

RTG: REVERSE TRAJECTORY GENERATION FOR LEARNING RIGID-BODY MANIPULATION UNDER SPARSE REWARD

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Deep Reinforcement Learning (DRL) under sparse reward conditions remains a
014 long-standing challenge in robotic learning. In such settings, extensive exploration
015 is often required before meaningful reward signals can guide the propagation of
016 state-value functions. Prior approaches typically rely on offline demonstration
017 data or carefully crafted curriculum learning strategies to improve exploration ef-
018 ficiency. In contrast, we propose a novel method tailored to rigid body manip-
019 ulation tasks that addresses sparse reward without the need for guidance data or
020 curriculum design. Leveraging recent advances in differentiable rigid body dy-
021 namics and trajectory optimization, we introduce the Reverse Rigid-Body Simu-
022 lator (RRBS), a system capable of generating simulation trajectories that terminate
023 at a user-specified goal configuration. This reverse simulation is formulated as a
024 trajectory optimization problem constrained by differentiable physical dynamics.
025 RRBS enables the generation of physically plausible trajectories with known goal
026 states, providing informative guidance for conventional RL in sparse reward en-
027 vironments. Leveraging this, we present Reverse Trajectory Generation (RTG),
028 a method that integrates RRBS with a beam search algorithm to produce reverse
029 trajectories, which augment the replay buffer of off-policy RL algorithms like
030 DDQN to solve the sparse reward problem. We evaluate RTG across various rigid
031 body manipulation tasks, including sorting, gathering, and articulated object ma-
032 nipulation. Experiments show that RTG significantly outperforms vanilla DRL
033 and improved sampling strategies like Hindsight Experience Replay (HER) and
034 Reverse Curriculum Generation (RCG). Specifically, RTG is the only method that
035 can solve each task with success rates of over 70% within given compute budget.

1 INTRODUCTION

039 Deep Reinforcement Learning (DRL) serves as the foundation for robot skill acquisition, enabling
040 robots to learn and refine skills that optimize user-defined reward functions. When combined with
041 expressive deep neural policies, RL has demonstrated remarkable success across various domains,
042 including game-playing (Mnih et al., 2015), language-based reasoning (Havrilla et al., 2024), robot
043 locomotion (Duan et al., 2016), and robotic manipulation (Yu et al., 2020; Mahmood et al., 2018).
044 Despite these advances, sample efficiency remains a critical challenge, significantly limiting DRL’s
045 applicability in real-world scenarios, particularly in computationally constrained environments. This
046 inefficiency primarily stems from several fundamental limitations of current DRL methodologies.
047 First, general-purpose DRL relies heavily on exploration strategies to discover and connect useful
048 state-transition samples through interaction with the environment. Though various efficient
049 exploration techniques have been developed over the years (Ladosz et al., 2022), these methods
050 often struggle to scale in complex settings. In practical scenarios, exploratory behaviors guided by
051 general-purpose strategies can rapidly become intractable, making it difficult to consistently collect
052 informative samples that yield high reward signals. Second, the formulation of reward functions
053 further exacerbates inefficiency (Eschmann, 2021). In robotic tasks like [tabletop manipulation](#), the
most natural and straightforward reward design is tied to the (partial) completion of the task. How-
ever, such signals are often sparse and the majority of state-transition samples yield zero reward.

Several lines of research have sought to practically improve sample efficiency in DRL. The most widely adopted approach is off-policy learning (Mnih et al., 2015; Lillicrap et al., 2015), where previously collected transition data are repeatedly reused instead of discarding them after each policy update. This strategy significantly reduces the need for fresh interactions with the environment. However, the effectiveness of off-policy methods remains fundamentally constrained by the quality and diversity of the data. To address this limitation, researchers have turned to leveraging domain knowledge to bootstrap learning. One prominent line of work integrates expert demonstrations into the training pipeline (Rengarajan et al., 2022), enabling the agent to initialize policies or guide exploration with trajectories that encode meaningful behavior. Similarly, reward shaping techniques (Ng et al., 1999) incorporate task-specific prior knowledge into the reward function, effectively providing denser feedback and reducing the burden of pure trial-and-error learning. Nevertheless, acquiring high-quality demonstrations or carefully engineered shaping functions is often costly and impractical in real-world applications, where domain knowledge may be limited or noisy. In parallel, another promising direction focuses on improving sampling strategies by biasing the agent toward more informative experiences. Notable examples include Hindsight Experience Replay (HER) (Andrychowicz et al., 2017), which relabels unsuccessful trajectories with alternative goals to extract positive learning signals, and Reverse Curriculum Generation (RCG) (Florensa et al., 2017), which gradually increases task difficulty, starting from states close to successful completion.

Drawing on insights from HER and RCG, we propose a more general and efficient trajectory sampling strategy tailored to rigid body manipulation tasks. While HER has proven effective, its applicability is largely limited to single-object manipulation scenarios, where the object’s goal state can be relabeled by translating it closer to the robot’s current state to generate additional reward. However, this mechanism breaks down in more complex multi-object settings. For instance, consider a common robotic task where two objects must be pushed together on a table (Wang et al., 2023) as illustrated in Figure 1. In such cases, HER fails because intermediate states yield zero reward under arbitrary goal relabeling. By contrast, RCG offers greater generality and can handle a wider range of manipulation tasks under sparse reward, provided that a suitable proximity metric for task completion is available. This metric enables the construction of progressively challenging curricula, guiding the agent from easier to harder tasks. Despite its generality, RCG still depends on general-purpose exploration within each stage of the curriculum.

We observe that the efficiency of HER and the generality of RCG can be unified by generating state samples in a reversed manner. Specifically, instead of relying solely on the forward state transition function $\mathcal{T}(s_{t+1} | s_t, a_t)$, we assume the transition function is time-invertible and introduce the reverse transition function $\tilde{\mathcal{T}}(s_t | s_{t+1}, a_t)$, which predicts the preceding state s_t given the next state s_{t+1} and the control signal a_t . For the class of robotic manipulation tasks, the forward and reverse transition functions naturally correspond to forward and reverse physics simulations. Leveraging recent advances in optimization-based physics simulation (Gast et al., 2015) and differentiable contact mechanics (Huang et al., 2024), we show that sampling from both $\mathcal{T}(s_{t+1} | s_t, a_t)$ and $\tilde{\mathcal{T}}(s_t | s_{t+1}, a_t)$ can be formulated as trajectory optimization problems in forward and reversed time, respectively. These problems can be solved efficiently using Sequential Quadratic Programming (SQP). Equipped with the ability to sample from $\tilde{\mathcal{T}}(s_t | s_{t+1}, a_t)$, we propose the Reverse Trajectory Generation (RTG) algorithm, which actively generates trajectories starting from task-completed states with positive reward, utilizing a reverse rigid-body simulator (RRBS). RTG constructs reverse state-transition tuples by trajectory-optimizing control signals in RRBS. We integrate RTG-generated samples into off-policy DRL frameworks like DQN (Mnih et al., 2015) and DDQN (Van Hasselt et al., 2016) and evaluate the method across various rigid body manipulation tasks. Experiments on tabletop rigid-body manipulation demonstrate that RTG significantly outperforms vanilla DRL, simplified-task HER, and RCG.

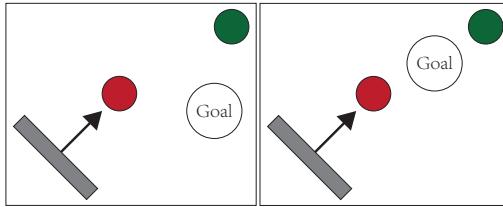


Figure 1: We consider the task of pushing two circular objects (red) and (green) together into the goal region (left), where the reward is non-zero when both objects are inside the goal region. HER works by moving the goal position to acquire non-zero reward. But the reward can be zero for any goal position at an intermediary state (right).

108 **2 RELATED WORK**
109110 **Sparse Reward** in RL is commonly encountered in robotic manipulation tasks, where the reward
111 signal typically reflects task completion. In such settings, problem-agnostic DRL often struggles to
112 explore the sparse, high-reward regions of the state space. To address this, several methods leverage
113 domain knowledge in various forms. For instance, reward shaping (Ng et al., 1999) has been applied
114 to provide dense, distance-based guidance (Trott et al., 2019) or to promote self-exploration (Belle-
115 mare et al., 2016). Additionally, expert demonstrations can bootstrap the learning process through
116 inverse RL (Abbeel & Ng, 2004) and imitation learning (Ross et al., 2011; Ho & Ermon, 2016).
117 However, these approaches often rely on high-quality domain knowledge, which must be specific-
118 ally tailored to each robotic manipulation task. To reduce the need for manual specification, recent
119 works (Zheng et al., 2018; Memarian et al., 2021; Devidze et al., 2022) propose self-supervised
120 tuning of the reward signal through bilevel optimization, adjusting the parameters of the reshaped
121 reward function to maximize the return under the original sparse reward.
122123 **HER and RCG** are two complementary strategies designed to bias trajectory sampling in order to
124 increase the likelihood of visiting high-reward regions. HER (Andrychowicz et al., 2017) is applied
125 in goal-conditioned tasks, where the task can be relabeled to bring the goal closer to the current state,
126 yielding higher reward. Since its inception, HER has been successfully generalized to a variety of
127 settings, including dynamic goal configurations (Packer et al., 2021), visual domains (Sahni et al.,
128 2019), and meta-RL (Packer et al., 2021), among others. Despite its versatility, HER remains limited
129 in application to tasks where the goal can be relabeled to generate high reward, which is not always
130 feasible in more complex multi-object manipulation tasks, as illustrated in Figure 1. In contrast,
131 RCG (Florensa et al., 2017) focuses on starting from initial states that are closer to high-reward
132 regions, effectively reducing the distance to the goal. However, RCG’s effectiveness hinges on the
133 careful design of curricula, which in turn requires domain-specific knowledge, including reversible
134 dynamics (Florensa et al., 2017), approximate distance functions, state demonstrations (Resnick
135 et al., 2018), and guiding policies (Uchendu et al., 2023). Additionally, RCG’s performance is
136 constrained by the exploration capabilities of downstream DRL methods.
137138 **Physics Simulators** play a crucial role in downstream robot learning and manipulation tasks. While
139 rigid body simulators have matured significantly (Erez et al., 2015), consistently delivering high-
140 fidelity trajectory data with impressive performance. One avenue of research aims to improve sim-
141 ulation performance by leveraging massively parallel processors (Xu et al., 2022). However, we argue
142 that such improvements alone do not address the challenge of sparse reward, as the state space can
143 grow exponentially more complex than the performance gains achieved by optimized simulators.
144 Another promising direction involves incorporating physics simulators into model-based DRL. This
145 can be done by deriving analytic policy gradients through backpropagation (Son et al., 2023), or
146 by using differentiable physics simulations to maximize trajectory-wise returns via local optimiza-
147 tion (Levine & Koltun, 2013; Mordatch & Todorov, 2014). In contrast, by exploiting the forward-
148 reverse differentiability of state-of-the-art optimization-based simulators (Huang et al., 2024), we
149 demonstrate that simulations can be performed in reversed time by solving trajectory optimization
150 problems.
151152 **Multi-Object Manipulation** is a common challenge in robot learning, which has received increasing
153 attention and been extensively reviewed in Pan et al. (2022). Multi-object manipulation, par-
154 ticularly under sparse reward conditions, presents a significant challenge for DRL, and a variety of
155 domain knowledge has been explored to enable successful policy learning. For instance, differenti-
156 able dynamics (Wan et al., 2024) and learned dynamics (Li et al., 2020b) have been employed
157 to synthesize control through trajectory optimization. Structured policy parameterization (Li et al.,
158 2020a; Haramati et al., 2024) has been used to transfer learned skills from simpler tasks to more
159 complex ones, such as in the case of RCG. Additionally, reward shaping and Monte Carlo Tree
160 Search (MCTS) have been combined to effectively search for multi-object sorting policies (Song
161 et al., 2020). In contrast, our RTG method does not rely on any additional domain knowledge and
162 can be seamlessly integrated with these techniques to further enhance performance.
163164 **3 PRELIMINARIES: DRL UNDER RIGID BODY DYNAMICS**
165166 We consider the standard DRL setting, where an agent interacts with an environment governed by
167 rigid body dynamics. We assume the environment is fully observable. Formally, the environment is
168

162 defined by a state space \mathcal{S} , an action space \mathcal{A} , and an initial state distribution $p(s_0)$, where we only
 163 consider discrete action space in this work. A deterministic policy π maps a state $s_t \in \mathcal{S}$ to an action
 164 $a_t \in \mathcal{A}$. At the beginning of each episode, the agent samples an initial state $s_0 \sim p(s_0)$. At every
 165 timestep t , the agent selects an action according to $a_t = \pi(s_t)$ and receives a reward $r_t = r(s_t, a_t)$,
 166 where r is the reward function. The environment then transitions to the next state according to
 167 the transition distribution $s_{t+1} \sim \mathcal{T}(\bullet | s_t, a_t)$. The objective of DRL is to maximize the expected
 168 cumulative return, defined as $\mathbb{E}_{s_0 \sim p} [\sum_{t=0}^{\infty} \gamma^t r_t | s_0]$, where $\gamma \in (0, 1)$ is the discount factor.

169 **Off-Policy DRL** In this work, we adopt the standard off-policy Deep Q-Learning (DQN) frame-
 170 work (Mnih et al., 2015). In sparse reward settings, states outside the goal region \mathcal{G} consis-
 171 tently yield zero reward, which presents a major challenge for DRL in discovering high-reward
 172 regions. To learn a near-optimal policy, DQN approximates the optimal state-action value function
 173 $Q(s, a) = \mathbb{E} [\sum_{t=0}^{\infty} \gamma^t r_t | s_0 = s, a_0 = a]$ using a neural network $Q_{\theta}(s, a)$. The optimal value func-
 174 tion satisfies the Bellman equation: $Q(s_t, a_t) = r_t + \max_a Q(s_{t+1}, a)$. Accordingly, DQN trains
 175 Q_{θ} by minimizing the Bellman loss: $\mathcal{L} = \mathbb{E}_{\mathcal{D}} [(Q_{\theta}(s_t, a_t) - y_t)^2]$, where the target value is given
 176 by $y_t = r_t + \max_a Q_{\theta'}(s_{t+1}, a)$ and θ' denotes the parameters of the target network. The loss is
 177 computed over a replay buffer $\mathcal{D} = \{(s_t, a_t, r_t, s_{t+1})\}$ containing transition tuples collected through
 178 interaction with the environment. The quality of these transition tuples is critical for the sample
 179 efficiency of DQN. However, in sparse reward settings, where $r(s_t, a_t) = \mathbb{1}[s_t \in \mathcal{G}]$ and \mathcal{G} repre-
 180 sents a small subset of the state space corresponding to successful task completion, to obtain such
 181 high-quality samples is particularly challenging.

182 **Rigid Body Dynamics** We focus on robot manipulation tasks where the environment is composed
 183 entirely of rigid bodies, which is a standard setting in robot learning that encompasses a wide range
 184 of manipulation scenarios. In this context, the transition function $\mathcal{T}(s_{t+1} | s_t, a_t)$ is governed by a
 185 deterministic rigid body simulator. Mature simulation algorithms like Erez et al. (2015) can produce
 186 highly accurate trajectory data with excellent performance. Recent advances have further improved
 187 these simulators by introducing fully differentiable structures, primarily through optimization-based
 188 approaches (Huang et al., 2024; Romanyà-Serrasolsas et al., 2025). These methods formulate the
 189 transition function as a deterministic implicit function $\Lambda(s_{t+1} | s_t, c_t) = 0$, making it differentiable
 190 with respect to all three variables, where c_t is the continuous control signal, such as joint torques and
 191 forces on the robot. Forward simulation is then performed by solving for $s_{t+1} = \Lambda^{-1}(s_t, c_t)$ using
 192 the inverse function theorem, which can be practically computed via Newton’s method. In addition,
 193 the differentiable structure allows us to compute the state- and action-derivatives ds_{t+1}/ds_t and
 194 ds_{t+1}/dc_t . Such a differentiable structure has been leveraged in prior works like Son et al. (2023);
 195 Levine & Koltun (2013); Mordatch & Todorov (2014) to improve learning stability and efficiency.

4 DRL WITH REVERSE TRAJECTORY GENERATION (RTG)

196 We propose RTG, a method that combines the sample efficiency of HER with the generality of RCG,
 197 further improving the performance of DRL under sparse reward. Our key observation is that con-
 198 ventional DRL methods sample trajectories (s_0, s_1, \dots, s_T) through forward simulations, starting
 199 from an initial state distribution that is typically far from the goal region \mathcal{G} . Due to the high vari-
 200 ance in future state distributions, it becomes increasingly unlikely for the final state s_T to lie within
 201 \mathcal{G} . Even when using trajectory optimization techniques with differentiable simulations (Levine &
 202 Koltun, 2013; Xing et al., 2024), the probability of reaching high-reward regions remains low. This
 203 is because sparse reward functions yield zero gradients outside the goal region, making optimization
 204 ineffective. **To address this, we propose the assumption that the state transition function is invertible**
 205 **and sample trajectories in a time-reversed manner, conceptually corresponding to sampling from the**
 206 **distribution $\tilde{\mathcal{T}}$.** By starting from a known goal state $s_T \in \mathcal{G}$ —where task completion is guaranteed—
 207 we ensure exploration of high-reward regions, thereby significantly improving sample efficiency in
 208 off-policy DRL. If sampling from $\tilde{\mathcal{T}}$ is made tractable, RTG inherits the strengths of both HER and
 209 RCG. Compared to HER, RTG generalizes beyond single-object to multi-object manipulation tasks,
 210 as it only requires that states within the goal region \mathcal{G} can be sampled. For instance, in the toy
 211 example illustrated in Figure 1, we can randomize the positions of two circles within a randomly
 212 positioned goal region. In contrast to RCG, RTG applies the reverse sampling concept at the trajec-
 213 tory level rather than the curriculum level. As a result, RTG does not depend on the underlying DRL
 214 agent’s exploration capabilities.

216 4.1 RRBS WITH TIME REVERSED TRAJECTORY SAMPLING
217

218 In this section, we present the Reverse Rigid-Body Simulator (RRBS), a system capable of generating
219 simulation trajectories that terminate at a user-specified goal configuration. Generally speaking,
220 it is challenging to sample from $\tilde{\mathcal{T}}$ for an arbitrary forward transition function \mathcal{T} . In the stochastic
221 setting, it is well-known that deriving $\tilde{\mathcal{T}}$ via Bayes' rule is intractable (Kingma & Welling, 2014).
222 Fortunately, we show that for optimization-based physics simulators (Gast et al., 2015; Huang et al.,
223 2024) with fully differentiable structures, it is possible to approximately sample from $\tilde{\mathcal{T}}$ by solving
224 trajectory optimization problems. Specifically, suppose the simulator is defined by a fully differ-
225 entiable implicit function $\Lambda(s_{t+1}, s_t, c_t, q(a_t)) = 0$. Here we condition the implicit function on an
226 additional term $q(a_t)$, which is denoted as the discrete action-dependent configuration. In this work,
227 we consider robot manipulation tasks with discrete action space. For example, in a robot pushing
228 task, the robot can choose the pushing position and orientation by selecting action a_t . In this case,
229 we can model $q(a_t)$ as the position and orientation of the robot end-effector.

230 Under our setup, forward simulation can then be performed by using the Newton's method to solve:
231 $\arg \min_{s_{t+1}} \|\Lambda(s_{t+1}, s_t, c_t, q(a_t))\|^2$. Similarly, given s_{t+1} , a_t , and c_t , we can perform time-reversed
232 simulation by solving for s_t via:

$$233 \arg \min_{s_t} \|\Lambda(s_{t+1}, s_t, c_t, q(a_t))\|^2. \quad (1)$$

235 However, we argue that this approach is impractical for DRL training. The optimal action $a_t = \pi(s_t)$
236 depends on the previous state s_t , which is unknown when starting from s_{t+1} . As a result, we cannot
237 determine the corresponding optimal action a_t , making the reverse simulation ill-posed. This issue
238 has also been noted in Barkley et al. (2024). Further, the continuous control signal c_t is unknown a
239 priori. For example, it is non-trivial to infer the robot joint torques and forces in order for the robot
240 to push an object along a given direction. Instead, we propose the following physics-constrained
241 optimization, which allows us to search for the continuous control signal c_t that reaches a user-
242 specified previous state s_t :

$$244 \arg \min_{s_t, c_t} \mathcal{O}(s_t, a_t) + \lambda \|c_t\|^2 \quad \text{s.t.} \quad \Lambda(s_{t+1}, s_t, c_t, q(a_t)) = 0, \quad (2)$$

246 where \mathcal{O} is a user-defined objective function, and our second term serves as a minimal-effort reg-
247 ularization weighted by λ to stabilize the optimization. Compared to Equation 1, this formulation
248 offers two key advantages. First, it enables automatic determination of the control signal c_t . Second,
249 it introduces a flexible, state-dependent objective function \mathcal{O} , which can be easily defined based on
250 the robot action specification. For example, if our action a_t requires the robot to push an object in
251 the direction of $d(a_t)$, then we can define the objective function as:

$$252 \mathcal{O}(s_t, a_t) = (x_t^i, y_t^i) d(a_t), \quad (3)$$

254 where (x_t^i, y_t^i) is the position of the object to be pushed. That is, we maximize the pushing distance
255 along the negative pushing direction to reflect the time-reversed nature of reverse simulation.

256 Finally, we propose an h -step generalization of Equation 2, *i.e.*, we jointly optimize over a sequence
257 of h consecutive states:

$$259 \arg \min_{\substack{s_t, \dots, s_{t-h+1} \\ c_t, \dots, c_{t-h+1}}} \mathcal{O}(s_{t-h+1}, a_t) + \lambda \sum_{k=0}^{h-1} \|c_{t-k}\|^2 \\ 260 \quad \text{s.t.} \quad \Lambda(s_{t-k+1}, s_{t-k}, c_{t-k}, q(a_t)) = 0 \quad \forall k = 0, \dots, h-1, \quad (4)$$

264 which effectively performs physics-constrained trajectory optimization over a time horizon of h
265 steps. This h -step formulation is particularly useful in robotic manipulation tasks, where actions
266 such as pushing or sliding typically span multiple timesteps during which the robot applies the same
267 action, *e.g.*, pushing direction and distance. Equation 4 allows us to optimize the full state trajectory
268 over the duration of an entire robot action. We denote Equation 4 as the action-dependent reverse
269 sampling function $(s_{t-h+1}, \dots, s_t) = \text{RS}^h(s_{t+1}, a_t)$. We refer readers to Appendix A for more details
of this algorithm.

270 Note that solving time-reversed simulations is significantly slower than solving forward simulations.
 271 This is because forward simulation involves h decoupled Newton solves, each independent of the
 272 others. In contrast, the reverse simulation couples h consecutive states into a single trajectory opti-
 273 mization problem, as formulated in Equation 4. Nevertheless, we show that this optimization can be
 274 solved efficiently using Sequential Quadratic Programming (SQP) (Boggs & Tolle, 1995). Thanks
 275 to the sparse dependencies between consecutive states, we can exploit the tridiagonal sparsity pat-
 276 tern of the Hessian matrix to accelerate the underlying linear solve (Jordana et al., 2025). As proven
 277 in Appendix A.3, the per-iteration computational cost of our SQP remains linear in the trajectory
 278 length, *i.e.*, $O(h)$.

281 4.2 FORWARD REPLAY

283 One challenge with trajectory optimization is that numerical solvers rarely converge to exactly
 284 physically consistent solutions, *i.e.*, $\Lambda(s_{t-k+1}, s_{t-k}, c_{t-k}, q(a_t)) = 0$, due to numerical errors.
 285 This mismatch introduces discrepancies between forward and reverse simulations. To mitigate
 286 this issue, we adapt a forward replay procedure. After trajectory optimization, we run the for-
 287 ward simulator for each $k = 1, \dots, h$ using the optimized control signal c_{t-k} , updating states as
 288 $s_{t-k+1} \leftarrow \arg \min_{s_{t-k+1}} \|\Lambda(s_{t-k+1}, s_{t-k}, c_{t-k}, q(a_t))\|^2$. In our experiments, forward replay effec-
 289 tively reduces distributional bias and accelerates convergence.

292 4.3 RTG WITH EXPLORATION VIA BEAM SEARCH

294 In this section, we demonstrate how the reversed simulator RRBS can be leveraged to guide DRL
 295 toward high-reward regions. A naïve strategy is to rely exclusively on the reverse simulator to gener-
 296 ate state-transition tuples, from which the policy can be trained directly via the Bellman loss. While
 297 this approach is highly data-efficient, it is often computationally prohibitive in practice, since gener-
 298 ating samples with the reverse simulator requires solving a large number of trajectory optimization
 299 problems via Equation 4. Furthermore, because the reverse simulator cannot exploit the learned
 300 policy π to propose actions, it lacks the ability to balance state exploration with policy exploita-
 301 tion. To address these limitations, we draw inspiration from off-policy reinforcement learning with
 302 offline data, in particular Reinforcement Learning with Prior Data (RLPD) (Ball et al., 2023). We
 303 treat reverse-sampled trajectories as additional expert demonstrations, denoted by $\tilde{\mathcal{D}}$. These offline
 304 trajectories generated by RTG can be seamlessly integrated into any off-policy RL algorithm, in the
 305 same spirit as RLPD. Concretely, we adopt the symmetric sampling strategy proposed in RLPD: for
 306 each training batch, 50% of samples are drawn from the online replay buffer \mathcal{D} , and the remaining
 307 50% from the reverse dataset $\tilde{\mathcal{D}}$, following the scheme of Ross & Bagnell (2012). This design is
 308 also consistent with the recent findings of Tao et al. (2024), which show that resetting agents to more
 309 difficult-to-reach states improves sample efficiency of DRL. In our framework, we accordingly ini-
 310 tialize the agent at a reset probability of 50% for offline visited state distribution and 50% for task
 311 initial state distribution $p(s_0)$.

312 The remaining challenge in our algorithm design is to determine how to generate time-reversed
 313 trajectories via the trajectory optimization in Equation 4 in order to populate $\tilde{\mathcal{D}}$. To this end, we
 314 leverage the initial state distribution $p(s_0)$. Specifically, we randomly sample a pair consisting of a
 315 goal state $s_T \in \mathcal{G}$ and a candidate initial state $s_0^* \sim p(s_0)$, where s_0^* serves as the target initial state.
 316 Analogous to forward exploration in off-policy DRL, we perform time-reversed exploration: starting
 317 from s_T , we recursively call the BS^h function to generate h preceding states under different actions
 318 $a \in \mathcal{A}$. For the discrete action space, this procedure expands into a tree of length- h sub-trajectories
 319 with branching factor $|\mathcal{A}|$, where we denote each node on the tree as $n = (s_{t-h+1}, \dots, s_{t+1}, a_t)$.
 320 For complex manipulation tasks, however, the resulting tree quickly becomes intractably large. To
 321 balance computational feasibility with sufficient state-space coverage, we adopt a beam search strat-
 322 egy (Tillmann & Ney, 2003). At each tree depth, only the top- B most promising nodes are re-
 323 tained, ranked by their closeness to the target initial state s_0^* as measured by the ranking function
 $r(s_t) = \|s_t - s_0^*\|_M$ with M being a mask matrix detailed in Section 5.2. The process terminates
 324 when the tree reaches a predefined depth or when improvements in the ranking function fall below
 325 a threshold. The overall beam search procedure is summarized in Algorithm 1.

324 **Algorithm 1** Beam-Search($s_0^*, s_T, B, d_{\max}, \delta r$)
325

```

1: function SELECT-TOP-NODES( $\mathcal{S}_{\text{candidate}}, B$ )            $\triangleright$  Select top  $B$  nodes by closedness to  $s_0^*$ 
2:   for each  $s_t \in \mathcal{S}_{\text{candidate}}$  do
3:     Compute rank  $r(s_t) \leftarrow \|s_t - s_0^*\|_M$ 
4:   Return top  $B$  nodes  $n \in \mathcal{S}_{\text{candidate}}$  with smallest  $r(s_t)$ 
5:  $\triangleright$  Beam search with limited breadth
6:  $r_{\text{best}} \leftarrow \infty, \tilde{\mathcal{D}} \leftarrow \emptyset, \mathcal{S}_{\text{active}} \leftarrow \{s_T^*\}$ 
7: for  $d = 1, \dots, d_{\max}$  do                                      $\triangleright$  Generate candidate set
8:    $\mathcal{S}_{\text{candidate}} \leftarrow \emptyset$ 
9:   for each node  $s_t \in \mathcal{S}_{\text{active}}$  do
10:    for each action  $a \in \mathcal{A}$  do
11:       $(s_{t-h+1}, \dots, s_t) = \text{RS}^h(s_{t+1}, a)$  Equation 4       $\triangleright$  Generate new node via TrajOpt.
12:       $\tilde{\mathcal{D}} \leftarrow \tilde{\mathcal{D}} \cup \{(s_{t-h+1}, a, r(s_{t-h+1}, a), s_{t+1})\}$   $\triangleright$  Populate state-transition dataset  $\tilde{\mathcal{D}}$ 
13:       $\mathcal{S}_{\text{candidate}} \leftarrow \mathcal{S}_{\text{candidate}} \cup \{s_{t-h+1}\}$ 
14:    $\mathcal{S}_{\text{active}} \leftarrow \text{Select-Top-Nodes}(\mathcal{S}_{\text{candidate}}, B)$             $\triangleright$  Select top- $B$  candidate nodes
15:    $h'_{\text{best}} \leftarrow \min\{r(s_t) : s_t \in \mathcal{S}_{\text{active}}\}$ 
16:   if  $h'_{\text{best}} > h_{\text{best}} - \delta r$  then
17:     Break
18:    $h'_{\text{best}} \leftarrow h_{\text{best}}$ 
19: Return  $\tilde{\mathcal{D}}$ 

```

5 EVALUATION

We consider a multi-object table-top manipulation problem similar to Huang et al. (2019), where there are N rigid objects on the table. To model rigid body physics, we implement the 2D rigid body simulator using the formulation proposed in Huang et al. (2024). In this case, the state s_t is a concatenation of M rigid body dynamic configurations, denoted as $s_t = (s_t^1, s_t^2, \dots, s_t^M)$ where each $s_t^i = (x_t^i, y_t^i, \phi_t^i, \dot{x}_t^i, \dot{y}_t^i, \dot{\phi}_t^i)$ with the first 3 elements being the position and orientation on the 2D table-top and the last 3 elements being the corresponding velocity.

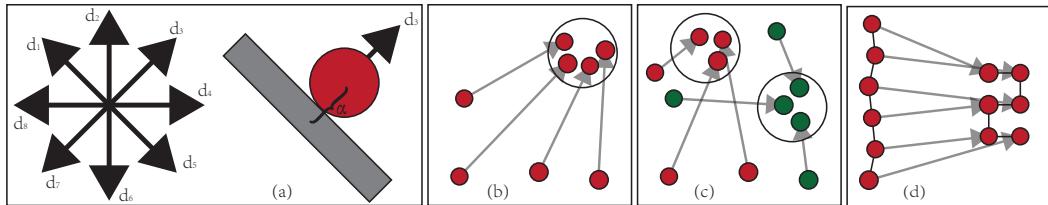


Figure 2: (a): Our action requires the robot to push an object along $N = 8$ uniformly spaced directions for a fixed distance. The initial pushing position is the computed by finding the largest negative α with no collision between objects and robot end-effector. (b): The task of Gathering requires all objects to fall inside the goal region. (c): The task of Sorting requires two types of objects to fall into designated region as determined by their labels. (d): The task of ArtManip. requires pushing a hinge-connected articulated body into an S-shaped target pose.

5.1 RIGID BODY MANIPULATION TASKS

Following the setting in Li et al. (2018), we only allow the robot to manipulate objects via non-prehensile pushing using a set of discrete pushing actions. As illustrated in Figure 2 (a), the pushing direction is discretized into N uniformly spaced directions on the plane; without loss of generality, we set $N = 8$ in our experiments, *i.e.*, 8 equispaced directions (d^1, \dots, d^8) over a fixed distance. For each direction d^j and each object s_t^i , we define the initial pushing position of the robot end-effector as $d^j \alpha + (x_t^i, y_t^i)$, where we choose α as the largest negative value such that the robot end-effector does not intersect any object. As such, the action space \mathcal{A} is discretized into $N \times M$ manipulation primitives, *i.e.*, $|\mathcal{A}| = 8M$. We evaluate our method on three manipulation tasks under absolute sparse reward, which are illustrated in Figure 2 (b-d) and listed below:

378 • **Gathering:** The goal is to gather all objects into a single designated target area \mathcal{G} , which is
 379 an circular area with radius R centered at $(x^{\mathcal{G}}, y^{\mathcal{G}})$ and we define the reward as $r(s_t, a_t) =$
 380 $\prod_{i=1}^M \mathbf{1}[(x_t^i, y_t^i) \in \mathcal{G}]$.
 381 • **Sorting:** The goal of sorting is to divide objects into 2 clusters, with each object equipped
 382 with a label $l(i)$. Each cluster has a designated goal region \mathcal{G}^1 and \mathcal{G}^2 , both with radius R
 383 and centered at $(x^{\mathcal{G}^1}, y^{\mathcal{G}^1})$ and $(x^{\mathcal{G}^2}, y^{\mathcal{G}^2})$, respectively. We define the reward as: $r(s_t, a_t) =$
 384 $\prod_{i=1}^M \mathbf{1}[(x_t^i, y_t^i) \in \mathcal{G}^1 \wedge l(i) = 1] \vee [(x_t^i, y_t^i) \in \mathcal{G}^2 \wedge l(i) = 2]$.
 385 • **Articulated Manipulation (ArtManip.):** In this case, we assume the M objects are
 386 connected using hinge joints, each of which allows free rotation in the range $[-\pi, \pi]$. And the
 387 goal is for the robot to push objects so that the entire articulated body takes a given target
 388 pose, which is defined by a set of M target positions $(x^{\mathcal{G}^i}, y^{\mathcal{G}^i})$. We define the reward as:
 389 $r(s_t, a_t) = \prod_{i=1}^N \mathbf{1}[\|(x_t^i, y_t^i) - (x^{\mathcal{G}^i}, y^{\mathcal{G}^i})\| \leq \epsilon]$. This task is more challenging as pushing one
 390 object may affect the poses of the others.
 391

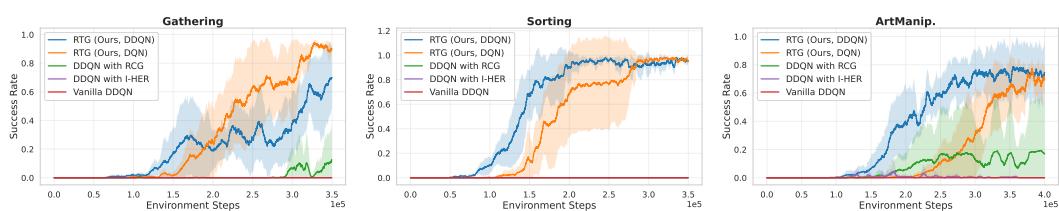
393 5.2 BASELINES

395 To demonstrate that our method can be combined with various off-policy DRL algorithms, we build
 396 our RTG framework with two variants, Deep Q-Networks (DQN) (Mnih et al., 2015) and Double
 397 DQN (DDQN) (Van Hasselt et al., 2016). We compare our method with two baselines: RCG and
 398 HER. The RCG assumes the availability of a distance-to-goal metric, for which we use our ranking
 399 function $r(s_t)$, where we define our mask matrix M to only measure the distance between object
 400 center positions, ignoring orientations. Specifically, we generate the i -th curriculum with initial
 401 states satisfying $r(s_0) < \epsilon_i$. The comparison with HER is trickier as HER requires a goal conditioned
 402 and does not generalize to multi-object tasks as illustrated in Figure 1. Instead, we propose an
 403 implicit goal-conditioning setting. Take the gathering task for example, we use a designated goal
 404 position $(x^{\mathcal{G}}, y^{\mathcal{G}})$. Now suppose we condition our task on this goal position, HER works by moving
 405 the goal position to maximize the reward. This is equivalent to using the modified reward function:
 406 $r_{\text{HER}}(s_t, a_t) = \max_{(x^{\mathcal{G}}, y^{\mathcal{G}})} r(s_t, a_t)$, denoted with subscript HER . Note that using r_{HER} yields a
 407 simpler task than the original HER formulation, since it obviates the requirement for Universal Value
 408 Function Approximators (UVFA) (Bellemare et al., 2016) and the reward function is engineered to
 409 maximize reward over all goals. We call such a reward function implicit HER or I-HER. Similarly,
 410 we can define I-HER reward for the sorting task by treating both $(x^{\mathcal{G}^1}, y^{\mathcal{G}^1})$ and $(x^{\mathcal{G}^2}, y^{\mathcal{G}^2})$ as
 411 goals and define: $r_{\text{HER}}(s_t, a_t) = \max_{\|(x^{\mathcal{G}^1}, y^{\mathcal{G}^1}) - (x^{\mathcal{G}^2}, y^{\mathcal{G}^2})\| \geq 2R} r(s_t, a_t)$, where we require the center
 412 of two circles to be larger than $2R$ to reflect the requirement of sorting. Finally, for ArtManip., we
 413 assume that the goal pose of the articulated body can undergo arbitrary rigid transformations and
 414 define:
 415
$$r_{\text{HER}}(s_t, a_t) = \max_{\delta x, \delta y, \delta \theta} \prod_{i=1}^N \mathbf{1}[\|(x_t^i, y_t^i) - R(\delta \theta)(x^{\mathcal{G}^i}, y^{\mathcal{G}^i}) - (\delta x, \delta y)\| \leq \epsilon],$$
 416

417 with $R(\delta \theta)$ denoting a 2D rotation matrix.

418 5.3 RESULTS

419 The main results are summarized in Figure 3, Figure 4, Figure 5, showing how our methods outper-
 420 form all baselines across all three tasks. RTG with both DDQN and DQN are the only methods that
 421



422
 423 Figure 3: Mean average success rate of algorithms for each task. Results are averaged within
 424 environment. Shaded areas represent ± 1 std. over 5 seeds.
 425
 426
 427
 428
 429
 430
 431

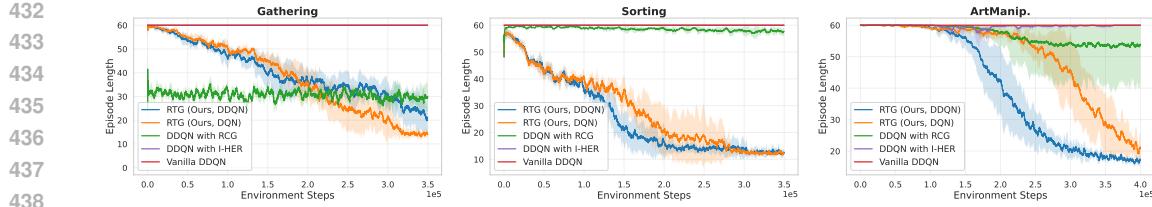


Figure 4: Mean episode length of algorithms for each task. Results are averaged within environment. Shaded areas represent ± 1 std. over 5 seeds.

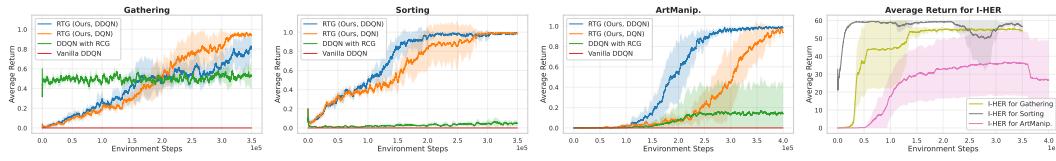


Figure 5: Mean average return of algorithms for each task. Results are averaged within each environment. Shaded areas represent ± 1 std. over 5 seeds. I-HER does not terminate once reaching $r_{\text{HER}}(s_t, a_t) = 1$, but only upon reaching actual task success. Consequently, its episode return spans a larger range than other methods.

is capable of achieving high success rates on every task within a reasonable compute budget. We refer readers to Appendix C for visualizations of how each task is accomplished.

We ablate the design choice of how offline data is leveraged in our framework, as illustrated in Table 1. Our results indicate that, in contrast to Behavior Cloning (BC) or offline RL methods like Conservative Q-Learning (CQL) (Kumar et al., 2020), our method RTG incorporating weakly-guided offline transitions into the replay buffer of off-policy training leads to more effective learning. We refer readers to Appendix D for further ablations regarding the informativeness of offline transitions, and Appendix F for the Forward Replay gap analysis.

We further evaluate the robustness and generality of our approach through four additional experiments conducted on the ArtManip task.

Sim-to-sim transfer to Box2D. We reused the reverse trajectories generated by our method as offline data for a standard Box2D implementation of the task, and trained a forward RL agent purely from these demonstrations. As shown in Figure 6, the agent achieves strong performance, indicating that our generated trajectories are physically consistent and transferable across simulators.

Continuous control with Actor-Critic methods. To evaluate generalization to continuous action spaces, we applied our method to a continuous variant of the ArtManip task, using Twin Delayed DDPG (TD3) (Fujimoto et al., 2018). The action space is parameterized as $(x, y, \Delta x, \Delta y)$, where (x, y) specifies the pusher’s planar position, and $(\Delta x, \Delta y)$ the pusher’s displacement in the x - and y -directions. For the reverse step, we handle the continuous action space by discretizing it via sampling candidate actions. The results in Figure 7 show that our method continues to provide effective guidance in this continuous-control setting.

Comparison with Backplay. We further compared our method against Backplay (Resnick et al., 2018), a strong reset-to-state baseline that also exploits demonstrations. As shown in Figure 8, our method consistently outperforms Backplay, highlighting the advantage of optimizing full reverse trajectories rather than only replaying along a single forward demonstration.

Beam search ablation. Finally, we ablated the beam search depth D and breadth B used in Algorithm 1. Figure 9 shows that performance is robust across a wide range of beam breadths and

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

moderate changes in depth, suggesting that our method does not rely on exhaustive search to be effective. The runtime analysis can be found in Appendix E.

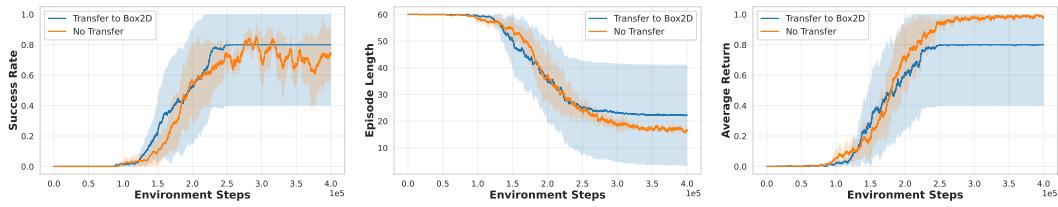


Figure 6: Sim-to-sim transfer to a standard Box2D implementation using our generated reverse trajectories with RTG. Results are averaged within environment. Shaded areas represent ± 1 std. over 5 seeds.

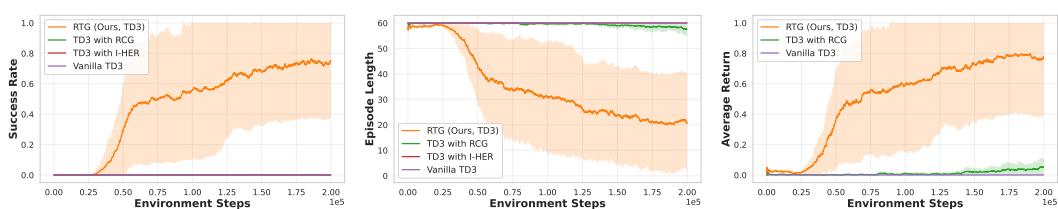


Figure 7: Continuous-control extension using TD3 as the underlying DRL algorithm, where the action space is $(x, y, \Delta x, \Delta y)$ and the reverse step operates on a sampled discretization of this space. Results are averaged within environment. Shaded areas represent ± 1 std. over 5 seeds.

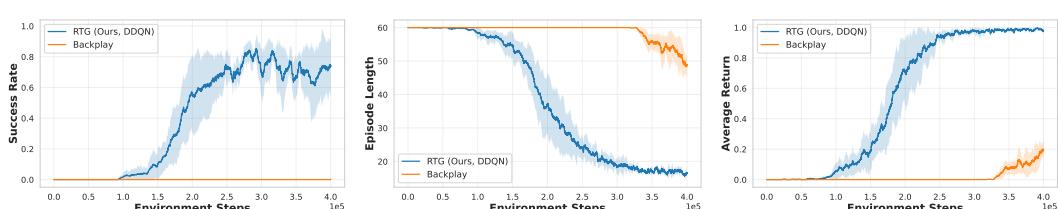


Figure 8: Comparison between our method and the Backplay baseline. Results are averaged within environment. Shaded areas represent ± 1 std. over 5 seeds.

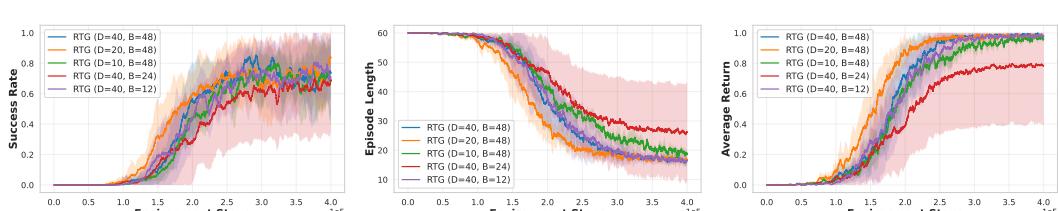


Figure 9: Ablation over beam search depth D and breadth B in Algorithm 1. Performance remains robust across various beam widths and depths, indicating that exhaustive search is not required. Results are averaged within environment. Shaded areas represent ± 1 std. over 5 seeds.

6 CONCLUSION

In this work, we introduce RTG, a sample-efficient DRL method for learning rigid body manipulation skills under sparse reward. The core idea is to leverage trajectory optimization based simulator RRBS to generate reverse trajectories that terminate at high-reward states, and to employ beam search to construct a dataset \mathcal{D} that augments the replay buffer of an off-policy DRL agent like DQN and DDQN. We evaluate RTG on various multi-object manipulation tasks, including sorting, gathering, and articulated object manipulation. Experiments show that RTG substantially improves off-policy DRL's performance, outperforming baselines including simplified-task HER and RCG.

540 REFERENCES
541

542 Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
543 *Proceedings of the twenty-first international conference on Machine learning*, pp. 1, 2004.

544 Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
545 McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
546 play. *Advances in neural information processing systems*, 30, 2017.

547 Philip J. Ball, Laura M. Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforce-
548 ment learning with offline data. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
549 Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *International Conference on Machine
550 Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA*, volume 202 of *Proceedings of
551 Machine Learning Research*, pp. 1577–1594. PMLR, 2023. URL <https://proceedings.mlr.press/v202/ball23a.html>.

552

553 Brett Barkley, Amy Zhang, and David Fridovich-Keil. An investigation of time reversal symmetry
554 in reinforcement learning. In Alessandro Abate, Mark Cannon, Kostas Margellos, and Antonis
555 Papachristodoulou (eds.), *Proceedings of the 6th Annual Learning for Dynamics and Control
556 Conference*, volume 242 of *Proceedings of Machine Learning Research*, pp. 68–79. PMLR, 15–
557 17 Jul 2024. URL <https://proceedings.mlr.press/v242/barkley24a.html>.

558

559 Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
560 Unifying count-based exploration and intrinsic motivation. *Advances in neural information pro-
561 cessing systems*, 29, 2016.

562

563 Paul T. Boggs and Jon W. Tolle. Sequential quadratic programming. *Acta Numerica*, 4:1–51, 1995.
564 doi: 10.1017/S0962492900002518.

565

566 Rati Devidze, Parameswaran Kamalaruban, and Adish Singla. Exploration-guided reward shaping
567 for reinforcement learning under sparse rewards. *Advances in Neural Information Processing
568 Systems*, 35:5829–5842, 2022.

569

570 Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
571 reinforcement learning for continuous control. In *International conference on machine learning*,
572 pp. 1329–1338. PMLR, 2016.

573

574 Tom Erez, Yuval Tassa, and Emanuel Todorov. Simulation tools for model-based robotics: Compar-
575 ison of bullet, havok, mujoco, ode and physx. In *2015 IEEE international conference on robotics
576 and automation (ICRA)*, pp. 4397–4404. IEEE, 2015.

577

578 Jonas Eschmann. Reward function design in reinforcement learning. *Reinforcement learning algo-
rithms: Analysis and Applications*, pp. 25–33, 2021.

579

580 Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse cur-
581 riculum generation for reinforcement learning. In *Conference on robot learning*, pp. 482–495.
582 PMLR, 2017.

583

584 Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
585 critic methods. In *International conference on machine learning*, pp. 1587–1596. PMLR, 2018.

586

587 Walter Gander and Gene H Golub. Cyclic reduction-history and applications. In *Scientific Comput-
588 ing: Proceedings of the Workshop, 10-12 March 1997, Hong Kong*, pp. 73. Springer Science &
589 Business Media, 1998.

590

591 Theodore F Gast, Craig Schroeder, Alexey Stomakhin, Chenfanfu Jiang, and Joseph M Teran. Opti-
592 mization integrator for large time steps. *IEEE transactions on visualization and computer graph-
593 ics*, 21(10):1103–1115, 2015.

594

595 Dan Haramati, Tal Daniel, and Aviv Tamar. Entity-centric reinforcement learning for object manip-
596 ulation from pixels. *arXiv preprint arXiv:2404.01220*, 2024.

594 Alex Havrilla, Yuqing Du, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-Yu,
 595 Maksym Zhuravinskyi, Eric Hambro, Sainbayar Sukhaaatar, and Roberta Raileanu. Teaching
 596 large language models to reason with reinforcement learning. *arXiv preprint arXiv:2403.04642*,
 597 2024.

598 Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. *Advances in neural*
 599 *information processing systems*, 29, 2016.

601 Eric Huang, Zhenzhong Jia, and Matthew T Mason. Large-scale multi-object rearrangement. In
 602 *2019 international conference on robotics and automation (ICRA)*, pp. 211–218. IEEE, 2019.

603 Zizhou Huang, Davi Colli Tozoni, Arvi Gjoka, Zachary Ferguson, Teseo Schneider, Daniele
 604 Panozzo, and Denis Zorin. Differentiable solver for time-dependent deformation problems with
 605 contact. *ACM Transactions on Graphics*, 43(3):1–30, 2024.

606 Armand Jordana, Sébastien Kleff, Avadesh Meduri, Justin Carpentier, Nicolas Mansard, and Lu-
 607 dovic Righetti. Structure-exploiting sequential quadratic programming for model-predictive con-
 608 trol. *IEEE Transactions on Robotics*, 41:4960–4974, 2025. doi: 10.1109/TRO.2025.3595674.

609 Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In *2nd International*
 610 *Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,*
 611 *Conference Track Proceedings*, 2014.

612 Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
 613 reinforcement learning. *Advances in neural information processing systems*, 33:1179–1191, 2020.

614 Paweł Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Exploration in deep reinforcement
 615 learning: A survey. *Information Fusion*, 85:1–22, 2022.

616 Sergey Levine and Vladlen Koltun. Guided policy search. In *International conference on machine*
 617 *learning*, pp. 1–9. PMLR, 2013.

618 Jue Kun Li, Wee Sun Lee, and David Hsu. Push-net: Deep planar pushing for objects with unknown
 619 physical properties. In *Robotics: Science and Systems*, volume 14, pp. 1–9, 2018.

620 Richard Li, Allan Jabri, Trevor Darrell, and Pulkit Agrawal. Towards practical multi-object manip-
 621 ulation using relational reinforcement learning. In *2020 ieee international conference on robotics*
 622 *and automation (icra)*, pp. 4051–4058. IEEE, 2020a.

623 Yunzhu Li, Hao He, Jiajun Wu, Dina Katabi, and Antonio Torralba. Learning compositional koop-
 624 man operators for model-based control. In *International Conference on Learning Representa-
 625 tions*, 2020b. URL <https://openreview.net/forum?id=H1ldzA4tPr>.

626 Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
 627 David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. *arXiv*
 628 *preprint arXiv:1509.02971*, 2015.

629 A Rupam Mahmood, Dmytro Korenkevych, Gautham Vasan, William Ma, and James Bergstra.
 630 Benchmarking reinforcement learning algorithms on real-world robots. In *Conference on robot*
 631 *learning*, pp. 561–591. PMLR, 2018.

632 Farzan Memarian, Wonjoon Goo, Rudolf Lioutikov, Scott Niekum, and Ufuk Topcu. Self-supervised
 633 online reward shaping in sparse-reward environments. In *2021 IEEE/RSJ International Confer-
 634 ence on Intelligent Robots and Systems (IROS)*, pp. 2369–2375. IEEE, 2021.

635 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
 636 mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
 637 control through deep reinforcement learning. *nature*, 518(7540):529–533, 2015.

638 Igor Mordatch and Emo Todorov. Combining the benefits of function approximation and trajectory
 639 optimization. In *Robotics: Science and Systems*, volume 4, pp. 23, 2014.

640 Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
 641 Theory and application to reward shaping. In *Icml*, volume 99, pp. 278–287. Citeseer, 1999.

648 Charles Packer, Pieter Abbeel, and Joseph E Gonzalez. Hindsight task relabelling: Experience
 649 replay for sparse reward meta-rl. *Advances in neural information processing systems*, 34:2466–
 650 2477, 2021.

651 Zherong Pan and Dinesh Manocha. Time integrating articulated body dynamics using position-
 652 based collocation methods. In *WAFR*, pp. 673–688, 2018. URL https://doi.org/10.1007/978-3-030-44051-0_39.

653 Zherong Pan, Andy Zeng, Yunzhu Li, Jingjin Yu, and Kris Hauser. Algorithms and systems for
 654 manipulating multiple objects. *IEEE Transactions on Robotics*, 39(1):2–20, 2022.

655 Desik Rengarajan, Gargi Vaidya, Akshay Sarvesh, Dileep Kalathil, and Srinivas Shakkottai. Rein-
 656 force learning with sparse rewards using guidance from offline demonstration. *arXiv preprint arXiv:2202.04628*, 2022.

657 Cinjon Resnick, Roberta Raileanu, Sanyam Kapoor, Alexander Peysakhovich, Kyunghyun Cho, and
 658 Joan Bruna. Backplay: “man muss immer umkehren”. *arXiv preprint arXiv:1807.06919*, 2018.

659 Magí Romanyà-Serrasolsas, Juan J Casafranca, and Miguel A Otaduy. Painless differentiable rota-
 660 tion dynamics. *ACM Transactions on Graphics (TOG)*, 44(4):1–13, 2025.

661 Stéphane Ross and J. Andrew Bagnell. Agnostic system identification for model-based reinforce-
 662 ment learning. In *Proceedings of the 29th International Conference on International Conference on Machine Learning*, ICML’12, pp. 1905–1912, Madison, WI, USA, 2012. Omnipress. ISBN 9781450312851.

663 Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
 664 tured prediction to no-regret online learning. In *Proceedings of the fourteenth international conference on artificial intelligence and statistics*, pp. 627–635. JMLR Workshop and Conference Proceedings, 2011.

665 Himanshu Sahni, Toby Buckley, Pieter Abbeel, and Ilya Kuzovkin. Visual hindsight experience
 666 replay. *Proc. of NeurIPS*, 2019.

667 Mikhail V. Solodov. Global convergence of an sqp method without boundedness assumptions on any
 668 of the iterative sequences. *Math. Program.*, 118(1):1–12, January 2009. ISSN 0025-5610. doi: 10.1007/s10107-007-0180-y. URL <https://doi.org/10.1007/s10107-007-0180-y>.

669 Sanghyun Son, Laura Zheng, Ryan Sullivan, Yi-Ling Qiao, and Ming Lin. Gradient informed
 670 proximal policy optimization. *Advances in Neural Information Processing Systems*, 36:8788–
 671 8814, 2023.

672 Haoran Song, Joshua A Haustein, Weihao Yuan, Kaiyu Hang, Michael Yu Wang, Danica Kragic,
 673 and Johannes A Stork. Multi-object rearrangement with monte carlo tree search: A case study
 674 on planar nonprehensile sorting. In *2020 IEEE/RSJ international conference on intelligent robots and systems (IROS)*, pp. 9433–9440. IEEE, 2020.

675 Stone Tao, Arth Shukla, Tse-kai Chan, and Hao Su. Reverse forward curriculum learning
 676 for extreme sample and demonstration efficiency in reinforcement learning. *arXiv preprint arXiv:2405.03379*, 2024.

677 Christoph Tillmann and Hermann Ney. Word reordering and a dynamic programming beam search
 678 algorithm for statistical machine translation. *Computational linguistics*, 29(1):97–133, 2003.

679 Alexander Trott, Stephan Zheng, Caiming Xiong, and Richard Socher. Keeping your distance:
 680 Solving sparse reward tasks using self-balancing shaped rewards. *Advances in Neural Information Processing Systems*, 32, 2019.

681 Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon, Matthew
 682 Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao, et al. Jump-start reinforcement learning. In *International Conference on Machine Learning*, pp. 34556–34583. PMLR, 2023.

683 Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
 684 learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 30, 2016.

702 Weikang Wan, Ziyu Wang, Yufei Wang, Zackory Erickson, and David Held. DiffTori: Differentiable
703 trajectory optimization for deep reinforcement and imitation learning. *Advances in Neural
704 Information Processing Systems*, 37:109430–109459, 2024.

705

706 Yixuan Wang, Yunzhu Li, Katherine Driggs-Campbell, Li Fei-Fei, and Jiajun Wu. Dynamic-
707 resolution model learning for object pile manipulation. *arXiv preprint arXiv:2306.16700*, 2023.

708

709 Eliot Xing, Vernon Luk, and Jean Oh. Stabilizing reinforcement learning in differentiable multi-
710 physics simulation. *arXiv preprint arXiv:2412.12089*, 2024.

711

712 Jie Xu, Viktor Makoviychuk, Yashraj Narang, Fabio Ramos, Wojciech Matusik, Animesh Garg, and
713 Miles Macklin. Accelerated policy learning with parallel differentiable simulation. *arXiv preprint
arXiv:2204.07137*, 2022.

714

715 Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
716 Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
717 In *Conference on robot learning*, pp. 1094–1100. PMLR, 2020.

718

719 Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On learning intrinsic rewards for policy gradient
720 methods. *Advances in neural information processing systems*, 31, 2018.

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A REVERSE SIMULATION VIA PHYSICS-CONSTRAINED OPTIMIZATION
757758 To derive the reverse simulator, we need to first understand the mechanism of the forward simulation.
759 The forward simulation is formulated as the following unconstrained optimization:

760
$$\arg \min_{p_{t+1}} \Psi(p_{t+1}, p_t, p_{t-1}, c_t), \quad (5)$$

761

762 where we denote by p_t the kinematic state at the t th time instance, and c_t is the control input
763 at the t th time instance. In our setting of 2D rigid bodies, p_t is the concatenation of p_t^i with p_t^i
764 being the kinematic state of the i th rigid body, i.e. $p_t^i = (x_t^i, y_t^i, \theta_t^i)$ and the complete state s_t
765 used in DRL is a concatenation of kinematic state and velocity, i.e. $s_t = (p_t, p_{t-1})$, where ve-
766 locity can be recovered from finite difference. The function Λ in our main paper is defined as
767 $\Lambda(s_{t+1}, s_t, c_t, q(a_t)) = \nabla_{p_{t+1}} \Psi(p_{t+1}, p_t, p_{t-1}, c_t)$. In Section A.1, we would introduce the for-
768 mulation of the objective function Ψ . For now, we assume that Ψ is twice-differentiable in all the
769 parameters. In the reverse simulator, we consider an entire trajectory of h timesteps, denoted as
770 $p = (p_{t-h}^T, \dots, p_{t-1}^T)^T$, with the associated control inputs $c = (c_{t-h+1}^T, \dots, c_t^T)^T$, where we further
771 denote by p (resp. c) (without subscript) the concatenation of p_t (resp. c_t) over all the time indices.
772 Here, we assume $s_{t+1} = (p_{t+1}, p_t)$ is known as fixed. We would like to optimize the sequence of
773 control inputs to optimize the following objective function:
774

775
$$J(p, c) = \sum_{i=1}^M (x_{t-h}^i, y_{t-h}^i) d(a_t) + \lambda \sum_{k=0}^{h-1} \|c_{t-k}\|^2 + P_{\perp}(p_{t-h}), \quad (6)$$

776

777 where our primary goal is to move all M rigid bodies along the negative pushing direction $d(a_t)$ as
778 far as possible, while fixing the final state. Note that our objective encourages the robot to push all M
779 rigid bodies, since the set of rigid bodies to be pushed simultaneously is unknown to us a prior. Note
780 that when the robot cannot reach certain rigid bodies, these bodies will not move due to our physics
781 constraints, despite our objective function encourages the bodies to be moved. Further, we also
782 add a small control regularization with a small coefficient λ . Finally, we introduce a regularization
783 energy $P_{\perp}(p_{t-h})$ to ensure the initial state satisfies the collision-free constraints, which is defined
784 in Section A.1. During our optimization, we need to always ensure that Equation 5 is satisfied,
785 which guarantees physical correctness. Combining Equation 5 and Equation 6, we propose to solve
786 the following constrained optimization:

787
$$\arg \min_{p, c} J(p, c) \quad \text{s.t.} \nabla_{p_{t-k+1}} \Psi(p_{t-k+1}, p_{t-k}, p_{t-k-1}, c_{t-k}) = 0 \quad \forall k = 0, \dots, h-1. \quad (7)$$

788 Under the assumption that the function Ψ is twice-differentiable and thus the function Λ is differen-
789 tiable, we can efficiently solve Equation 7 using SQP.

790 A.1 OPTIMIZATION-BASED 2D RIGID BODY SIMULATOR

791 In this section, we consider the dynamics of multiple 2D rigid bodies, for which we derive the con-
792 crete form of the objective Ψ and its derivatives. Our starting point is the 2D version of the dynamic
793 simulator (Huang et al., 2024). The energy Ψ consists of five terms: the inertia term $I(p_{t+1}, p_t, p_{t-1})$
794 and damping term $I_D(p_{t+1}, p_t)$, the normal collision potential $P_{\perp}(p_{t+1})$, the frictional collision po-
795 tential $P_{\parallel}(p_{t+1}, p_t)$, and finally the external force potential $P_E(p_{t+1}, c_t)$. Specifically, we have:
796

797
$$\Psi(p_{t+1}, p_t, p_{t-1}, c_t) = I(p_{t+1}, p_t, p_{t-1}) + I_D(p_{t+1}, p_t) + P_{\perp}(p_{t+1}) + P_{\parallel}(p_{t+1}, p_t) + P_E(p_{t+1}, c_t).$$

798 We present the concrete formula for each and every term above.

800 **Inertia & Damping Term:** In the original formula for the dynamic simulator (Huang et al., 2024),
801 the inertial term is designed for soft bodies instead of rigid bodies. Instead, we follow Pan &
802 Manocha (2018) to formulate the rigid body inertia term as follows:

803
$$I(p_{t+1}, p_t, p_{t-1}) = \sum_{j=1}^M \int_{\Omega_j} \frac{\rho}{2\Delta t^2} \|X(x, p_{t+1}^j) - 2X(x, p_t^j) + X(x, p_{t-1}^j)\|^2 dx, \quad (8)$$

804

805 where ρ is the rigid body density, Δt is the timestep size, and $\Omega_j \subset \mathbb{R}^2$ is the volume taken by the
806 j th rigid body. Finally, $X(x, p_t^j)$ is the world-space position of x under configuration p_t^j , defined as:

807
$$X(x, p_t^j) = \begin{pmatrix} \cos(\theta_t^j) & -\sin(\theta_t^j) \\ \sin(\theta_t^j) & \cos(\theta_t^j) \end{pmatrix} x + \begin{pmatrix} x_t^j \\ y_t^j \end{pmatrix}.$$

808

810 The dynamic simulator discretizes the acceleration by finite difference over three time instances.
 811 Following the similar logic to the inertial term, we can define the following damping term that
 812 penalizes the velocity at every timestep:

$$814 \quad I_D(p_{t+1}, p_t) = k_D \sum_{j=1}^M \int_{\Omega_j} \frac{\rho}{2\Delta t^2} \|X(x, p_{t+1}^j) - X(x, p_t^j)\|^2 dx,$$

816 with k_D being the damping coefficient. We refer readers to Pan & Manocha (2018) for the compu-
 817 tational evaluation of these terms.
 818

819 **Normal Collision Potential:** Without a loss of generality, we can assume the i th rigid body has the
 820 geometry of a convex polyhedron with K_i vertices denoted as $(v_{i,1}, \dots, v_{i,K_i})$. We now define the
 821 smoothed signed distance function of a point p to the i th rigid body to be $d_i(p)$. We follow the
 822 method of incremental potential contact used by Huang et al. (2024) and define:

$$823 \quad P_{\perp}(p_{t+1}) = -\nu \sum_{j=1}^M \sum_{i \neq j} \sum_{k=1}^{K_i} \log(d_j([v_{i,k}^j]_{t+1})),$$

826 where we choose ν as a small positive coefficient and $X^{-1}(\bullet, p_j^{t+1})$ is the inverse function of
 827 $X(\bullet, p_j^{t+1})$. Here we define $[v_{i,k}^j]_{t+1} = X^{-1}(X(v_{i,k}, p_i^{t+1}), p_j^{t+1})$, with $v_{i,k}$ is the position of $v_{i,k}$ in
 828 j th object's local frame of reference at time instance $t+1$. In other words, P_{\perp} requires that every
 829 vertex of a rigid body to be non-penetrating with other rigid bodies.
 830

831 **Frictional Collision Potential:** The frictional potential is formulated in a similar manner following
 832 the idea of incremental potential contact used by Huang et al. (2024). We first compute each contact
 833 force between $v_{i,k}$ and the j th rigid body from the last timestep, which is:

$$834 \quad f_{\perp, j, i, k} = \nu \left\| \frac{\partial \log(d_j([v_{i,k}^j]_t))}{\partial [v_{i,k}^j]_t} \right\|.$$

837 We then formulate the frictional damping term as:

$$839 \quad f_{\parallel, j, i, k} = \beta f_{\perp, j, i, k} \left\| \text{Proj}_{\parallel} \left[\frac{X(v_{i,k}, p_{t+1}^i) - X(v_{i,k}, p_t^i)}{\Delta t} - \frac{X([v_{i,k}^j]_t, p_{t+1}^j) - X([v_{i,k}^j]_t, p_t^j)}{\Delta t} \right] \right\|,$$

842 where Proj_{\parallel} is the projection to the tangential plane. Finally, we define:

$$844 \quad P_{\parallel}(p_{t+1}, p_t) = \nu \sum_{j=1}^M \sum_{i \neq j} \sum_{k=1}^{K_i} f_{\parallel, j, i, k},$$

846 with β being the frictional coefficient. Intuitively, we damp the relative tangential velocity between
 847 $v_{i,k}$ on the i th object and $[v_{i,k}^j]_t$ on the j th object in contact.
 848

849 **External Force Term:** We control the dynamic system using external force and torque. Without
 850 the loss of generality, we can assume the first rigid body is the robot end-effector, which can be
 851 controlled by $c_t = (f_t^x, f_t^y, \tau_t)$ with (f_t^x, f_t^y) being the external force and τ_t being the external
 852 torque. Then the external force term is $-f_t^x x_t^1 - f_t^y y_t^1 - \tau_t \theta_t^1$. However, the above formula might
 853 introduce excessively large forces, which is unrealistic. We can regularize the situation by introduce
 854 a bound B_f on the force magnitude and enforcing $-B_f \leq f_t^{x,y} \leq B_f$. Similarly, we introduce a
 855 bound B_{τ} on the torque magnitude and enforce $-B_{\tau} \leq \tau_t \leq B_{\tau}$. Such constraint can be achieved by
 856 using the tanh activation function and defining:

$$857 \quad P_E(p_{t+1}, u_t) = -B_f \tanh(f_t^x) x_t^1 - B_f \tanh(f_t^y) y_t^1 - B_{\tau} \tanh(\tau_t) \theta_t^1.$$

859 A.2 SEQUENTIAL QUADRATIC PROGRAMMING

861 We provide the complete detail of our SQP algorithm. We first define the constraint vector
 862 $C(p, c) = (\Lambda_{t-h+1}, \dots, \Lambda_t)$, where we abuse notation and write $\Lambda_{t-k} = \Lambda(s_{t-k+1}, s_{t-k}, c_{t-k})$.
 863 We adopt the variant of SQP guided by the following l_1 -merit function (Boggs & Tolle, 1995):
 $\Theta(p, c, \eta) = J(p, c) + \eta \|C\|_1$. We start from the initial guess $p^0 = (p_{t+1}, \dots, p_{t+1})$, $c^0 = (0, \dots, 0)$,

i.e., we initialize the trajectory to be static at state p_{t+1} with all zero control forces and torques. SQP iteratively updates the solution p, c to reduce the merit function until a critical point is achieved. To update a solution p, c , we solve the following quadratic programming by using quadratic approximation of the objective function and linear approximation of all the constraints:

$$\begin{aligned} & \arg \min_{\Delta p, \Delta c} \frac{\partial J^T}{\partial p} \Delta p + \frac{\partial J^T}{\partial c} \Delta c + \frac{1}{2} \Delta p^T \frac{\partial^2 J}{\partial p^2} \Delta s + \frac{1}{2} \Delta c^T \frac{\partial^2 J}{\partial c^2} \Delta c \\ & \text{s.t. } C + \frac{\partial C}{\partial p} \Delta p + \frac{\partial C}{\partial c} \Delta c = 0. \end{aligned} \quad (9)$$

The above Quadratic Program (QP) has all-linear equality constraints with a quadratic objective. This is because we use the tanh soft activation function to model control force and torque limits in the external force term P_E from Section A.1, which transforms the inequality control limits into the equality constraints after linearization. This is key to the fast solution of trajectory optimization, since the QP sub-problem can be efficiently solved via the following KKT linear system:

$$\begin{pmatrix} \frac{\partial^2 J}{\partial p^2} & \frac{\partial C^T}{\partial p} \\ \frac{\partial^2 J}{\partial c^2} & \frac{\partial C^T}{\partial c} \\ \frac{\partial C}{\partial p} & \frac{\partial C}{\partial c} \end{pmatrix} \begin{pmatrix} \Delta p \\ \Delta c \\ \lambda \end{pmatrix} = \begin{pmatrix} -\frac{\partial J}{\partial p} \\ -\frac{\partial J}{\partial c} \\ -C \end{pmatrix}, \quad (10)$$

with λ being the associated Lagrangian multiplier. Note that by definition, the mixed derivatives $\frac{\partial^2 J}{\partial p^2} c$. For now, we assume the KKT-system can be readily solved, then SQP proceeds by choosing a step size η^j such that:

$$\Theta(p + \eta^j \Delta p, c + \eta^j \Delta c, \eta) < \Theta(p, c, \eta) + \eta^j D\Theta(p, c, \Delta p, \Delta c, \eta), \quad (11)$$

where $D\Theta$ is the directional derivative of Θ along Δp and Δc . To ensure that such η^j exists, we need to choose $\eta > \|\lambda\|_\infty$. We notice that SQP is an infeasible solver that is not guaranteed to return a feasible solution. Specifically, a feasible solution is only returned when the constraint qualifications are satisfied. In practice, we find the constraint qualifications can be violated when the physics constraints are violated. To improve the success rate of SQP, we follow Solodov (2009) to use a feasibility safe-guard. Specifically, instead of using Equation 11 as the only condition of line-search, we add a condition to ensure that $\|C(p + \delta p, c + \Delta c)\|_1 \leq \epsilon_c$. We find that by using a sufficiently small ϵ_c , the SQP solver becomes much more robust and we never observe failure cases in our experiments.

A.3 FAST KKT SYSTEM SOLVE

Directly solving Equation 10 without exploiting the sparsity pattern can take $O(h^3)$. Instead, we show that by utilizing the sparsity pattern, we can solve the KKT-system at a cost of $O(h)$. To see this, we write the Lagrangian multiplier $\lambda = (\lambda_{t-h+1}, \dots, \lambda_t)$. The fast linear system solve can be derived by a permutation of variables as follows:

$$\nu_{t-k} \triangleq \begin{pmatrix} \Delta p_{t-k-1} \\ \Delta c_{t-k} \\ \lambda_{t-k} \end{pmatrix} \quad \begin{pmatrix} \Delta p \\ \Delta c \\ \lambda \end{pmatrix} = P \begin{pmatrix} \nu_{t-h+1} \\ \vdots \\ \nu_t \end{pmatrix},$$

with P being the permutation matrix. The lefthand side of Equation 10 after symmetric permutation reads:

$$P \begin{pmatrix} \frac{\partial^2 J}{\partial p^2} & \frac{\partial C^T}{\partial p} \\ \frac{\partial^2 J}{\partial c^2} & \frac{\partial C^T}{\partial c} \\ \frac{\partial C}{\partial p} & \frac{\partial C}{\partial c} \end{pmatrix} P^T = \begin{pmatrix} A_{t-h+1} & B_{t-h+2}^T \\ B_{t-h+2} & A_{t-h+2} & B_{t-h+3}^T \\ & B_{t-h+3} & A_{t-h+3} \\ & & \ddots & B_t^T \\ & & & B_t & A_t \end{pmatrix},$$

which takes a block tridiagonal form. Here we define the blocks as follows:

$$A_{t-k} \triangleq \begin{pmatrix} \frac{\partial^2 J}{\partial \Delta p_{t-k-1}^2} & \frac{\partial \Lambda_{t-k}}{\partial \Delta p_{t-k-1}}^T \\ \frac{\partial^2 J}{\partial \Delta c_{t-k}^2} & \frac{\partial \Lambda_{t-k}}{\partial \Delta c_{t-k}}^T \\ \frac{\partial \Lambda_{t-k}}{\partial \Delta p_{t-k-1}} & \frac{\partial \Lambda_{t-k}}{\partial \Delta c_{t-k}} \end{pmatrix} \quad B_{t-k} \triangleq \begin{pmatrix} \frac{\partial \Lambda_{t-k-1}}{\partial \Delta p_{t-k-1}}^T \\ \frac{\partial \Lambda_{t-k}}{\partial \Delta p_{t-k-2}} \end{pmatrix}$$

918 Therefore, we could use the cyclic reduction algorithm (Gander & Golub, 1998) to solve the linear
 919 system with a cost of $O(h)$. Put together, each iteration of our SQP involves a single solve of the
 920 KKT-system, so the iterative cost is $O(h)$.
 921

922 B HYPERPARAMETERS 923

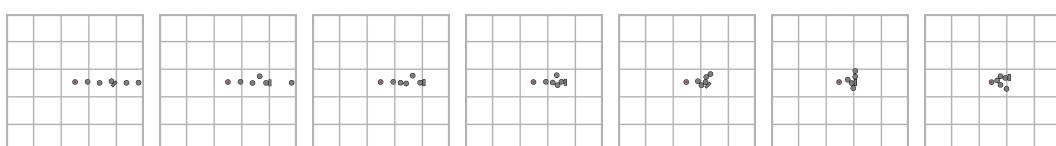
924 In Table 2, we report the choice of our method’s hyperparameters.
 925

926 Table 2: Our method’s hyperparameters. These are the ones used to generate our figures and results.
 927 Highlighted in blue indicates hyperparameters introduced by this paper.
 928

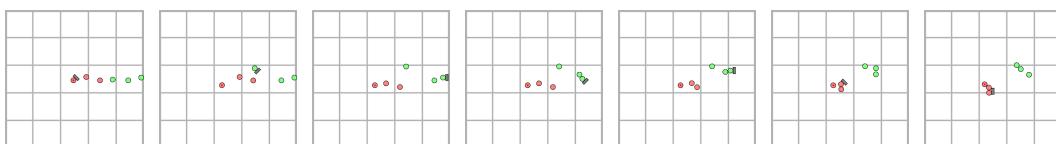
929 Hyperparameter	930 Value
RL Hyperparameters (DQN & Double DQN)	
931 Discount factor (γ)	0.8 (Gathering) 0.9 (Sorting and ArtManip.)
932 Replay Buffer Capacity	1,500,000
933 Batch Size	512
934 Total Interactions / Samples	350,000 (Gathering and Sorting) 400,000 (ArtManip.)
Networks and Optimization	
937 Network Shape of Features Extractor (MLP)	[512, 512, 128]
938 Learning Rate	5e-5
939 Gradient Steps	1
940 Train Frequency	4
941 Network Optimizer	Adam
Environment and Data	
943 Reward Function	Sparse (+1 on success, 0 otherwise)
944 Action Repeat	1
945 Episode Horizon	60
946 Observation Type	State
RTG	
948 Push Stride	2.0
949 Number of discrete actions	48
950 Offline transitions generated	49144 (Gathering) 67793 (Sorting) 89905 (ArtManip.)
951	

954 C TASK VISUALIZATIONS 955

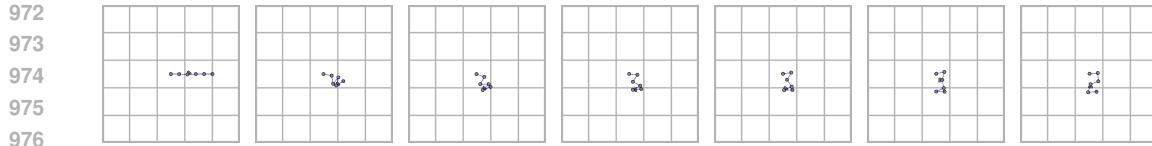
956 In Figure 10, Figure 11, Figure 12, we show visually how each of our proposed task is accomplished.
 957



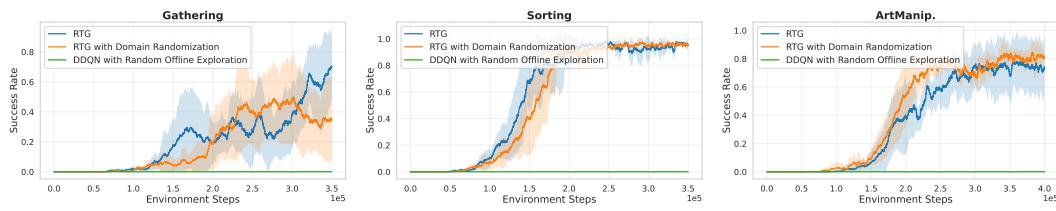
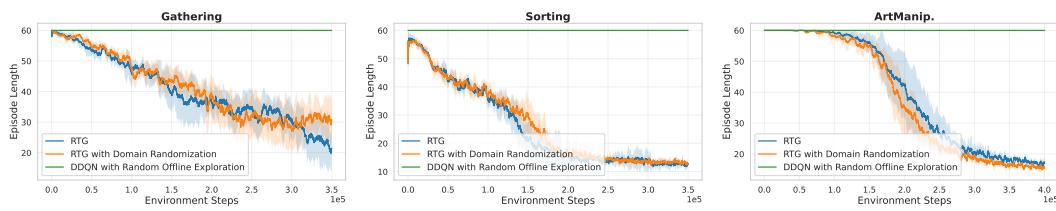
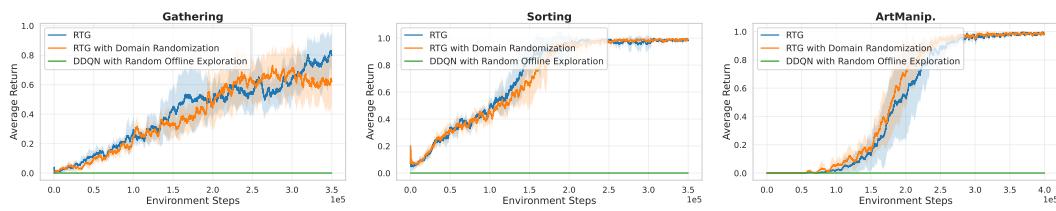
963 Figure 10: A sample successful trajectory for the task of Gathering.
 964



965 Figure 11: A sample successful trajectory for the task of Sorting.
 966
 967
 968
 969
 970
 971

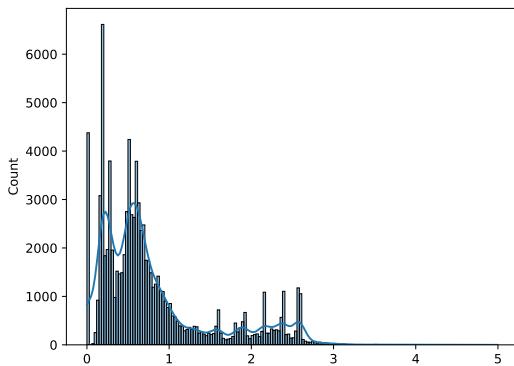
977
978
979
980 Figure 12: A sample successful trajectory for the task of ArtManip.
981982 D ADDITIONAL RESULTS
983

984 Here we report more comparisons with (a) DDQN with Random Offline Exploration and (b)
985 RTG with Domain Randomization, both combined with DDQN. For the former, DDQN with ran-
986 dom offline exploration is essentially an ablation to validate the data informativeness of offline trans-
987 itions from RTG. For the latter, we add domain randomization to the initial state distribution (with
988 each object’s positions perturbed by ± 0.5 , ± 1.0 , ± 0.5 with respect to three tasks) to validate our
989 method RTG’s robustness. The comparisons are shown in Figure 13, Figure 14, Figure 15.

990
991
992
993 Figure 13: Mean average success rate of algorithms for each task. Results are averaged within each
994 environment. Shaded areas represent ± 1 std. over 5 seeds.
9951000
1001
1002 Figure 14: Mean episode length of algorithms for each task. Results are averaged within each
1003 environment. Shaded areas represent ± 1 std. over 5 seeds.
10041016
1017 Figure 15: Mean average return of algorithms for each task. Results are averaged within each
1018 environment. Shaded areas represent ± 1 std. over 5 seeds.
10191020 E RUNTIME ANALYSIS
1021

1022 **Runtime of backward and forward simulation.** During backward generation, we run our RRBS
1023 in quasi-static mode, with maximum solver iteration set to 1000. On an AMD Ryzen 9 5950X CPU
1024 (16C/32T, 1 socket, 1 NUMA node), a single parallel backward optimization over 48 candidate
1025 trajectories takes 2.45 ± 0.13 s wall-clock time (mean \pm std) for our task of ArtManip (with joints).
This corresponds to 51.0 ± 2.6 ms per backward action, where each optimizer solves one per-action

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038



1039 Figure 16: Replay gap distribution between reverse-generated states and the true forward dynamics.
1040 The horizontal axis shows the average 2D positional gap per node, measured as the mean Euclidean
1041 distance between each node’s position in the backward-optimized state and the corresponding state
1042 after Forward Replay. Distances are in simulator units. The distribution is concentrated near zero but
1043 exhibits a non-zero tail, indicating a small yet systematic mismatch in reverse physics and thereby
1044 justifying our Forward Replay step.

1045

1046 backward simulation as defined in Figure 2(a). For Gathering and Sorting (without joints), the
1047 optimization stage over 48 candidates costs 1.90 ± 0.06 s, *i.e.*, 39.6 ± 1.3 ms per action step. For
1048 comparison, the forward simulator costs 1.07 ± 0.34 ms per action step, so a single-step backward
1049 optimization is approximately one order of magnitude more time-consuming than a forward step.

1050

1051 **Time complexity of beam search.** For our beam search (Algorithm 1) over backward actions with
1052 beam breadth B and horizon depth D , at each search layer we expand at most B nodes, and for each
1053 node we run one parallel backward optimization followed by a ranking step. Thus the total number
1054 of backward steps scales as $\mathcal{O}(D \times B)$, and the overall time complexity of the beam search is linear
1055 in both beam width and horizon depth.

1056

F FORWARD REPLAY GAP ANALYSIS

1057

1058 We quantify the discrepancy between the states generated by our backward simulator and those pro-
1059 duced by the true forward dynamics in Figure 16. As shown, the replay gap is small but clearly non-
1060 zero, indicating that the reverse physics are not perfectly consistent with the forward dynamics. This
1061 systematic mismatch motivates our Forward Replay step, which re-simulates backward-optimized
1062 trajectories under forward dynamics before utilizing them.

1063

G USE OF LLMs

1064

1065 We acknowledge the use of large language models (LLMs) as assistive tools in this research. LLMs
1066 are used during paper writing, for improving grammar and wording. All outputs from these models
1067 were meticulously reviewed, revised, and verified by the authors, who retain full responsibility for
1068 all content presented in this paper.

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079