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Abstract

We present ThinkPrune, a simple yet effective method for pruning the thinking length
for long-thinking LLMs, which have been found to often produce inefficient and redundant
thinking processes. Existing preliminary explorations of reducing thinking length primarily
focus on forcing the thinking process to early exit, rather than adapting the LLM to optimize
and consolidate the thinking process, and therefore the length-performance tradeoff observed
so far is sub-optimal. To fill this gap, ThinkPrune offers a simple solution that continuously
trains the long-thinking LLMs via reinforcement learning (RL) with an added token limit, be-
yond which any unfinished thoughts and answers will be discarded, resulting in a zero reward.
To further preserve model performance, we introduce an iterative length pruning approach,
where multiple rounds of RL are conducted, each with an increasingly more stringent token
limit. We observed that ThinkPrune results in a remarkable performance-length tradeoff
on the AIME24 dataset, the reasoning length of DeepSeek-R1-Distill-Qwen-1.5B can be
reduced by half with only 2% drop in performance. We also observed that after pruning, the
LLMs can bypass unnecessary steps while keeping the core reasoning process complete.

1 Introduction

Recent advances in large language models (LLMs) have demonstrated the effectiveness of inference-time
scaling through reinforcement learning (DeepSeek-AI, 2025; OpenAI, 2024; Liu & Zhang, 2025; Zeng et al.,
2025a), where LLMs learn to produce long and sophisticated reasoning behaviors such as self-refection and
verification, significantly increasing their performance on a wide range of benchmarks. However, one key
challenge of inference-time scaling is the significant number of tokens produced at inference time, leading to
high computational and memory overhead. For example, on the MATH500 (Lightman et al., 2023) benchmark,
the DeepSeek-R1-Distill-Qwen-1.5B model generates solutions with more than 15,000 tokens on average,
while many of the questions could have been solved with fewer than 1,000 tokens by regular LLMs. This
highlights the issue of over-thinking, where many reasoning steps might be redundant or inefficient (Kumar
et al., 2025; Chen et al., 2024; Sui et al., 2025).

There are now some preliminary explorations of limiting the generation length via budget-forcing (Fu et al.,
2024; Muennighoff et al., 2025), where, when reaching a given token limit, the thinking process is forced to
early exit, e.g., by appending an end-of-thinking token and producing an answer right away. Figure 1(a) (left)
shows an example output of S1 (Muennighoff et al., 2025), a budget-forcing method, under a low budget (2000
thinking tokens), where the thinking process spent 453 tokens just to understand the problem, and therefore
could not complete its second round of thought within the budget. Accordingly, a non-trivial performance
drop would occur as the budget gets tighter, as shown in Figure 1(b) (blue lines).

However, this is apparently sub-optimal. When the budget is low, a much more sensible solution is to remove
the redundant thinking or unimportant steps (such as the problem paraphrasing), rather than maintaining
the inefficient thinking and getting it killed. As a result, the performance drop as thinking length shrinks
may have been significantly overestimated. So far, there have not been explorations that seek to fine-tune the
model to adapt to smaller thinking budgets, and thus, we still do not have a good estimate of how much
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Suzanne walks four miles every third day. What is the fewest number of miles she can walk in February?

First, February can have 28 or 29 days… Wait… let me 
double-check … But before that, let me re-read the problem…

Problem understanding: 453 tokens

If she walks every third day… then 1, 4, 7, …22, 25, 28. 
Wait, that's 10 days in 28 days.  Wait… Let me think again…
Therefore, the fewest number of miles … is 40 miles.

Problem-solving attempt 1: 354 tokens

Wait…can we have a lower number? …So, day 3, 6, 9, etc.
Wait, but that's conflicting with my earlier thought.
Wait, now I‘m confused. So, let’s clarify. If it‘s every third 
day</think> Final Answer: \boxed{40}

Problem-solving attempt 2: 204 tokens

But wait, let me verify… Wait, but hold on, let me think…
Therefore, the minimal is 40.

Self-verification: 991 tokens

… let me think step by step…assume it's a non-leap year with 
28 days.

Problem understanding: 166 tokens

February has days 1 through 28…So starting from day 1, 
adding 3 each time: 1, 4, 7… 28. Therefore … 40 miles

Problem-solving attempt 1: 337 tokens

But wait, is there a way she can walk fewer miles? … If she 
starts on day 2… But le me check…
Hence, the answer is 36.
</think>

Problem-solving attempt 2: 548 tokens

But let me double-check that… But wait…Alternatively…

Self-verification: 324 tokens

Budget-forcing ThinkPrune

(a) Example Reasoning Chains. (b) Accuracy vs. Think Length.

Figure 1: Comparison between budget forcing and ThinkPrune. (a) Example Reasoning Chains: Under a
2000-token thinking budget, applying budget-forcing on the original model uses up all token budgets before
identifying the mistake, leading to a wrong answer. In contrast, the model trained with ThinkPrune solves
the problem more efficiently, using fewer tokens and giving the correct answer. (b) Performance of the original
LLM and the model after ThinkPrune training under different thinking token budgets.

redundancy there is in the long thinking process that can be removed. Specifically, the following research
questions remain unanswered:

• Can we fine-tune an LLM with long CoT to prune its thinking length, while minimizing the performance
drop?

• What would be the length-performance tradeoff when the long CoT is pruned?

• What happens to the reasoning chain when it gets pruned? What steps or words are most likely to be
pruned?

In this paper, we seek to fill this gap. We propose ThinkPrune, a simple yet effective length-pruning strategy
for LLMs with long CoT, which enforces a maximum generation length during RL training. Specifically,
given an LLM with long CoT, we perform continuous RL following the same scheme of DeepSeek-R1, except
that we impose a strict token limit during training (e.g., 4,000 tokens for both reasoning and answer tokens).
Any tokens beyond this limit are discarded before reward computation. This means that even if the model
generates a correct answer beyond the allowed length, it still receives a reward of 0 because the answer is
clipped and cannot be extracted. The task performance can be further preserved with an iterative pruning
strategy, where multiple rounds of RL are conducted with increasingly more stringent length limits.

Extensive evaluation demonstrates a strong trade-off between generation length and performance for
ThinkPrune. For example, ThinkPrune reduces the average generation length from 10,355 to 3,574
tokens for the DeepSeek-R1-Distill-Qwen-1.5B model, while also improving average accuracy across four
math benchmarks. Although there is a slight performance drop of 2% for the DeepScaleR-1.5B-Preview
and QwQ-32B models, our method achieves a comparable reduction in generation length — from 5,914 to
3,370 tokens, and from 8,763 to 4494, respectively. Figure 1(b) (yellow lines) also shows the improved
accuracy-thinking length tradeoff. Further analysis shows that ThinkPrune helps LLMs avoid unnecessary
reasoning steps while maintaining focus on solving the question, as shown in Figure 1(a) (right), where
problem understanding drops to 166 tokens. These findings provide valuable insights into improving the
inference-time reasoning efficiency for long-COT LLMs.
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2 Related Work

2.1 Reinforcement Learning for LLM Reasoning

Reinforcement learning (RL) has shown strong potential in improving the reasoning abilities of LLMs across
various domains, such as math (DeepSeek-AI, 2025) and coding (OpenAI, 2025; Liu & Zhang, 2025), and
complicated browser surfing OpenAI (2024). The resulting long-COT LLMs such as OpenAI-o3 (OpenAI,
2024) and DeepSeek-R1 (DeepSeek-AI, 2025) significantly outperform short-COT LLMS and demonstrate
that reinforcement learning with verifiable reward (RLVR) can encourage LLMs to develop deep thinking
behaviors, such as broad exploration and feasibility checks (Gandhi et al., 2025), without relying on complex
reasoning data generation methods like Monte-Carlo Tree Search (Zelikman et al., 2024; Hosseini et al., 2024).
However, these behaviors often lead to much longer reasoning traces, sometimes several times longer than
those produced by short COT LLMs (Sui et al., 2025; Chen et al., 2025), creating an “overthinking” issue that
largely increases inference costs (Kumar et al., 2025). Several recent works have shown that this extended
reasoning often includes redundant or unnecessary verification and reflection, even on simple problems (Wang
et al., 2025; Ji et al., 2025). Our work follows the standard RL training pipeline without changing the reward
function and shows that it is possible to retain strong reasoning performance while significantly reducing
overthinking.

2.2 Efficient Long Chain-of-Thought LLM

Several works have aimed to improve token efficiency in long chain-of-thought (CoT) LLMs. For example,
KimiTeam et al. (2025), Chen et al. (2024), and Shen et al. (2025) reduce the length of reasoning by adding a
length penalty during RL training. Other works, such as Hao et al. (2024) and Geiping et al. (2025), represent
reasoning as an optimization over latent vectors instead of text tokens, which helps shorten the reasoning
process. While these methods are effective when training long CoT LLMs from short COT ones, there have
been few works on reducing the reasoning length for trained LLMs. The most relevant works to ours are
test-time methods that shorten reasoning with early exit strategies (Muennighoff et al., 2025; Fu et al., 2024;
Zeng et al., 2025b). These methods add stopping tokens or limit the maximum number of generated tokens
during testing. However, they often lead to significant performance drops, especially when early stopping
occurs too soon in the reasoning process. In contrast, our work presents a simple and effective method with
further RL training to reduce reasoning length without sacrificing performance.

3 Method

3.1 Overview

Denote Mθ0(·) as an LLM capable of performing long CoT. Given a query q, a sample answer, along with
a long reasoning chain, is sampled from the LLM’s output distribution, i.e., Y ∼ Mθ0(q). Our goal is
to fine-tune the LLM, such that its output length is reduced while the overall performance is desirably
maintained.

ThinkPrune is a simple yet effective RL strategy to achieve the length reduction goal. In what follows, we
will first introduce the RL framework of ThinkPrune, and then introduce an iterative length reduction
strategy to better maintain the performance.

3.2 Reinforcement Learning with Length Clipping

ThinkPrune adopts a similar RL scheme to the DeepSeek-R1 model (DeepSeek-AI, 2025) while reducing
the generation length. Specifically, we adopt the group relative policy optimization (GRPO) algorithm Shao
et al. (2024). The reward function is almost the same as the DeepSeek-R1 framework, except that a length
clipping is added. Formally, denote L as the length limit. The reward function is defined as follows:

R(Y , q; L) =
{

1 if an answer can be extracted from clip(Y , L) and is correct,
0 otherwise; (1)
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where clip(Y ; L) represents clipping the output Y to length L. In other words, the only difference from the
DeepSeek-R1 reward is that the model-generated output is clipped to L before the reward is evaluated. In
this way, output with length above L would not be able to produce a valid answer since it is cut off, thus
receiving a zero reward. This clipping operation effectively encourages the model to produce answers below
the length limit. Such reward design is very simple, so it does not involve any hyperparameter tuning or
reward engineering, and can ensure training stability. Also, since it involves minimal tweaks to DeepSeek-R1’s
training strategy, the proposed solution helps to maintain the long reasoning capabilities inherent in the base
model.

During training, we also append a simple system prompt into each training example to explicitly tell the
model the length limit, such as The output of the assistant should be within L tokens, to explicitly tell the
model the length limit. The full system prompt for each model is shown in Appendix A.1.

3.3 Iterative Length Pruning Strategy

The success of the proposed algorithm relies on the choice of the length limit, L — if L is set too stringently
compared to the original output length of the base model, then the task performance can be seriously
compromised.

Drawing inspiration from the iterative pruning strategy for reducing model parameters (Han et al., 2015),
we propose an iterative length pruning scheme. Denote L∗ as the target length constraint, we introduce a
length schedule, L1 > L2 > · · · > L∗. At each iteration t, we reduce the length constraint to Lt, and further
fine-tune the model θt−1 from last iteration to θt, using the RL procedure described in Section 3.2. Such an
iterative pruning strategy ensures that the LLM learns to recover the performance by gradually compacting
its output reasoning chain.

A critical design choice of the iterative length pruning is the stopping criterion for each iteration of the RL
training. In our implementation, we utilize AIME22 and AIME23 as the dataset as a validation set to choose
the best checkpoint for the next RL iteration. To better balance model performance and generation length
reduction, we allow up to a relative 10% drop in pass@1 accuracy on AIME-22 and AIME-23 compared to the
original model. Among the checkpoints that meet this criterion, we select the one with the shortest average
output length as the starting checkpoint.

4 Experiment

In this section, we conduct empirical evaluations to assess the effectiveness of our proposed method. We first
present the experiment setup in Section 4.1. Then, we present the experiment results in Section 4.2.

4.1 Experiment Setup

Backbone models. Representative open-sourced long reasoning LLMs include DeepSeek-R1 (DeepSeek-AI,
2025) and QwQ (QwenTeam, 2025), along with their distilled variants. In our experiments, we use three
models from these families: Distill-Qwen-1.5B, DeepScaleR-1.5B-Preview, and QwQ-32B.

We group these models into two categories based on the extent of their training: unsaturated and saturated
models. Specifically, while Deepseek-R1-Distill models have been widely used, these models are directly
fine-tuned on the output of DeepSeek-R1 in a supervised fine-tuning manner instead of RL, which could
limits their full potential. Previous work, such as Luo et al. (2025), has shown that further training these
models with RL can improve their performance, especially on math benchmarks. Based on this, we treat
Distill-Qwen-1.5B as an unsaturated model and DeepScaleR-1.5B-Preview as its saturated version, since
it is further trained with RL. Similarly, QwQ-32B is also trained with RL and is considered a saturated
model. This selection of models, covering both unsaturated and saturated types, allows us to more thoroughly
evaluate the effects of thinking length pruning.

Training datasets. Previous work (Ye et al., 2025) has shown that even a small but high-quality training
dataset can improve the LLM performance via RL. Therefore, we utilize a small number of data for model
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training by only using the historical AIME and AMC math questions (AMC, 2025). We use the preprocessed
data from Prime (Cui et al., 2025) and take the AIME-AMC subset for training. In total, the training dataset
consists of 2470 distinct training examples.

Comparisons. We compare with the original backbone models without pruning. Additionally, we include
the budget-forcing method (Muennighoff et al., 2025) for length reduction, which enforces a maximum number
of thinking tokens by appending the end-of-thinking token delimiter (detailed implementation is described in
Appendix A.1). For our method, we report the following two variants:

• One-shot length pruning: We set the maximum length to 4,000/3,000/2,000 tokens respectively and directly
perform RL to reduce the generation length of the LLM.

• Iterative length pruning: Starting from a higher generation length budget, we perform multi-round RL
training and gradually decrease the maximum length after each iteration.

Implementation details. We use the Verl (Sheng et al., 2024) RL framework for high-performance training.
All models are trained with a batch size of 128. The number of rollouts for each question is set to 16 following
prior works (Zeng et al., 2025a; Liu & Zhang, 2025). We use the GROP algorithm (Shao et al., 2024). For
both one-shot and iterative pruning, we employ the same checkpoint selection strategy as mentioned in
Section 3.3, where the checkpoint with the shortest average output length while maintaining a relative 10%
accuracy drop is selected.

Evaluation configurations. We follow prior works to include the following evaluation datasets: MATH-
500 (Lightman et al., 2023), AIME24 (AMC, 2025), AMC23 (AMC, 2025), and OlympiadBench (He et al.,
2024). We use the versions of these dataset hosted in the Qwen2.5-Math GitHub repository for ease of
reference. Following DeepSeek R1 (DeepSeek-AI, 2025), we set the maximum generation length (including
both the thinking tokens and answer tokens) to 32,768 tokens for all the models, far above the maximum
token length during our training. For each testing question, we sample N outputs with a temperature of 0.6
and a top-p value of 0.95, and we report the average accuracy of these N outputs. The number of samplings
varies depending on the model size and dataset size. Specifically, for the two 1.5B models, we use N = 64 for
AIME24 and AMC23 and N = 16 for MATH500 and OlympiadBench. This also refers to the evaluation
hyper-parameters of DeepSeek R1, where the number of sampled responses are adjusted between 4 and 64
depending on the test set size to balance the variance and evaluation cost. For QwQ-32B, we sample N = 16
responses for each question, given its large size and high computational cost.

Since the accuracy evaluation requires complex evaluation of mathematical expressions, we adopt the math
evaluator from Qwen-2.5-math (DeepSeek-AI, 2025), which provides robust answer extraction and advanced
expression comparison.

4.2 Main Experiment: Length Pruning

One-shot length pruning enables significant thinking length reduction. We first evaluate the
effectiveness of one-shot pruning in Table 1 (top 3 rows in each section), where the LLMs are directly trained
with a length limit 2k/3k/4k. We highlight the following observations. First, the simple strategy can effectively
reduce the generation length with moderate negative effect on the performance. For the unsaturated model,
DeepSeek-R1-Distill-Qwen-1.5B, the length reduction rate can be up to 50% with one-shot length pruning.
At the meantime, the average performance is well-maintained and even slightly improved. For saturated
models like DeepScaleR-1.5B-Preview and QwQ-32B, we observe a 40–50% reduction in token usage, with
moderate performance degradation. This highlights the promising efficiency gains through length pruning,
especially when models are initially over-generating. Second, we observe a consistent tradeoff between length
and performance for all models under one-shot pruning. As we lower the token limit from 4k to 2k, the
number of tokens goes down and the accuracy drops slightly. This suggests that cutting more reasoning
tokens aggressively may also limit the reasoning capabilities of the LLMs.

Another interesting phenomenon is that even though the model is trained with an explicit length limit, it
often goes beyond that limit at test time. Particularly, we observe that although trained with an explicit
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Table 1: Performance visualization of ThinkPrune. The accuracy is measured by sampling multiple
responses from the LLMs and taking the average to reduce variance.

Accuracy Generation Length
MATH

500 AIME AMC Olympiad
Bench Avg. MATH

500 AIME AMC Olympiad
Bench Avg.

DeepSeek-R1-Distill-Qwen-1.5B

Original Model 82.9 29.4 70.3 44.7 56.8 5560 15484 10030 11526 10355
ThinkPrune-4k 83.8 29.0 73.6 46.5 58.2 2709 8301 4388 5529 5232
ThinkPrune-3k 83.7 27.8 71.8 44.9 57.1 2557 7968 4096 5140 4940
ThinkPrune-2k 82.9 27.0 72.2 45.6 56.9 2356 7574 3755 4913 4650
ThinkPrune-4k→ 3k 83.9 26.9 71.4 46.0 57.1 2209 6389 3422 4229 4062
ThinkPrune-4k→ 3k→ 2k 83.2 27.1 73.2 46.2 57.4 1938 5631 3039 3687 3574

DeepScaleR-1.5B-Preview

Original Model 88.5 40.3 81.2 52.7 65.7 3084 9463 5202 5907 5914
ThinkPrune-4k 87.1 37.2 80.2 51.4 64.0 2212 6366 3516 4055 4037
ThinkPrune-3k 86.5 34.3 78.8 50.6 62.6 1991 5809 3122 3583 3626
ThinkPrune-2k 86.1 33.3 77.7 49.7 61.7 1880 5528 2961 3348 3429
ThinkPrune-4k→ 3k 87.1 38.4 79.9 51.6 64.2 2086 5869 3278 3731 3741
ThinkPrune-4k→ 3k→ 2k 86.9 36.5 79.4 50.1 63.2 1881 5301 2963 3334 3370

QwQ-32B

Original Model 95.1 78.8 97.5 71.1 85.6 4289 13822 7442 9497 8763
ThinkPrune-4k 94.0 76.3 95.8 68.2 83.5 2552 8787 4173 5687 5300
ThinkPrune-3k 94.0 75.0 95.8 68.6 83.3 2341 8308 3943 5413 5001
ThinkPrune-2k 93.5 73.3 95.5 68.6 82.7 2133 8232 3770 5160 4824
ThinkPrune-4k→ 3k 94.0 73.8 96.1 67.6 82.9 2308 8176 3959 5301 4936
ThinkPrune-4k→ 3k→ 2k 93.8 72.5 95.9 67.3 82.4 2162 7631 3441 4742 4494

length limit, the model can still generate long responses when the problem becomes more difficult such as on
the AIME dataset. This shows that our length pruning does not hurt the model’s deep thinking behavior,
and it maintains the ability to perform complex reasoning for difficult questions.

Iterative length pruning benefits performance preservation and length reduction. The second
question we aim to explore is whether iterative length pruning can better main the original LLM performance
with a decent thinking length pruning compared to one-shot pruning. As shown in Table 1 (last two rows in
each section), we start with LLMs trained using a 4k length limit and then iteratively apply RL with reduced
length limits from 3k to 2k. Our findings are as follows. First, for the two 1.5B models, iterative pruning
leads to better performance with either shorter or similar response lengths compared to one-shot pruning
under the same final length limit. For example, on DeepScaleR, ThinkPrune-4k→3k→2k outperforms the
one-shot 2k model by 1.5% in accuracy while using 59 fewer tokens on average. Similarly, pruning from 4k to
3k leads to better results than directly pruning to 3k. Second, for the QwQ-32B model, performance drops
slightly after length pruning, with an average decrease of 2.7%. Unlike the 1.5B models, iterative pruning
does not help recover the lost performance. We believe this is because it struggles to maintain performance
when the generation token budget is too tight. We will discuss this in more detail in the next paragraph.

Performance-length trade-off along the pruning process. We observe that the experiment results in
Table 1 indicates a positive correlation between the reasoning length and model performance on different
benchmarks. To better understand the trade-off between reasoning length and model performance, we
visualize how these two change during the length pruning training process on the AIME24 dataset (see
Figure 2). During training, we evaluate the model every 20 steps and record both the performance and
the average output length. We then identify the most effective checkpoints (the ones at the frontier of
performance-length trade-off), defined as the checkpoints that achieve the best performance among all the
checkpoints whose average output length is shorter than themselves. This gives us a clear picture of the best
performance the model can reach at each length range, helping us visualize the efficiency boundary of the
pruning process.
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Figure 2: Performance-length trade-off along the length pruning training process evaluated on the AIME24
dataset. The generation length drops quickly in the early stages of training with minor performance drop.

We highlight the following observations: First, mild length pruning leads to strong efficiency gains with
minimal performance drop. When reasoning length reduction is moderate, there exists a favorable trade-off:
significant token reductions can be achieved with only minor drops in performance. For example, we can
reduce the average generation length of QwQ-32B from 14K to 8K while maintaining its performance close to
the original model. Second, for the QwQ-32B model, we observe a distinct critical threshold (marked by the
vertical dotted line in Figure 2). Beyond this threshold, further reducing the reasoning length causes a sharp
and significant drop in performance. We also find enforcing 4k length limit leads to even worse results than
3k length limit on QwQ-32B. This drop partially explains why iterative pruning performs worse on QwQ-32B
than on smaller models like 1.5B. While optimizing hyperparameters and the training data for QwQ-32B may
lead to better performance, we leave the exploration to future work due to the heavy computation cost.

Inference-time trade-off with budget-forcing. We further study how different long-CoT LLMs perform
when applying the budget-forcing method (Muennighoff et al., 2025). Detailed budget-forcing prompt can
be found in Appendix A.1. Figure 3 shows the trade-off between performance and output length on the
Math-500 dataset (left) and the AIME-24 dataset (right), comparing models before and after applying
ThinkPrune with budget-forcing. We highlight two key observations: First, ThinkPrune significantly
improves performance under a limited thinking token budget. For example, ThinkPrune-4k→3k→2k
consistently outperforms the original model when using the same number of thinking tokens. On Math-500, it
reaches similar accuracy while using only about 50% of the original thinking tokens for Qwen1.5B-Distill-R1.
This suggests that ThinkPrune helps the model think more efficiently and make better use of a limited
token budget. Second, ThinkPrune reduces more thinking tokens on easier Math-500 problems than on
AIME-24. This suggests that redundancy in reasoning is related to problem difficulty and that length pruning
can adaptively remove unnecessary thinking for questions at different difficulties.

Table 2: Performance comparison between our method and
the length-based reward from Kimi-1.5.

Accuracy Length
Kimi-1.5 ThinkPrune Kimi-1.5 ThinkPrune

MATH500 83.0 83.2 2108 1938
AIME 27.1 27.1 6617 5631
AMC 72.5 73.2 3519 3039

OlympiadBench 44.3 46.2 4354 3687

Comparison with length-based rewards.
We also compare our method with existing
approaches that incorporate length-based re-
wards to reduce reasoning length. Specifi-
cally, we adopt the length reward introduced in
Kimi-1.5 (KimiTeam et al., 2025), which adds
a length-based penalty to overlong responses.
The final RL reward is the sum of the cor-
rectness reward and the length penalty. We
compare this method with our iterative pruning method, ThinkPrune-4k→ 3k→ 2k. The backbone model
is DeepSeek-R1-Distill-Qwen-1.5B. The data mixture and hyper-parameters used for the baseline training
are the same as our method. The experiment results are shown in Table 2. Our method achieves both
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Figure 3: Inference-time thinking length vs. performance trade-off for different long-CoT LLMs with
ThinkPrune after applying budget-forcing.

higher accuracy shorter output length compared to the Kimi-1.5-style length-based reward baseline. This
demonstrates that our approach is not only simpler but also more effective.

4.3 Reasoning Behavior Analaysis

In this section, we study the reasoning behavior of long-COT LLMs after length pruning. We focus on
answering the following two questions: 1. How does the reasoning behavior of LLMs change, and what gets
removed most after pruning? 2. How does the pruning affect the readability of model-generated reasoning?
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Figure 4: Reasoning-related keyword frequency change
before and after length pruning.

Reasoning-related keyword frequency
change. Figure 4 illustrates the frequency
of specific reasoning-related keywords per re-
sponse in the MATH500 dataset using the
DeepSeek-R1-Distill-Qwen-1.5B model, both
before and after applying our pruning method.
Specifically, we count the number of occurrences of
each keywords within the responses of LLMs and
then normalize the count by the number of tokens
in the responses, which gives us the frequency of
each word in 1000 tokens.

The figure is divided into three sections. The left
section contains phrases that signal hesitations or
self-corrections, which we find undergo a significant
drop in frequency after pruning. This indicates that
the model would hesitate less. The middle section
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Figure 5: Reasoning behavior change before (left) and after (right) length pruning.

contains phrases that signal self-verification, which undergo a slight drop in frequency after pruning. This
indicates that the model would sometimes skip the self-verification steps, which may sacrifice a little bit of
accuracy, to save the token length. Finally, the right section contains phrases that signal core computation
and reasoning, which have a slight increase in frequency despite the overall reduction in length. This indicates
that the model would maintain the reasoning process, because that is the core process that contributes to the
final solution.

Reasoning behavior change. We further analyze the change in reasoning behaviors that the model
utilizes to solve a problem. Specifically, we first prompt GPT-4o to summarize 9 frequent problem-solving
phases, such as ‘understanding the problem’ and ‘applying known theorems/properties’ (complete list in
Appendix A.2). Then, for each model-generated solution, we prompt GPT-4o to split the output into chunks
and label each chunk with one of these phases. We measure the number of reasoning steps in each phase by
counting segments separated by double newlines (“\n \n”). Figure 5 shows the distribution of these reasoning
steps before and after pruning. As can be observed, the model would spend less time on relatively redundant
steps, such as ‘finalize and present the answer’, ‘reassess solution’, and ‘explore alternative approaches’.
Meanwhile, we observe an increase in the percentage of core problem-solving steps, including ‘applying known
theorems/properties’ and ‘computing or simplifying expressions’. These observations further confirm that the
model would focus more on the core problem-solving steps and save on peripheral steps.

Table 3: Reasoning trace perplexity on
different models.

PPL Avg. Acc
DeepSeek-R1-1.5B-Distill

Original Model 1.91 82.9
ThinkPrune 1.90 83.2

DeepScaleR-1.5B-Preview

Original Model 1.95 88.5
ThinkPrune 2.02 86.9

QwQ-32B

Original Model 2.37 95.1
ThinkPrune 2.24 93.8

Readability evaluation. One common concern in RLVR is that
the heavy RL training may reduce the readability of the model’s
reasoning, resulting in mixed language or non-readable reasoning
trace as shown in R1-Zero model (DeepSeek-AI, 2025). To examine
whether ThinkPrune would also introduce similar issues, we mea-
sure the perplexity of generated reasoning traces on the Math-500
dataset for original model and ThinkPrune-4k→ 3k→ 2k using
Qwen2.5-Math-7B. As shown in Table 3, our pruning method does
not significantly affect reasoning readability — the perplexity remains
nearly identical to the original model. Figure 6 in Appendix A.3
shows an example reasoning trace from the Distill-R1-1.5B LLM
before and after pruning. As shown in the example, the original LLM
repeatedly checks its previous reasoning multiple times, leading to
heavy, redundant reasoning steps. On the contrary, the reasoning
trace remains fully readable and focused on solving the problem
after pruning, with more efficient problem-solving steps and only one
self-verification step.

9
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5 Conclusion

In this paper, we proposed ThinkPrune to reduce the reasoning length of long CoT LLMs. ThinkPrune
introduces a length constraint during RL training, which discards unfinished thoughts and answers when
sampling responses. To maintain model performance, we apply an iterative pruning strategy that gradually
tightens the length limit over multiple rounds training. Experiments show that ThinkPrune reduces the
reasoning length and achieves a strong performance-length trade-off. Further analysis shows that ThinkPrune
effectively removes redundant steps while preserving key reasoning processes.
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A Appendix

A.1 Implementation Details

System prompt used for training. The system prompt for DeepSeek-R1-Distill-Qwen-1.5B and Deep-
ScaleR during training is shown in Table 4 to align with the original RL training of DeepSeek-R1. For
QwQ-32B, we use a much similar prompt, “you are a helpful assistant. Your output should be within {N}
tokens.”.

Table 4: Template for DeepSeek-R1-Distill-Qwen-1.5B and DeepScaleR. {N} will be replaced with the length
limit for training (e.g., 2000 and 4000).

A conversation between User and Assistant. The user asks a question, and the Assistant solves it.
The assistant first thinks about the reasoning process in the mind and then provides the user with
the answer. The reasoning process and answer are enclosed within <think> </think> and
<answer> </answer> tags, respectively, i.e., <think> reasoning process here </think>
<answer> answer here </answer>. The output of the assistant should be within {N} tokens.

Implementation of budget forcing. We follow the official implementation of budget forcing in S1 Muen-
nighoff et al. (2025) and made minor changes. Since the original implementation is coupling with the
lm-harness-eval framework (Gao et al., 2024), we revise the code to remove such dependency. Also, to
stop the thinking process of the LLM, we append “</think>\n\n**Final Answer:**\n\n” to the generation
of the LLM instead of “< |im_start| >answer\nFinal Answer:” used by the S1 model. This is because we
empirically find the DeepSeek-R1-Distill-Qwen-1.5B model typically summarize its final answer starting with
“**Final Answer:**\n\n”. Finally, we sample multiple responses to reduce the variance in model performance
instead of using greedy decoding as the original implementation.

A.2 Analyze the Reasoning Behavior Change

We use GPT-4o to analyze the reasoning behavior of LLMs by segmenting their long-form solutions into high-
level problem-solving phases. The prompt used for this task is shown in Figure 5. Since the model-generated
solutions are very long, we only require GPT-4o to output of the first step and last step in each chunk to
represent that chunk. Since the model-generated solutions are often very long, we ask GPT-4o to return
only the first and last reasoning steps of each phase, which serve as markers to define the boundaries of each
chunk.

To align these chunks with the original model output, we use string matching to locate the start and end
positions of each chunk in the raw text. Within each matched chunk, we estimate the number of reasoning
steps by counting the number of “\n \n” delimiters. This gives us a step-level breakdown of how much
reasoning is devoted to each phase.
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Okay, so I have this problem here: … Let me try to figure this 
out step by step.

Problem understanding: 64 tokens

First, let me visualize what’s going on …
Problem-solving attempt-1: 441 tokens

Let me confirm with another approach …
Self-verification-2: 103 tokens

So, is that it? … let me double-check …
Self-verification-1: 100 tokens

Okay, so I have this problem here: … let me try to figure this 
out step by step …

Problem understanding: 61 tokens

First, I know a regular hexgon…
Given that the perimeter….
Now a regular hexagon has six sides. So to find …
Since each side …
Perimeter of hexagon = … = 42 inches.

Problem-solving attempt-1: 230 tokens

Problem-solving attempt 2: 548 tokensWait, that seems straightforward. Let me just double-
check …
Yep, that seems correct.

Self-verification: 57 tokens

Original Model ThinkPrune

Wait, another thought: …
Self-verification-3: 196 tokens

Alternatively, if I think about the height of the triangle
Self-verification-4: 112 tokens

A regular hexagon can be divided into six equilateral triangles. 
If the perimeter of one of the triangles is 21 inches, what is the perimeter, in inches, of the regular hexagon?

Figure 6: Example reasoning trace of Distill-R1-1.5B before and after length pruning on a Math-500 question.

Alright, so I have this equation to solve: \(x = …
So, I'll take it one step at a time…

Problem understanding: 98 tokens

First, let's write down the equation again …
Problem-solving attempt-1: 455 tokens

Wait, but just to make sure, let me check if there are any …
Self-verification-2: 417 tokens

Wait, so I have two solutions: x = 1 and x = 5 …
Self-verification-1: 244 tokens

Okay, so I need to solve the equation \( x = \sqrt{11 - 2x} + 4 
\). Hmm, let me think about …

Problem understanding:  100 tokens

So, let's start by isolating the square root term…
Now, the left side is \( x - 4 \), …
Simplify the terms: …
Combine like terms: …
Therefore, the solutions are …

Problem-solving attempt-1: 418 tokens

Problem-solving attempt 2: 548 tokensThus, the only solution is \( x = 5 \). Let me verify this by 
plugging it back into the original equation …
I think that's the only solution. So, the answer is \( x = 5 \).

Self-verification: 132 tokens

Original Model ThinkPrune

Wait, just to visualize, when x = 5 …
Self-verification-3: 124 tokens

Wait, actually, at x = 5.5, the square root …
Self-verification-4: 431 tokens

Find all values of $x$ that satisfy the equation $x = \!\sqrt{11-2x} + 4$.

Figure 7: Example reasoning trace of Distill-R1-1.5B before and after length pruning on a Math-500 question.

A.3 Additional Examples

In this section, we include additional reasoning trace examples of Distill-R1-1.5B LLM before and after
applying ThinkPrune on Math-500 questions. As shown in Figure 6 and Figure 7, the original model
repeatedly checks its previous reasoning for these simple math questions, leading to many redundant self-
reflection steps. On the contrary, our method successfully removes these repeated steps, and helps the LLM
focus on the problem solving, while keeping perfect readability.
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Table 5: Prompt for the analysis of the reasoning behavior.

### **Task Description**

Given a mathematical question and its detailed solution, the task is to segment the solution into high-level
problem-solving phases. The goal is to group consecutive steps into meaningful phases and output only
the start and end steps of each phase.

Note: Each **reasoning step** in the solution is separated by a **double line break ("\n\n")**.
− − − − −−
### **Requirements**

1. **Segment the full solution into distinct problem-solving phases** based on logical progression.
2. **Each phase should have a start and an end step**.
3. **A phase can appear multiple times** in different parts of the solution.
4. **The order of phases is flexible**—they can appear in any logical sequence depending on the nature of the solution.
5. **Only the first and last steps of each phase should be output**, reducing redundancy.

− − − − −−
### **High-Level Problem-Solving Phases**

Each step in the solution should belong to one of the following **ten high-level phases**:

1. **Understanding the Problem**: Identifying given data, definitions, and the goal.
2. **Reformulating the Problem**: Changing variables, rewriting expressions, or restructuring sums.
3. **Applying Known Theorems/Properties**: Using standard formulas, identities, or mathematical principles.
4. **Breaking Down into Subproblems**: Decomposing the problem into manageable components.
5. **Computing or Simplifying Expressions**: Performing algebraic manipulation or numerical evaluation.
6. **Substituting Known Values or Results**: Using precomputed values or standard mathematical constants.
7. **Reassess and Verify Local Steps**: Checking for errors or inconsistencies within a small part of the solution.
8. **Reassess the Whole Solution**: Reviewing the entire solution for logical correctness and consistency.
9. **Exploring Alternative Approaches**: Considering different methods to solve the problem.
10. **Finalize and Present the Answer**: Writing the final result and ensuring clarity.
− − − − −−
### **Output Format**
The output should consist of **multiple phases**, each represented in the following format:

“‘
[ Phase X ]: {Phase Name}
[Start]: {Text of first step in the phase}
[End]: {Text of last step in the phase}
“‘

Where:

- **Phase X** represents the index of the phase (e.g., Phase 1, Phase 2, etc.).
- **Phase Name** is one of the ten high-level categories.
- **Start** is the first step of the phase.
- **End** is the last step of the phase.

#### **Example Output**

“‘
[Phase 1]: Understanding the Problem
[Start]: [Text of step 1]
[End]: [Text of step 3]

[Phase 2]: Reformulating the Problem
[Start]: [Text of step 4]
[End]: [Text of step 5]
...
[Phase 4]: Finalize and Present the Answer
[Start]: [Text of step X]
[End]: [Text of step Y]
“‘
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