
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RTG: REVERSE TRAJECTORY GENERATION FOR
LEARNING RIGID-BODY MANIPULATION
UNDER SPARSE REWARD

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep Reinforcement Learning (DRL) under sparse reward conditions remains a
long-standing challenge in robotic learning. In such settings, extensive exploration
is often required before meaningful reward signals can guide the propagation of
state-value functions. Prior approaches typically rely on offline demonstration
data or carefully crafted curriculum learning strategies to improve exploration ef-
ficiency. In contrast, we propose a novel method tailored to rigid body manip-
ulation tasks that addresses sparse reward without the need for guidance data or
curriculum design. Leveraging recent advances in differentiable rigid body dy-
namics and trajectory optimization, we introduce the Reverse Rigid-Body Simu-
lator (RRBS), a system capable of generating simulation trajectories that terminate
at a user-specified goal configuration. This reverse simulation is formulated as a
trajectory optimization problem constrained by differentiable physical dynamics.
RRBS enables the generation of physically plausible trajectories with known goal
states, providing informative guidance for conventional RL in sparse reward en-
vironments. Leveraging this, we present Reverse Trajectory Generation (RTG),
a method that integrates RRBS with a beam search algorithm to produce reverse
trajectories, which augment the replay buffer of off-policy RL algorithms like
DDQN to solve the sparse reward problem. We evaluate RTG across various rigid
body manipulation tasks, including sorting, gathering, and articulated object ma-
nipulation. Experiments show that RTG significantly outperforms vanilla DRL
and improved sampling strategies like Hindsight Experience Replay (HER) and
Reverse Curriculum Generation (RCG). Specifically, RTG is the only method that
can solve each task with success rates of over 70% within given compute budget.

1 INTRODUCTION

Deep Reinforcement Learning (DRL) serves as the foundation for robot skill acquisition, enabling
robots to learn and refine skills that optimize user-defined reward functions. When combined with
expressive deep neural policies, RL has demonstrated remarkable success across various domains,
including game-playing (Mnih et al., 2015), language-based reasoning (Havrilla et al., 2024), robot
locomotion (Duan et al., 2016), and robotic manipulation (Yu et al., 2020; Mahmood et al., 2018).
Despite these advances, sample efficiency remains a critical challenge, significantly limiting DRL’s
applicability in real-world scenarios, particularly in computationally constrained environments. This
inefficiency primarily stems from several fundamental limitations of current DRL methodologies.
First, general-purpose DRL relies heavily on exploration strategies to discover and connect use-
ful state-transition samples through interaction with the environment. Though various efficient
exploration techniques have been developed over the years (Ladosz et al., 2022), these methods
often struggle to scale in complex settings. In practical scenarios, exploratory behaviors guided by
general-purpose strategies can rapidly become intractable, making it difficult to consistently collect
informative samples that yield high reward signals. Second, the formulation of reward functions
further exacerbates inefficiency (Eschmann, 2021). In robotic tasks like tabletop manipulation, the
most natural and straightforward reward design is tied to the (partial) completion of the task. How-
ever, such signals are often sparse and the majority of state-transition samples yield zero reward.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Several lines of research have sought to practically improve sample efficiency in DRL. The most
widely adopted approach is off-policy learning (Mnih et al., 2015; Lillicrap et al., 2015), where
previously collected transition data are repeatedly reused instead of discarding them after each pol-
icy update. This strategy significantly reduces the need for fresh interactions with the environ-
ment. However, the effectiveness of off-policy methods remains fundamentally constrained by the
quality and diversity of the data. To address this limitation, researchers have turned to leveraging
domain knowledge to bootstrap learning. One prominent line of work integrates expert demonstra-
tions into the training pipeline (Rengarajan et al., 2022), enabling the agent to initialize policies
or guide exploration with trajectories that encode meaningful behavior. Similarly, reward shaping
techniques (Ng et al., 1999) incorporate task-specific prior knowledge into the reward function,
effectively providing denser feedback and reducing the burden of pure trial-and-error learning. Nev-
ertheless, acquiring high-quality demonstrations or carefully engineered shaping functions is often
costly and impractical in real-world applications, where domain knowledge may be limited or noisy.
In parallel, another promising direction focuses on improving sampling strategies by biasing the
agent toward more informative experiences. Notable examples include Hindsight Experience Re-
play (HER) (Andrychowicz et al., 2017), which relabels unsuccessful trajectories with alternative
goals to extract positive learning signals, and Reverse Curriculum Generation (RCG) (Florensa et al.,
2017), which gradually increases task difficulty, starting from states close to successful completion.

Goal

Goal

Figure 1: We consider the task of pushing two cir-
cular objects (red) and (green) together into the
goal region (left), where the reward is non-zero
when both objects are inside the goal region. HER
works by moving the goal position to acquire non-
zero reward. But the reward can be zero for any
goal position at an intermediary state (right).

Drawing on insights from HER and RCG, we
propose a more general and efficient trajectory
sampling strategy tailored to rigid body manip-
ulation tasks. While HER has proven effec-
tive, its applicability is largely limited to single-
object manipulation scenarios, where the ob-
ject’s goal state can be relabeled by translating
it closer to the robot’s current state to generate
additional reward. However, this mechanism
breaks down in more complex multi-object set-
tings. For instance, consider a common robotic
task where two objects must be pushed together
on a table (Wang et al., 2023) as illustrated
in Figure 1. In such cases, HER fails because
intermediate states yield zero reward under ar-
bitrary goal relabeling. By contrast, RCG offers
greater generality and can handle a wider range of manipulation tasks under sparse reward, provided
that a suitable proximity metric for task completion is available. This metric enables the construc-
tion of progressively challenging curricula, guiding the agent from easier to harder tasks. Despite its
generality, RCG still depends on general-purpose exploration within each stage of the curriculum.

We observe that the efficiency of HER and the generality of RCG can be unified by generating state
samples in a reversed manner. Specifically, instead of relying solely on the forward state transi-
tion function T (st+1 ∣ st, at), we assume the transition function is time-invertible and introduce
the reverse transition function ⃗T (st ∣ st+1, at), which predicts the preceding state st given the next
state st+1 and the control signal at. For the class of robotic manipulation tasks, the forward and
reverse transition functions naturally correspond to forward and reverse physics simulations. Lever-
aging recent advances in optimization-based physics simulation (Gast et al., 2015) and differen-
tiable contact mechanics (Huang et al., 2024), we show that sampling from both T (st+1 ∣ st, at)
and ⃗T (st ∣ st+1, at) can be formulated as trajectory optimization problems in forward and re-
versed time, respectively. These problems can be solved efficiently using Sequential Quadratic
Programming (SQP). Equipped with the ability to sample from ⃗T (st ∣ st+1, at), we propose the
Reverse Trajectory Generation (RTG) algorithm, which actively generates trajectories starting from
task-completed states with positive reward, utilizing a reverse rigid-body simulator (RRBS). RTG
constructs reverse state-transition tuples by trajectory-optimizing control signals in RRBS. We in-
tegrate RTG-generated samples into off-policy DRL frameworks like DQN (Mnih et al., 2015) and
DDQN (Van Hasselt et al., 2016) and evaluate the method across various rigid body manipulation
tasks. Experiments on tabletop rigid-body manipulation demonstrate that RTG significantly outper-
forms vanilla DRL, simplified-task HER, and RCG.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Sparse Reward in RL is commonly encountered in robotic manipulation tasks, where the reward
signal typically reflects task completion. In such settings, problem-agnostic DRL often struggles to
explore the sparse, high-reward regions of the state space. To address this, several methods leverage
domain knowledge in various forms. For instance, reward shaping (Ng et al., 1999) has been applied
to provide dense, distance-based guidance (Trott et al., 2019) or to promote self-exploration (Belle-
mare et al., 2016). Additionally, expert demonstrations can bootstrap the learning process through
inverse RL (Abbeel & Ng, 2004) and imitation learning (Ross et al., 2011; Ho & Ermon, 2016).
However, these approaches often rely on high-quality domain knowledge, which must be specifi-
cally tailored to each robotic manipulation task. To reduce the need for manual specification, recent
works (Zheng et al., 2018; Memarian et al., 2021; Devidze et al., 2022) propose self-supervised
tuning of the reward signal through bilevel optimization, adjusting the parameters of the reshaped
reward function to maximize the return under the original sparse reward.

HER and RCG are two complementary strategies designed to bias trajectory sampling in order to
increase the likelihood of visiting high-reward regions. HER (Andrychowicz et al., 2017) is applied
in goal-conditioned tasks, where the task can be relabeled to bring the goal closer to the current state,
yielding higher reward. Since its inception, HER has been successfully generalized to a variety of
settings, including dynamic goal configurations (Packer et al., 2021), visual domains (Sahni et al.,
2019), and meta-RL (Packer et al., 2021), among others. Despite its versatility, HER remains limited
in application to tasks where the goal can be relabeled to generate high reward, which is not always
feasible in more complex multi-object manipulation tasks, as illustrated in Figure 1. In contrast,
RCG (Florensa et al., 2017) focuses on starting from initial states that are closer to high-reward
regions, effectively reducing the distance to the goal. However, RCG’s effectiveness hinges on the
careful design of curricula, which in turn requires domain-specific knowledge, including reversible
dynamics (Florensa et al., 2017), approximate distance functions, state demonstrations (Resnick
et al., 2018), and guiding policies (Uchendu et al., 2023). Additionally, RCG’s performance is
constrained by the exploration capabilities of downstream DRL methods.

Physics Simulators play a crucial role in downstream robot learning and manipulation tasks. While
rigid body simulators have matured significantly (Erez et al., 2015), consistently delivering high-
fidelity trajectory data with impressive performance.One avenue of research aims to improve simu-
lation performance by leveraging massively parallel processors (Xu et al., 2022). However, we argue
that such improvements alone do not address the challenge of sparse reward, as the state space can
grow exponentially more complex than the performance gains achieved by optimized simulators.
Another promising direction involves incorporating physics simulators into model-based DRL. This
can be done by deriving analytic policy gradients through backpropagation (Son et al., 2023), or
by using differentiable physics simulations to maximize trajectory-wise returns via local optimiza-
tion (Levine & Koltun, 2013; Mordatch & Todorov, 2014). In contrast, by exploiting the forward-
reverse differentiability of state-of-the-art optimization-based simulators (Huang et al., 2024), we
demonstrate that simulations can be performed in reversed time by solving trajectory optimization
problems.

Multi-Object Manipulation is a common challenge in robot learning, which has received increas-
ing attention and been extensively reviewed in Pan et al. (2022). Multi-object manipulation, par-
ticularly under sparse reward conditions, presents a significant challenge for DRL, and a variety of
domain knowledge has been explored to enable successful policy learning. For instance, differen-
tiable dynamics (Wan et al., 2024) and learned dynamics (Li et al., 2020b) have been employed
to synthesize control through trajectory optimization. Structured policy parameterization (Li et al.,
2020a; Haramati et al., 2024) has been used to transfer learned skills from simpler tasks to more
complex ones, such as in the case of RCG. Additionally, reward shaping and Monte Carlo Tree
Search (MCTS) have been combined to effectively search for multi-object sorting policies (Song
et al., 2020). In contrast, our RTG method does not rely on any additional domain knowledge and
can be seamlessly integrated with these techniques to further enhance performance.

3 PRELIMINARIES: DRL UNDER RIGID BODY DYNAMICS

We consider the standard DRL setting, where an agent interacts with an environment governed by
rigid body dynamics. We assume the environment is fully observable. Formally, the environment is

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

defined by a state space S, an action space A, and an initial state distribution p(s0), where we only
consider discrete action space in this work. A deterministic policy π maps a state st ∈ S to an action
at ∈ A. At the beginning of each episode, the agent samples an initial state s0 ∼ p(s0). At every
timestep t, the agent selects an action according to at = π(st) and receives a reward rt = r(st, at),
where r is the reward function. The environment then transitions to the next state according to
the transition distribution st+1 ∼ T (● ∣ st, at). The objective of DRL is to maximize the expected
cumulative return, defined as Es0∼p [∑

∞
t=0 γ

trt ∣ s0], where γ ∈ (0,1) is the discount factor.

Off-Policy DRL In this work, we adopt the standard off-policy Deep Q-Learning (DQN) frame-
work (Mnih et al., 2015). In sparse reward settings, states outside the goal region G consis-
tently yield zero reward, which presents a major challenge for DRL in discovering high-reward
regions. To learn a near-optimal policy, DQN approximates the optimal state-action value function
Q(s, a) = E [∑∞t=0 γ

trt ∣ s0 = s, a0 = a] using a neural network Qθ(s, a). The optimal value func-
tion satisfies the Bellman equation: Q(st, at) = rt + maxaQ(st+1, a). Accordingly, DQN trains
Qθ by minimizing the Bellman loss: L = ED [(Qθ(st, at) − yt)

2], where the target value is given
by yt = rt + maxaQθ′(st+1, a) and θ′ denotes the parameters of the target network. The loss is
computed over a replay buffer D = {(st, at, rt, st+1)} containing transition tuples collected through
interaction with the environment. The quality of these transition tuples is critical for the sample
efficiency of DQN. However, in sparse reward settings, where r(st, at) = 1[st ∈ G] and G repre-
sents a small subset of the state space corresponding to successful task completion, to obtain such
high-quality samples is particularly challenging.

Rigid Body Dynamics We focus on robot manipulation tasks where the environment is composed
entirely of rigid bodies, which is a standard setting in robot learning that encompasses a wide range
of manipulation scenarios. In this context, the transition function T (st+1 ∣ st, at) is governed by a
deterministic rigid body simulator. Mature simulation algorithms like Erez et al. (2015) can produce
highly accurate trajectory data with excellent performance. Recent advances have further improved
these simulators by introducing fully differentiable structures, primarily through optimization-based
approaches (Huang et al., 2024; Romanyà-Serrasolsas et al., 2025). These methods formulate the
transition function as a deterministic implicit function Λ(st+1 ∣ st, ct) = 0, making it differentiable
with respect to all three variables, where ct is the continuous control signal, such as joint torques and
forces on the robot. Forward simulation is then performed by solving for st+1 = Λ−1(st, ct) using
the inverse function theorem, which can be practically computed via Newton’s method. In addition,
the differentiable structure allows us to compute the state- and action-derivatives dst+1/dst and
dst+1/dct. Such a differentiable structure has been leveraged in prior works like Son et al. (2023);
Levine & Koltun (2013); Mordatch & Todorov (2014) to improve learning stability and efficiency.

4 DRL WITH REVERSE TRAJECTORY GENERATION (RTG)

We propose RTG, a method that combines the sample efficiency of HER with the generality of RCG,
further improving the performance of DRL under sparse reward. Our key observation is that con-
ventional DRL methods sample trajectories (s0, s1,⋯, sT) through forward simulations, starting
from an initial state distribution that is typically far from the goal region G. Due to the high vari-
ance in future state distributions, it becomes increasingly unlikely for the final state sT to lie within
G. Even when using trajectory optimization techniques with differentiable simulations (Levine &
Koltun, 2013; Xing et al., 2024), the probability of reaching high-reward regions remains low. This
is because sparse reward functions yield zero gradients outside the goal region, making optimization
ineffective. To address this, we propose the assumption that the state transition function is invertible
and sample trajectories in a time-reversed manner, conceptually corresponding to sampling from the
distribution ⃗T . By starting from a known goal state sT ∈ G—where task completion is guaranteed—
we ensure exploration of high-reward regions, thereby significantly improving sample efficiency in
off-policy DRL. If sampling from ⃗T is made tractable, RTG inherits the strengths of both HER and
RCG. Compared to HER, RTG generalizes beyond single-object to multi-object manipulation tasks,
as it only requires that states within the goal region G can be sampled. For instance, in the toy
example illustrated in Figure 1, we can randomize the positions of two circles within a randomly
positioned goal region. In contrast to RCG, RTG applies the reverse sampling concept at the trajec-
tory level rather than the curriculum level. As a result, RTG does not depend on the underlying DRL
agent’s exploration capabilities.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.1 RRBS WITH TIME REVERSED TRAJECTORY SAMPLING

In this section, we present the Reverse Rigid-Body Simulator (RRBS), a system capable of generat-
ing simulation trajectories that terminate at a user-specified goal configuration. Generally speaking,
it is challenging to sample from ⃗T for an arbitrary forward transition function T . In the stochastic
setting, it is well-known that deriving ⃗T via Bayes’ rule is intractable (Kingma & Welling, 2014).
Fortunately, we show that for optimization-based physics simulators (Gast et al., 2015; Huang et al.,
2024) with fully differentiable structures, it is possible to approximately sample from ⃗T by solving
trajectory optimization problems. Specifically, suppose the simulator is defined by a fully differ-
entiable implicit function Λ(st+1, st, ct, q(at)) = 0. Here we condition the implicit function on an
additional term q(at), which is denoted as the discrete action-dependent configuration. In this work,
we consider robot manipulation tasks with discrete action space. For example, in a robot pushing
task, the robot can choose the pushing position and orientation by selecting action at. In this case,
we can model q(at) as the position and orientation of the robot end-effector.

Under our setup, forward simulation can then be performed by using the Newton’s method to solve:
argminst+1 ∥Λ(st+1, st, ct, q(at))∥

2. Similarly, given st+1, at, and ct, we can perform time-reversed
simulation by solving for st via:

argmin
st

∥Λ(st+1, st, ct, q(at))∥
2. (1)

However, we argue that this approach is impractical for DRL training. The optimal action at = π(st)
depends on the previous state st, which is unknown when starting from st+1. As a result, we cannot
determine the corresponding optimal action at, making the reverse simulation ill-posed. This issue
has also been noted in Barkley et al. (2024). Further, the continuous control signal ct is unknown a
priori. For example, it is non-trivial to infer the robot joint torques and forces in order for the robot
to push an object along a given direction. Instead, we propose the following physics-constrained
optimization, which allows us to search for the continuous control signal ct that reaches a user-
specified previous state st:

argmin
st,ct

O(st, at) + λ∥ct∥
2 s.t. Λ(st+1, st, ct, q(at)) = 0, (2)

where O is a user-defined objective function, and our second term serves as a minimal-effort reg-
ularization weighted by λ to stabilize the optimization. Compared to Equation 1, this formulation
offers two key advantages. First, it enables automatic determination of the control signal ct. Second,
it introduces a flexible, state-dependent objective function O, which can be easily defined based on
the robot action specification. For example, if our action at requires the robot to push an object in
the direction of d(at), then we can define the objective function as:

O(st, at) = (x
i
t, y

i
t)d(at), (3)

where (xi
t, y

i
t) is the position of the object to be pushed. That is, we maximize the pushing distance

along the negative pushing direction to reflect the time-reversed nature of reverse simulation.

Finally, we propose an h-step generalization of Equation 2, i.e., we jointly optimize over a sequence
of h consecutive states:

argmin
st, . . . , st−h+1
ct, . . . , ct−h+1

O(st−h+1, at) + λ
h−1

∑
k=0

∥ct−k∥
2

s.t. Λ(st−k+1, st−k, ct−k, q(at)) = 0 ∀k = 0,⋯, h − 1,

(4)

which effectively performs physics-constrained trajectory optimization over a time horizon of h
steps. This h-step formulation is particularly useful in robotic manipulation tasks, where actions
such as pushing or sliding typically span multiple timesteps during which the robot applies the same
action, e.g., pushing direction and distance. Equation 4 allows us to optimize the full state trajectory
over the duration of an entire robot action. We denote Equation 4 as the action-dependent reverse
sampling function (st−h+1,⋯, st) = RSh

(st+1, at). We refer readers to Appendix A for more details
of this algorithm.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Note that solving time-reversed simulations is significantly slower than solving forward simulations.
This is because forward simulation involves h decoupled Newton solves, each independent of the
others. In contrast, the reverse simulation couples h consecutive states into a single trajectory opti-
mization problem, as formulated in Equation 4. Nevertheless, we show that this optimization can be
solved efficiently using Sequential Quadratic Programming (SQP) (Boggs & Tolle, 1995). Thanks
to the sparse dependencies between consecutive states, we can exploit the tridiagonal sparsity pat-
tern of the Hessian matrix to accelerate the underlying linear solve (Jordana et al., 2025). As proven
in Appendix A.3, , the per-iteration computational cost of our SQP remains linear in the trajectory
length, i.e., O(h).

4.2 FORWARD REPLAY

One challenge with trajectory optimization is that numerical solvers rarely converge to exactly
physically consistent solutions, i.e., Λ(st−k+1, st−k, ct−k, q(at)) = 0, due to numerical errors.
This mismatch introduces discrepancies between forward and reverse simulations. To mitigate
this issue, we adapt a forward replay procedure. After trajectory optimization, we run the for-
ward simulator for each k = 1, . . . , h using the optimized control signal ct−k, updating states as
st−k+1 ← argminst−k+1 ∥Λ(st−k+1, st−k, ct−k, q(at))∥

2. In our experiments, forward replay effec-
tively reduces distributional bias and accelerates convergence.

4.3 RTG WITH EXPLORATION VIA BEAM SEARCH

In this section, we demonstrate how the reversed simulator RRBS can be leveraged to guide DRL
toward high-reward regions. A naı̈ve strategy is to rely exclusively on the reverse simulator to gener-
ate state-transition tuples, from which the policy can be trained directly via the Bellman loss. While
this approach is highly data-efficient, it is often computationally prohibitive in practice, since gener-
ating samples with the reverse simulator requires solving a large number of trajectory optimization
problems via Equation 4. Furthermore, because the reverse simulator cannot exploit the learned
policy π to propose actions, it lacks the ability to balance state exploration with policy exploita-
tion. To address these limitations, we draw inspiration from off-policy reinforcement learning with
offline data, in particular Reinforcement Learning with Prior Data (RLPD) (Ball et al., 2023). We
treat reverse-sampled trajectories as additional expert demonstrations, denoted by D⃗. These offline
trajectories generated by RTG can be seamlessly integrated into any off-policy RL algorithm, in the
same spirit as RLPD. Concretely, we adopt the symmetric sampling strategy proposed in RLPD: for
each training batch, 50% of samples are drawn from the online replay buffer D, and the remaining
50% from the reverse dataset D⃗, following the scheme of Ross & Bagnell (2012). This design is
also consistent with the recent findings of Tao et al. (2024), which show that resetting agents to more
difficult-to-reach states improves sample efficiency of DRL. In our framework, we accordingly ini-
tialize the agent at a reset probability of 50% for offline visited state distribution and 50% for task
initial state distribution p(s0).

The remaining challenge in our algorithm design is to determine how to generate time-reversed
trajectories via the trajectory optimization in Equation 4 in order to populate D⃗. To this end, we
leverage the initial state distribution p(s0). Specifically, we randomly sample a pair consisting of a
goal state sT ∈ G and a candidate initial state s⋆0 ∼ p(s0), where s⋆0 serves as the target initial state.
Analogous to forward exploration in off-policy DRL, we perform time-reversed exploration: starting
from sT , we recursively call the BSh function to generate h preceding states under different actions
a ∈ A. For the discrete action space, this procedure expands into a tree of length-h sub-trajectories
with branching factor ∣A∣, where we denote each node on the tree as n = (st−h+1,⋯, st+1, at).
For complex manipulation tasks, however, the resulting tree quickly becomes intractably large. To
balance computational feasibility with sufficient state-space coverage, we adopt a beam search strat-
egy (Tillmann & Ney, 2003). At each tree depth, only the top-B most promising nodes are re-
tained, ranked by their closeness to the target initial state s⋆0 as measured by the ranking function
r(st) = ∥st − s

⋆
0∥M with M being a mask matrix detailed in Section 5.2. The process terminates

when the tree reaches a predefined depth or when improvements in the ranking function fall below
a threshold. The overall beam search procedure is summarized in Algorithm 1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 Beam-Search(s⋆0, sT ,B, dmax, δr)

1: function SELECT-TOP-NODES(Scandidate,B) ▷ Select top B nodes by closedness to s⋆0
2: for each st ∈ Scandidate do
3: Compute rank r(st) ← ∥st − s

⋆
0∥M

4: Return top B nodes n ∈ Scandidate with smallest r(st)
5: ▷ Beam search with limited breadth
6: rbest ←∞, D⃗ ← ∅, Sactive ← {s

⋆
T }

7: for d = 1,⋯, dmax do
8: Scandidate ← ∅ ▷ Generate candidate set
9: for each node st ∈ Sactive do

10: for each action a ∈ A do
11: (st−h+1,⋯, st) = RSh

(st+1, a) Equation 4 ▷ Generate new node via TrajOpt.
12: D⃗ ← D⃗ ∪ {(st−h+1, a, r(st−h+1, a), st+1)} ▷ Populate state-transition dataset D⃗
13: Scandidate ← Scandidate ∪ {st−h+1}

14: Sactive ←Select-Top-Nodes(Scandidate,B) ▷ Select top-B candidate nodes
15: h′best ←min{r(st) ∶ st ∈ Sactive}

16: if h′best > hbest − δr then
17: Break
18: h′best ← hbest

19: Return D⃗

5 EVALUATION

We consider a multi-object table-top manipulation problem similar to Huang et al. (2019), where
there are N rigid objects on the table. To model rigid body physics, we implement the 2D rigid
body simulator using the formulation proposed in Huang et al. (2024). In this case, the state st is
a concatentation of M rigid body dynamic configurations, denoted as st = (s1t , s

2
t ,⋯, s

M
t) where

each sit = (x
i
t, y

i
t, ϕ

i
t, ẋ

i
t, ẏ

i
t, ϕ̇

i
t) with the first 3 elements being the position and orientation on the

2D table-top and the last 3 elements being the corresponding velocity.

d1
d3

d5
d7

d2

d6

d4

d8

{

α

d3

(a) (d)(b) (c)

Figure 2: (a): Our action requires the robot to push an object along N = 8 uniformly spaced direc-
tions for a fixed distance. The initial pushing position is the computed by finding the largest negative
α with no collision between objects and robot end-effetor. (b): The task of Gathering requires all
objects to fall inside the goal region. (c): The task of Sorting requires two types of objects to fall
into designated region as determined by their labels. (d): The task of ArtManip. requires pushing a
hinge-connected articulated body into an S-shaped target pose.

5.1 RIGID BODY MANIPULATION TASKS

Following the setting in Li et al. (2018), we only allow the robot to manipulate objects via non-
prehensile pushing using a set of discrete pushing actions. As illustrated in Figure 2 (a), the pushing
direction is discretized into N uniformly spaced directions on the plane; without loss of generality,
we set N = 8 in our experiments, i.e., 8 equispaced directions (d1,⋯, d8) over a fixed distance. For
each direction dj and each object sit, we define the initial pushing position of the robot end-effector
as diα + (xi

t, y
j
t), where we choose α as the largest negative value such that the robot end-effector

does not intersect any object. As such, the action space A is discretized into N ×M manipulation
primitives, i.e., ∣A∣ = 8M . We evaluate our method on three manipulation tasks under absolute
sparse reward, which are illustrated in Figure 2 (b-d) and listed below:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

• Gathering: The goal is to gather all objects into a single designated target area G, which is
an circular area with radius R centered at (xG , yG) and we define the reward as r(st, at) =

∏
M
i=1 1 [(x

i
t, y

i
t) ∈ G].

• Sorting: The goal of sorting is to divide objects into 2 clusters, with each object equipped
with a label l(i). Each cluster has a designated goal region G1 and G2, both with radius R

and centered at (xG
1

, yG
1
) and (xG

2

, yG
2
), respectively. We define the reward as: r(st, at) =

∏
M
i=1 1[((x

i
t, y

i
t) ∈ G

1 ∧ l(i) = 1) ∨ ((xi
t, y

i
t) ∈ G

2 ∧ l(i) = 2)].

• Articulated Manipulation (ArtManip.): In this case, we assume the M objects are con-
nected using hinge joints, each of which allows free rotation in the range [−π,π]. And the
goal is for the robot to push objects so that the entire articulated body takes a given target
pose, which is defined by a set of M target positions (xG

i

, yG
i
). We define the reward as:

r(st, at) = ∏
N
i=1 1 [∥ (x

i
t, y

i
t) − (x

G
i

, yG
i
) ∥ ≤ ϵ]. This task is more challenging as pushing one

object may affect the poses of the others.

5.2 BASELINES

To demonstrate that our method can be combined with various off-policy DRL algorithms, we build
our RTG framework with two variants, Deep Q-Networks (DQN) (Mnih et al., 2015) and Double
DQN (DDQN) (Van Hasselt et al., 2016). We compare our method with two baselines: RCG and
HER. The RCG assumes the availability of a distance-to-goal metric, for which we use our ranking
function r(st), where we define our mask matrix M to only measure the distance between object
center positions, ignoring orientations. Specifically, we generate the i-th curriculum with initial
states satisfying r(s0) < ϵi. The comparison with HER is tricker as HER requires a goal conditioned
and does not generalize to multi-object tasks as illustrated in Figure 1. Instead, we propose an
implicit goal-conditioning setting. Take the gathering task for example, we use a designated goal
position (xG , yG). Now suppose we condition our task on this goal position, HER works by moving
the goal position to maximize the reward. This is equivalent to using the modified reward function:
rHER(st, at) = max(xG ,yG) r(st, at), denoted with subscript HER. Note that using rHER yields a
simpler task than the original HER formulation, since it obviates the requirement for Universal Value
Function Approximators (UVFA) (Bellemare et al., 2016) and the reward function is engineered to
maximize reward over all goals. We call such a reward function implicit HER or I-HER. Similarly,
we can define I-HER reward for the sorting task by treating both (xG

1

, yG
1
) and (xG

2

, yG
2
) as

goals and define: rHER(st, at) =max
∥(xG1 ,yG1

)−(xG2 ,yG2
)∥≥2R r(st, at), where we require the center

of two circles to be larger than 2R to reflect the requirement of sorting. Finally, for ArtManip., we
assume that the goal pose of the articulated body can undergo arbitrary rigid transformations and
define:

rHER(st, at) = max
δx,δy,δθ

N

∏
i=1

1 [∥ (xi
t, y

i
t) −R(δθ) (x

G
i

, yG
i
) − (δx, δy)∥ ≤ ϵ] ,

with R(δθ) denoting a 2D rotation matrix.

5.3 RESULTS

The main results are summarized in Figure 3, Figure 4, Figure 5, showing how our methods outper-
form all baselines across all three tasks. RTG with both DDQN and DQN are the only methods that

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Gathering
RTG (Ours, DDQN)
RTG (Ours, DQN)
DDQN with RCG
DDQN with I-HER
Vanilla DDQN

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s R

at
e

Sorting
RTG (Ours, DDQN)
RTG (Ours, DQN)
DDQN with RCG
DDQN with I-HER
Vanilla DDQN

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

ArtManip.
RTG (Ours, DDQN)
RTG (Ours, DQN)
DDQN with RCG
DDQN with I-HER
Vanilla DDQN

Figure 3: Mean average success rate of algorithms for each task. Results are averaged within envi-
ronment. Shaded areas represent ±1 std. over 5 seeds.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Environment Steps 1e5

0

10

20

30

40

50

60

Ep
iso

de
 L

en
gt

h

Gathering

RTG (Ours, DDQN)
RTG (Ours, DQN)
DDQN with RCG
DDQN with I-HER
Vanilla DDQN

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Environment Steps 1e5

10

20

30

40

50

60

Ep
iso

de
 L

en
gt

h

Sorting

RTG (Ours, DDQN)
RTG (Ours, DQN)
DDQN with RCG
DDQN with I-HER
Vanilla DDQN

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment Steps 1e5

20

30

40

50

60

Ep
iso

de
 L

en
gt

h

ArtManip.

RTG (Ours, DDQN)
RTG (Ours, DQN)
DDQN with RCG
DDQN with I-HER
Vanilla DDQN

Figure 4: Mean episode length of algorithms for each task. Results are averaged within environment.
Shaded areas represent ±1 std. over 5 seeds.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

Gathering
RTG (Ours, DDQN)
RTG (Ours, DQN)
DDQN with RCG
Vanilla DDQN

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e
Re

tu
rn

Sorting
RTG (Ours, DDQN)
RTG (Ours, DQN)
DDQN with RCG
Vanilla DDQN

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

ArtManip.
RTG (Ours, DDQN)
RTG (Ours, DQN)
DDQN with RCG
Vanilla DDQN

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment Steps 1e5

0

10

20

30

40

50

60

Av
er

ag
e

Re
tu

rn

Average Return for I-HER

I-HER for Gathering
I-HER for Sorting
I-HER for ArtManip.

Figure 5: Mean average return of algorithms for each task. Results are averaged within each en-
vironment. Shaded areas represent ±1 std. over 5 seeds. I-HER does not terminate once reaching
rHER(st, at) = 1, but only upon reaching actual task success. Consequently, its episode return spans
a larger range than other methods.

is capable of achieving high success rates on every task within a reasonable compute budget. We
refer readers to Appendix C for visualizations of how each task is accomplished.

Table 1: Ablations on how to leverage offline transi-
tions. For each task and algorithm, we report the per-
centage success rate (average and ±1 std. over 5 seeds).

Task BC CQL Ours
Gathering 2.0 ± 2.4 2.0 ± 2.4 70.0 ± 21.6

Sorting 14.0 ± 7.3 16.0 ± 13.9 94.7 ± 4.6
ArtManip. 5.0 ± 5.4 8.0 ± 6.0 74.0 ± 21.9

We ablate the design choice of how offline
data is leveraged in our framework, as il-
lustrated in Table 1. Our results indicate
that, in contrast to Behavior Cloning (BC)
or offline RL methods like Conservative
Q-Learning (CQL) (Kumar et al., 2020),
our method RTG incorporating weakly-
guided offline transitions into the replay
buffer of off-policy training leads to more
effective learning. We refer readers to Appendix D for further ablations regarding the informative-
ness of offline transitions, and Appendix F for the Forward Replay gap analysis.

We further evaluate the robustness and generality of our approach through four additional experi-
ments conducted on the ArtManip task.

Sim-to-sim transfer to Box2D. We reused the reverse trajectories generated by our method as
offline data for a standard Box2D implementation of the task, and trained a forward RL agent purely
from these demonstrations. As shown in Figure 6, the agent achieves strong performance, indicating
that our generated trajectories are physically consistent and transferable across simulators.

Continuous control with Actor-Critic methods. To evaluate generalization to continuous action
spaces, we applied our method to a continuous variant of the ArtManip task, using Twin Delayed
DDPG (TD3) (Fujimoto et al., 2018). The action space is parameterized as (x, y,∆x,∆y), where
(x, y) specifies the pusher’s planar position, and (∆x,∆y) the pusher’s displacement in the x- and
y-directions. For the reverse step, we handle the continuous action space by discretizing it via
sampling candidate actions. The results in Figure 7 show that our method continues to provide
effective guidance in this continuous-control setting.

Comparison with Backplay. We further compared our method against Backplay (Resnick et al.,
2018), a strong reset-to-state baseline that also exploits demonstrations. As shown in Figure 8, our
method consistently outperforms Backplay, highlighting the advantage of optimizing full reverse
trajectories rather than only replaying along a single forward demonstration.

Beam search ablation. Finally, we ablated the beam search depth D and breadth B used in Al-
gorithm 1. Figure 9 shows that performance is robust across a wide range of beam breadths and

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

moderate changes in depth, suggesting that our method does not rely on exhaustive search to be
effective. The runtime analysis can be found in Appendix E.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
te

Transfer to Box2D
No Transfer

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment Steps 1e5

10

20

30

40

50

60

Ep
is

od
e

Le
ng

th

Transfer to Box2D
No Transfer

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

Transfer to Box2D
No Transfer

Figure 6: Sim-to-sim transfer to a standard Box2D implementation using our generated reverse
trajectories with RTG. Results are averaged within environment. Shaded areas represent ±1 std.
over 5 seeds.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
te

RTG (Ours, TD3)
TD3 with RCG
TD3 with I-HER
Vanilla TD3

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment Steps 1e5

0

10

20

30

40

50

60
Ep

is
od

e
Le

ng
th

RTG (Ours, TD3)
TD3 with RCG
TD3 with I-HER
Vanilla TD3

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

RTG (Ours, TD3)
TD3 with RCG
Vanilla TD3

Figure 7: Continuous-control extension using TD3 as the underlying DRL algorithm, where the
action space is (x, y,∆x,∆y) and the reverse step operates on a sampled discretization of this
space. Results are averaged within environment. Shaded areas represent ±1 std. over 5 seeds.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
te

RTG (Ours, DDQN)
Backplay

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment Steps 1e5

20

30

40

50

60

Ep
is

od
e

Le
ng

th

RTG (Ours, DDQN)
Backplay

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e
Re

tu
rn

RTG (Ours, DDQN)
Backplay

Figure 8: Comparison between our method and the Backplay baseline. Results are averaged within
environment. Shaded areas represent ±1 std. over 5 seeds.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
te

RTG (D=40, B=48)
RTG (D=20, B=48)
RTG (D=10, B=48)
RTG (D=40, B=24)
RTG (D=40, B=12)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment Steps 1e5

10

20

30

40

50

60

Ep
is

od
e

Le
ng

th

RTG (D=40, B=48)
RTG (D=20, B=48)
RTG (D=10, B=48)
RTG (D=40, B=24)
RTG (D=40, B=12)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

RTG (D=40, B=48)
RTG (D=20, B=48)
RTG (D=10, B=48)
RTG (D=40, B=24)
RTG (D=40, B=12)

Figure 9: Ablation over beam search depth D and breadth B in Algorithm 1. Performance remains
robust across various beam widths and depths, indicating that exhaustive search is not required.
Results are averaged within environment. Shaded areas represent ±1 std. over 5 seeds.

6 CONCLUSION

In this work, we introduce RTG, a sample-efficient DRL method for learning rigid body manipula-
tion skills under sparse reward. The core idea is to leverage trajectory optimization based simulator
RRBS to generate reverse trajectories that terminate at high-reward states, and to employ beam
search to construct a dataset D⃗ that augments the replay buffer of an off-policy DRL agent like
DQN and DDQN. We evaluate RTG on various multi-object manipulation tasks, including sorting,
gathering, and articulated object manipulation. Experiments show that RTG substantially improves
off-policy DRL’s performance, outperforming baselines including simplified-task HER and RCG.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1, 2004.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. Advances in neural information processing systems, 30, 2017.

Philip J. Ball, Laura M. Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforce-
ment learning with offline data. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of
Machine Learning Research, pp. 1577–1594. PMLR, 2023. URL https://proceedings.
mlr.press/v202/ball23a.html.

Brett Barkley, Amy Zhang, and David Fridovich-Keil. An investigation of time reversal symmetry
in reinforcement learning. In Alessandro Abate, Mark Cannon, Kostas Margellos, and Antonis
Papachristodoulou (eds.), Proceedings of the 6th Annual Learning for Dynamics and Control
Conference, volume 242 of Proceedings of Machine Learning Research, pp. 68–79. PMLR, 15–
17 Jul 2024. URL https://proceedings.mlr.press/v242/barkley24a.html.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in neural information pro-
cessing systems, 29, 2016.

Paul T. Boggs and Jon W. Tolle. Sequential quadratic programming. Acta Numerica, 4:1–51, 1995.
doi: 10.1017/S0962492900002518.

Rati Devidze, Parameswaran Kamalaruban, and Adish Singla. Exploration-guided reward shaping
for reinforcement learning under sparse rewards. Advances in Neural Information Processing
Systems, 35:5829–5842, 2022.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In International conference on machine learning,
pp. 1329–1338. PMLR, 2016.

Tom Erez, Yuval Tassa, and Emanuel Todorov. Simulation tools for model-based robotics: Compar-
ison of bullet, havok, mujoco, ode and physx. In 2015 IEEE international conference on robotics
and automation (ICRA), pp. 4397–4404. IEEE, 2015.

Jonas Eschmann. Reward function design in reinforcement learning. Reinforcement learning algo-
rithms: Analysis and Applications, pp. 25–33, 2021.

Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse cur-
riculum generation for reinforcement learning. In Conference on robot learning, pp. 482–495.
PMLR, 2017.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Walter Gander and Gene H Golub. Cyclic reduction-history and applications. In Scientific Comput-
ing: Proceedings of the Workshop, 10-12 March 1997, Hong Kong, pp. 73. Springer Science &
Business Media, 1998.

Theodore F Gast, Craig Schroeder, Alexey Stomakhin, Chenfanfu Jiang, and Joseph M Teran. Opti-
mization integrator for large time steps. IEEE transactions on visualization and computer graph-
ics, 21(10):1103–1115, 2015.

Dan Haramati, Tal Daniel, and Aviv Tamar. Entity-centric reinforcement learning for object manip-
ulation from pixels. arXiv preprint arXiv:2404.01220, 2024.

11

https://proceedings.mlr.press/v202/ball23a.html
https://proceedings.mlr.press/v202/ball23a.html
https://proceedings.mlr.press/v242/barkley24a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alex Havrilla, Yuqing Du, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-Yu,
Maksym Zhuravinskyi, Eric Hambro, Sainbayar Sukhbaatar, and Roberta Raileanu. Teaching
large language models to reason with reinforcement learning. arXiv preprint arXiv:2403.04642,
2024.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Eric Huang, Zhenzhong Jia, and Matthew T Mason. Large-scale multi-object rearrangement. In
2019 international conference on robotics and automation (ICRA), pp. 211–218. IEEE, 2019.

Zizhou Huang, Davi Colli Tozoni, Arvi Gjoka, Zachary Ferguson, Teseo Schneider, Daniele
Panozzo, and Denis Zorin. Differentiable solver for time-dependent deformation problems with
contact. ACM Transactions on Graphics, 43(3):1–30, 2024.

Armand Jordana, Sébastien Kleff, Avadesh Meduri, Justin Carpentier, Nicolas Mansard, and Lu-
dovic Righetti. Structure-exploiting sequential quadratic programming for model-predictive con-
trol. IEEE Transactions on Robotics, 41:4960–4974, 2025. doi: 10.1109/TRO.2025.3595674.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings, 2014.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in neural information processing systems, 33:1179–1191, 2020.

Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Exploration in deep reinforcement
learning: A survey. Information Fusion, 85:1–22, 2022.

Sergey Levine and Vladlen Koltun. Guided policy search. In International conference on machine
learning, pp. 1–9. PMLR, 2013.

Jue Kun Li, Wee Sun Lee, and David Hsu. Push-net: Deep planar pushing for objects with unknown
physical properties. In Robotics: Science and Systems, volume 14, pp. 1–9, 2018.

Richard Li, Allan Jabri, Trevor Darrell, and Pulkit Agrawal. Towards practical multi-object manip-
ulation using relational reinforcement learning. In 2020 ieee international conference on robotics
and automation (icra), pp. 4051–4058. IEEE, 2020a.

Yunzhu Li, Hao He, Jiajun Wu, Dina Katabi, and Antonio Torralba. Learning compositional koop-
man operators for model-based control. In International Conference on Learning Representa-
tions, 2020b. URL https://openreview.net/forum?id=H1ldzA4tPr.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

A Rupam Mahmood, Dmytro Korenkevych, Gautham Vasan, William Ma, and James Bergstra.
Benchmarking reinforcement learning algorithms on real-world robots. In Conference on robot
learning, pp. 561–591. PMLR, 2018.

Farzan Memarian, Wonjoon Goo, Rudolf Lioutikov, Scott Niekum, and Ufuk Topcu. Self-supervised
online reward shaping in sparse-reward environments. In 2021 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pp. 2369–2375. IEEE, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Igor Mordatch and Emo Todorov. Combining the benefits of function approximation and trajectory
optimization. In Robotics: Science and Systems, volume 4, pp. 23, 2014.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Icml, volume 99, pp. 278–287. Citeseer, 1999.

12

https://openreview.net/forum?id=H1ldzA4tPr

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Charles Packer, Pieter Abbeel, and Joseph E Gonzalez. Hindsight task relabelling: Experience
replay for sparse reward meta-rl. Advances in neural information processing systems, 34:2466–
2477, 2021.

Zherong Pan and Dinesh Manocha. Time integrating articulated body dynamics using position-
based collocation methods. In WAFR, pp. 673–688, 2018. URL https://doi.org/10.
1007/978-3-030-44051-0_39.

Zherong Pan, Andy Zeng, Yunzhu Li, Jingjin Yu, and Kris Hauser. Algorithms and systems for
manipulating multiple objects. IEEE Transactions on Robotics, 39(1):2–20, 2022.

Desik Rengarajan, Gargi Vaidya, Akshay Sarvesh, Dileep Kalathil, and Srinivas Shakkottai. Rein-
forcement learning with sparse rewards using guidance from offline demonstration. arXiv preprint
arXiv:2202.04628, 2022.

Cinjon Resnick, Roberta Raileanu, Sanyam Kapoor, Alexander Peysakhovich, Kyunghyun Cho, and
Joan Bruna. Backplay:” man muss immer umkehren”. arXiv preprint arXiv:1807.06919, 2018.

Magı́ Romanyà-Serrasolsas, Juan J Casafranca, and Miguel A Otaduy. Painless differentiable rota-
tion dynamics. ACM Transactions on Graphics (TOG), 44(4):1–13, 2025.

Stéphane Ross and J. Andrew Bagnell. Agnostic system identification for model-based reinforce-
ment learning. In Proceedings of the 29th International Coference on International Conference
on Machine Learning, ICML’12, pp. 1905–1912, Madison, WI, USA, 2012. Omnipress. ISBN
9781450312851.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of the fourteenth international con-
ference on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference
Proceedings, 2011.

Himanshu Sahni, Toby Buckley, Pieter Abbeel, and Ilya Kuzovkin. Visual hindsight experience
replay. Proc. of NeurIPS, 2019.

Mikhail V. Solodov. Global convergence of an sqp method without boundedness assumptions on any
of the iterative sequences. Math. Program., 118(1):1–12, January 2009. ISSN 0025-5610. doi: 10.
1007/s10107-007-0180-y. URL https://doi.org/10.1007/s10107-007-0180-y.

Sanghyun Son, Laura Zheng, Ryan Sullivan, Yi-Ling Qiao, and Ming Lin. Gradient informed
proximal policy optimization. Advances in Neural Information Processing Systems, 36:8788–
8814, 2023.

Haoran Song, Joshua A Haustein, Weihao Yuan, Kaiyu Hang, Michael Yu Wang, Danica Kragic,
and Johannes A Stork. Multi-object rearrangement with monte carlo tree search: A case study
on planar nonprehensile sorting. In 2020 IEEE/RSJ international conference on intelligent robots
and systems (IROS), pp. 9433–9440. IEEE, 2020.

Stone Tao, Arth Shukla, Tse-kai Chan, and Hao Su. Reverse forward curriculum learning
for extreme sample and demonstration efficiency in reinforcement learning. arXiv preprint
arXiv:2405.03379, 2024.

Christoph Tillmann and Hermann Ney. Word reordering and a dynamic programming beam search
algorithm for statistical machine translation. Computational linguistics, 29(1):97–133, 2003.

Alexander Trott, Stephan Zheng, Caiming Xiong, and Richard Socher. Keeping your distance:
Solving sparse reward tasks using self-balancing shaped rewards. Advances in Neural Information
Processing Systems, 32, 2019.

Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon, Matthew
Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao, et al. Jump-start reinforcement learning. In Inter-
national Conference on Machine Learning, pp. 34556–34583. PMLR, 2023.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

13

https://doi.org/10.1007/978-3-030-44051-0_39
https://doi.org/10.1007/978-3-030-44051-0_39
https://doi.org/10.1007/s10107-007-0180-y

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Weikang Wan, Ziyu Wang, Yufei Wang, Zackory Erickson, and David Held. Difftori: Differen-
tiable trajectory optimization for deep reinforcement and imitation learning. Advances in Neural
Information Processing Systems, 37:109430–109459, 2024.

Yixuan Wang, Yunzhu Li, Katherine Driggs-Campbell, Li Fei-Fei, and Jiajun Wu. Dynamic-
resolution model learning for object pile manipulation. arXiv preprint arXiv:2306.16700, 2023.

Eliot Xing, Vernon Luk, and Jean Oh. Stabilizing reinforcement learning in differentiable multi-
physics simulation. arXiv preprint arXiv:2412.12089, 2024.

Jie Xu, Viktor Makoviychuk, Yashraj Narang, Fabio Ramos, Wojciech Matusik, Animesh Garg, and
Miles Macklin. Accelerated policy learning with parallel differentiable simulation. arXiv preprint
arXiv:2204.07137, 2022.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On learning intrinsic rewards for policy gradient
methods. Advances in neural information processing systems, 31, 2018.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A REVERSE SIMULATION VIA PHYSICS-CONSTRAINED OPTIMIZATION

To derive the reverse simulator, we need to first understand the mechanism of the forward simulation.
The forward simulation is formulated as the following unconstrained optimization:

argmin
pt+1

Ψ(pt+1, pt, pt−1, ct), (5)

where we denote by pt the kinematic state at the tth time instance, and ct is the control input
at the tth time instance. In our setting of 2D rigid bodies, pt is the concatenation of pit with pit
being the kinematic state of the ith rigid body, i.e. pit = (x

i
t, y

i
t, θ

i
t) and the complete state st

used in DRL is a concatenation of kinematic state and velocity, i.e. st = (pt, pt−1), where ve-
locity can be recovered from finite difference. The function Λ in our main paper is defined as
Λ(st+1, st, ct, q(at)) = ∇pt+1Ψ(pt+1, pt, pt−1, ct). In Section A.1, we would introduce the formu-
lation of the objective function Ψ. For now, we assume that Ψ is twice-differentiable in all the
parameters. In the reverse simulator, we consider an entire trajectory of h timesteps, denoted as
p = (pTt−h,⋯, p

T
t−1)

T
, with the associated control inputs c = (cTt−h+1,⋯, c

T
t)

T
, where we further

denote by p (resp. c) (without subscript) the concatenation of pt (resp. ct) over all the time indices.
Here, we assume st+1 = (pt+1, pt) is known as fixed. We would like to optimize the sequence of
control inputs to optimize the following objective function:

J(p, c) =
M

∑
i=1

(xi
t−h, y

i
t−h)d(at) + λ

h−1

∑
k=0

∥ct−k∥
2
+ P⊥(pt−h), (6)

where our primary goal is to move all M rigid bodies along the negative pushing direction d(at) as
far as possible, while fixing the final state. Note that our objective encourages the robot to push all M
rigid bodies, since the set of rigid bodies to be pushed simultaneously is unknown to us a prior. Note
that when the robot cannot reach certain rigid bodies, these bodies will not move due to our physics
constraints, despite our objective function encourages the bodies to be moved. Further, we also
add a small control regularization with a small coefficient λ. Finally, we introduce a regularization
energy P⊥(pt−h) to ensure the initial state satisfies the collision-free constraints, which is defined
in Section A.1. During our optimization, we need to always ensure that Equation 5 is satisfied,
which guarantees physical correctness. Combining Equation 5 and Equation 6, we propose to solve
the following constrained optimization:

argmin
p,c

J(p, c) s.t.∇pt−k+1Ψ(pt−k+1, pt−k, pt−k−1, ct−k) = 0 ∀k = 0,⋯, h − 1. (7)

Under the assumption that the function Ψ is twice-differentiable and thus the function Λ is differen-
tiable, we can efficiently solve Equation 7 using SQP.

A.1 OPTIMIZATION-BASED 2D RIGID BODY SIMULATOR

In this section, we consider the dynamics of multiple 2D rigid bodies, for which we derive the con-
crete form of the objective Ψ and its derivatives. Our starting point is the 2D version of the dynamic
simulator (Huang et al., 2024). The energy Ψ consists of five terms: the inertia term I(pt+1, pt, pt−1)
and damping term ID(pt+1, pt), the normal collision potential P⊥(pt+1), the frictional collision po-
tential P∥(pt+1, pt), and finally the external force potential PE(pt+1, ct). Specifically, we have:
Ψ(pt+1, pt, pt−1, ct) = I(pt+1, pt, pt−1) + ID(pt+1, pt) + P⊥(pt+1) + P∥(pt+1, pt) + PE(pt+1, ct).

We present the concrete formula for each and every term above.

Inertia & Damping Term: In the original formula for the dynamic simulator (Huang et al., 2024),
the inertial term is designed for soft bodies instead of rigid bodies. Instead, we follow Pan &
Manocha (2018) to formulate the rigid body inertia term as follows:

I(pt+1, pt, pt−1) =
M

∑
j=1
∫
Ωj

ρ

2∆t2
∥X(x, pjt+1) − 2X(x, p

j
t) +X(x, p

j
t−1)∥

2dx, (8)

where ρ is the rigid body density, ∆t is the timestep size, and Ωj ⊂ R2 is the volume taken by the
jth rigid body. Finally, X(x, pjt) is the world-space position of x under configuration pjt , defined as:

X(x, pjt) = (
cos(θjt) − sin(θ

j
t)

sin(θjt) cos(θjt)
)x + (

xj
t

yjt
) .

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The dynamic simulator discretizes the acceleration by finite difference over three time instances.
Following the similar logic to the inertial term, we can define the following damping term that
penalizes the velocity at every timestep:

ID(pt+1, pt) = kD
M

∑
j=1
∫
Ωj

ρ

2∆t2
∥X(x, pjt+1) −X(x, p

j
t)∥

2dx,

with kD being the damping coefficient. We refer readers to Pan & Manocha (2018) for the compu-
tational evaluation of these terms.

Normal Collision Potential: Without a loss of generality, we can assume the ith rigid body has the
geometry of a convex polyhedron with Ki vertices denoted as (vi,1,⋯, vi,Ki). We now define the
smoothened signed distance function of a point p to the ith rigid body to be di(p). We follow the
method of incremental potential contact used by Huang et al. (2024) and define:

P⊥(pt+1) = −ν
M

∑
j=1

∑
i≠j

Ki

∑
k=1

log(dj([v
j
i,k]t+1)),

where we choose ν as a small positive coefficient and X−1(●, pt+1j) is the inverse function of
X(●, pt+1j). Here we define [vji,k]t+1 = X−1(X(vi,k, p

t+1
i), p

t+1
j), with is the position of vi,k in

jth object’s local frame of reference at time instance t + 1. In other words, P⊥ requires that every
vertex of a rigid body to be non-penetrating with other rigid bodies.

Frictional Collision Potential: The frictional potential is formulated in a similar manner following
the idea of incremental potential contact used by Huang et al. (2024). We first compute each contact
force between vi,k and the jth rigid body from the last timestep, which is:

f⊥,j,i,k = ν

XXXXXXXXXXXX

∂log(dj([v
j
i,k]t))

∂[vji,k]t

XXXXXXXXXXXX

.

We then formulate the frictional damping term as:

f∥,j,i,k = βf⊥,j,i,k

XXXXXXXXXXXX

Proj∥

⎡
⎢
⎢
⎢
⎢
⎣

X(vi,k, p
i
t+1) −X(vi,k, p

i
t)

∆t
−
X([vji,k]t, p

j
t+1) −X([v

j
i,k]t, p

j
t)

∆t

⎤
⎥
⎥
⎥
⎥
⎦

XXXXXXXXXXXX

,

where Proj∥ is the projection to the tangential plane. Finally, we define:

P∥(pt+1, pt) = ν
M

∑
j=1

∑
i≠j

Ki

∑
k=1

f∥,j,i,k,

with β being the frictional coefficient. Intuitively, we damp the relative tangential velocity between
vi,k on the ith object and [vji,k]t on the jth object in contact.

External Force Term: We control the dynamic system using external force and torque. Without
the loss of generality, we can assume the first rigid body is the robot end-effector, which can be
controlled by ct = (f

x
t , f

y
t , τt) with (fx

t , f
y
t) being the external force and τt being the external

torque. Then the external force term is −fx
t x

1
t − f

y
t y

1
t − τtθ

1
t . However, the above formula might

introduce excessively large forces, which is unrealistic. We can regularize the situation by introduce
a bound Bf on the force magnitude and enforcing −Bf ≤ fx,y

t ≤ Bf . Similarly, we introduce a
bound Bτ on the torque magnitude and enforce −Bτ ≤ τt ≤ Bτ . Such constraint can be achieved by
using the tanh activation function and defining:

PE(pt+1, ut) = −Bf tanh(f
x
t)x

1
t −Bf tanh(f

y
t)y

1
t −Bτ tanh(τt)θ

1
t .

A.2 SEQUENTIAL QUADRATIC PROGRAMMING

We provide the complete detail of our SQP algorithm. We first define the constraint vector
C(p, c) = (Λt−h+1,⋯,Λt), where we abuse notation and write Λt−k = Λ(st−k+1, st−k, ct−k).
We adopt the variant of SQP guided by the following l1-merit function (Boggs & Tolle, 1995):
Θ(p, c, η) = J(p, c) + η∥C∥1. We start from the initial guess p0 = (pt+1,⋯, pt+1) , c0 = (0,⋯, 0),

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

i.e., we initialize the trajectory to be static at state pt+1 with all zero control forces and torques. SQP
iteratively updates the solution p, c to reduce the merit function until a critical point is achieved. To
update a solution p, c, we solve the following quadratic programming by using quadratic approxi-
mation of the objective function and linear approximation of all the constraints:

argmin
∆p,∆c

∂J

∂p

T

∆p +
∂J

∂c

T

∆c +
1

2
∆pT

∂2J

∂p2
∆s +

1

2
∆cT

∂2J

∂c2
∆c

s.t. C +
∂C

∂p
∆p +

∂C

∂c
∆c = 0.

(9)

The above Quadratic Program (QP) has all-linear equality constraints with a quadratic objective.
This is because we use the tanh soft activation function to model control force and torque limits
in the external force term PE from Section A.1, which transforms the inequality control limits into
the equality constraints after linearization. This is key to the fast solution of trajectory optimization,
since the QP sub-problem can be efficiently solved via the following KKT linear system:

⎛
⎜
⎜
⎜
⎝

∂2J
∂p2

∂C
∂p

T

∂2J
∂u2

∂C
∂c

T

∂C
∂p

∂C
∂c

⎞
⎟
⎟
⎟
⎠

⎛

⎝

∆p
∆c
λ

⎞

⎠
=
⎛
⎜
⎝

−∂J
∂p

−∂J
∂c
−C

⎞
⎟
⎠
, (10)

with λ being the associated Lagrangian multiplier. Note that by definition, the mixed derivatives
∂2J
∂p2 c. For now, we assume the KKT-system can be readily solved, then SQP proceeds by choosing
a step size ηj such that:

Θ(p + ηj∆p, c + ηj∆c, η) < Θ(p, c, η) + ηjDΘ(p, c,∆p,∆c, η), (11)

where DΘ is the directional derivative of Θ along ∆p and ∆c. To ensure that such ηj exists,
we need to choose η > ∥λ∥∞. We notice that SQP is an infeasible solver that is not guaranteed
to return a feasible solution. Specifically, a feasible solution is only returned when the constraint
qualifications are satisfied. In practice, we find the constraint qualifications can be violated when
the physics constraints are violated. To improve the success rate of SQP, we follow Solodov (2009)
to use a feasibility safe-guard. Specifically, instead of using Equation 11 as the only condition of
line-search, we add a condition to ensure that ∥C(p + δp, c +∆c)∥1 ≤ ϵc. We find that by using a
sufficiently small ϵc, the SQP solver becomes much more robust and we never observe failure cases
in our experiments.

A.3 FAST KKT SYSTEM SOLVE

Directly solving Equation 10 without exploiting the sparsity pattern can take O(h3). Instead, we
show that by utilizing the sparsity pattern, we can solve the KKT-system at a cost of O(h). To see
this, we write the Lagrangian multiplier λ = (λt−h+1,⋯, λt). The fast linear system solve can be
derived by a permutation of variables as follows:

νt−k ≜
⎛

⎝

∆pt−k−1
∆ct−k
λt−k

⎞

⎠

⎛

⎝

∆p
∆c
λ

⎞

⎠
= P
⎛

⎝

νt−h+1
⋮

νt

⎞

⎠
,

with P being the permutation matrix. The lefthand side of Equation 10 after symmetric permutation
reads:

P

⎛
⎜
⎜
⎜
⎝

∂2J
∂p2

∂C
∂p

T

∂2J
∂u2

∂C
∂c

T

∂C
∂p

∂C
∂c

⎞
⎟
⎟
⎟
⎠

PT
=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

At−h+1 B
T
t−h+2

Bt−h+2 At−h+2 B
T
t−h+3

Bt−h+3 At−h+3

⋱ BT
t

Bt At

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

which takes a block tridiagonal form. Here we define the blocks as follows:

At−k ≜

⎛
⎜
⎜
⎜
⎝

∂2J
∂∆pt−k−1

2
∂Λt−k

∂∆pt−k−1

T

∂2J
∂∆ct−k

2
∂Λt−k
∂∆ct−k

T

∂Λt−k
∂∆pt−k−1

∂Λt−k
∂∆ct−k

⎞
⎟
⎟
⎟
⎠

Bt−k ≜

⎛
⎜
⎜
⎝

∂Λt−k−1
∂∆pt−k−1

T

∂Λt−k
∂∆pt−k−2

⎞
⎟
⎟
⎠

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Therefore, we could use the cyclic reduction algorithm (Gander & Golub, 1998) to solve the linear
system with a cost of O(h). Put together, each iteration of our SQP involves a single solve of the
KKT-system, so the iterative cost is O(h).

B HYPERPARAMETERS

In Table 2, we report the choice of our method’s hyperparameters.

Table 2: Our method’s hyperparameters. These are the ones used to generate our figures and results.
Highlighted in blue indicates hyperparameters introduced by this paper.

Hyperparameter Value
RL Hyperparameters (DQN & Double DQN)
Discount factor (γ) 0.8 (Gathering)

0.9 (Sorting and ArtManip.)
Replay Buffer Capacity 1,500,000
Batch Size 512
Total Interactions / Samples 350,000 (Gathering and Sorting)

400,000 (ArtManip.)
Networks and Optimization
Network Shape of Features Extractor (MLP) [512, 512, 128]
Learning Rate 5e-5
Gradient Steps 1
Train Frequency 4
Network Optimizer Adam
Environment and Data
Reward Function Sparse (+1 on success, 0 otherwise)
Action Repeat 1
Episode Horizon 60
Observation Type State
RTG
Push Stride 2.0
Number of discrete actions 48
Offline transitions generated 49144 (Gathering)

67793 (Sorting)
89905 (ArtManip.)

C TASK VISUALIZATIONS

In Figure 10, Figure 11, Figure 12, we show visually how each of our proposed task is accomplished.

Figure 10: A sample successful trajectory for the task of Gathering.

Figure 11: A sample successful trajectory for the task of Sorting.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 12: A sample successful trajectory for the task of ArtManip.

D ADDITIONAL RESULTS

Here we report more comparisons with (a) DDQN with Random Offline Exploration and (b)
RTG with Domain Randomization, both combined with DDQN. For the former, DDQN with ran-
dom offline exploration is essentially an ablation to validate the data informativeness of offline tran-
sitions from RTG. For the latter, we add domain randomization to the initial state distribution (with
each object’s positions perturbed by ±0.5, ±1.0, ±0.5 with respect to three tasks) to validate our
method RTG’s robustness. The comparisons are shown in Figure 13, Figure 14, Figure 15.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

Gathering
RTG
RTG with Domain Randomization
DDQN with Random Offline Exploration

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Sorting
RTG
RTG with Domain Randomization
DDQN with Random Offline Exploration

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

ArtManip.
RTG
RTG with Domain Randomization
DDQN with Random Offline Exploration

Figure 13: Mean average success rate of algorithms for each task. Results are averaged within each
environment. Shaded areas represent ±1 std. over 5 seeds.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Environment Steps 1e5

20

30

40

50

60

Ep
iso

de
 L

en
gt

h

Gathering

RTG
RTG with Domain Randomization
DDQN with Random Offline Exploration

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Environment Steps 1e5

10

20

30

40

50

60

Ep
iso

de
 L

en
gt

h

Sorting

RTG
RTG with Domain Randomization
DDQN with Random Offline Exploration

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment Steps 1e5

20

30

40

50

60

Ep
iso

de
 L

en
gt

h

ArtManip.

RTG
RTG with Domain Randomization
DDQN with Random Offline Exploration

Figure 14: Mean episode length of algorithms for each task. Results are averaged within each
environment. Shaded areas represent ±1 std. over 5 seeds.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

Gathering
RTG
RTG with Domain Randomization
DDQN with Random Offline Exploration

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

Sorting
RTG
RTG with Domain Randomization
DDQN with Random Offline Exploration

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

ArtManip.
RTG
RTG with Domain Randomization
DDQN with Random Offline Exploration

Figure 15: Mean average return of algorithms for each task. Results are averaged within each
environment. Shaded areas represent ±1 std. over 5 seeds.

E RUNTIME ANALYSIS

Runtime of backward and forward simulation. During backward generation, we run our RRBS
in quasi-static mode, with maximum solver iteration set to 1000. On an AMD Ryzen 9 5950X CPU
(16C/32T, 1 socket, 1 NUMA node), a single parallel backward optimization over 48 candidate
trajectories takes 2.45 ± 0.13 s wall-clock time (mean ± std) for our task of ArtManip (with joints).
This corresponds to 51.0 ± 2.6 ms per backward action, where each optimizer solves one per-action

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

Co
un

t

Figure 16: Replay gap distribution between reverse-generated states and the true forward dynamics.
The horizontal axis shows the average 2D positional gap per node, measured as the mean Euclidean
distance between each node’s position in the backward-optimized state and the corresponding state
after Forward Replay. Distances are in simulator units. The distribution is concentrated near zero but
exhibits a non-zero tail, indicating a small yet systematic mismatch in reverse physics and thereby
justifying our Forward Replay step.

backward simulation as defined in Figure 2(a). For Gathering and Sorting (without joints), the
optimization stage over 48 candidates costs 1.90 ± 0.06 s, i.e., 39.6 ± 1.3 ms per action step. For
comparison, the forward simulator costs 1.07 ± 0.34 ms per action step, so a single-step backward
optimization is approximately one order of magnitude more time-consuming than a forward step.

Time complexity of beam search. For our beam search (Algorithm 1) over backward actions with
beam breadth B and horizon depth D, at each search layer we expand at most B nodes, and for each
node we run one parallel backward optimization followed by a ranking step. Thus the total number
of backward steps scales as O(D ×B), and the overall time complexity of the beam search is linear
in both beam width and horizon depth.

F FORWARD REPLAY GAP ANALYSIS

We quantify the discrepancy between the states generated by our backward simulator and those pro-
duced by the true forward dynamics in Figure 16. As shown, the replay gap is small but clearly non-
zero, indicating that the reverse physics are not perfectly consistent with the forward dynamics. This
systematic mismatch motivates our Forward Replay step, which re-simulates backward-optimized
trajectories under forward dynamics before utilizing them.

G USE OF LLMS

We acknowledge the use of large language models (LLMs) as assistive tools in this research. LLMs
are used during paper writing, for improving grammar and wording. All outputs from these models
were meticulously reviewed, revised, and verified by the authors, who retain full responsibility for
all content presented in this paper.

20

	Introduction
	Related Work
	Preliminaries: DRL under Rigid Body Dynamics
	DRL with Reverse Trajectory Generation (RTG)
	RRBS with Time Reversed Trajectory Sampling
	Forward Replay
	RTG with Exploration via Beam Search

	Evaluation
	Rigid Body Manipulation Tasks
	Baselines
	Results

	Conclusion
	Reverse Simulation via Physics-Constrained Optimization
	Optimization-based 2D Rigid Body Simulator
	Sequential Quadratic Programming
	Fast KKT System Solve

	Hyperparameters
	Task Visualizations
	Additional Results
	Runtime Analysis
	Forward Replay Gap Analysis
	Use of LLMs

