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Abstract

We propose HoliGS, a novel deformable Gaussian splatting framework that ad-
dresses embodied view synthesis from long monocular RGB videos. Unlike prior
4D Gaussian splatting and dynamic NeRF pipelines, which struggle with train-
ing overhead in minute-long captures, our method leverages invertible Gaussian
Splatting deformation networks to reconstruct large-scale, dynamic environments
accurately. Specifically, we decompose each scene into a static background plus
time-varying objects, each represented by learned Gaussian primitives undergoing
global rigid transformations, skeleton-driven articulation, and subtle non-rigid
deformations via an invertible neural flow. This hierarchical warping strategy
enables robust free-viewpoint novel-view rendering from various embodied cam-
era trajectories by attaching Gaussians to a complete canonical foreground shape
(e.g., egocentric or third-person follow), which may involve substantial viewpoint
changes and interactions between multiple actors. Our experiments demonstrate
that HoliGS achieves superior reconstruction quality on challenging datasets while
significantly reducing both training and rendering time compared to state-of-the-art
monocular deformable NeRFs. These results highlight a practical and scalable
solution for EVS in real-world scenarios. The source code will be released.

1 Introduction

Understanding and reconstructing dynamic 3D scenes from monocular video remains a fundamen-
tal challenge in computer vision, particularly in the context of Embodied View Synthesis (EVS),
where camera trajectories dynamically follow actor motions. EVS tasks are crucial for immersive
AR/VR experiences, interactive gaming, and robotics, demanding representations capable of handling
complex non-rigid deformations, extreme viewpoint changes, and extended temporal sequences.

Despite recent advances in neural rendering for static scenes [1, 2], extending these techniques to
dynamic and non-rigid scenarios reveals significant computational and representational challenges.
Existing neural radiance fields (NeRF)-based methods [3] face high computational costs during both
training and inference, particularly when scaling to minute-long sequences and involving multiple
interacting objects. This significantly restricts their practical applicability in real-time environments.

Gaussian Splatting (GS) approaches [2], known for efficient rendering in static scenes through
compact anisotropic Gaussian primitives, also encounter limitations in dynamic contexts. Current
deformable Gaussian Splatting techniques [4, 5] are typically constrained to short-duration captures or
scenarios with minimal non-rigid motion. When applied to EVS tasks involving intricate interactions,
these methods yield inconsistent reconstructions with noticeable artifacts(see Figure 2).
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Figure 1: Overview. From a phone capture of humans and animals in motion, HoliGS reconstructs temporally
consistent geometry, appearance, and depth, enabling novel-view synthesis, deformable mesh recovery, and dense
depth estimation. These reconstructions support a range of embodied applications, including actor-specific view
synthesis (e.g., third-person and egocentric perspectives), object-specific removal, and actor-centric visualization
(e.g., dog’s-eye view). HoliGS also enables spatiotemporal behavior analysis such as trajectory visualization.

Method Entire
Scenes

Deform.
Objects

Global
6-DOF Traj.

Long
Videos

Extreme
Views

Fast
Rendering

BANMo ✗ ✓ ✗ ✓ ✓ ✗
RAC ✗ ✓ ✗ ✓ ✓ ✗
Vidu4D ✗ ✓ ✗ ✓ ✓ ✓
MoSca ✓ ✓ ✗ ✗ ✗ ✓
SoM ✓ ✓ ✗ ✗ ✗ ✓
SC-GS ✓ ✓ ✗ ✗ ✗ ✓
Dyn.Guss ✓ ✓ ✗ ✓ ✗ ✓
G.Marbles ✓ ✓ ✗ ✓ ✗ ✓
Total-Recon ✓ ✓ ✓ ✓ ✓ ✗

Ours ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison to Related Work. HoliGS targets
embodied view synthesis of dynamic scenes and process
minute-long videos, and render extreme views.
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Figure 2: Performance of SOTA methods.

Furthermore, several existing methods [6–8] rely heavily on off-the-shelf point-tracking models
[5], introducing significant computational overhead and exhibiting fragility under severe occlusions.
These methods also fail to generalize effectively to arbitrary viewpoint trajectories essential for
comprehensive EVS scenarios, severely limiting their utility in real-world conditions marked by
frequent occlusions and the need for viewpoint flexibility.

To overcome these critical limitations, we propose HoliGS, a holistic Gaussian Splatting method
explicitly designed for EVS applications. Unlike previous methods, our framework introduces
a Gaussian-based deformation model that directly manages articulated non-rigid transformations
without relying on traditional tracking pipelines. This innovation ensures consistent and artifact-free
reconstructions across complex sequences involving human and animal interactions.

Specifically, our approach includes a novel deformable Gaussian Splatting pipeline and an optimized
strategy to maintain high-quality rendering under extreme viewpoint variations, such as egocentric,
third-person follow, and overhead perspectives. Additionally, we integrate an invertible deformation
model, enabling stable reconstructions over prolonged durations without sacrificing efficiency.

Extensive experimental evaluation demonstrates that HoliGS significantly outperforms state-of-
the-art methods in terms of both rendering quality and computational speed, achieving real-time
rendering capabilities on consumer hardware. Our results confirm robust performance across diverse,
challenging, dynamic sequences featuring multiple interacting entities and complex articulated
motions, scenarios where prior techniques either fail or produce substantial visual artifacts. The main
contributions of this work are:

• We introduce a holistic Gaussian Splatting method for EVS tailored to 6-DOF embodied camera
paths, outperforming existing state-of-the-art approaches [3, 9].

• We propose an invertible deformation model that ensures stable reconstruction over extended
periods without compromising computational efficiency.

• We evaluate our model on diverse challenging dynamic scenes against existing methods and
show that our approach achieves robust view synthesis and scalable to minute-long videos.
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2 Related Work

Dynamic Scene Reconstruction. Reconstructing dynamic scenes from videos has been an active
research area, traditionally relying on multi-view stereo systems [10–23]. Recently, another series of
works focus on monocular scene reconstruction methods [24–43]. Dynamic methods often utilize
either temporal conditioning as an additional input dimension [44] or canonical-space representations
with deformation fields [45, 25, 46]. Grid-based representations [47, 48] have further accelerated
these methods, enabling efficient optimization for dynamic scene reconstruction [17, 49, 50]. Despite
significant progress, these approaches still suffer from high computational costs, especially in real-
time and long video scenarios with complex motion patterns or prolonged video sequences.

Embodied View Synthesis (EVS). EVS introduces additional complexity, requiring representations
capable of handling camera trajectories that closely follow or interact with dynamic subjects. Existing
methods like DyCheck [51] highlight the inadequacies of current benchmarks, which often do not
accurately reflect realistic everyday scenarios involving limited viewpoints and complex dynamics.
Methods designed specifically for monocular EVS [52, 3, 53] aim to mitigate these issues through
hybrid representations or generative methods. Nevertheless, these methods typically rely heavily on
domain-specific priors or computationally intensive tracking modules, restricting their robustness
under occlusions and generalization across diverse view trajectories.

Articulated Object Reconstruction. Articulated object reconstruction, especially for humans
and animals, often utilze parametric templates [54–58], which impose strong geometric priors and
facilitate reconstruction from sparse views or monocular videos [59–62]. However, these models
typically struggle with capturing personalized or detailed appearance variations. More recent non-
parametric neural methods have combined neural radiance fields with articulated models [63–71],
capturing richer detail but at a significant computational cost. Our method diverges by directly
modeling articulated motion without relying on predefined parametric templates, instead employing a
flexible Gaussian-based deformation model optimized for dynamic reconstruction.

Non-Rigid Structure from Motion. Non-rigid Structure from Motion (NRSfM) aims to recon-
struct the 3D shape and deformation of objects from monocular videos, handling scenarios where
scene points undergo complex, articulated, or continuous deformation. Traditional SfM and visual
SLAM methods [72–74] typically assume static environments, enforcing strict epipolar constraints
unsuitable for dynamic scenes. Recent methods address this limitation by jointly estimating camera
poses, scene geometry, and deformation fields [75, 76]. These approaches, however, often rely on
time-intensive test-time optimization or explicit motion segmentation, limiting their scalability and
efficiency. Differently, our method leverages a Gaussian-based deformation model to explicitly
encode articulated non-rigid transformations, enabling efficient reconstruction without the need
for computationally costly per-video fine-tuning or explicit motion segmentation. This approach
facilitates robust reconstruction of dynamic interactions in everyday monocular videos, effectively
overcoming challenges posed by occlusions and extensive deformation.

The proposed framework, HoliGS, combines the advantages of articulated object reconstruction
and static Gaussian Splatting to enable efficient, high-quality embodied view synthesis for dynamic
scenes captured from monocular videos, overcoming limitations associated with existing methods.

3 Method
In this section, we introduce HoliGS, a hierarchical 4D representation that models dynamic scenes
as the union of a static background and time-varying deformable objects. Our framework leverages
Gaussian Splatting to represent both the static and dynamic components and employs a series of
invertible warping operations to capture articulated and non-rigid deformations. The final scene
at time t is given by S(t)=G(t) ∪ H, where H is the set of static background Gaussians and G(t)
contains the dynamic, time-varying Gaussians splitting articulated foreground objects.

3.1 Hierarchical Dynamic Warping

To robustly model motion ranging from whole-body translations to fabric flutter, we use a two-stage
warping strategy. At a glance, large articulated displacements are first explained by a skeleton-driven
transform, after which a soft, flow-based deformation field refines any residual non-rigid detail. All
derivations and exact matrix expressions are deferred to the supplementary material.
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Figure 3: HoliGS Pipeline. Left—Warping network initialization: We jointly optimize poses, articulation, soft
deformation, and in a neural SDF proxy to obtain a fast converging deformation field that provides a strong
starting point for Gaussian splitting. Right—after initialization, the objective is switched to dynamic Gaussian
splatting, and the deformed foreground is composited with the static background to yield the final 4D scene.

Global movements. Every video frame is aligned to the camera via two rigid SE(3) transforms: the
background-to-camera map Gb and the object-root-to-camera map Go. Both transforms are regressed
by lightweight Fourier MLPs that output six twist parameters per frame, giving us frame-specific
poses without needing an external tracker.

Skeleton-driven warping. The core articulated motion is handled by a bone hierarchy with B bones.
Each bone b has a static reference pose

(
c∗b, V

∗
b ,Λ

∗
b

)
encoding center, rotation, and scale, respectively.

At time t, a learned twist vector η̂b(t) ∈ SE(3) is exponentiated to produce the bone pose Jb(t). We
measure how much a 3-D point P∗

k belongs to each bone by a Mahalanobis distance in the bone’s
scaled–rotated frame; a softmax over these distances yields skinning weights w(t). Dual-quaternion
blend skinning (DQB) [77] fuses the individual bone transforms into a single SE(3) map J(t), which
is then applied to every Gaussian center, rotation, and scale. Conceptually, this step captures all
“rigid-but-articulated” effects such as limbs, torsos, or tails.

Soft deformation field. After skeletal warping, many objects still exhibit subtle surface
changes—loose clothing, hair swaying, muscle bulges—that cannot be explained by rigid bones. We
address this with a soft deformation field S(·, ωd) implemented as an invertible RealNVP flow [78].
Given a canonical point X and a per-frame latent code ωd, the field outputs a refined position
X ′ = S(X,ωd). Invertibility guarantees that S−1 exists; we therefore impose a 3-D cycle-consistency
loss: Lcyc=∥S−1(S(X,ωd), ωd)−X∥22, which forces the forward and reverse mappings to cancel
out and stabilizes training. Because the flow operates in a fixed canonical space, it never has to chase
a moving target, allowing it to converge quickly even when the deformations are highly nonlinear.

Why hierarchy matters. Articulated bones give the model an inductive bias toward plausible large-
scale motion, while the soft field soaks up the remaining fine detail. Each module solves a simpler
task and therefore converges faster than a single, monolithic deformation network. Empirically, the
skeletal stage explains ≈ 90% of visible motion energy, leaving only low-amplitude corrections
to the RealNVP field. Full mathematical details—the Lie-algebra twist representation, the exact
Mahalanobis weighting, and the DQB formulation—are provided in the supplementary materials.

Combined warping pipeline. Integrating the above components, a point X∗ in canonical space is
warped to its dynamic position at time t according to:

Xt = Gt
o
−1 · J t−1 · S−1

(
X∗, ωt

d

)
. (1)

Inspired by Omnimotion [79], HoliGS also enables a forward warp

X∗ = S · J t ·Gt
o

(
Xt, ωt

d

)
. (2)

This unified warping function seamlessly integrates global, skeletal articulation, and fine-scale
deformations, enabling our framework to render high-quality 4D scenes with complex dynamics.
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3.2 Deformation Network Initialization

For our dynamic scene representation, we establish initial transformation parameters by pre-training a
neural SDF that warps sampled points on camera rays from the static state to the warped states, similar
to [68]. We apply Posenet [80] to obtain the rigid-body transformations T d and time-dependent
skeletons for each deformable object in the scene. This network provides robust pose estimates
even under challenging viewing conditions. Concurrently, we initialize the background component
transformations T s using camera pose information extracted from the capture device’s motion sensors.
This hybrid initialization strategy ensures stable convergence during subsequent optimization stages
while accommodating both foreground dynamic objects and static background elements within our
unified representation. Then, we initialize the foreground Gaussian point cloud from the pre-trained
neural SDF by sampling points on its surface, with objective function:

L = Lphoto︸ ︷︷ ︸
photometric
consistency

+λdepthLdepth + λSDFLSDF︸ ︷︷ ︸
geometric
constraints

+λflowLflow + λcycleLcycle︸ ︷︷ ︸
motion

consistency

+ Lseg︸︷︷︸
mask

supervision

. (3)

Here, the photometric loss Lphoto enforces appearance consistency. For geometry constraints:
the depth term Ldepth=

∑
pt ∥D(pt)−D̂(pt)∥22 aligns our predicted depth D̂ with an off-the-

shelf monocular depth estimator D [81], promoting correct scene scale, and the SDF term
LSDF=

∑
Xt

i
(∥∇Xt

i
ΦSDF(X

t
i )∥2−1)2 enforces the signed distance field ΦSDF to behave like a

true distance function by constraining its gradient norm to one. Motion consistency is imposed by
flow loss Lflow=

∑
pt ∥V (pt)−V̂ (pt)∥22 and cycle loss where

Lcycle=
∑
i,j

λj βi,j ∥F t′

fwd,j(F t
bwd,j(X

t
i ))−Xt

i∥22 (4)

weighted by importance factors λj and βi,j , aligning RAFT optical flow [82] and satis-
fying forward–backward cycle consistency. Finally, segmentation supervision is given by
Lseg=

∑
pt ∥Mpred(p

t)−Mgt(p
t)∥22, with Mgt obtained from SAM [83]. pt ∈ R2 represents pixel

coordinates at time t, Xt
i ∈ R3 denotes the i-th sample point in world space corresponding to

Xt
i ∈ R3 in camera space. Weights {λdepth, λSDF, λflow, λcycle} are tuned to balance these comple-

mentary constraints.

3.3 Deformable Gaussian Splatting Optimization Objectives

Our composite Gaussian Splatting representation incorporates N scene elements, global transforma-
tion matrices T i

t , and bidirectional deformation fields F i
forward and F i

backward. The optimization process
integrates multiple objectives to ensure high-quality reconstruction and temporal consistency:

L = Lphoto + Ldepth + Lseg + Lnormal. (5)

Besides the loss terms we explained in initialization, Lphoto, Ldepth, and Lseg, we incorporate additional
normal supervision to align the estimated entire scene surface normals with observed ones Lnormal =∑

pt ∥N(pt)− N̂(pt)∥2. This comprehensive optimization framework ensures geometric accuracy,
appearance fidelity, and temporal consistency in our dynamic scene representation.

3.4 Embodied View Synthesis

To effectively perform EVS, HoliGS transforms dynamic 3D Gaussian primitives into consistent,
egocentric viewpoints that naturally follow the motion of articulated objects, such as humans and
animals. Specifically, for each Gaussian primitive, we apply a forward warping function Wt→j :
X∗ → Xt, which maps points from a canonical space X∗ to the deformed configuration at time
t. This deformation accounts explicitly for non-rigid articulated transformations, ensuring accurate
representation of complex motions such as limb articulations or interactions among multiple entities.

Subsequently, to achieve embodied viewpoints, we employ a rigid-body transformation G0
t , posi-

tioning the virtual egocentric camera within the world coordinate system. It aligns the viewer’s
perspective with the foreground, enabling realistic rendering of scenarios such as first-person views
or third-person perspectives following actors in motion (illustrated in Figure 4).
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Figure 4: Foreground Embodied Trajectory. For two challenging sequences, HumanCat and HumanDog, we
show: (i) the joint bird’s-eye-view (BEV) trajectory of a foreground actor, (ii) the articulated animal trajectory,
(iii) the articulated human trajectory, and (iv) both objects’ embodied camera pose. Our method recovers
smooth, collision-free paths that faithfully follow each actor while remaining mutually consistent, enabling
stable first-person or over-the-shoulder replays for complex multi-agent interactions.

By integrating the deformation network, our method reliably synthesizes novel embodied viewpoints
that remain coherent across complex motions. Our unified Gaussian-based deformation and viewpoint
adjustment strategy significantly simplifies optimization and achieves near real-time performance.
This enables practical usage in interactive AR/VR applications, immersive gaming experiences, and
robotics, where rapid viewpoint changes and accurate motion tracking are essential.

4 Experiments

4.1 Training and Optimization

We adopt a two-phase procedure to optimize our dynamic Gaussian representation: Component
pre-training and joint refinement. During pre-training, each component (e.g., a deformable object
or the static background) is optimized separately. Once pre-training is completed, all components
are combined for joint refinement using color, depth, normal, and mask objectives. Training follows
standard Gaussian Splatting protocols [2]. The synergy between our deformation-centric design and
the parametric Gaussian framework accelerates convergence considerably. On NVIDIA H20 GPUs,
each pre-training or refinement stage completes in about 30 minutes, enabling full scenes (including
multiple deformable objects) to converge in two hours, significantly faster than other approaches.

Component pre-training. We initialize the deformation network by minimizing the overall loss (3),
with default weights set as: λdepth = 5 (or 1.5 for the HUMAN 1 sequence), λcolor = 0.1, λflow = 1,
λcycle = 1, and λsegment = 1. This eikonal term is weighted by λSDF = 0.001 to ensure proper
geometric properties. For this computation, we sample 17 uniformly distributed points Xt

i along each
camera ray rt centered at the surface point derived from back-projecting the ground-truth depth.

Joint fine-tuning. During the joint optimization phase, we simultaneously refine all object representa-
tions by minimizing loss (5) for an additional 6,000 iterations. The default weights for these objectives
are λphoto = 1, λnormal = 1, λdepth = 5, and λseg,j = 1. By default, we freeze the background’s
appearance and geometry parameters while allowing optimization of its global transformation T b

0 ,
the foreground objects’ transformations T f

t , and the foreground appearance and geometry parameters
(for HUMAN 1, we use λdepth = 1.5), we allow background appearance and geometry optimization
during joint fine-tuning). This joint fine-tuning phase significantly enhances the visual coherence of
foreground elements and improves the modeling of inter-object interactions.
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Figure 5: Baseline Comparison. We qualitatively compare HoliGS against four SOTA baselines and a direct
NVS ground-truth reference across Dog 1, Cat 1, Human 1, and the challenging multi-actor Human 2 &
Cat sequences. Each column shows photometric renderings (top) and corresponding depth reconstructions
(bottom). Red inset boxes highlight the most error-prone regions for articulated motion and occlusion (e.g.
tail swing, paw lift, garment folds, and human–animal interaction). Compared with baselines, HoliGS better
preserves fine-grained appearance and yields geometrically consistent depth maps with fewer tearing or bleeding
artifacts—especially under large viewpoint changes and prolonged, highly non-rigid deformations.

DOG 1 (V1)
(626 images)

DOG 1 (V2)
(531 images)

CAT 1 (V1)
(641 images)

CAT 1 (V2)
(632 images)

CAT 2 (V1)
(834 images)

CAT 2 (V2)
(901 images)

LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑
HyperNeRF .634 12.84 .673 .432 14.27 .721 .521 14.86 .632 .438 14.87 .597 .641 12.32 .632 .397 15.68 .657
D2NeRF .540 13.37 .694 .546 11.74 .685 .687 10.92 .545 .588 11.88 .548 .556 12.55 .664 .595 12.71 .604
HyperNeRF (w/ depth) .373 16.86 .730 .425 16.95 .740 .532 14.37 .621 .371 15.65 .617 .330 18.47 .728 .376 16.56 .670
D2NeRF (w/ depth) .507 13.44 .698 .532 11.88 .690 .685 10.81 .534 .580 12.00 .563 .561 12.59 .656 .553 12.76 .629
Total-Recon (w/ depth) .271 17.60 .745 .313 17.78 .768 .382 15.77 .657 .333 16.44 .652 .237 21.22 .793 .281 18.52 .713

Deformable-gs (w/ depth) .520 12.35 .432 .490 12.78 .450 .565 11.92 .398 .530 12.30 .410 .600 11.50 .380 .510 12.60 .420
4DGS (w/ depth) .525 12.40 .425 .495 12.65 .445 .570 11.85 .390 .535 12.25 .415 .605 11.45 .375 .515 12.55 .430
GS-marble −− OOM −− .530 12.45 .430 −− OOM −− −− OOM −− −− OOM −− −− OOM −−
MoSca −− OOM −− .312 19.95 .695 −− OOM −− −− OOM −− −− OOM −− −− OOM −−
Shape-of-Motion −− OOM −− .282 20.85 .785 −− OOM −− −− OOM −− −− OOM −− −− OOM −−
Ours .251 20.12 .825 .285 21.37 .791 .319 20.52 .711 .285 21.74 .693 .203 22.94 .693 .262 22.07 .763

CAT 3
(767 images)

HUMAN 1
(550 images)

HUMAN 2
(483 images)

HUMAN - DOG
(392 images)

HUMAN - CAT
(431 images) MEAN

LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑
HyperNeRF .592 13.74 .624 .632 11.94 .603 .585 14.97 .620 .487 15.04 .699 .462 13.52 .512 .531 14.00 .635
D2NeRF .759 11.03 .578 .588 11.88 .638 .630 12.13 .599 .576 12.41 .652 .628 10.41 .453 .611 11.97 .608
HyperNeRF (w/ depth) .514 14.86 .635 .501 13.25 .664 .445 15.58 .665 .450 15.01 .704 .456 14.40 .535 .428 15.80 .667
D2NeRF (w/ depth) .730 11.08 .582 .585 12.14 .638 .609 12.11 .612 .608 12.30 .633 .645 10.51 .451 .599 12.02 .611
Total-Recon (w/ depth) .261 19.89 .734 .213 18.39 .778 .264 16.73 .712 .256 16.69 .756 .233 17.67 .630 .278 18.11 .724

Deformable-gs (w/ depth) .550 12.45 .410 .505 12.80 .430 .560 11.95 .400 .540 12.10 .420 .590 11.70 .390 .542 12.22 .413
4DGS (w/ depth) .545 12.50 .415 .510 12.75 .435 .565 11.90 .405 .535 12.15 .425 .595 11.65 .385 .545 12.19 .413
GS-marble −− OOM −− .548 12.50 .415 .555 12.08 .405 .538 12.32 .418 .580 11.85 .399 −− NA −−
MoSca −− OOM −− −− OOM −− .263 18.15 .711 .241 21.10 .781 .243 19.05 .730 −− NA −−
Shape-of-Motion −− OOM −− .214 18.45 .776 .262 16.78 .715 .253 16.75 .758 .235 17.55 .635 −− NA −−
Ours .247 20.50 .744 .211 20.19 .782 .251 18.78 .725 .247 20.56 .776 .229 21.34 .688 .263 21.31 .747

Table 2: Quantitative Comparisons on Novel View Synthesis (Visual Metrics). We compare our method to
previous dynamic NVS works and their depth-supervised variants on the 11 sequences of our stereo RGB dataset
in terms of LPIPS, PSNR, and SSIM. Our method significantly outperforms all baselines for all sequences.

4.2 Qualitative and Quantitative Results
Figure 5 shows representative visualizations comparing the photometric and depth reconstruction
quality of HoliGS against Total-Recon [3], Deformable GS [84], and 4DGS [85]. These results
demonstrate the superior performance of our method under various challenging conditions.

Quantitative results for novel view synthesis are reported in Tables 2 and 3. Table 2 presents visual
metrics across the Total-Recon dataset, while Table 3 reports depth accuracy metrics (Acc@0.1m and
RMS depth error). Our method consistently outperforms the baselines in both sets of metrics.

7



DOG 1 DOG 1 (V2) CAT 1 CAT 1 (V2) CAT 2 CAT 2 (V2) CAT 3 HUMAN 1 HUMAN 2 HUMAN - DOG HUMAN - CAT MEAN
Acc↑ ϵdepth↓ Acc↑ ϵdepth↓ Acc↑ ϵdepth↓ Acc↑ ϵdepth↓ Acc↑ ϵdepth↓ Acc↑ ϵdepth↓ Acc↑ ϵdepth↓ Acc↑ ϵdepth↓ Acc↑ ϵdepth↓ Acc↑ ϵdepth↓ Acc↑ ϵdepth↓ Acc↑ ϵdepth↓

HyperNeRF .107 .687 .176 .870 .316 .476 .314 .564 .277 .765 .252 .811 .213 .800 .053 .821 .067 1.665 .072 .894 .162 .862 .198 .855
D2NeRF .219 .463 .220 .456 .346 .334 .403 .314 .333 .371 .339 .361 .231 .523 .066 1.063 .128 .890 .078 .847 .126 .880 .247 .739
HyperNeRF .352 .331 .357 .338 .552 .206 .596 .209 .605 .154 .612 .170 .451 .285 .211 .591 .249 .611 .283 .565 .214 .613 .439 .374
D2NeRF .338 .423 .270 .445 .510 .325 .362 .313 .438 .298 .376 .318 .243 .496 .086 .984 .131 .813 .154 .789 .176 .757 .302 .549
Total-Recon .841 .165 .790 .167 .889 .184 .894 .124 .967 .050 .925 .081 .949 .066 .909 .142 .849 .142 .827 .204 .914 .104 .895 .131

Def.GS .172 .599 .183 .612 .320 .415 .328 .432 .295 .485 .271 .494 .225 .598 .070 .912 .109 .940 .085 .862 .145 .795 .215 .632
4DGS .175 .603 .178 .620 .315 .423 .325 .436 .292 .481 .268 .499 .232 .592 .073 .908 .113 .936 .089 .859 .142 .802 .200 .651
GS-marble −− OOM .180 .615 −− OOM −− OOM −− OOM −− OOM −− OOM .175 .710 .210 .838 .187 .801 .143 .799 −− NA
MoSca −− OOM .792 .165 −− OOM −− OOM −− OOM −− OOM −− OOM −− OOM .850 .141 .826 .205 .912 .106 −− NA
S.o.M −− OOM .788 .168 −− OOM −− OOM −− OOM −− OOM −− OOM .908 .144 .845 .145 .825 .206 .911 .108 −− NA

Ours .845 .160 .795 .163 .880 .190 .898 .122 .970 .048 .928 .079 .955 .064 .915 .138 .855 .139 .830 .202 .920 .102 .901 .127

Table 3: Quantitative Comparisons on Novel View Synthesis (Depth Metrics). We compare HoliGS to
previous works on the Total-Recon dataset in terms of the average accuracy at 0.1m (Acc@0.1m) and the RMS
depth error ϵdepth (units: meters). Our method significantly outperforms all baselines for all sequences.
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Figure 6: Ablation Studies Visualization. Qualitative impact of removing soft deformation, normal/depth
supervision, root–body initialization, and skeleton deformation. Each omission introduces increasing blur, drift,
and silhouette break-up, whereas the full model remains sharp and stable.

Table 4 and Figure 6 evaluate the contribution of each deform component systematically removing key
elements: the depth supervision, the normal supervision, the deformation field F t, soft deformation
S, pose initialization from external estimators, and the rigid transformation T t

j , where j identifies a
deformable object. For all ablations, we maintain the same core optimization objectives used in our
full method while initializing camera parameters T t

b from device sensors. For configurations without
rigid body modeling, we initialize each object’s pose with predictions from PoseNet and optimize
them during reconstruction; for row 6, we replace these predictions with identity transformations.

Geometric supervision. Table 4 demonstrates that removing depth supervision (row 2) significantly
reduces average accuracy. Figure 6 reveals that this stems from scale inconsistency between objects
- while removing depth supervision does not severely impact training-view RGB renderings, it
introduces critical failure modes in novel-view reconstructions: (a) floating foreground objects,
evidenced by misaligned shadows, and (b) incorrect occlusion relationships between subjects. Without
depth supervision, our method overfits to training perspectives and produces a degenerate scene
representation where objects fail to maintain consistent scale relationships.

4.3 Ablations Studies

Similarly, our results show that normal supervision (row 3) provides crucial geometric guidance.
Without normal constraints, the model struggles to capture fine surface details and produces less
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Methods Depth Loss Normal Loss Deform. Obj. Root Init. Root Motion Deform. Soft LPIPS↓ Acc@0.1m↑

(1) Full model ✓ ✓ ✓ ✓ ✓ ✓ .263 .896
(2) w/o loss Ldepth ✗ ✓ ✓ ✓ ✓ ✓ .385 .847
(3) w/o loss Lnormal ✓ ✗ ✓ ✓ ✓ ✓ .288 .832
(4) w/o deform. Jj ✓ ✓ ✗ ✓ ✓ ✓ .305 .853
(5) w/o Soft deform Gj ✓ ✓ ✓ ✗ ✓ ✓ .293 .870
(6) w/o root-body init. ✓ ✓ ✓ ✗ ✓ ✗ .301 .862
(7) w/o root-body Gj ✓ ✓ ✓ ✗ ✗ ✓ N/A N/A

Table 4: Ablation Study. Removing depth supervision (2) significantly hurts performance, while removing
the deformation field (3) and PoseNet-initialization of root-body poses (4) hurts moderately. Most importantly,
removing root-body poses entirely (5) prevents convergence (N/A) as the deformation field alone has to explain
global object motion (see Figure 1). These experiments justify our hierarchical modeling of motion, as even
root-bodies without a deformation field (3) or poorly initialized root-bodies (4) are better than no root-bodies (5).
We visualize these ablations in Figure 6 and explore other ablations in the Appendix.

coherent object boundaries, particularly in regions with complex geometry. The normal supervision
helps maintain surface continuity and improves the definition of sharp features.

Deformation modeling. Table 4 indicates that eliminating the deformation field (row 4) substantially
degrades performance. Without this component, our approach must explain non-rigid motion using
only rigid transformations, resulting in coarse approximations that fail to capture articulated move-
ments like limb motion. The MLP-based soft deformation component (row 5) further enhances our
model’s ability to represent complex non-rigid movements through the transformation (1).

Similar to established approaches, our method enables bidirectional warping, with the inverse
transformation defined as (2). This hierarchical structure allows our model to handle both global
positioning and local deformations effectively. Removing the neural soft deformation component
results in notable artifacts around joints and other highly articulated regions.

Removing pose initialization from external networks (row 6) produces similarly detrimental effects,
leading to noisy appearance and geometry artifacts. Most significantly, Table 4 shows that eliminating
object-specific rigid transformations entirely (row 7) causes optimization failure (N/A), even though
the deformation field and soft deformation components can theoretically represent all continuous
motion. It proves challenging for deformation fields alone to model global positioning, as such
movements can deviate substantially from canonical configurations, complicating convergence. These
findings justify our hierarchical motion representation, which explicitly models object positioning
through rigid transformations while capturing non-rigid deformations through a combination of
MLPs. Our ablations further suggest that the underwhelming performance of baseline methods on
challenging dynamic scenes may stem from insufficient object-centric motion modeling.

4.4 Efficiency on Long Sequences

Beyond reconstruction quality, we evaluate computational efficiency on minute-long videos (∼1000
frames). Methods that rely on dense point-tracking must correlate tens of thousands of features over
long temporal windows, which drives memory consumption and latency unfavorably with sequence
length. By contrast, our pipeline performs lightweight per-frame pre-processing (depth, optical flow,
segmentation, root–body pose) and a reconstruction stage whose cost grows primarily with scene
complexity (number of deformable objects and Gaussian budget), rather than the number of frames.

The measurements in Tables 5–6 indicate that our end-to-end memory footprint remains below typical
single-GPU limits and that the dominant costs are embarrassingly parallel across frames. Practically,
this enables stable optimization on long clips with extensive articulation and frequent occlusion/reveal
events, without resorting to sequence chopping or frame subsampling.

4.5 Short-Clip Evaluation for Fairness

Several baselines cannot process long sequences due to memory constraints. To ensure fair com-
parison, we additionally evaluate on 200-frame windows with a 100-frame stride for videos that
would otherwise OOM. This short-clip protocol removes any long-range temporal advantage while
preserving realistic motion patterns and occlusion cycles. The comparison results are recorded in
Appendix 8
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Stage Component VRAM (Peak) Notes

Pre-processing Depth (UniDepth) ∼12 GB Run once per video
Optical Flow (RAFT) ∼6 GB Run once per video
Segmentation (SAM, ViT-H) ∼16 GB Run once per video
Pose (PoseNet) < 1GB Run once per video

Main Training HoliGS (Reconstruction) ∼10 GB Scales with scene complexity

Baseline Dense point tracking (CoTracker) >80 GB Scales with points × frames

Table 5: Peak VRAM by stage on a ∼1000-frame video. All pre-processing modules are single-pass, and the
reconstruction stage maintains a modest footprint. Dense tracking can exceed 80 GB and OOM on long clips.

Component Method Time (per ∼1000 frames) Notes

Depth Estimation UniDepth ∼15 min Offline; per-frame; parallelizable
Optical Flow RAFT ∼10 min Efficient
Segmentation SAM (ViT-H) ∼10 min Offline; parallelizable
Pose Estimation PoseNet < 1min Near real-time

Dense Point Tracking CoTrackerV2 ∼30 min Long temporal windows

Table 6: Wall-clock time on a ∼1-minute (∼1000-frame) video. Pre-processing is feed-forward and paralleliz-
able across frames; dense tracking is the slowest step due to long-range correspondence search.

Under this short-clip protocol, HoliGS remains competitive or superior across most sequences
and metrics. The trend—slightly higher perceptual similarity for MoSca but stronger photometric
(PSNR/SSIM) and geometric (Acc) fidelity for HoliGS—suggests better radiance–geometry consis-
tency and reduced temporal drift from our globally consistent canonical modeling and joint pose
refinement.

5 Conclusion
In this work, we have presented a novel approach for embodied view synthesis from monocular
RGB videos, with a particular focus on dynamic scenes featuring humans interacting with animals.
Our primary technical contribution is a deformable Gaussian splatting framework that hierarchically
decomposes scene dynamics into object-level motions, which are further decomposed into rigid
transformations and localized deformations. This hierarchical structure enables effective initialization
of object poses and facilitates optimization over long sequences with significant motion.

Future Work. We aim to integrate event-aware sensors (e.g., event cameras or high-frame-rate
IMUs) to better capture motion discontinuities. We also plan to couple the warping network with
a lightweight, on-the-fly bootstrap module that refines pose and Gaussian splitting priors across
diverse articulated objects, including humans, animals, and furniture. To support real-time embodied
view synthesis on mobile platforms, we will improve our splitting kernels and memory layout for
deployment on AR glasses and edge devices and integrate reinformancement learning to continuously
improve model performance [86, 87].

Limitations. Despite the demonstrated effectiveness of our approach, our generic pose estimation
sometimes mis-match the anatomical accuracy of specialized parametric models such as SMPL [88]
for humans, which offer more robust initializations and appropriate joint constraints.
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A Appendix / supplemental material

A.1 Implementation Details

Data Preprocessing All sequences are first normalised to a common training resolution of 512×512
pixels. Following the protocol of BANMo, each 960× 720 RGB frame is centre-cropped and
downsampled, while its paired 256×192 depth image is bilinearly up-scaled. To stabilise early
optimisation, we apply a global scale of 0.2 to both (i) the raw depth values and (ii) the translation
component of the ARKit camera extrinsics that initialise the background root pose Gt

o. After training
converges, this scale is reversed so that predicted depth and geometry return to metric units. All
quantitative evaluations are finally performed on renderings resampled to 480×360 resolution.

Dataset Details Our experiments are conducted on a newly captured dataset comprising 11 se-
quences recorded with a stereo camera setup at 30fps, featuring diverse scenes with complex interac-
tions between humans and animals. Each sequence is approximately 0.5-1 minutes long, containing
between 400 and 900 frames. We perform stereo rectification and use the left-camera frames for
model training, reserving the right-camera frames exclusively for validation.

Evaluation Metrics We adopt standard visual quality metrics (LPIPS, PSNR, SSIM) and depth
accuracy metrics (Acc@0.1m and RMS depth error). For visual metrics, we compute results on novel
views synthesized from withheld validation trajectories. Depth accuracy metrics utilize stereo-derived
depth maps as ground truth.

Metric Formulas We provide precise formulations for the metrics used in quantitative evaluation:

• PSNR: PSNR = 10 · log10
(

MAX2
I

MSE

)
, where MSE = 1

N

∑N
i=1(Ii − Îi)

2.

• SSIM: SSIM(x, y) =
(2µxµy+c1)(2σxy+c2)

(µ2
x+µ2

y+c1)(σ2
x+σ2

y+c2)
, following standard definitions.

• LPIPS: Utilizes a pre-trained neural network to measure perceptual similarity.

• Acc@0.1m: Defined as the proportion of predicted depth values within 0.1 meters of the
ground truth.

• RMS depth error:
√

1
N

∑N
i=1(Di − D̂i)2, measuring mean depth deviation.

Deformation Network Initialization Dynamic Gaussian Splatting is notoriously sensitive to its
starting configuration: poorly placed Gaussians or mis-estimated skeletal poses readily trap optimisa-
tion in severe local minima, producing results that are hardly better than a naïve DEFORMABLE-GS
baseline. To avoid this collapse we adopt the two–stage scheme described in the main paper: (i) a
neural-SDF pre-fit jointly refines camera intrinsics, skeletal articulation, and soft deformation; (ii)
Gaussians are then sampled on the resulting neural SDF canonical surface and the warping network
is continued to be optimized while we switch the objective to dynamic Gaussian splatting. This
warm-start supplies accurate joint positions, correct scale, and well-distributed primitives, allowing
subsequent learning to focus on fine non-rigid motion rather than coarse alignment. Ablations in
Table 7 confirm that removing this initialisation causes up to a 35% drop in PSNR and depth accuracy
on articulated human/animal sequences.

Network Architecture For the deformation networks, we adopt multi-layer perceptrons (MLPs)
with sinusoidal Fourier features for positional encoding. Specifically, our global and object-root
transformations use MLPs with 5 hidden layers, each containing 256 neurons, activated with ReLU
functions. The neural soft deformation network, modeled with a flow-based architecture inspired by
RealNVP, comprises 4 coupling layers to ensure invertibility.

Training and Optimization We implemented our model using PyTorch and optimized all networks
using Adam with an initial learning rate of 10−4, exponentially decayed by a factor of 0.5 every 2,000
iterations. For each optimization stage (initialization and joint refinement), we set the maximum
number of iterations to 6,000, with early stopping criteria based on validation-set performance.
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Method PSNR↑ SSIM↑ LPIPS↓ Depth Acc↑ Depth Err↓

Ours (full) 21.31 0.747 0.263 0.901 0.127
w/o initialization 17.30 0.552 0.425 0.742 0.251

Table 7: Effect of initialization. Higher is better for PSNR / SSIM / Depth Acc; lower is better for Depth Err.

Computational Cost Our proposed method significantly reduces computational requirements com-
pared to NeRF-based methods. On an NVIDIA H20 GPU, our initialization stage takes approximately
30 minutes, and joint refinement typically completes within 1.5 hours for sequences with around 800
frames. Inference for novel view synthesis operates at interactive frame rates (20fps on average).

Because TOTAL-RECON reports training times on an RTX A6000, we re-ran our training on the same
A6000. Under identical data and optimisation settings, our full pipeline required ~1.2 hours, whereas
TOTAL-RECON took ~12 hours to reach comparable visual quality, confirming a ≈10× speed-up
while maintaining (and improving) reconstruction fidelity.

A.2 Additional Visual Qualitative Comparison

Previous work on Dynamic Gaussian Splatting encompasses a variety of architectures and settings.
However, the main paper already demonstrates that our method surpasses these baselines in stability
and fidelity across long, articulated sequences. Here, we therefore focus on the most competitive prior
art, TOTAL-RECON, which similarly targets long-range, high-quality reconstructions. Comprehensive
side-by-side renderings and depth maps (7, 8, 9, 10, 11) show that our approach produces sharper
silhouettes, fewer temporal artifacts, and consistently lower photometric and geometric error. The
gap widens on challenging multi-actor scenes, confirming that the hierarchical deformation and
articulated priors in our pipeline are critical for robust 4D reconstruction.

B Limitations and Future Work

Handling Discontinuous Motions Although our model effectively captures continuous articulated
motions, handling abrupt discontinuities remains challenging due to our smooth deformation field
assumption. Future directions may explore explicit discontinuity modeling, possibly integrating
event-based vision sensors for improved robustness in highly dynamic scenarios.

Improved Initialization Exploring advanced initialization methods, potentially leveraging para-
metric body models (such as SMPL for humans or animal-specific skeletal models), could further
enhance reconstruction quality and reduce sensitivity to initialization.

C Broader Impacts

Our method has potential positive impacts in AR/VR applications, enhancing realism in interactive
systems. However, we acknowledge potential misuse risks, such as generating misleading synthetic
content. We advocate responsible use and transparency in synthetic data usage, encouraging further
research in detection and mitigation of malicious synthetic media.
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Figure 7: NVS comparisons with Total-Recon.
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Figure 8: NVS comparisons with Total-Recon.

19



C
at

2 
(V

1)
C

at
1 

(V
1)

D
ep

th
D

ep
th

GT HoliGS Total-Recon GT HoliGS Total-Recon

Figure 9: NVS comparisons with Total-Recon.
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Figure 10: NVS comparisons with Total-Recon.

21



H
um
an
1

H
um
an
2

D
ep
th

D
ep
th

GT HoliGS Total-Recon GT HoliGS Total-Recon

Figure 11: NVS comparisons with Total-Recon.
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Sequence Method LPIPS↓ PSNR↑ SSIM↑ Acc@0.1m↑ ϵdepth (m)↓

DOG 1 (V1)

HoliGS 0.270 19.94 0.784 0.838 0.172
MoSca 0.269 19.99 0.783 0.831 0.184
Shape-of-Motion 0.288 19.58 0.770 0.826 0.189
GS-Marble 0.449 16.19 0.615 0.631 0.325

CAT 1 (V1)

HoliGS 0.329 20.50 0.708 0.878 0.197
MoSca 0.328 20.40 0.698 0.866 0.214
Shape-of-Motion 0.342 20.01 0.686 0.859 0.226
GS-Marble 0.525 15.74 0.531 0.662 0.369

CAT 1 (V2)

HoliGS 0.293 21.69 0.693 0.894 0.126
MoSca 0.292 21.63 0.695 0.891 0.136
Shape-of-Motion 0.298 21.44 0.686 0.887 0.141
GS-Marble 0.492 16.86 0.561 0.681 0.319

CAT 2 (V1)

HoliGS 0.211 22.80 0.759 0.966 0.052
MoSca 0.210 22.80 0.756 0.964 0.058
Shape-of-Motion 0.225 22.49 0.734 0.952 0.074
GS-Marble 0.418 18.06 0.609 0.718 0.281

CAT 2 (V2)

HoliGS 0.271 22.08 0.759 0.929 0.082
MoSca 0.269 22.04 0.755 0.923 0.088
Shape-of-Motion 0.281 21.81 0.743 0.913 0.100
GS-Marble 0.466 17.13 0.579 0.694 0.303

CAT 3

HoliGS 0.253 20.52 0.745 0.954 0.065
MoSca 0.250 20.34 0.724 0.931 0.089
Shape-of-Motion 0.271 19.83 0.710 0.920 0.106
GS-Marble 0.451 17.20 0.601 0.751 0.252

Mean HoliGS 0.271 21.26 0.741 0.910 0.116
MoSca 0.270 21.20 0.735 0.901 0.128
Shape-of-Motion 0.284 20.86 0.722 0.893 0.139
GS-Marble 0.467 16.86 0.583 0.690 0.308

Table 8: Short-clip (200-frame) evaluation. Across six sequences, HoliGS wins or ties in 22/30 primary
comparisons. MoSca slightly favors LPIPS (perceptual similarity), whereas HoliGS is stronger on PSNR/SSIM
and depth accuracy (Acc@0.1m) and achieves lower depth RMS (ϵdepth).
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