrate, most of the implemented algorithms can outperform
the common default baseline gpt4_1106_preview (DPO is more prone to generating long responses).
Among them, Ra-DPO1 and Ra-DPO2 demonstrate the highest level of performance, especially
when it comes to the length-controlled winrate indicator.

4https://github.com/tatsu-lab/alpaca_eval
5https://huggingface.co/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5
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5 Related Work

5.1 LLMs Alignment

With the development of LLMs, numerous researchers have encountered challenges stemming from
the misaligned next-token prediction task used in the pre-training stage [33, 38, 39, 40], particu-
larly in balancing adherence to human instructions (explicit objectives) with the pursuit of being
helpful, honest, and harmless (implicit objectives). Therefore, a typical post-training stage, referred
to as preference optimization, is commonly performed to align pre-trained language models with
human intentions, and has become an indispensable aspect in the fine-tuning of LLMs. Most ap-
proaches [41, 6, 9] only utilize KL divergence at the sentence level to limit significant deviations
from the reference model. However, the generation of responses occurs sequentially, following
an auto-regressive approach. Recent works [10, 42] introduce a fresh perspective, specifically the
token-level direct preference optimization, which allows for examining sequential KL divergence
in relation to a reference LLM. However, due to their neglect of reward distribution characteristics
other than the mean, these methods suffer from the trouble of being insensitive to risk.

5.2 Risk-aware Reinforcement Learning

RL has made groundbreaking achievements [12, 2, 43, 44] through approaches such as Q-
learning [45] and policy gradients [11, 35] in sequential decision tasks, but it also faces challenges
when applied in the real world [22, 46, 47]. A primary reason is that the risk-neutral criterion (max-
imizing the expectation) ignores the characteristics of a reward distribution other than the mean,
which may be important for certain systems, especially in applications requiring tight risk control
[28, 15]. In order to tackle this challenge, two types of risk measures have been introduced: nested
and static risk measures. Static risk measures [48, 49, 50] are straightforward to interpret, but the
resulting optimal policy may not remain Markovian and may become history-dependent. Nested
risk measures [51, 29, 30] utilize MDPs to ensure risk sensitivity of the value iteration at each step
under the current state, resulting in a more conservative approach. In this paper, we prefer nested
risk measures because they recursively adhere to the Bellman equation and allow the MDPs to be
reconstructed through state augmentation, enabling them to remain Markovian.

5.3 Risks in LLMs Alignment

When aligning LLMs with human preferences, there are many factors that may pose risks, primarily
encompassing the following three types: (1) There may be conflicts among human preferences [52],
or human preferences is inherently affected by contextual choice effects [53], thus introducing un-
certainty in the objectives when aligning models with human preferences. (2) Humans do not make
decisions by maximizing their expected value for uncertain events; instead, they perceive random
variables in a biased but well-defined manner [18, 19]. (3) Many popular methods, such as DPO
[5], RDPO [8], and simPO [9], introduce the new risks during the alignment training process be-
cause they only consider the mean of reward or utility, which is risk-neutral and does not capture the
distribution characteristics of rewards efficiently. In this paper, we focus on the third type of risk.

6 Discussion

The core objective of preference optimization is to make models less harmful, more helpful, and
more truthful. DPO [5] and SimPO [9] serve as representative examples of reference-based and
reference-free preference optimization methods, respectively. Although SimPO not only achieves
superior performance but also significantly reduces memory consumption, several studies have also
pointed out the following limitations: (1) the lack of a reference model reduces training robustness
and necessitates stricter conditions to prevent catastrophic forgetting; (2) SimPO introduces dual
parameters, which introduce additional complexity on hyperparameter tuning. Therefore, a com-
prehensive comparison in terms of performance, stability and robustness, hyperparameter tuning
complexity, and computational efficiency reveals that each approach has its own trade-offs. Here,
we would like to emphasize:

• For preference-based language model fine-tuning task, a trade-off between alignment ob-
jectives and model fidelity is still necessary, although the original(reference) model may
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not be "safe" or "correct". For example, in LLMs safety alignment tasks, a simple objec-
tive is to enable the model to reject unsafe responses while preserving original reasoning
capabilities [39, 54]. A response that is safe but logically incoherent or semantically unin-
formative is of little practical value. Therefore, many studies [41, 11] typically formulate
such tasks as constrained reward maximization problems.

• KL divergence has typically been used to penalize excessive deviations from a reference
(critic) model [55, 56]. In fact, numerous studies [6, 57] have reported that KL constraint
offers many beneficial effects, such as balancing exploration and exploitation, ensuring
stability and robustness, preventing catastrophic forgetting, and preserving the model’s fun-
damental capabilities.

7 Conclusion

A pressing challenge arises for language generation tasks in the area of risk control, as the models,
once trained, are often required to interact directly with humans. In this paper, we propose a novel
direct preference optimization method that incorporates risk awareness by introducing nested risk
measures into the Bellman equation, to align pre-trained LLMs with human preferences. Specifi-
cally, we design a new risk-aware token-level objective function by reformulating the constrained
reward maximization problem into a token-level form and then prove that maximizing this objec-
tive function leads to improvements in policy performance. Then, an optimization objective solely
related to the risk-sensitive policy is obtained by deriving the mapping between the risk-aware state-
action function and the optimal policy and establishing BT model equivalence with the Regret Pref-
erence Model. Finally, we conduct a formal analysis of this optimization objective and derive the
loss function of Ra-DPO, which has practical implications for language generation tasks.

8 The Discussion of Limitations and Impacts

8.1 Limitations

This paper focuses on the risks associated with token-level generation when aligning LLMs with
human values and intentions. Our main contributions include theoretical analysis (see Section 3
and Appendix B), practical algorithm (see Appendix B.7) and simulation verification (see Section 4
and Appendix C). These results characterize the performance of the proposed Ra-DPO in terms of
reward accuracy and sequential KL divergence. Below, we discuss the limitations of Ra-DPO from
both theoretical and experimental viewpoints.

Theoretical Viewpoint: Our theoretical results are based on a class of risk-sensitive functionals
that satisfy concavity, monotonicity and translation invariance for any random variables Z,Z ′ ∈ Z .
Concavity implies risk aversion; translation invariance is an important condition for the validity of
Lemma 3.1. Our conclusions may not be valid when such assumptions do not hold. Fortunately, this
class captures a broad range of useful objectives, including the popular CVaR [23] and ERM [27].

Experimental Viewpoint: Ra-DPO may not be fully effective for tasks such as harmful content
moderation and toxicity detection. This is because our primary goal is to reduce the risk of impaired
decision-making and reasoning capabilities due to model deviation from the reference model during
LLM alignment. However, it is worth noting that the problem we are addressing is both widespread
and of significant importance. Furthermore, we recommend a safe or low-risk approach that incor-
porates risk-awareness within the Safe RLHF [39] or SACPO [54] framework. These approaches
explicitly or implicitly model both cost and reward functions while accounting for cost distributions.
It may require more computational resources due to the need to train additional models. However,
our method can serve as a solid foundation for such potential approaches.

8.2 Impact Statement

This paper presents work aimed at making LLMs more helpful. Specifically, we focus on how to
reduce the risk of impaired decision-making and reasoning capabilities due to model deviation from
the reference model during LLM alignment. Our work has many positive societal impacts, such as
providing a theoretical foundation for risk-aware language generation task, none of which we feel
must be specifically highlighted. There are no negative societal impacts on our work.
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A Supplementary Materials for Section 2

A.1 Risk Measure: A Brief Overview

For quantifying and managing risks, three main paradigms [21, 22, 15] have been developed: the
risk-neutral paradigm, the worst-case (i.e., robust) paradigm, and the risk-averse paradigm. The risk-
neutral paradigm aims to find a policy that maximize the expected cumulative reward, but it ignores
characteristics of the reward distribution other than the mean, which can be crucial for systems
with safety concerns. For example, a system may need to operate in a way that mitigates harmful
consequences, even in rare and unpredictable situations. The worst-case paradigm [58, 59] focuses
on finding a policy that satisfies the constraints of a specific cost function, generally assuming that
the maximum possible cost can quantify bounded adversarial disturbances. However, since the
worst-case approach assumes disturbances are bounded, it may not work well when those bounds
are hard to determine.

The risk-averse paradigm [23, 21, 15], an intermediary paradigm between the risk-neutral and worst-
case paradigms, has garnered extensive attention. It describes individuals or algorithms that prefer
outcomes with reduced uncertainty by seeking to optimize risk metrics of the possible cumulative
reward, emphasizing its distributional characteristics. In general, there are mainly two types of risk
measures: nested and static risk-aware measures, each possessing distinct advantages and limitations.
Static risk measures [48, 49, 50] are straightforward to interpret, but the resulting optimal policy may
not remain Markovian and may become history-dependent. On the other hand, nested risk measures
[51, 29, 30] utilize MDPs to ensure risk sensitivity of the value iteration at each step under the
current state, resulting in a more conservative approach. We prefer nested risk measures because
they recursively adhere to the Bellman equation and allow the MDPs to be reconstructed through
state augmentation, thereby enabling them to remain Markovian and ensuring that policy choices
depend solely on the current state.

In this paper, we employ a class of nested risk measures, which are variants of the popular CVaR
and ERM. Below, we provide introductions to nested risk measures and the CVaR and ERM risk
functions.

Specifically, let (X ,F) be a measurable space. A risk measure over X is a function ρ : X → R that
maps uncertain outcomes X ∈ X to the real line. A risk measure of the total discounted return G
can be described as:

min
π∈Π

ρπ(G), (18)

where the dependence on π emphasizes that the underlying probability measure is induced by the
chosen policy. The simplest example is ρπ = Eπ , for which Equation (18) reduces to the standard
risk-neutral RL problem.

Nested Risk-measures: Consider a time horizon of length T ∈ T. A nested risk measure ρ of a
random return G = G0 +G1 + · · ·+GT takes the form

ρ(G) = ρ0 (G0 + ρ1 (G1 + · · ·+ ρT−1 (GT−1 + ρT (GT )) · · · )) . (19)

where each ρt is a risk functional, i.e., a map from a space of random variables to R
∪
{∞}.

We now introduce the the CVaR and ERM risk functions.

Conditional value-at-risk (CVaR): CVaR with risk-aversion level α ∈ (0, 1) has been defined as:

ρπCVaR(G;α) = min
η∈R

{
η +

1

1− α
Eπ
[
(G− η)+

]}
,

and it has several advantages over VaR: it quantifies the losses encountered in the tail, it can be
expressed as a minimization problem, and is a coherent risk measure [60].

Entropic risk measure (ERM): ERM is a popular method for measuring risk, defined as:

ρπERM(G;β) :=
1

β
logEπ[e−βG].

where β > 0 indicates the degree of risk aversion. Optimizing ERM is equivalent to optimizing an
exponential utility function (EU):

ρπEU(G;β) := Eπ[e−βG].
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In this paper, we formulate the nested risk measure within the Preference-based Markov Decision
Process (Pb-MDP) framework, and express it in terms of Bellman equation type. To simplify nota-
tion, we uniformly denote all such nested risk measures collectively by Φµ, a nested risk measure
with a risk control parameter µ.

A.2 The Expanded Version of Value Function Definition

The definition of value function for nested risk measure in Equation (5) can be expanded as

Qπ

([
x, y<t

]
, yt
)
= R

([
x, y<t

]
, yt
)
+Φµ

(
R
([
x, y<t+1

]
, π
(
· |
[
x, y<t+1

]))
+Φµ

(
· · ·Φµ

(
R
([
x, y<T

]
, π
(
· |
[
x, y<T

])))))
,

(20)

Vπ

([
x, y<t

])
= R

([
x, y<t

]
, π
(
· |
[
x, y<t

]))
+Φµ

(
R
([
x, y<t+1

]
, π
(
· |
[
x, y<t+1

]))
+Φµ

(
· · ·Φµ

(
R
([
x, y<T

]
, π
(
· |
[
x, y<T

])))))
.

(21)

Similarly, the definition of the optimal value function, can be expanded as

Q∗
π

([
x, y<t

]
, yt
)
= max

{
R
([
x, y<t

]
, yt
)
+Φµ

(
R
([
x, y<t+1

]
, π
(
· |
[
x, y<t+1

]))
+Φµ

(
· · ·Φµ

(
R
([
x, y<T

]
, π
(
· |
[
x, y<T

])))))}
,

(22)

V ∗
π

([
x, y<t

])
= max

{
R
([
x, y<t

]
, π
(
· |
[
x, y<t

]))
+Φµ

(
R
([
x, y<t+1

]
, π
(
· |
[
x, y<t+1

]))
+Φµ

(
· · ·Φµ

(
R
([
x, y<T

]
, π
(
· |
[
x, y<T

])))))}
.

(23)

B Supplementary Materials for Section 3

B.1 The Proof of Lemma 3.1

Lemma 3.1 Restated. For a given Pb-MDP, the cumulative reward over the entire prompt-response
can be decomposed as r =

∑T
t=1 γ

t−1R ([x, y<t] , yt), the relationship between the state value
function Equation (5) and Equation (6) is as follows: Ṽπ ([x, y

<t]) = Vπ ([x, y
<t]) +R1:t−1, where

R1:t−1 =
∑t−1

h=1 γ
h−1R

([
x, y<h

]
, yh
)

denotes the reward of the 1 ∼ t − 1 steps of the prompt-
response, and Vπ[x] and Ṽπ[x] are equivalent.

Proof. First, according to [61, 62, 30], we can reformulate the Pb-MDP as a decision tree-like MDP:

(1) The state transition graph of the Pb-MDP is connected and acyclic;

(2) Each state in the Pb-MDP corresponds to a unique node in the tree;

(3) There is a single root node from which every other node is reachable via a unique path;

(4) The transition probabilities between states follow the Markov property, i.e., the probability of
transitioning to any future state depends only on the current state and not on the sequence of events
that preceded it.

Formally, let S be the set of states and pij be the transition probabilities between states si and sj .
For an Pb-MDP with a tree-like structure, the probabilistic transition matrix P is defined such that:

pij > 0 if there is an edge between si and sj in the tree, and pij = 0 otherwise. (24)

Moreover, for each non-root node sj , there exists exactly one si such that pij > 0, and si is the
unique parent of sj in the tree structure.

To differentiate the two value functions, we denote the value from Equation (6) as Ṽπ ([x, y
<t]) and

the value from Equation (5) as Vπ ([x, y
<t]). Since the reward of the entire prompt-response can be

decomposed as r =
∑T

t=1 γ
t−1R ([x, y<t] , yt), we have the following relationship:

Ṽπ

([
x, y<t

])
= Vπ

([
x, y<t

])
+R1:t−1,
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where R1:t−1 =
∑t−1

h=1 γ
h−1R

([
x, y<h

]
, yh
)

denotes the reward of the 1 ∼ t − 1 steps of a
prompt-response. We prove this relationship by mathematical induction as follows.

Initial Case. Using the tree-like Pb-MDP and the initial conditions of the Bellman equation, at the
final step t = T , we have

Ṽπ

([
x, y<T

])
= Vπ

([
x, y<T

]
, π
(
· |
[
x, y<t

]))
+R1:T−1

= Vπ

([
x, y<T

])
+R1:T−1.

(25)

Induction Step. We now prove that if Ṽπ

([
x, y<t+1

])
= Vπ

([
x, y<t+1

])
+ R1:t holds, then

Ṽπ ([x, y
<t]) = Vπ ([x, y

<t]) +R1:t−1 also holds. Since this policy π on tree-like Pb-MDP is fixed,
it has only one path to arrive t-th state (st = [x, y<t]), denoted as:

Ξt (sT,1) = Ξh (sT,2) ∀ sT,1, sT,2 ∈
{
sT | St (sT ) =

[
x, y<t

]}
.

Therefore, R1:t−1 is unique.

Ṽπ

([
x, y<t

])
= Φµ

(
Vπ

([
x, y<t+1

])
+R1:t

)
,

= Φµ
(
Vπ

([
x, y<t+1

])
+R

([
x, y<t

]
, π
(
· |
[
x, y<t

]))
+R1:t−1

)
,

= Φµ
(
Vπ

([
x, y<t+1

])
+R

([
x, y<t

]
, π
(
· |
[
x, y<t

])))
+R1:t−1,

= Vπ

([
x, y<t+1

])
+R1:t−1,

(26)

where the third equality holds because the risk measure function Φ satisfies translation invariance.
Then, by applying this conclusion, we observe that when t = 1, Ṽπ[x] = Vπ[x] holds. Thus, we have
proven that for the Pb-MDP, the reward over the entire prompt-response can be decomposed as r =∑T

t=1 γ
t−1R ([x, y<t] , yt), and Vπ[x] in Equation (5) and Ṽπ[x] in Equation (6) are equivalent.

B.2 The Derivation of Definition 3.2

Definition 3.2 Restated. For a risk-sensitive Pb-MDP that satisfies the Bellman equation in Equa-
tion (6), the risk-aware advantage function can be defined as

Ãπ

([
x, y<t

]
, z
)
= Q̃π

([
x, y<t

]
, z
)
− Φµ(Ṽπ

([
x, y<t

])
),

where z ∼ πθ (· | [x, y<t]).

The Derivation. In terms of designing the objective function at the token level, TDPO [10] pro-
vides us with a valuable insight by introducing the advantage function from the TRPO algorithm
in RL field as the target for each step. Building upon TDPO, we consider the risk associated with
language generation at each step and devise a novel risk-sensitive advantage function. First, based
on assumption that r =

∑T
t=1 γ

t−1R ([x, y<t] , yt), we can get:

r =

T∑
t=1

γt−1R
([
x, y<t

]
, yt
)

=

T∑
t=1

γt−1
(
R
([
x, y<t

]
, yt
)
+ γ Φµ

(
Ṽπ

([
x, y<t+1

]))
− γ Φµ

(
Ṽπ

([
x, y<t+1

])))

= Φµ
(
Ṽπ ([x])

)
+

T∑
t=1

γt−1
(
R
([
x, y<t

]
, yt
)
+ γ Φµ

(
Ṽπ

([
x, y<t+1

]))
−Φµ

(
Ṽπ

([
x, y<t

])))
− γT Φµ

(
Ṽπ

([
x, y<T+1

]))
= Φµ

(
Ṽπ ([x])

)
+

T∑
t=1

γt−1
(
Q̃π

([
x, y<t

]
, yt
)
− Φµ

(
Ṽπ

([
x, y<t

])))
− γT Φµ

(
Ṽπ

([
x, y<T+1

]))
.

(27)
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Next, note that yT = EOS denotes the end of the text sequence. Therefore,

Vπ

([
x, y<T+1

])
= Eπ

[ ∞∑
k=0

γkR
([
x, y<T+1+k

]
, yT+1+k

)
| st =

[
x, y<T+1

]]
= 0. (28)

Furthermore, we have

r = Φµ
(
Ṽπ ([x])

)
+

T∑
t=1

γt−1
(
Q̃π

([
x, y<t

]
, yt
)
− Φµ

(
Ṽπ

([
x, y<t

])))
. (29)

So, we definite the risk-aware advantage function as Ãπ ([x, y
<t] , z) = Q̃π ([x, y

<t] , z) −
Φµ
(
Ṽπ ([x, y

<t])
)

, where z ∼ πθ (· | [x, y<t]).

B.3 The Proof of Lemma 3.3

Lemma 3.3 Restated. Given two policies π and π′, if for any state st =

[x, y<t] ,Ez∼π′

[
Ãπ ([x, y

<t] , z)
]
≥ 0 holds, then we can conclude:

Ex∼D

[
Ṽπ′([x])

]
≥ Ex∼D

[
Ṽπ([x])

]
.

Proof. Let τ := (x, y1, y2, . . .) denote a trajectory, where the expectation Eτ |π′ [·] is taken over
trajectories generated by policy π′. We then have

Ex∼D

[
Ṽπ′([x])

]
− Ex∼D

[
Ṽπ([x])

]
=Eτ |π′

[ ∞∑
t=1

γt−1
(
R
([
x, y<t

]
, yt
)
+ γ Φµ

(
Ṽπ

([
x, y<t+1

])))
− Ṽπ([x])

]

=Eτ |π′

[ ∞∑
t=1

γt−1
(
R
([
x, y<t

]
, yt
)
+ γ Φµ

(
Ṽπ

([
x, y<t+1

]))
− Φµ

(
Ṽπ

([
x, y<t

])))]

=Eτ |π′

[ ∞∑
t=1

γt−1
(
Ãπ

([
x, y<t

]
, yt
))]

=Eτ |π′

[ ∞∑
t=1

γt−1
(
Eyt∼π′

[
Ãπ

([
x, y<t

]
, yt
))]]

.

(30)

Since for any state st = [x, y<t] ,Ez∼π′

[
Ãπ ([x, y

<t] , z)
]
≥ 0, so we can obtain

Ex∼D

[
Ṽπ′([x])

]
− Ex∼D

[
Ṽπ([x])

]
≥ 0.

This completes the proof of Lemma 3.3.

B.4 The Proof of Lemma 3.4

Lemma 3.4 Restated. The constrained problem in Equation (8) has the closed-form solution:

π∗
θ

(
z |
[
x, y<t

])
=

πref (z | [x, y<t]) exp
(

1
β Q̃πref

([x, y<t] , z)
)

Z ([x, y<t] ;β)
,

where Z ([x, y<t] ;β) = Ez∼πref (·|[x,y<t])e
1
β Q̃πref ([x,y

<t],z) is the partition function.
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Proof.

max
πθ

Ez∼πθ(·|[x,y<t])Ãπref

([
x, y<t

]
, z
)
− βDKL

(
πθ

(
· |
[
x, y<t

])
∥πref

(
· |
[
x, y<t

]))
=max

πθ

Ez∼πθ(·|[x,y<t])

((
Q̃πref

([
x, y<t

]
, z
)
− Ṽπref

([
x, y<t

]))
+ β log

(
πref (z | [x, y<t])

πθ (z | [x, y<t])

))
=max

πθ

βEz∼πθ(·|[x,y<t]) log

(
πref (z | [x, y<t]) e

1
β Q̃πref ([x,y

<t],z)

πθ (z | [x, y<t])

)
− Ṽπref

([
x, y<t

])
=max

πθ

βEz∼πθ(·|[x,y<t]) log

(
πref (z | [x, y<t]) e

1
β Q̃πref ([x,y

<t],z)

Z ([x, y<t] ;β)πθ (z | [x, y<t])

)
− Ṽπref

([
x, y<t

])
+ β logZ

([
x, y<t

]
;β
)

=max
πθ

−βDKL

(
πθ

(
z |
[
x, y<t

])
∥πref (z | [x, y<t]) e

1
β Q̃πref ([x,y

<t],z)

Z ([x, y<t] ;β)

)
− Ṽπref

([
x, y<t

])
+ β logZ

([
x, y<t

]
;β
)
,

(31)
where Z ([x, y<t] ;β) is the partition function:

Z
([
x, y<t

]
;β
)
= Ez∼πref (·|[x,y<t]) exp

(
1

β
Q̃πref

([
x, y<t

]
, z
))

. (32)

Then, we can derive the relationship between the optimal policy and the state-action function:

π∗
θ

(
z |
[
x, y<t

])
=

πref (z | [x, y<t]) exp
(

1
β Q̃πref

([x, y<t] , z)
)

Z ([x, y<t] ;β)
.

This completes the proof of Lemma 3.4.

B.5 The Proof of Lemma 3.5

Lemma 3.5 Restated. Given a reward function r(x, y) over the entire prompt-response,
based on the relationship between token-wise rewards and the reward function r(x, y) =∑T

t=1 γ
t−1R ([x, y<t] , yt), we can establish the equivalence between the Bradley-Terry model and

the Regret Preference Model, i.e.,

PBT (y1 ≻ y2 | x) = σ

(
T1∑
t=1

γt−1Ãπ

([
x, y<t

1

]
, yt1
)
−

T2∑
t=1

γt−1Ãπ

([
x, y<t

2

]
, yt2
))

,

where σ(z) = 1/ (1 + exp(−z)) is the logistic sigmoid function for any random variable z.

Proof. Recalling to the BT model in Equation (1)

PBT (y1 ≻ y2 | x) =
exp (r (x, y1))

exp (r (x, y1)) + exp (r (x, y2))
, (33)

and the equivalence between prompt-response reward and the risk-aware advantage function:

r =Φµ
(
Ṽπ ([x])

)
+

T∑
t=1

γt−1
(
Q̃π

([
x, y<t

]
, yt
)
− Φµ

(
Ṽπ

([
x, y<t

])))
=Φµ

(
Ṽπ ([x])

)
+

T∑
t=1

γt−1Ãπ

([
x, y<t

]
, yt
)
.

Then, we have

PBT (y1 ≻ y2 | x) = σ

(
T1∑
t=1

γt−1Ãπ

([
x, y<t

1

]
, yt1
)
−

T2∑
t=1

γt−1Ãπ

([
x, y<t

2

]
, yt2
))

.

This completes the proof of Lemma 3.5.
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B.6 The Proof of Theorem 3.6

Theorem 3.6 Restated. Given prompts x and pairwise responses (y1, y2), and the risk-aware objec-
tive function in Equation (8), the Bradley-Terry model expresses the human preference probability
in terms of the risk-aware optimal policy π∗

θ and reference policy πref :
P ∗
BT (y1 ≻ y2 | x) = σ (u∗ (x, y1, y2)− δ∗ (x, y1, y2)) ,

where u (x, y1, y2) represents the difference in implicit rewards defined by the risk-aware policy π∗
θ

and the reference policy πref , weighted by β, represented as

u (x, y1, y2) = β log
πθ (y1 | x)
πref (y1 | x)

− β log
πθ (y2 | x)
πref (y2 | x)

,

and δ (x, y1, y2) represents the difference in sequential risk ratio between two pairs (x, y1) and
(x, y2), expressed as

δ (x, y1, y2) = βDSeqRR (x, y2;πref | πθ)− βDSeqRR (x, y1;πref | πθ) .

Proof. According to the Lemma 3.4, we have

π∗
θ

(
z |
[
x, y<t

])
=

πref (z | [x, y<t]) exp
(

1
β Q̃πref

([x, y<t] , z)
)

Z ([x, y<t] ;β)
, (34)

where Z ([x, y<t] ;β) = Ez∼πref (·|[x,y<t])e
1
β Q̃πref ([x,y

<t],z) is the partition function. Rearrange
Equation (34), we obtain

Q̃πref

([
x, y<t

]
, z
)
= β log

π∗
θ (z | [x, y<t])

πref (z | [x, y<t])
+ β logZ

([
x, y<t

]
;β
)
. (35)

From Lemma 3.5, we can get

PBT (y1 ≻ y2 | x) = σ

(
T1∑
t=1

(
γt−1Ãπ

([
x, y<t

1

]
, yt1
))
−

T2∑
t=1

(
γt−1Ãπ

([
x, y<t

2

]
, yt2
)))

. (36)

By leveraging Equation (35), we can derive
T∑

t=1

γt−1Ãπref

([
x, y<t

]
, yt
)

=

T∑
t=1

γt−1
(
Qπref

([
x, y<t

]
, yt
)
− Φµ

(
Ṽπref

([
x, y<t

])))
=

T∑
t=1

γt−1
(
Q̃πref

([
x, y<t

]
, yt
)
− Φµ

(
Q̃πref

([
x, y<t

]
, z
)))

=

T∑
t=1

γt−1

(
β log

π∗
θ (y

t | [x, y<t])

πref (yt | [x, y<t])
+ β logZ

([
x, y<t

]
;β
)

−Φµ

(
β log

π∗
θ (z | [x, y<t])

πref (z | [x, y<t])
+ β logZ

([
x, y<t

]
;β
)))

.

(37)

Note that
Ez∼πref

[
β logZ

([
x, y<t

]
;β
)]

= β logZ
([
x, y<t

]
;β
)
.

Therefore,
T∑

t=1

γt−1Ãπref

([
x, y<t

]
, yt
)

=β

T∑
t=1

γt−1

(
log

π∗
θ (y

t | [x, y<t])

πref (yt | [x, y<t])
− Φµ

z∼πref

(
log

π∗
θ (z | [x, y<t])

πref (z | [x, y<t])

))

=β

T∑
t=1

γt−1 log
π∗
θ (y

t | [x, y<t])

πref (yt | [x, y<t])
+ β

T∑
t=1

γt−1 Φµ
z∼πref

(
log

πref (z | [x, y<t])

πθ∗ (z | [x, y<t])

)
.

(38)
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When substituting γ = 1 into the expression, we obtain a more concise form:

T∑
t=1

Ãπref

([
x, y<t

]
, yt
)
=β

T∑
t=1

log
π∗
θ (y

t | [x, y<t])

πref (yt | [x, y<t])
+ β

T∑
t=1

Φµ
z∼πref

(
log

πref (z | [x, y<t])

πθ∗ (z | [x, y<t])

)
=β

(
log

π∗
θ (y | x)

πref (y | x)
+DSeqRR (x, y;πref | π∗

θ)

)
,

(39)

where DSeqRR (x, y;πref | πθ) =
∑T

t=1 Φ
µ
z∼πref

(
log

πref(z|[x,y<t])
πθ(z|[x,y<t])

)
.

Then, we let

u (x, y1, y2) = β log
πθ (y1 | x)
πref (y1 | x)

− β log
πθ (y2 | x)
πref (y2 | x)

, (40)

δ (x, y1, y2) = βDSeqRR (x, y2;πref | πθ)− βDSeqRR (x, y1;πref | πθ) . (41)

Substituting Equation (39) into Equation (36), we arrive at

P ∗
BT (y1 ≻ y2 | x) = σ (u∗ (x, y1, y2)− δ∗ (x, y1, y2)) .

This completes the proof Theorem 3.6.

B.7 Algorithm

In this subsection, we provide the main pseudocode for Risk-aware Direct Preference Optimization
(Ra-DPO), as outlined in Algorithm 1.

Algorithm 1 Risk-aware Direct Preference Optimization (Ra-DPO)
Input: Reference model πref , Policy model πθ, Coefficient α, β, Risk control parameter µ, Learn-
ing rate η

Input: Dataset D =
{
(x, yw, yl)

i
}N

i=1
of size N , MethodM

Initialize: πθ ← πref

for each epoch do
Sample mini-batch Dm = {(x, yw, yl)m}

M
m=1 from D

Predict the probabilities πθ (yw | x) and πθ (yl | x) for (x, yw, yl) in the mini-batch Dm using
the policy model
Predict the probabilities πref (yw | x) and πref (yl | x) for (x, yw, yl) in the mini-batch Dm

using the reference model
Calculate the function u (x, yw, yl) = β log πθ(yw|x)

πref (yw|x) − β log πθ(yl|x)
πref (yl|x)

Compute the sequential risk ratio DSeqRR (x, yw;πref | πθ) for (x, yw) in the mini-batch Dm

Compute the sequential risk ratio DSeqRR (x, yl;πref | πθ) for (x, yl) in the mini-batch Dm

if MethodM is Ra-DPO1 then
Calculate δ (x, yw, yl) = βDSeqRR (x, yl;πref | πθ)− βDSeqRR (x, yw;πref | πθ)
θ ← θ + η∇θE(x,yw,yl)∼Dm

[log σ (u (x, yw, yl)− δ (x, yw, yl))]
else {MethodM is Ra-DPO2}

Calculate δ2 (x, yw, yl) = βDSeqRR (x, yl;πref | πθ)− sg (βDSeqRR (x, yw;πref | πθ))
θ ← θ + η∇θE(x,yw,yl)∼Dm

[log σ (u (x, yw, yl)− αδ2 (x, yw, yl))]
end if

end for

C Supplementary Materials for Section 4

C.1 Experiments compute resources

All reported results of our algorithm and baseline algorithms are trained using 4×A100 GPUs, each
with 40GB of memory.
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C.2 Assets

We have compiled the datasets, models, and benchmark codes used in this paper and express our
gratitude to all relevant sources.

Dataset:

• IMDb Dataset [32]: https://huggingface.co/datasets/stanfordnlp/imdb

• Anthropic HH Dataset [33]: https://huggingface.co/datasets/Anthropic/hh-rlhf

• AlpacaEval [34]: https://huggingface.co/datasets/tatsu-lab/alpaca_eval

Model:

• GPT-2 Large [36]: https://huggingface.co/openai-community/gpt2-large

• Gpt2-large-imdb-fine-tuned: https://huggingface.co/insub/gpt2-large-IMDb-fine-tuned

• Pythia-1.4B [37]: https://huggingface.co/EleutherAI/pythia-1.4b

• Pythia-2.8B [37]: https://huggingface.co/EleutherAI/pythia-2.8b

• Oasst-sft-4-pythia-12b-epoch-3.5: https://huggingface.co/OpenAssistant/
oasst-sft-4-pythia-12b-epoch-3.5

Code:

• We trained Ra-DPO and the baseline models based on the original KTO implementation https:
//github.com/ContextualAI/HALOs, and our code can be found in the supplemental material.

C.3 Experimental Details

In our experiments, we followed the original KTO implementation for the main parameter settings,
and both Ra-DPO and the baseline models used the same hyperparameters, as detailed in Table 2-3.

Table 2: Hyperparameters in loss functions for different algorithms.

Method β α µ

DPO 0.1 - -
PPO - - -
KTO 0.1 - -
TDPO1 0.1 - -
TDPO2 0.1 {0.3, 0.5, 0.7, 0.9} -
Ra-DPO1 0.1 - -
Ra-DPO2 0.1 {0.3, 0.5, 0.7, 0.9} CVaR: {0.99, 0.98, 0.97, 0.95}

ERM: {9, 7, 5}

Table 3: Hyperparameters in network training.

Parameter value

max length 512
max prompt length 256
gradient accumulation steps 4
learning rate 5× 10−6

optimizer AdamW

C.4 Additional Experimental Results

Here, we provide some additional experimental results, which are illustrated in Figures 5-14.
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Figure 5: The experiment on the Anthropic HH dataset with Pythia-1.4B serving as the base model.
Left and Middle present the progression of sequential KL divergence (the lower the better) for
both preferred and dispreferred responses. Right illustrates reward accuracy curves (the higher the
better).

• Figures 5-8 illustrate the experiment on the Anthropic HH dataset with Pythia-1.4B serving
as the base model. We implemented TDPO2, and different versions of Ra-DPO2 with
respect to the parameters α and µ.

• Figures 9-12 show corresponding results using Pythia-2.8B as the base model. The same
set of algorithms was evaluated under varying α and µ configurations.

• Figure 13 illustrates the experiment on the Anthropic HH dataset with Pythia-1.4B serv-
ing as the base model. Let α = 0.5, we implemented TDPO2, and different versions of
Ra-DPO2 with respect to the risk control parameter µ. In the figure, for all algorithms,
we report the average performance (solid line) across three random seeds, with the shaded
region representing one standard deviation around the mean. We aim to highlight the statis-
tically significant improvements achieved by the proposed method, although training large-
scale models entails substantial computational costs in terms of time and resources. The
figure illustrates that, under both the CVaR-based nested risk measure and the ERM-based
risk measure with µ = 5, the proposed algorithm achieves reward accuracy comparable to
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Figure 6: The experiment on the Anthropic HH dataset with Pythia-1.4B serving as the base model.
Left and Middle presents the sequential KL divergence (the lower the better) for preferred and
dispreferred responses, while Right presents the reward accuracy curves (the higher the better) under
α = {0.3, 0.5, 0.7, 0.9}.

that of the baseline method but with greater stability, while maintaining a consistently low
sequential KL divergence.

• Figure 14 illustrates the comparison between DPO, PPO, TDPO1, TDPO2, and Ra-DPO2
methods through AlpacaEval. It presents a straightforward result: Compared to the base-
line algorithms, Ra-DPO2 achieves a high winrate, demonstrating superior performance in
assisting LLMs to generate high-quality responses.
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Figure 7: The experiment on the Anthropic HH dataset with Pythia-1.4B serving as the base model.
Left and Middle present the progression of sequential KL divergence (the lower the better) for
both preferred and dispreferred responses. Right illustrates reward accuracy curves (the higher the
better).

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Both the abstract and introduction include the claims made in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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Figure 8: The experiment on the Anthropic HH dataset with Pythia-1.4B serving as the base model.
Left and Middle presents the sequential KL divergence (the lower the better) for preferred and
dispreferred responses, while Right presents the reward accuracy curves (the higher the better) under
α = {0.3, 0.5, 0.7, 0.9}.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of the proposed approach from both theoretical
and experimental viewpoints, as detailed in Subsection 8.1.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Figure 9: The experiment on the Anthropic HH dataset with Pythia-2.8B serving as the base model.
Left and Middle present the progression of sequential KL divergence (the lower the better) for
both preferred and dispreferred responses. Right illustrates reward accuracy curves (the higher the
better).

Answer: [Yes]
Justification: This paper provide the full set of assumptions and a complete (and correct)
proof. Specifically, we provide complete proofs of the paper’s lemmas, and theorems in
Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.
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Figure 10: The experiment on the Anthropic HH dataset with Pythia-2.8B serving as the base
model. Left and Middle presents the sequential KL divergence (the lower the better) for preferred
and dispreferred responses, while Right presents the reward accuracy curves (the higher the better)
under α = {0.3, 0.5, 0.7, 0.9}.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the pseudocode of Algorithm 1 in Appendix B.7 and provide a
detailed description of the experiments in Section 4 and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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Figure 11: The experiment on the Anthropic HH dataset with Pythia-2.8B serving as the base
model. Left and Middle present the progression of sequential KL divergence (the lower the better)
for both preferred and dispreferred responses. Right illustrates reward accuracy curves (the higher
the better).

some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provide open access to the data and code in supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
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Figure 12: The experiment on the Anthropic HH dataset with Pythia-2.8B serving as the base
model. Left and Middle presents the sequential KL divergence (the lower the better) for preferred
and dispreferred responses, while Right presents the reward accuracy curves (the higher the better)
under α = {0.3, 0.5, 0.7, 0.9}.
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Figure 13: The experiment on the Anthropic HH dataset with Pythia-1.4B serving as the base model.
Left and Middle present the progression of sequential KL divergence (the lower the better) for both
preferred and dispreferred responses. Right illustrates reward accuracy curves (the higher the better).
For all algorithms, we report the average performance (solid line) across three random seeds, with
the shaded region representing one standard deviation around the mean.

• While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
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Figure 14: AlpacaEval comparison between DPO, PPO, TDPO1, TDPO2, and Ra-DPO2 methods.
The win, tie, and lose rates are evaluated based on oasst-pythia-12b.

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: This paper states the experimental setting/details in Section 4 and Appendix
C.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper provide the statistical significance of the experiments in Figure 13
in Appendix C.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
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• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provide the information on the computer resources in Appendix
C.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both potential positive societal impacts and negative
societal impacts of the work performed in Subsection 8.2.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original paper that produced the code package and provide de-
tailed information on how to access the datasets, models and codes in Appendix C.2.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [Yes]
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Justification: We provide details of new assets in supplemental material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
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Guidelines:
• The answer NA means that the core method development in this research does not

involve LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)

for what should or should not be described.
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