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ABSTRACT

Using Reinforcement Learning with Verifiable Rewards (RLVR) to optimize
Large Language Models (LLMs) can be conceptualized as progressively editing
a query’s ‘Reasoning Tree’. This process involves exploring nodes (tokens) and
dynamically modifying the model’s policy at each node. When combined with
data scheduling, this process yields further gains in data efficiency and accuracy.
However, existing RLVR data scheduling methods typically rely on path-based
metrics to rank queries, overlooking the reasoning tree structures of these queries.
In this paper, we introduce a novel metric, namely Reasoning Score (r-score),
which measures the query’s learning difficulty based on the structure of its rea-
soning tree. Based on the r-score, we propose the Reasoning Tree Schedule (Re-
Schedule), a scheduling algorithm that constructs a curriculum progressing from
structurally simple (high r-score) to complex (low r-score) queries. Experiments
on six math-reasoning benchmarks show that Re-Schedule significantly improves
average accuracy, achieving gains of up to 3.2%. These strong results validate our
approach and demonstrate that a structural understanding of the reasoning tree
provides a more powerful and principled foundation for RLVR data scheduling.

1 INTRODUCTION

Advancing the complex reasoning capabilities of Large Language Models (LLMs) remains a signif-
icant challenge, particularly in domains like mathematical problem-solving. Reinforcement Learn-
ing with Verifiable Reward (RLVR) (Gao et al., 2024; DeepSeek-AI et al., 2025), especially through
policy optimization methods like GRPO (Shao et al., 2024), has emerged as a powerful paradigm to
address this challenge. As shown in Figure 1 (a), in this framework, the space of potential solution
paths for a query can be modeled as a specific ‘Reasoning Tree’ (Wang et al., 2025b; Yang et al.,
2025), where each node represents an intermediate reasoning step and each path represents a poten-
tial solution trajectory. From this perspective, RLVR operates as a dynamic ‘node-editing’ process
of the reasoning tree: by rewarding correct paths and penalizing incorrect ones, the model iteratively
refines its decision policy at each tree node. This optimization process gradually prunes branches
that lead to low-quality or incorrect solutions, thereby improving overall reasoning accuracy.

In this paradigm, data scheduling plays a critical role in model performance (Hu et al., 2025; Yu
et al., 2025; Li et al., 2025). The concept of data scheduling originates from curriculum learn-
ing (Bengio et al., 2009), which posits that models learn more effectively when training examples
(queries) are organized in a meaningful sequence. Existing data scheduling strategies typically pre-
define a‘difficulty’ metric for queries, and and schedule them from easy to hard to improve data
efficiency and final performance (Xi et al., 2024; Chen et al., 2025b;a; Dai et al., 2025) However,
from a reasoning tree perspective, current difficulty measure strategies exhibits a critical limita-
tion: current methods estimate difficulty primarily via final solution accuracy, overlooking richer
query-level characteristics such as the structural complexity of the reasoning tree. Accuracy alone
is insufficient — low accuracy does not necessarily indicate that a query is inherently hard, and high
accuracy does not guarantee ease of optimization. This inconsistency can undermine the efficacy of
accuracy-based scheduling approaches. We illustrate this issue with the following examples.

To illustrate, consider two representative queries, q1 and q2, whose reasoning trees are shown in
Figure 1(a). As depicted in Figure 1(b), LLMs may exhibit low initial accuracy on q1, due to the
presence of many incorrect solution trajectories (reasoning paths). However, its simple tree structure
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Figure 1: (a) A simple reasoning tree (q1) requires less node editing for performance improvement
than a complex one (q2). (b) Consequently, q1 shows high training efficiency (steep learning curve)
despite low initial accuracy, while q2’s complex structure leads to low efficiency. (c) Our method
leverages this structural insight to significantly outperform baselines on various datasets.

means that modifying a few key decision nodes can yield substantial accuracy gains, indicating
high learning efficiency despite the poor initial performance. In contrast, q2 achieves higher initial
accuracy, with roughly half of its trajectories being correct, yet these correct paths are scattered
across disparate subtrees. This fragmented structure requires more extensive edits across numerous
tree nodes, typically resulting in higher training difficulty and lower learning efficiency. Critically,
existing path-based metrics will misinterpret q1’s low accuracy as high difficulty, thus assigning it a
lower training weight, while incorrectly prioritizing the more difficult q2. Such path-based metrics
may lead to a less efficient training process. This motivates our central research question: How can
we move beyond path-based metrics to directly quantify a query’s true learning difficulty from its
reasoning-tree structure?

To address this question, we introduce the Reasoning Score (r-score), a novel metric that quanti-
fies a query’s learning potential based on its reasoning tree structure. We formalize this by framing
the reinforcement learning training process as an optimization problem under a finite ’node editing
budget’, which we define as a fixed number of node editing operations. Consequently, a query’s
r-score is its maximum potential accuracy gain achievable within this limited editing budget.
This metric clearly explains the discrepancy in our example: q1, with its ‘concentrated’ error struc-
ture, yields a high r-score because a small budget (e.g., two edits) produces a massive accuracy
gain (+75%). Conversely, q2’s ‘diffuse’ structure results in a low r-score, as the same budget only
yields marginal improvement (+25%). Therefore, a higher r-score signifies a more tractable reason-
ing structure and greater learning efficiency, offering a more comprehensive assessment of difficulty
than path-based metrics.

Building on the Reasoning Score, we propose the Reasoning Tree Schedule (Re-Schedule), a
novel data scheduling algorithm designed to guide RLVR training more efficiently. Our method
consists of three main stages. First, an offline approximation of each query’s reasoning tree is
constructed by sampling multiple solution trajectories from a base model. Second, this approximated
reasoning tree is used to calculate each query’s reasoning score by simulating the editing process.
Finally, we integrate the r-score as a dynamic weight into the RLVR loss function to form a schedule.
This schedule prioritizes high-scoring (simple) queries in the initial training phases to accelerate
convergence on simple queries. As training progresses, the weighting gradually shifts to lower-
scoring (difficult) queries, enabling the model to master more challenging problems.

In summary, the main contributions of this paper are:

• We introduce the Reasoning Score (r-score), a new tree-based metric that measures a
query’s learning efficiency rather than its path-based solution accuracy.

• We propose Re-Schedule, a data scheduling algorithm that uses the r-score to create an
effective, easy-to-hard curriculum for RLVR.
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• As shown in Figure 1(c), we empirically demonstrate that our approach significantly im-
proves average accuracy, achieving gains of up to 3.2%, on complex reasoning tasks.

2 RELATED WORK

2.1 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS IN LLMS

Reinforcement learning with verifiable reward (RLVR), where the reward is computed by a rule-
based verification function, has been shown to be effective in improving the reasoning capabilities
of LLMs (Gao et al., 2024; DeepSeek-AI et al., 2025; Kimi et al., 2025; Zeng et al., 2025; Wen
et al., 2025; Song et al., 2025). Typically, RLVR frameworks assign a binary reward by comparing
the model’s generated output against a ground-truth solution, indicating whether it is correct or in-
correct. This reward design obviates the need for complex outcome-based or process-based reward
models, offering a straightforward yet potent approach. Recent advancements in policy optimiza-
tion algorithms, such as PPO and GRPO, have further refined this paradigm (Schulman et al., 2017;
Kazemnejad et al., 2024; Yuan et al., 2025; Yue et al., 2025; Shao et al., 2024; Yu et al., 2025; Liu
et al., 2025; Zhang et al., 2025; Hu, 2025). In contrast to these studies, which focus on algorith-
mic improvements, our work builds upon the standard GRPO framework with a primary focus on
designing a more effective training data schedule.

2.2 DATA SCHEDULING ALGORITHM IN LLM REINFORCEMENT LEARNING

Various data scheduling strategies have been proposed to enhance the reasoning capabilities in LLM
Reinforcement Learning. These can be broadly categorized into static selection and dynamic ad-
justment methods. Representative of static selection is LIMR (Li et al., 2025), which selected 1.4k
examples from an 8.5k set for RLVR to match the performance of using the full set. In contrast,
dynamic strategies make real-time adjustments during training. For instance, R3 employs reverse
curriculum reinforcement learning to simplify the model’s exploration space (Xi et al., 2024). LPPO
(Chen et al., 2025b) utilize the gradient of accuracy to prioritize data, effectively treating learning
difficulty as a derivative of performance. Similarly, Seed-GRPO (Chen et al., 2025a) employs se-
mantic diversity (uncertainty) as a proxy for difficulty. Furthermore, DELT leverages training
gradients to measure the quality and learnability of data (Dai et al., 2025), subsequently adjusting
sample weights. However, these methods rely on outcome-based proxies (e.g., accuracy), effectively
treating reasoning as a flat sequence. They overlook the inherent tree-structured solution space of
reasoning tasks. In contrast, our approach explicitly leverages this topological structure. By ana-
lyzing the Reasoning Tree, we directly quantify a query’s ‘structural learnability’, providing a more
precise and principled measure of difficulty than performance statistics alone.

3 PRELIMINARIES

3.1 GROUP RELATIVE POLICY OPTIMIZATION

The objective of the GRPO algorithm is to optimize a policy πθ based on a group of generated
responses (Shao et al., 2024; Yu et al., 2025). For a query q from a dataset D, the policy generates
G responses {oi}Gi=1. The token-level objective function is formulated as:

J (θ) = Eq∼D,{oi}G
i=1∼πold(·|q)

 1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1

min (ri,tAi,t, clip(ri,t, 1− ε, 1 + ε)Ai,t)

 ,

(1)
where ri,t =

πθ(oi,t|q,oi,<t)
πold(oi,t|q,oi,<t)

is the probability ratio of the token oi,t between the current and old
policies. The advantage term Ai,t is constant for all tokens within a single response and is calculated
by normalizing the response’s reward Ri relative to the other responses in the group:

Ai,t =
Ri − mean({Rk}Gk=1)

std({Rk}Gk=1) + δ
, ∀t, (2)

where δ is a small constant for numerical stability.

3
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Data scheduling algorithms can be formulated by introducing a weighting function ω(q, t) that mod-
ulates the contribution of each query q ∈ D and current epoch t to the overall objective. Specifically,
the objective in Equation 1 is modified as follows:

Jschedule(θ) = Eq∼D,... [ω(q, t) · (original objective term for q)] . (3)

Note: In the equations above, we have abbreviated the full objective for clarity. For example, in an
accuracy-based curriculum learning, the training weight ω is formulated as a function of the query’s
accuracy ACC(q) and current epoch t:

α(ACC(q), t) = (1− γ(t))ACC(q) + γ(t)(1− ACC(q)), (4)

ω = rank(α)% · ωmax + (1− rank(α)%) · ωmin. (5)
Here, ωmax and ωmin are hyperparameters that define the maximum and minimum training weights
(e.g., ωmax = 0.8, ωmin = 0.2); And rank(α) means calculating the reverse order of α in the entire
dataset. The term γ(t) is a scheduling function that progresses over time. Common choices for
γ(t) include a linear mapping, γ(t) = t/T , or a sigmoid function, γ(t) = σ

((
t
T − 0.5

))
, σ(x) =

(1 + e−x)−1, where T is the total number of epochs.

3.2 REASONING TREE

For complex reasoning tasks, the process of generating a solution can be conceptualized as traversing
a ‘Reasoning Tree’. In this context, the root of the tree is the initial prompt, and each node represents
a partial solution or an intermediate reasoning step. The branches extending from a node correspond
to the possible next tokens or thought segments that the LLM can generate.

Due to the combinatorial explosion of possible solution paths, the complete reasoning tree is typ-
ically computationally intractable. Therefore, analysis often relies on a structured approximation
(e.g., a fixed-structure k-ary reasoning tree). Formally, an approximated reasoning tree is defined
as a triplet T = (N , E ,R), where N is the set of nodes, E is the set of edges, and R defines the
parent-child relationships.

The components of the tree are described using the following notation: Nleaf ⊂ N is the set of leaf
nodes; For a given node ni ∈ N , C(ni) denotes the set of its immediate children and L(ni) denotes
the set of its leaf descendants. If ni is a leaf node, then L(ni) = {ni}. Within this framework, each
non-leaf node ni ∈ N \ Nleaf represents a partial reasoning path, while a complete path to a leaf
node nj ∈ Nleaf corresponds to a full solution trajectory.

From this perspective, the RLVR optimization process is a dynamic ‘node editing’ of this reasoning
tree. By rewarding correct paths and penalizing incorrect ones, the policy optimization algorithm
adjusts the token probabilities at each node, effectively strengthening the branches that lead to cor-
rect answers and weakening those that lead to errors. The structure of this tree—the distribution of
correct and incorrect paths—is intrinsic to each problem sample and, as we will argue, is a key clue
to its learning dynamics.

4 MOTIVATION
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Figure 2: Accuracy Progression During
Training. The solid line represents the
average accuracy, and the shaded area
indicates the range.

The premise of this work is that path-based metrics such
as accuracy are poor indicators of a query’s true learn-
ing difficulty. To illustrate our point, we supplement the
example from the introduction with an experiment. As
shown in Figure 2, we selected two distinct sets of 100
queries each from the DAPA-Math-17K dataset, using
the Qwen2.5-Math-7B model. The blue line represents
‘Stagnant Samples’—queries with high initial accuracy
but complex reasoning structures (low r-score). Their
flat learning curve indicates that despite high initial per-
formance, they are difficult to improve further. In con-
trast, the red line represents ‘Potential Samples’—queries
with low initial accuracy but simple tree structures (high
r-score). Their steep learning curve demonstrates high
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Figure 3: Overview of the Reasoning Tree Schedule (Re-Schedule) Algorithm.(a) Tree Construc-
tion: For each query, an approximate reasoning tree is constructed by sampling multiple solution
paths from a base model (Note: This figureis for illustrative purposes only; our experiments use a
tree with a depth of 4 and a width of 4, i.e., k = 4, d = 4.). (b) R-Score Calculation: The tree’s
structure is analyzed to compute the r-score, a metric quantifying the query’s learning potential.
(c) Dynamic Weighting: The r-scores are used to dynamically weight each query during training,
forming a curriculum that progresses from structurally simple (easy) to complex (hard) examples.

learnability, where a small amount of training yields significant gains. This discrepancy highlights
that path-based metrics, like accuracy, are biased measurements for learning difficulty. This finding
motivates us to design a new metric based on the structure of the reasoning tree.

5 METHOD

As illustrated in Figure 3, the Reasoning Tree Schedule (Re-Schedule) enhances reinforcement
learning performance by creating a curriculum based on our novel metric, the Reasoning Score
(r-score). The r-score quantifies a query’s learning difficulty a priori based on the structure of its
reasoning tree. Next, we will introduce the specific implementation details.

5.1 TREE CONSTRUCTION

As the entire reasoning tree is computationally intractable, we construct a manageable, fixed-
structure k-ary approximation for each query q. The structure of this tree, T , is defined by a branch-
ing factor k, a maximum depth d, and a token interval l (e.g., k = 4, d = 4, l = 200).

The construction process begins at the root node (the query q) and proceeds via a periodic branching
strategy during response generation. Specifically, a branch is triggered immediately at the beginning
of the response and subsequently at every l-token interval. As shown in Figure 3 (a), at each trig-
ger, the current path splits into k independent sub-paths that continue to generate in parallel. This
recursive branching process continues until a predefined maximum depth d is reached. To minimize
computational overhead from this multi-path sampling, we use the Key-Value (KV) Cache, as all
sibling branches share the same prefix.

In RLVR tasks, a solution’s quality is determined by the correctness of its final answer, which
corresponds to a leaf node in our framework. Therefore, we define the quality of any intermediate

5
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node ni as the average accuracy of its leaf descendants, L(ni). This is quantified using an accuracy
function:

ACC(S) =

∑
nj∈S I(nj is correct)

|S|
, (6)

where S is a set of leaf nodes and I(·) is the indicator function. This allows us to assess quality
at different levels: the quality of a reasoning segment via ACC(L(ni)) and the model’s aggregate
performance on the query via ACC(Nleaf).

5.2 R-SCORE CALCULATION

The r-score quantifies the learning potential of a node or query by measuring the maximum achiev-
able accuracy gain under a limited policy refining cost, like a limited node editing budget. Given this
idea, for any non-leaf node ni, we define its r-score, R(ni), as the maximal accuracy gain achievable
by selecting its single best child branch and pruning all others. This is formulated as:

R(ni) = max
nchild∈C(ni)

ACC
[
Nleaf \ L(ni) ∪ L(nchild)

]
− ACC

[
Nleaf

]
. (7)

The overall r-score for a query, R(q), estimates the total accuracy gain achievable under a budget
that limits modifications to a maximum of M nodes. It is the maximum sum of r-scores from any
set of M non-conflicting nodes (e.g., for a budget of M = 4):

R(q) = max
N∗⊆N ,|N∗|=M

∑
ni∈N∗

R(ni). (8)

Two nodes are considered conflicting if one is located in a subtree that is implicitly pruned by the
optimal branch selection of the other.

Intuitively, solving Equation (7) represents the evaluation process of the sub-tree’s structure, while
a simpler structure of reasoning tree starting from ni yields a higher R(ni). Combining the evalua-
tion R(ni) of each node ni under a limited budget M , solving Equation (8) is to find the maximum
achievable accuracy gain over the reasoning tree, like exploring possible combinations of M nodes
and picking the best combination. Thus, a higher R(q) indicates that substantial accuracy improve-
ments can be made by correcting just a few critical reasoning steps, signifying a structurally simple
and efficient-to-learn query.

5.3 DYNAMIC WEIGHTING

To strike a balance between data diversity and data scheduling, we propose a weighted scheduling
framework that dynamically adjusts data prioritization. Specifically, queries are assigned adaptive
weights determined by both training step t and r-score R. Specifically, when it is an early training
stage, higher weights are assigned to samples with higher r-scores (indicating lower learning dif-
ficulty), stabilizing the reinforcement learning. When RL training meets the later training phase,
queries’ weights will be redistributed gradually towards lower-r-score samples (higher learning dif-
ficulty) to enhance model generalization.

Motivated by this, the training weight ω of each query is formulated as

α(R(q), t) = (1− γ(t))R(q) + γ(t)(1−R(q)), (9)

ω = rank(α)% · ωmax + (1− rank(α)%) · ωmin, (10)

where t is the current epoch; ωmax and ωmin are hyperparameters that define the maximum and min-
imum training weights; And rank(α) means calculating the reverse order of α in the entire dataset;
γ(t) can be either linear mapping γ(t) = t

T or sigmoid γ(t) = σ
((

t
T − 0.5

))
. The α(R(q), t) is

a monotonically varying function that down-weights high-scoring (simple) queries over time while
up-weighting lower-scoring (difficult) ones. This scheduling approach balances exploitation of eas-
ily learnable patterns and exploration of challenging instances, mitigating catastrophic forgetting of
underrepresented data distributions.
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(a) (b) (c)

Figure 4: (a) The average MCN decreases over time, indicating successful tree optimization. (b) &
(c) To compare metrics, we train models on the top 1/3 of data selected by each. The plots show the
resulting (b) training accuracy and (c) test accuracy. The model used is Qwen2.5-Math-7B.

6 ANALYSIS

6.1 TRAINING AS REASONING TREE OPTIMIZATION

To empirically validate that the training process is optimizing reasoning trees, we conducted an
experiment centered on a new metric: the Minimum Corrective Nodes (MCN). This metric is defined
as the minimum number of node modifications required for the reasoning tree to achieve a specified
target accuracy. A single node modification is counted as one token change; thus, a lower MCN
signifies a well-structured reasoning tree. In our experiment, we tracked the MCN on the DAPA-
Math-17K training set during the training of Qwen2.5-Math-7B, excluding queries where the base
model’s accuracy was below 10%.

As shown in Figure 4(a), the average MCN across the training set exhibits a consistent downward
trend as training progresses, regardless of the target accuracy. This result demonstrates that the rein-
forcement learning process effectively refines the model’s policy at critical decision nodes, thereby
validating our central assumption that training is a process of reasoning tree optimization.

6.2 THE RELATIONSHIP BETWEEN R-SCORE AND LEARNING DIFFICULTY

In this experiment, we want to see which metric best identifies valuable queries for early-stage
training. The process is as follows: First, we use each metric to select the top one-third of the data,
creating several distinct subsets. Second, we train a separate model on each of these subsets for a
single epoch. Finally, we evaluate the resulting models on both the training and test sets.

As shown in Figure 4(b), the subset selected by the ACC-based method initially shows higher av-
erage accuracy on the training set, as expected from its selection criteria. However, as training
progresses, the model trained on the r-score-selected subset quickly surpasses it. This indicates that
the r-score is more effective at identifying queries with low learning difficulty, rather than just initial
accuracy.

The advantage of r-score is even more evident on the test set, as shown in Figure 4(c). Here, the
model trained on the r-score-selected queries consistently outperforms both the ACC-based selection
and a baseline with random query selection (GRPO). This confirms that the queries identified by the
r-score provide the most effective learning signal, leading to better performance improvement and
validating its capability in identifying the real difficulty of queries.

7 EXPERIMENT

7.1 RL TRAINING SETUPS

Training setting We conduct experiments on two different models, including Qwen2.5-Math-7B
and Qwen2.5-7B. We adapt our training codebase from verl (Sheng et al., 2025) and follow the
training recipe of standard GRPO. Our training data is DAPO-Math-17k (Yu et al., 2025), containing
only math problems with integer ground-truth answers. Both the KL-divergence and entropy loss

7
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terms are removed in our experiments. Generation batch size is set to 512. Training is performed
with top-p value of 1.0 and temperature = 1.0.

Evulation We evaluated our models and baselines on six widely used mathematical reasoning
benchmarks: AIME24, AIME25, AMC23 (Li et al., 2024), MATH-500 (Hendrycks et al., 2021),
Minerva Math (Lewkowycz et al., 2022), and OlympiadBench (He et al., 2024). Validation is per-
formed with a top-p value of 0.7 and temperature = 1.0 across all models and test sets. We use
Math-Verify for training, validation, and final evaluation. We report avg@32 for all datasets. All
results are presented as percentages.

Baselines For the throughout comparison, we compare our method against 7 baselines, including
standard GRPO (Shao et al., 2024), SimpleRL-Zoo (Zeng et al., 2025), Eurus-PRIME(Cui et al.,
2025), OPO (Hao et al., 2025), ACC (curriculum learning based on accuracy, using sigmoid weight-
ing), LPPO (Chen et al., 2025b), and Seed-GRPO (Chen et al., 2025a).

Our Methods Re-Schedule is implemented with two weighting schemes: ‘linear’ and ‘sigmoid’.
Unless otherwise specified, the reasoning trees in our experiments are constructed with a branching
factor of k = 4, a maximum depth of d = 4, and a token interval of l = 200. The weighting
schemes are defined as follows: 1. The ‘linear’ scheme uses γ(t) = t/T ; 2. The ‘sigmoid’ scheme
uses γ(t) = σ

((
t
T − 0.5

))
. For both, we set the total number of epochs T = 10. Details of the

training setup can be found in the Appendix B.

7.2 MAIN EXPERIMENT

Table 1: Main benchmark results on Qwen2.5-Math-7B. All values are accuracies multiplied by
100. Best results are in bold.

Model AIME24 AIME25 AMC23 MATH500 Minerva Olympiad Avg.
Qwen2.5-Math-7B 13.8 5.3 44.6 39.6 9.9 13.8 21.2

Classical RLVR Methods
GRPO 28.0 14.3 66.2 78.6 37.5 40.9 44.3
SimpleRL-Zoo 30.8 14.2 65.4 79.2 37.1 40.8 44.6
Eurus-PRIME 20.9 13.0 65.2 79.8 37.5 40.6 42.8
OPO 32.2 13.4 71.5 82.2 38.6 41.0 46.5

Scheduling Methods
ACCsigmoid 31.5 15.6 70.9 80.8 38.6 42.2 46.6
LPPO 32.8 14.9 63.3 79.2 39.0 40.6 45.0
Seed-GRPO 30.7 14.0 71.0 80.0 38.2 38.5 45.4

Our Methods
Re-Schedulelinear 34.2 15.6 72.4 81.2 36.4 42.5 47.1
Re-Schedulesigmoid 35.2 16.0 72.3 82.2 42.3 44.4 48.5

As shown in Tables 1 and 2, our Re-Schedule method consistently sets a new state-of-the-art, achiev-
ing average scores of 48.5 on Qwen2.5-Math-7B and 44.5 on Qwen2.5-7B. It significantly outper-
forms both scheduling baselines like ACCsigmoid (by up to 3.2%) and classical RLVR methods like
OPO/GRPO (by up to 3.8%). These results validate our central claim: that the reasoning tree’s
structure, captured by our r-score, is a more effective way to measure the real learning difficulty of
a query than path-based metrics like accuracy.

7.3 ABLATION EXPERIMENT

We investigate the impact of the reasoning tree’s structure by varying the branching factor k and
maximum depth d. The choice of these parameters determines the fidelity of the approximated
reasoning tree. While larger values for k and d theoretically provide a more accurate approximation
and thus a more effective r-score, they also introduce a significant computational overhead. As
shown in Table 3, our default configuration of k = 4 and d = 4 yields the best average performance
(48.3%). For more detailed analysis, please see Appendices C.3 and C.4.
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Table 2: Main benchmark results on Qwen2.5-7B. All values are accuracies multiplied by 100. Best
results are in bold.

Model AIME24 AIME25 AMC23 MATH500 Minerva Olympiad Avg.
Qwen2.5-7B 5.1 2.5 27.8 34.4 5.9 13.5 14.9

Classical RLVR Methods
GRPO 15.6 8.8 62.5 78.2 38.6 40.4 40.7
SimpleRL-Zoo 17.0 9.6 64.7 76.6 31.6 40.3 40.0
OPO 16.6 8.4 64.6 74.6 31.6 40.3 39.4

Scheduling Methods
ACCsigmoid 16.7 9.8 68.6 79.0 34.2 39.4 41.3
LPPO 15.8 9.4 64.0 76.8 35.3 36.7 39.7
Seed-GRPO 13.3 6.0 63.3 76.6 32.4 36.3 38.0

Our Methods
Re-Schedulelinear 18.4 12.2 68.6 80.4 41.2 42.1 43.8
Re-Schedulesigmoid 18.2 14.0 69.2 81.0 41.5 43.3 44.5

Table 3: Ablation study on tree construction parameters. The default configuration (branching factor
k = 4, depth d = 4) achieves the best performance.

Branch k Depth d AIME24 AIME25 AMC23 MATH500 Minerva Olympiad Avg.
4 4 34.2 16.0 71.1 81.8 42.3 44.4 48.3
3 5 33.8 14.8 68.4 79.6 42.3 42.8 46.9

5 3 31.7 14.2 70.4 81.0 41.9 43.0 47.0

We analyze the sensitivity of our method to the minimum ωmin and maximum ωmax weight hyper-
parameters, which control the dynamic range of the curriculum. Results in Table 4 show that our
default setting of ωmin = 0.5 and ωmax = 2.0 achieves the highest average score (48.5). Decreasing
the dynamic range by either reducing ωmax (to 1.5) or increasing ωmin (to 0.8) leads to performance
degradation. This indicates that a sufficiently large weighting range is crucial for the curriculum to
effectively differentiate between easy and hard samples. Conversely, an overly extreme range (e.g.,
ωmin = 0.2) also degrades performance, possibly because the curriculum excessively under-weights
difficult queries. By assigning them a minimal weight for a prolonged period, the model is prevented
from learning difficult queries. Furthermore, for additional experiments on the design choices for
the r-score calculation, please see Appendix C.1.

7.4 ANALYSIS EXPERIMENTS

7.4.1 COMPUTATIONAL COST ANALYSIS
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Figure 5: Average performance gain versus rea-
soning tree size and computational cost.

As shown in Figure 5, we analyzed the trade-off
between the offline tree construction cost and
the resulting performance gain.

Table 5 presents the time cost measured on 8 ×
H20 GPUs. While larger trees (44) incur higher
preprocessing costs compared to smaller trees
(33), the cost remains manageable relative to
the total training time (approx. 46 hours for
5 epochs), and the performance gains are sub-
stantial.
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Table 4: Ablation study on the weight function hyperparameters, ωmin and ωmax. The default setting
(0.5, 2.0) performs best.

ωmin ωmax AIME24 AIME25 AMC23 MATH500 Minerva Olympiad Avg.
0.5 2.0 35.2 16.0 72.3 82.2 42.3 44.4 48.5
0.5 1.5 31.4 15.4 72.3 81.8 38.1 42.5 46.9

0.5 3.0 33.5 15.0 69.1 81.8 37.5 41.0 46.3

0.8 2.0 36.6 13.6 71.1 81.6 37.1 43.8 47.3

0.2 2.0 33.5 13.9 71.0 80.0 38.2 41.6 46.4

Table 5: Computational cost vs. Performance gain. “Additional Cost” is relative to the total training
time.

Tree Size (kd) 33 43 34 44 (Default)

Time Cost (hours) 3.48 6.21 6.70 22.67
Additional Cost +7.45% +13.30% +14.35% +48.54%
Avg Performance Gain +3.2 +3.0 +3.2 +4.0

7.4.2 IMPACT OF ORDERING

Table 6: Comparison between Re-Schedule (Easy-to-Hard) and Reverse Schedule (Hard-to-Easy).

Schedule AIME24 AIME25 AMC23 MATH500 Minerva Olympiad Avg
Linear Mapping

Re-Schedule (Ours) 34.2 15.6 72.4 81.2 36.4 42.5 47.1
Reverse Schedule 31.9 14.0 67.6 81.0 37.8 41.8 45.7

Sigmoid Mapping
Re-Schedule (Ours) 34.2 16.0 71.1 81.8 42.3 44.4 48.3
Reverse Schedule 30.2 15.4 67.1 80.6 34.9 40.2 44.7

To validate the “easy-to-hard” curriculum design, we compared our method against a “Reverse
Schedule” where lower r-score (harder) samples are prioritized first. As shown in Table 6, the Re-
verse Schedule leads to a significant drop in performance, confirming that starting with structurally
simple samples is crucial for effective learning.

8 CONCLUSIONS

In this work, we challenged the reliance on path-based metrics for RLVR data scheduling. We
introduced the r-score, a novel metric that quantifies learnability based on the structure of a query’s
reasoning tree, and proposed Re-Schedule, a curriculum learning algorithm built upon it. Extensive
experiments demonstrated that Re-Schedule consistently outperforms classical RLVR and existing
scheduling methods, validating that r-score is a more effective proxy for learnability than path-based
accuracy. Our findings establish that a structural understanding of the reasoning process provides a
more powerful and principled foundation for creating efficient training curricula in RLVR.
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A USAGE OF LLMS

Throughout the preparation of this manuscript, Large Language Models (LLMs) were utilized as a
writing and editing tool. Specifically, we employed LLMs to improve the clarity and readability of
the text, refine sentence structures, and correct grammatical errors. All final content, including the
core scientific claims, experimental design, and conclusions, was conceived and written by us, and
we take full responsibility for the final version of this paper.

B DETAILS OF EXPERIMENTAL SETUP

All algorithms are implemented based on the official GRPO codebase within the VeRL framework.
We use a learning rate of 1e-6 without warm-up across all experiments. At each rollout step, we
generate 8 answers for each of 512 sampled questions, then split the data into 16 mini-batches and
train the policy network for 16 gradient steps. Models are trained for at most 150 rollout steps.
Unless otherwise specified, we follow GRPO’s default design choices with token-level loss normal-
ization without dynamic sampling and KL regularization. For all models, the maximum input length
is 1024 and the minimum input length is 3072. All the experiments were conducted on H20 GPUs.

Note: The authors of Eurus-PRIME only published results from training on Qwen2.5-Math-7B.
Therefore, we do not include results for the Qwen2.5-7B model in our comparison.

C SUPPLEMENTARY EXPERIMENT

C.1 EFFECT OF METRIC SELECTION

Table 7: Ablation study comparing our proposed node-level modification metric (‘Fix’) with a
branch-level ‘Pruning’ metric. ‘Fix’ consistently outperforms ‘Pruning’, validating our fine-grained
approach.

Model AIME24 AIME25 AMC23 MATH500 Minerva Olympiad Avg.
Fix
Re-Schedulelinear 34.2 15.6 72.4 81.2 36.4 42.5 47.1
Re-Schedulesigmoid 34.2 16.0 71.1 81.8 42.3 44.4 48.3
Pruning
Re-Schedulelinear 35.7 14.6 73.7 81.0 34.9 41.6 46.9
Re-Schedulesigmoid 33.1 16.7 71.1 82.0 39.0 42.4 47.4

We validate our core design choice for the r-score calculation. Our proposed method (‘Fix’) defines
an ‘edit’ as a single node modification. We compare this against an alternative (‘Pruning’), where an
‘edit’ is defined as pruning an entire sub-branch from a decision point. Table 7 shows that the ‘Fix’
method consistently outperforms ‘Pruning’ for both linear (47.1% vs. 46.9%) and sigmoid (48.3%
vs. 47.4%) schedules. This result shows that compared with the branch ‘Pruning’, the node ‘Fix’ is
more consistent with the training process of reinforcement learning.

C.2 VARIANCE ANALYSIS

Table 8: Variance of Re-Schedule over multiple runs.

AIME24 AIME25 AMC23 MATH500 Minerva Olympiad
Avg. ± Var. 35.2 ± 0.1 16.0 ± 0.0 72.3 ± 0.4 82.2 ± 0.0 42.3 ± 0.6 44.4 ± 0.6

To assess the stability of our proposed Re-Schedule method, we conducted repeated experiments
using different random seeds. Table 8 reports the variance. The results demonstrate that our method
exhibits low variance. This confirms that the reported improvements are statistically stable and

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

not due to random variation. Compared to performance improvements, the impact of variance is
minimal.

C.3 ABLATION ON TOKEN INTERVAL l

To investigate the impact of l on performance and its relationship with model capabilities, we con-
ducted ablation studies on two base models: Qwen2.5-Math-7B and Qwen2.5-7B. We utilized the
Sigmoid weighting mapping for these experiments.

Table 9 summarizes the average accuracy across six benchmarks (AIME24, AIME25, AMC23,
MATH500, Minerva, Olympiad) for varying token intervals l ∈ {200, 400, 600, 1200}.

Table 9: Impact of Token Interval l on Average Accuracy (Sigmoid Mapping).

Interval (l) Qwen2.5-Math-7B (Avg) Qwen2.5-7B (Avg)
l = 200 48.3 44.5
l = 400 48.6 43.2
l = 600 48.9 43.1
l = 1200 46.0 41.1

The results indicate that Re-Schedule is generally robust to the choice of l within the range of
[200, 600]. For the specialized math model (Qwen2.5-Math-7B), performance remains high and
stable as l increases to 600. For the general model (Qwen2.5-7B), while l = 200 yields the best
results, the performance drop at l = 600 is relatively contained. A significant performance drop
is observed for both models when l = 1200. This suggests that when the interval is too large, the
approximated reasoning tree becomes too coarse to capture the critical branching points necessary
for effective r-score estimation.

C.4 SENSITIVITY TO BRANCHING FACTOR k, DEPTH d AND MODIFICATION BUDGET M

We investigated the impact of the reasoning tree size on performance by varying the branching factor
k and depth d on the Qwen2.5-Math-7B model.

Table 10: Ablation study on branching factor k (with fixed d = 4).

Setting AIME24 AIME25 AMC23 MATH500 Minerva Olympiad Avg
Linear Mapping

k = 3 32.5 15.2 74.0 81.8 36.3 41.0 46.8
k = 4 (Default) 34.2 15.6 72.4 81.2 36.4 42.5 47.1
k = 5 35.1 18.1 77.4 81.8 37.8 44.6 49.1

Sigmoid Mapping
k = 3 32.0 15.2 74.2 81.6 38.6 43.1 47.5
k = 4 (Default) 34.2 16.0 71.1 81.8 42.3 44.4 48.3
k = 5 36.4 17.0 75.5 81.2 40.6 43.4 49.0

Varying branching factor k: Fixing d = 4 and l = 200, we tested k ∈ {3, 4, 5}. As shown in
Table 10, increasing k generally improves performance, suggesting that a denser tree captures the
structural difficulty more accurately.

Varying tree depth d: Fixing k = 4 and l = 200, we tested d ∈ {2, 3, 4}. Table 11 shows that
deeper trees provide a better estimation of the reasoning structure, leading to improved downstream
performance.

Varying node modification budget M : Finally, we assess the stability of our method with respect
to the node modification budget M . Fixing k = 4, d = 4, and l = 200, we evaluated performance
across M ∈ {5, 10, 15}. As presented in Table 12, the results are relatively robust to changes in
this parameter. While the default setting of M = 10 yields the optimal average accuracy, varying
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Table 11: Ablation study on tree depth d (with fixed k = 4).

Setting AIME24 AIME25 AMC23 MATH500 Minerva Olympiad Avg
Linear Mapping

d = 2 31.1 15.3 74.2 81.8 38.2 42.2 47.1
d = 3 31.4 14.6 72.7 82.0 39.7 43.3 47.3
d = 4 (Default) 34.2 15.6 72.4 81.2 36.4 42.5 47.1

Sigmoid Mapping
d = 2 31.9 14.8 74.5 81.6 37.2 42.4 47.1
d = 3 33.2 16.4 73.0 80.0 41.9 41.6 47.7
d = 4 (Default) 34.2 16.0 71.1 81.8 42.3 44.4 48.3

Table 12: Ablation study on node modification budget M (with fixed k = 4, d = 4, l = 200).

Setting AIME24 AIME25 AMC23 MATH500 Minerva Olympiad Avg
M = 5 33.6 15.4 72.2 79.0 40.4 43.1 47.3
M = 10 (Default) 34.2 16.0 71.1 81.8 42.3 44.4 48.3
M = 15 34.7 16.0 71.8 82.0 41.6 42.4 48.1

the budget between 5 and 15 results in no significant performance degradation, indicating that the
r-score remains a reliable metric across different budget constraints.

C.5 GENERALIZATION TO DIFFERENT MODEL ARCHITECTURES

To demonstrate the broad applicability of our method beyond the Qwen2.5 family, we conducted
additional experiments on the Qwen3-4B-Base model.

Table 13: Performance comparison on Qwen3-4B-Base.

Model AIME24 AIME25 AMC23 MATH500 Minerva Olympiad Avg
GRPO 24.2 21.8 52.4 86.0 39.4 43.4 44.5
ACC 24.8 23.3 59.3 88.8 41.6 42.0 46.6
Re-Schedule (Ours) 27.6 26.9 57.6 89.8 43.5 47.4 48.8

As shown in Table 13, Re-Schedule consistently outperforms both the standard GRPO baseline and
the accuracy-based curriculum (ACC) across all benchmarks. This confirms that the effectiveness
of the r-score is not limited to specific model architectures or sizes.
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C.6 DYNAMIC R-SCORE CALCULATION

To determine if the r-score should be updated as the model evolves, we compared our standard
static approach (computed once before training) with a dynamic approach where the r-score is re-
computed and weights are updated three times during the training process.

Table 14: Comparison between Static and Dynamic R-Score updates on Qwen2.5-Math-7B.

Method AIME24 AIME25 AMC23 MATH500 Minerva Olympiad Avg
Linear Mapping

Static (Default) 34.2 15.6 72.4 81.2 36.4 42.5 47.1
Dynamic (3 updates) 34.6 14.9 75.3 80.0 39.7 41.6 47.8

Sigmoid Mapping
Static (Default) 34.2 16.0 71.1 81.8 42.3 44.4 48.3
Dynamic (3 updates) 35.3 15.2 74.2 82.4 42.7 43.6 48.9

As shown in Table 14, the dynamic approach yields performance comparable to the static baseline
(e.g., 48.9% vs. 48.3% for Sigmoid mapping). Given the substantial computational cost of re-
generating reasoning trees during training, we conclude that the static r-score serves as a sufficient
and efficient prior for guiding the curriculum.

C.7 GENERALIZATION TO CODE GENERATION

Table 15: Performance comparison on Code Generation (LiveCodeBench v5).

Method pass@1 pass@4
GRPO 25.4 35.4
ACCsigmoid 25.8 36.0
Re-Schedulesigmoid 26.3 37.8

To validate the generalization capability of Re-Schedule beyond mathematical reasoning, we ex-
tended our evaluation to the domain of Code Generation. We utilized DeepSeek-R1-Distill-Qwen-
1.5B as the base model. The model was trained on the ArcherCodeR dataset Wang et al. (2025a),
which contains 6,753 code generation tasks. For evaluation, we used the LiveCodeBench v5 bench-
mark Jain et al. (2024). We report pass@1 and pass@4 metrics (averaged over 8 samples).

As shown in Table 15, Re-Schedule consistently outperforms both the standard GRPO baseline and
the accuracy-based curriculum (ACC). Specifically, our method achieves a +0.9% improvement in
pass@1 and a significant +2.4% improvement in pass@4 compared to GRPO. These results confirm
that the structural insights captured by the r-score are effective in the coding domain, where the
“reasoning tree” corresponds to the decision space of code logic and syntax.
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