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Abstract

Logical approaches to representing language001
have developed and evaluated computational002
models of quantifier words since the 19th003
century, but today’s NLU models still strug-004
gle to capture their semantics. We rely on005
Generalized Quantifier Theory for language-006
independent representations of the semantics007
of quantifier words, to quantify their contribu-008
tion to the errors of NLU models. We find009
that quantifiers are pervasive in NLU bench-010
marks, and their occurrence at test time is as-011
sociated with performance drops. Multilingual012
models also exhibit unsatisfying quantifier rea-013
soning abilities, but not necessarily worse for014
non-English languages. To facilitate directly-015
targeted probing, we present an adversarial016
generalized quantifier NLI task (GQNLI) and017
show that pre-trained language models have a018
clear lack of robustness in generalized quanti-019
fier reasoning.020

1 Introduction021

Quantifier words—such as each or most or more022

than three—have been extensively studied, both in023

logic and in linguistics (Westerståhl, 1989; Peters024

and Westerståhl, 2006), going all the way back025

to Frege (1879). In this paper, we examine the026

extent to which they present a challenge to modern027

NLU systems. Our analysis is motivated by three028

observations:029

Quantifier words are abstract Unlike nouns,030

verbs and adjectives, quantifier words do not have031

referents out in the world. Rather, quantifier032

words specify relationships between sets of entities,033

events and properties. To provide intuitions about034

the semantics of quantifier words, and to be able to035

refer to quantifiers in a language-independent way,036

we rely on the notion of generalized quantifiers037

(Mostowski, 1957), as described in §2.038

Quantifier words vary across languages039

Quantifier word inventories differ across languages.040

Q
A

_E
ng

lis
h CONTEXT: A piece of paper was later found on which

he had written his last statements in two languages,
Latin and German. Only one statement was in Latin
and the rest in German.
QUESTION: In what language were most statements
written? ANSWER: German PREDICTED AN-
SWER: Latin and German

N
L

I_
Sp

an
is

h PREMISE: Más de tres personas resultaron heridas en
un accidente de dos vehículos en la Ruta 30 el lunes por
la noche. (translation: More than three people were
injured in a two-vehicle crash on Route 30 Monday
evening.)
HYPOTHESIS: Había 4 personas involucradas. (trans-
lation: There were 4 people involved. LABEL:
Neutral PREDICTED LABEL: Entailment

Table 1: Examples of quantifiers (marked in bold texts)
in NLP tasks, with RoBERTa’s prediction for QA and
XLM-R’s prediction for NLI after fine-tuning.

Often what is considered rough translation equiva- 041

lents also differ in syntax, fine-grained semantics 042

or pragmatics. Stateva et al. (2019) show, e.g., 043

that perceptions of the numerical bounds of ex- 044

istential quantifiers differ across speakers of En- 045

glish, French, Slovenian, and German. Other pa- 046

pers showing discrepancies between quantifier sys- 047

tems include comparisons of Salish to English 048

(Matthewson, 2001), Adyghe to English (Niko- 049

laeva, 2012), or of Dutch, Hebrew and Bengali 050

(Gil, 1982). The cross-linguistic differences in how 051

generalized quantifiers are expressed motivates a 052

cross-lingual error analysis, since quantifiers may 053

contribute more to error when processing some 054

languages rather than others. 055

Quantifier words are important Quantifier 056

words are extremely important for tasks that require 057

inference, including natural language inference, 058

question answering, fact-checking, etc. Datasets 059

have, for example, been developed for numerical 060

reasoning in English (Dua et al., 2019). Several 061

researchers have identified quantifier words as im- 062

portant sources of errors for natural language pro- 063

cessing systems (Joshi et al., 2020); see Table 1 064
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Generalized Quantifiers Logical Denotation Example
some(A)(B) = 1 A ∩B 6= ∅ This process is known to increase security in several ways.
all(A)(B) = 1 A ⊆ B Everyone agreed the food was terrible.
more than k the(A)(B) = 1 |A ∩B| > k They do let them go more than twice a week.
less than k the(A)(B) = 1 |A ∩B| < k San Augustin Acolman has less than 1,000 residents.
the k (A)(B) = 1 |A ∩B| = k Please donate 100 million to the School of Nursing.
between p and k the(A)(B) = 1 p < |A ∩B| < k The USA added ten states to its nation between 1800 and

1850.
the p/k (A)(B) = 1 |A ∩B| = p · (|A|/k) Captain Blood has 20/20 vision.
the k% (A)(B) = 1 |A∩B| = k·(|A|/100) The lending fund is always guaranteed 9% interest.
most (A)(B) = 1 |A ∩B| > |A\B| Most ZIP Codes cover roughly ten thousand addresses.
few (A)(B) = 1 |A ∩B| < |A\B| Only a few teenagers were still listening to Rock ’n’ Roll.
each other (A)(B) = 1 ∀a ∈ (A ∩ B)∃b ∈

(A ∩B)(a 6= b)
All of these trails are located within the a one hour drive of
each other.

Table 2: The categorization set of quantifiers for task analysis. The first six are Aristotelian/counting quantifiers
and the following four are proportional quantifiers. The last one is a Ramsey quantifier (Schmerl and Simpson,
1982). For each quantifier, its logical denotation is listed in the second column. The third conlumn contains
English examples with quantifiers taken from XNLI.

for examples of such errors. Unfortunately, most065

efforts have concentrated on subsets of quantifier066

words and on English.067

Contributions We analyze how quantifiers are068

represented in NLU benchmarks, and how their oc-069

currence at test time contributes to errors by neural070

language models (LMs). We derive a linguistically071

motivated 11-way categorization set for general-072

ized quantifiers and look into their distribution in073

three steps: (a) monolingual NLI; (b) cross-lingual074

NLI; (c) cross-lingual question answering. We also075

propose GQNLI, an adversarial generalized quan-076

tifier NLI challenge dataset. Our work shows that077

(i) generalized quantifiers are pervasive and cause078

overall performance drops in NLU benchmarks;079

(ii) the contribution of quantifier words to system080

error varies across languages; and (iii) generalized081

quantifiers are particularly difficult for LMs in in-082

teraction with negation and subsumption.083

2 Background084

Generalized quantifiers (GQs) are developed upon085

first-order predicate logic, denoting relations be-086

tween sets (Mostowski, 1957). Given a universe087

E, a quantifier Q would be treated as a map-088

ping QE from the Cartesian product of powersets089

P(E)×P(E) to the set {false,true} or, as a binary090

relation on subsets of E (Dvořák and Holčapek,091

2015). GQs are generalizations of the ∀,∃ quanti-092

fiers from first-order predicate logic (Mostowski,093

1957; Lindström, 1966; Montague, 1973; Bach094

et al., 1995; Keenan and Paperno, 2012). A general-095

ized quantifier is, abstractly, a relation between sets.096

Generalized quantifier theory, while developed by097

logicians, is used by formal linguists to analyze the098

meaning of quantifier words in combination with 099

referential expressions (Barwise and Cooper, 1981; 100

Higginbotham and May, 1981). 101

Most human languages contain ways of ex- 102

pressing generalized quantifiers, and their seman- 103

tics exhibit striking similarities across languages 104

(Matthewson, 2004; Fintel and Matthewson, 2008; 105

Steinert-Threlkeld, 2019). At the same time, gen- 106

eralized quantifiers can be instantiated very differ- 107

ently across languages due to pragmatic consid- 108

erations (Grice, 1989) or cognitive economy and 109

cost-benefit optimisation in the exchange of infor- 110

mation (Sperber and Wilson, 1986; Levinson et al., 111

2000). Quantifier words also exhibit syntactic dif- 112

ferences, e.g., with some languages having spe- 113

cialized words to express quantity, while others 114

rely on metaphorical usage of common nouns (Kat- 115

sos et al., 2012). In English, most is a determiner, 116

but Spanish and French express the same concept 117

through common nouns, la mayoría and la ma- 118

jorité. The relative stability of the core semantics 119

of quantifiers makes a cross-linguistic comparison 120

possible, but the syntactic and pragmatic variation 121

associated with the expression of generalized quan- 122

tifiers poses a challenge for multilingual NLU. We 123

consult quantifier taxonomy studies (Keenan and 124

Westerståhl, 1997; Peters and Westerståhl, 2006; 125

Szymanik and Thorne, 2015; Szymanik, 2016) and 126

derive a categorization set for quantifier analysis 127

in NLU benchmarks. In Table 2, we list the 11- 128

way quantifier categorization set and their logical 129

denotation based on set theory. 130

While other foci of formal linguistics have at- 131

tracted the attention of NLP researchers—including 132

coreference (Ogrodniczuk et al., 2019, 2020), nega- 133
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English Cross-
lingual
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some 171 132 191 5 1 17 115
all 255 239 65 15 8 29 166
> k 14 23 8 10 16 14 16
< k 3 3 0 6 7 5 1
k 266 269 988 55 62 48 159
between 2 3 0 3 2 0 1
p/k 1 5 1 1 1 0 2
k% 10 7 0 0 0 1 5
most 35 39 1 0 2 1 9
few 14 15 11 0 0 6 11
each other 4 3 35 0 0 2 5

Total 775 738 1300 95 99 124 499
Frequency 7.9% 7.5% 13.2% 9.5% 9.9% 12.4% 10.0%

Table 3: Quantifier distribution in four NLI tasks,
among which three are monolingual English and one
is cross-lingual. The table show statistics of the test set,
if not available, dev set, of the target task. All but the
last rows show the occurrence time of the type of quan-
tifier in the first column. The last row represents the
distribution rate of any quantifier in the dataset.

tion (Hossain et al., 2020; Hartmann et al., 2021),134

and consistency (Li et al., 2019; Ribeiro et al.,135

2019; Asai and Hajishirzi, 2020)—there has been136

little work on generalized quantifiers as a source137

of error in NLU, let alone in multilingual NLU. It138

remains an open problem whether LMs represent139

the semantics of quantifiers words adequately, or if140

they provide a basis for resolving scopal ambigui-141

ties.1142

3 NLU Benchmarks143

We conduct an error analysis focusing on the role of144

generalized quantifiers in two NLU tasks, Natural145

Language Inference (NLI) and Question Answer-146

ing (QA), which generally require understanding147

of quantifiers. For each type of task, both mono-148

lingual and cross-lingual evaluation are conducted.149

We focus on generalized quantifiers in the hypothe-150

ses in NLI examples—and on generalized quanti-151

fiers in the question fields in question answering.152

To this end, we identify quantifiers by the lemma153

and the universal dependency relation (Nivre et al.,154

2020) of a quantifier after preprocessing the sen-155

tences using Stanza (Qi et al., 2020). Take the156

sentence “The Yiddish culture has survived for157

more than a thousand years.”, we annotate it as158

1Note that generalized quantifiers are not always explicit
in discourse. The sentence inadequate sleep causes obesity
should be interpreted as Most of those who do not sleep ade-
quately, gain weight (Zadeh, 1983). Such implicit quantifiers
related to pragmatic variation are important for language un-
derstanding, but will be ignored in this work.

Figure 1: Relative distribution of quantifiers in NLI
and QA tasks ranked by semantic complexity. The bars
show the relative frequency of such quantifier and the
lines indicate the cumulative frequency for a task.

“The/det Yiddish/amod culture/nsubj have/aux sur- 159

vive/root for/case more/advmod than/fixed a/det 160

thousand/nummod year/obl ./punct”. By match- 161

ing the regex pattern of the quantifier “more 162

than k”, in this case “((more|great)\/advmod 163

than\/(fixed|case)|at\/case least\/nmod) .+\/num- 164

mod .+\/(nsubj|obj|obl)”, we approximate the sur- 165

face form of the type “more than k”.Through match- 166

ing quantifier patterns, we are able to find entries in 167

which quantifiers are instantiated. See Appendix A 168

for the list of regex patterns we write to identify 169

GQs. In Table 3 and Table 6, we present the statis- 170

tics of the quantifier distributions in NLI and QA 171

tasks, respectively. As can be seen, quantifiers are 172

indeed widespread in NLU tasks, accounting for 173

roughly 10% in NLI tasks and 5% in QA tasks. We 174

will further discuss the statistics and experiments 175

in the following section. 176

4 Quantifiers in English NLI 177

Benchmarks 178

NLI is commonly framed as a three-way classifi- 179

cation task with labels entailment, contradiction 180

and neutral (Bowman et al., 2015a). While SOTA 181

models exhibit low error rates on NLI benchmarks, 182

it is unclear when they succeed or fail in their un- 183

derlying reasoning. We are interested in whether 184

generalized quantifers challenge modern NLI mod- 185

els. In our error analysis, we initially focus on three 186

English NLI datasets, MultiNLI (MNLI; Williams 187

et al., 2018), SNLI (Bowman et al., 2015a) and 188

ANLI (Nie et al., 2020) as testbeds. 189

Table 3 presents statistics of quantifier distri- 190

bution in these datasets, where we observe that, 191
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Quantifier

BERT RoBERTa
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some 82.5 84.1 86.9 100 0 47.1 83.4 83 84.8 86.9 100 100 41.1 83.7
all 85.9 88.3 89.2 46.7 37.5 34.5 83.2 85.9 92.1 90.8 66.7 37.5 34.5 85.3
> k 85.7 100 87.5 70 43.8 42.9 73 85.7 91.3 87.5 80 37.5 28.5 68.2
< k 100 100 33.3 57.1 80 66.7 100 100 83.3 85.7 100 91.7
k 87.2 81.8 92.4 43.6 43.5 33.3 84.8 88.3 88.8 92.9 56.3 61.3 43.8 87.8
between 100 100 66.7 50 80 100 66.7 66.7 50 70
p/k 100 60 100 100 100 77.8 100 80 100 100 0 77.8
k% 90 100 100 94.4 70 85.7 0 72.2
most 74.3 79.5 0 50 0 74.4 77 87.2 100 59 0 80.9
few 78.6 73.3 90.9 33.3 73.9 85.7 80 90.9 33.3 78.3
each other 75 100 85.7 50 84.1 50 100 88.6 50 84.1

all GQs 85 84.8 91.2 50.5 44.4 39 83.3 85.4 88.8 91.7 65.3 56.5 40.3 85.5
full 86.5 86.1 91.3 58.6 48 43.2 84.4 89.5 89.4 92.3 71.7 49.6 49 87.3

Table 4: BERT and RoBERTa performance on NLI tasks. The weig. column represents the percentage of all true
predictions in six subtasks over total instances. The penultimate row stands for the overall performance when
quantifiers exist in a dataset. The last row reports the overall performance in a dataset. Number marked in bold
signifies a lower score than the overall performance.

across, about 10% of all hypotheses contain quan-192

tifier words, indicating the pervasiveness of quan-193

tification. We also plot the frequency of quantifiers194

in NLI in Figure 1 and find the quantifier word195

distribution follows Zipf’s law (Zipf, 1949). Note196

the top three most common quantifiers account for197

more than 90% of all.198

Experiments and Results In order to investigate199

whether NLU systems can solve quantifiers in NLI,200

we experiment with two pretrained LMs: BERT2201

(Devlin et al., 2019a) and RoBERTa3 (Liu et al.,202

2019). We use the codebase by Nie et al. (2020).203

The training data combines SNLI, MNLI, FEVER-204

NLI (Nie et al., 2019) and ANLI.205

In Table 4, we report the test set performance206

on SNLI and ANLI, and the dev set performance207

on MLNI matched and mismatched sections. We208

can observe that SOTA models suffer from per-209

formance drops across almost all quantification210

phenomena in every task. When it comes to perfor-211

mance over all quantifiers, the improvement from212

RoBERTa to BERT (2.2%) is less prominent than213

that over full datasets (2.9%), suggesting RoBERTa214

is particularly challenged.215

Taking a closer look at error by category, propor-216

tional quantifiers seem harder to solve than Aris-217

totelian/counting quantifiers. Except for k%, all218

proportional quantifiers—p/k, most, and few—are219

about 10% lower than the five counting quanti-220

fiers (except less than k) with BERT; and about 5%221

lower with RoBERTa. RoBERTa is not generally222

superior to BERT; e.g., for k%, BERT outperforms223

it by 22%. We show a pairwise analysis of how224

2wwm_cased_L-24_H-1024_A-16
3roberta-large

GQs affect performance when they appear in both 225

the premises and hypotheses in the Appendix B. 226

Generally, our results attest to the difficulty of re- 227

solving GQs in NLI benchmarks. 228

5 Quantifiers in Cross-lingual NLU 229

Benchmarks 230

Quantifiers are acquired in similar orders across lan- 231

guages (Katsos et al., 2016), although languages 232

express quantifiers in different ways. For exam- 233

ple, there are eight different universal quantifiers 234

with different level of distributivity in Malagasy 235

(Matthewson, 2008). This poses challenges to train- 236

ing multilingual LMs and transfer learning. We are 237

interested in whether quantifiers are universally and 238

evenly challenging for all languages. 239

Quantifiers in Cross-lingual NLI We choose 240

XNLI (Conneau et al., 2018), a manual transla- 241

tion of the development and test set of MNLI into 242

15 languages, for this multilingual error analysis. 243

We should clarify that for XNLI, the authors anno- 244

tate entailment labels for the English data only and 245

apply them to the other languages. We do not as- 246

sume label changes due to translation in this study, 247

but it is worth investigate in the future. We choose 248

five languages belonging to different language fam- 249

ilies, namely Arabic, Chinese, German, Spanish 250

and Vietnamese as targets. The last column in Ta- 251

ble 3 shows the numbers of quantifiers in XNLI. 252

The distribution rate is 10%. Note that the universal 253

quantifier is the most common quantifier in XNLI. 254

We fine-tune mBERT4 (Devlin et al., 2019b) and 255

XLM5 (Lample and Conneau, 2019) on the MNLI 256

4multi_cased_L-12_H-768_A-12
5xlm-mlm-100-1280
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Quantifier mBERT XLM
en zh es ar vi de weig. en zh es ar vi de weig.

some 85.2 69.6 80 63.5 67.8 74.8 73.4 85.2 70.3 79.1 71.3 73.9 69.6 69.6
all 80.1 65.7 72.8 69.3 63.9 74.1 70.9 82.5 62.7 74.1 67.5 71.7 73.5 72
> k 87.5 50 68.8 43.8 56.2 62.5 61.6 81.2 62.5 56.2 62.5 50 75 75
< k 100 100 100 100 100 100 100 100 100 100 100 100 100 100
k 86.2 69.1 80.5 71.7 76.7 82.4 77.7 83 66.7 78.6 71.7 74.2 81.1 75.8
between 100 100 100 100 100 100 100 100 100 100 100 100 100 100
p/k 100 50 100 100 100 100 91.7 100 0 100 100 50 50 66.7
k% 100 100 80 100 100 100 96.7 80 80 80 100 100 80 86.7
most 55.6 55.6 66.7 66.7 33.3 66.7 57.4 55.6 33.3 66.7 55.6 44.4 77.8 55.6
few 72.7 54.5 72.7 63.6 45.5 72.7 63.6 63.6 36.4 54.5 63.6 54.5 72.7 57.5
each other 60 60 60 60 80 80 66.7 80 20 60 20 40 60 46.7
all GQs 83 67.1 76.7 68.1 68.3 76.9 73.3 82.4 64.2 75.7 69.3 71.4 74.8 73
comp. 82.6 88.9 74.7 65.6 70.7 71.4 72.4 83.1 64.8 76.3 66.9 71.6 71.3 72.3

Table 5: Results of mBERT and XLM performance on XNLI tasks decomposed by quantifier categories.

Quantifier MLQA XQuAD
en zh es ar vi de ...

some 66 39 41 44 37 33 12
all 31 14 26 21 19 16 7
> k 0 0 0 0 0 0 0
< k 1 0 0 0 1 0 0
k 322 168 166 195 204 149 32
between 4 2 2 2 3 0 3
p/k 1 1 1 0 0 0 0
k% 1 1 0 1 0 0 0
most 27 19 11 30 17 9 5
few 0 0 0 0 0 0 0
each other 0 0 0 0 0 0 0

Total 453 244 247 293 281 207 59
Frequency 3.9% 4.7% 4.7% 5.4% 5.1% 4.5% 5.0%

Table 6: Quantifier distribution in two multilingual QA
tasks, MLQA and XQuAD. We choose six common
languages apprearing in both tasks to facilitate compar-
isons. XQuAD is strictly parellel while MLQA is not,
hence only the latter has statistics by languges.

training set and evaluate them on XNLI. We report257

the results in Table 5. We find that performance258

varies across languages. For Chinese and Viet-259

namese, we see significant drops in performance260

for examples with GQs, whereas for Arabic and261

German, we see improvements. The results per262

quantifier are more homogeneous, however.263

Similar to our results for English, we can see264

that the lowest accuracies in XNLI are with pro-265

portional quantifiers, such as most and few. But266

the gap in non-English languages is wider for these267

two categories, especially for Chinese, the differ-268

ence reaches 30%. Other hard quantifiers include269

all, > k, < k, and each other.270

Quantifiers in Cross-lingual QA Cross-lingual271

question answering (XQA) is another important272

NLU task that evaluates the cross-lingual transfer-273

ability of LMs. We evaluate the effect of quantifiers274

on system errors across two XQA datasets, namely275

XQuAD (Artetxe et al., 2020) and MLQA (Lewis276

et al., 2020). As demonstrated in Figure 1, quan-277

tifier word distributions in XQA tasks also follow 278

Zipf’s law, as in NLI tasks, but k is more frequent 279

(perhaps because of a traditional emphasis on nu- 280

merical reasoning), and we see less variance across 281

languages. This is probably because question an- 282

swering is targeting quantification less directly. To 283

evaluate cross-lingual QA performance on GQs, 284

we fine-tune mBERT and XLM-R6 (Conneau et al., 285

2020) using Hu et al. (2020)’s architecture. We 286

present results for mBERT in Table 7; for XLM-R 287

results, please refer to Appendix D. 288

Just as with XNLI, LMs suffer from performance 289

drops across all languages for almost all GQ phe- 290

nomena with significant, cross-lingual variation. 291

The most distinguished is that Exact Match (EM) 292

suffers from a greater deterioration than F1 scores 293

for all languages. For example, the weighted EM 294

difference for mBERT on MLQA is 2.9% while 295

the weighted F1 is 1%. As one example in Table 1, 296

we observe that the plausible answers selected by 297

models, while being incorrect, result in a sharper 298

decrease of EMs comparing to F1s. Questions con- 299

taining GQs also tend to have less verbal answers 300

comparing to those without GQs, and therefore 301

require higher precision. 302

Regarding cross-lingual comparisons, Chinese 303

and Arabic are the two languages that do not have 304

lower performance over GQs compared to the per- 305

formance over the complete dataset. Despite the 306

overall trends, subtle differences from XNLI per- 307

formance still exist. For example, XLM-R is worse 308

than mBERT on quantifier reasoning on XQuAD 309

Chinese, especially at proportional quantifiers, but 310

this is not the case on MLQA Chinese. 311
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Quantifier
XQuAD MLQA

en zh es ar vi de weighted en zh es ar vi de weighted
EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

some 75 84.2 50 55.5 58.3 76.1 50 50 16.6 42.4 33.3 43.8 47.2 58.7 59 80 28.2 52.1 34.1 59.2 36.3 54.9 5.4 24 33.3 58.4 32.7 54.8
all 28.5 62.2 14.2 35.2 28.5 82 42.8 52.3 14.2 29.4 28.5 56 26.1 52.9 67.7 79.8 14.2 46.4 38.4 62.8 33.3 57.9 10.5 30.1 31.2 51.6 32.6 54.8
> k
< k 0 0 0 13.3 0 6.7
k 78.1 90.1 68.7 80.4 56.2 72.1 40.6 64.3 12.5 35.7 56.2 77.1 52.1 70 74.9 79.4 47 63.4 41.5 65.9 27.6 50.3 6.3 23.7 38.2 53 39.3 56
between 100 100 33.3 72.2 66.6 93.3 100 100 0 19 0 56.5 50 73.5 50 88.5 50 83.3 0 26.6 0 68.7 0 26.6 20 58.7
p/k 100 100 0 0 0 0 33.3 33.3
k% 100 100 0 26.6 0 23.7 33.3 50.1
most 40 53.3 40 40 0 10 0 26.6 0 0 20 49.3 16.7 29.9 55.5 7 47.3 62.1 45.4 61.7 30 46.8 5.8 15.7 33.3 40.7 36.2 50.3
few
each other

all GQs 70 83.2 55 66.7 50 70.3 41.6 58.2 11.6 32.5 43.3 65 45.3 62.7 63.5 79.2 41.8 60.3 39.6 63.7 29.3 51.3 6.4 23.6 36.1 53.2 36.1 55.2
comp. 71.8 83.7 48 59.1 56 74.5 40.8 57.9 13.9 32.4 50.7 67.2 46.9 62.5 67.2 80.6 37.5 57.9 47.3 66 30 48.4 11.2 28 40.8 56 39 56.2

Table 7: Results of mBERT performance on XQA tasks decomposed by quantifier categories.

Quantifier some all > k < k k between p/k k% most few each other Overall
# Occurrence 27 51 51 33 170 21 24 45 18 9 36 485

Model Training Data % Performance

ELECTRA S,M,F,ANLI 25.9 15.7 19.6 27.3 24.1 71.4 0 26.7 11.1 11.1 22.2 26.7

BERT S,M,F,ANLI 40.7 41.2 33.3 30.3 30.6 14.3 37.5 22.2 61.1 22.2 41.7 30

SBERT S,M,F,ANLI 7.4 29.4 27.5 21.2 34.7 57.1 62.5 40 22.2 11.1 33.3 34.3

RoBERTa MNLI 55.6 25.5 17.6 27.3 24.7 23.8 45.8 17.8 33.3 33.3 11.1 28.2
S,M,F,ANLI 40.7 23.5 41.2 45.5 40 57.1 25 33.3 27.8 0 22.2 37

BART MNLI 51.9 27.5 25.5 36.4 31.2 23.8 50.0 13.3 44.4 66.7 30.6 31.3
S,M,F,ANLI 37.0 39.2 58.8 33.3 47.6 76.2 25.0 53.3 16.7 33.3 30.6 41.7

ALBERT S,M,F,ANLI 44.4 37.3 49 27.3 44.1 57.1 50.0 46.7 16.7 0 33.3 42

DeBERTa-v3
MNLI 48.1 37.3 41.2 12.1 40 33.3 66.7 20 50 33.3 41.7 40.7
M,F,ANLI 51.9 41.2 23.5 33.3 37.1 57.1 50.0 13.3 61.1 33.3 33.3 41.3
M,F,Ling,DocNLI 66.7 52.9 35.3 45.5 44.1 66.7 50 31.1 50 33.3 41.7 42.7

Table 8: GQNLI statstics and seven types of models’ performance with different combinations of training data.
The second row shows the occurrence time of the type of GQ in GQNLI. The following rows show models’
performance on the dataset. We tested most competitive models fine-tuned for NLI available on Hugging Face. All
but ALBERT (xxlarge) and DeBERTa-v3 (base) are size large. S, M, F, Ling, A, DocNLI refer to SNLI,
MNLI, Fever-NLI, LingNLI (Parrish et al., 2021), ANLI and DocNLI (Yin et al., 2021), respectively. Numbers in
bold represent the highest accuracy in one category. Due to space limitation we provide the link to each modelin
the Appendix H.

6 GQNLI312

We have seen how quantifiers present challenges313

to NLI and QA models. Using an approach similar314

to ANLI (Nie et al., 2020) and DynaBench (Kiela315

et al., 2021), we use model difficulty (RoBERTa’s)316

as a heuristic to select hard examples for a chal-317

lenge dataset that can hopefully be used to evaluate318

any future progress on this. We propose GQNLI, a319

generalized quantifier NLI challenge dataset, con-320

sisting of 30 premises and 300 hypotheses. The av-321

erage sentence lengths of hypothesis and premises322

are 15.97 and 7.35, respectively. Both numbers323

are comparable to those of MNLI, but lower than324

ANLI’s (Williams et al., 2020). It should be noted325

that GQNLI is designed for evaluating future mod-326

els; obviously not for benchmarking RoBERTa.327

Dataset Creation Firstly, we manually create328

100 premise-hypothesis pairs, in which various329

types of GQs appear. For each premise and hy-330

6xlm-roberta-large

pothesis, the number of GQs varies from one to 331

three. To choose the premises, we randomly sam- 332

pled 100 premises with GQs from SNLI and ANLI 333

test sets, respectively, and selected 30 premises in 334

total, that we consider are semantically adequate 335

for adding GQs and making simple hypotheses. 336

To construct the hypotheses, we rely on 337

RoBERTa fine-tuned on MNLI and manually select 338

examples about which the model is unsure or incor- 339

rect. To focus on GQs, we keep the challenge ex- 340

amples otherwise simple (Ribeiro et al., 2020), and 341

avoid lexical variations in the hypotheses. Hard 342

examples were found to be characterized by (i) 343

mixing generalized quantifiers with other logical 344

operators, such as subsumption or negation, and 345

(ii) combining multiple different generalized quan- 346

tifiers. We discuss these observations in Section 347

7. 348

Two of the authors annotated the examples. 349

The inter-annotator agreement (Fleiss’ kappa) was 350

0.895, substantially higher than ANLI’s (0.672– 351

0.740). We augmented the examples by substi- 352
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tuting non-quantifier words (e.g., replacing “dogs”353

with “cats”) while keeping the labels, to exclude354

the effect of specific lexical items. The resulting355

labels are uniformly distributed. Table 8 presents356

GQNLI statistics. Since the dataset is curated to357

probe the ability to reason with quantifiers, the dis-358

tribution of generalized quantifiers does not follow359

Zipf’s law; see §4. A list of GQNLI examples per360

category is shown in Appendix E.361

Experiments and Results We evaluate seven362

types of models on GQNLI, fine-tuned with dif-363

ferent combinations of NLI datasets. As data cre-364

ation only relied on RoBERTa and MNLI, nothing365

prevents that models with different architectures366

and training data will perform well. They do not,367

however. The results are shown in Table 8.368

We see that all models have great difficulty with369

GQNLI. With more training data, models improve,370

but the best performance is 42.7%, less than 10371

points above chance level. In general, the counting372

quantifiers, especially the existential and universal373

quantifiers, are easier than proportional quantifiers.374

Particularly, most models struggle with less than375

k and few. This is in some contrast with the NLU376

tasks studied above, where these quantifiers were377

among the easiest.378

We also observe unstable GQ reasoning ability379

in simple word substitution cases. For instance, it380

happens for DeBERTa fine-tuned with M, F, Ling,381

DocNLI that it predicted correctly the contradiction382

relation between “There are six children standing383

on top of a yellow mountain. Two thirds wear red384

tops and one third wear green.” and “Between385

80% and 90% children do not wear red tops.”, but386

incorrectly when “red” is substituted with “beige”387

and “green” with “cyan”. We are yet to study what388

kind of cues lead to the instability. Our experiments389

suggest a lack of testing proportionality reasoning390

and robustness in existing benchmarks.391

7 Discussion392

Negation The interaction between negation393

words and quantifiers increases semantic complex-394

ity (Partee, 1970; Horn, 2010). We investigate395

whether this holds for NLI tasks, using negation396

cue detection to find all cases where a negation397

word and a quantifier appear in the hypotheses.398

We break down the performances on negation399

of the seven models in Appendix F. As indicated,400

LMs overall have worse results for negation cases401

comparing to the entire dataset. We can see a major-402

ity of the models even predicted opposite labels for 403

some GQ categories, with 0% accuracy. DeBERTa- 404

v3 is no longer the best model, replaced by BERT 405

and BART. The improvement by training with more 406

data becomes unstable for reasoning over GQs with 407

negation. 408

For a cross-lingual investigation of the interac- 409

tion of GQs and negation, we find that in XNLI, 410

the number of cases combining both phenomena is 411

insufficient: we identified four such cases, involv- 412

ing only the quantifiers “all” and “more than.” For 413

English, mBERT predicted two cases successfully. 414

For Chinese, German, Vietnamese and Arabic, one 415

is correct. For Spanish, all are wrongly predicted. 416

It is evident that NLU models suffer from rea- 417

soning difficulties in certain cases when negation 418

interacts with GQs, especially in cross-lingual eval- 419

uation. In future work, we are interested in expand- 420

ing GQNLI to more instances and more languages 421

to facilitate qualitative investigations. 422

Subsumption In generalized term subsumption 423

languages (TSLs; Yen, 1991; Ali and Shapiro, 424

1993), a term a subsumes another term b if and 425

only if the extension of a is a superset of the ex- 426

tension of b . Rather than surface number compar- 427

ison, subsumption reasoning requires knowledge 428

of the relations between supersets and subsets. For 429

example, to decide whether “There are six dogs. 430

Three brown dogs, a black dog and a white dog run 431

along the green grass” entails “One dog sits”, LMs 432

should be aware that “six dogs” is a superset of the 433

extension of the “brown dogs”, “black dog” and 434

“white dog”. Another example in GQNLI is to infer 435

whether “There are twelve singers on a stage, less 436

than half from Argentina and one from Cape Verde” 437

entails “Several singers do not come from Chile”. 438

We annotate 63 cases out of the first 100 in 439

GQNLI requiring subsumption reasoning. We 440

show the statistics and results regarding subsump- 441

tion in Appendix G. It can be seen that more train- 442

ing data leads to higher accuracies. Especially, 443

DeBERTa fine-tuned with DocNLI, which unifies 444

the two classes “neutral” and “contradict” into a 445

new class “not entail”, has a significant improve- 446

ment on subsumption cases with neutral label. The 447

training bias give an advantage to the model on 448

the subsumption subset, half cases of which are 449

labelled neutral. But such bias has a negative ef- 450

fect on non-subsumption cases; the accuracy drops 451

by 16.2% comparing to the model without train- 452

ing with DocNLI. It is worth investigating whether 453
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DocNLI is truly helping subsumption reasoning in454

future work. Subsumption is a key concept in the455

study of knowledge representation (Woods, 1991),456

but is neglected in current NLP research. The fact457

that LMs struggle to perform subsumption reason-458

ing asserts the necessity to explicit tackle the prob-459

lem.460

8 Related Work461

We examine the sensitivity of NLU models to gen-462

eralized quantifiers. These models are designed463

to induce correlations from large volumes of data,464

not to reason symbolically with logical quantifiers.465

Such models have, nevertheless, been probed for466

logical knowledge.467

Mul and Zuidema (2019), for example, show468

neural networks encode fragments of first-order469

logic and exhibit zero-shot generalization ability.470

Evans et al. (2018) present a neural architecture471

that improves performance on propositional logi-472

cal inference. Bowman et al. (2015b) also suggest473

neural networks learn semantic representations for474

logical inference in natural languages. However,475

on the same task, Veldhoen and Zuidema (2017)476

find neural networks fail to do so on a more strin-477

gent test. Geiger et al. (2019) also show that neural478

networks fail to exhibit robust logical inference.479

Srivastava et al. (2018) use semantic parsers to en-480

code quantifiers and improve zero-shot learning in481

classification tasks. Haruta et al. (2020) present a482

system that computes logical inference over GQs483

and see improvements on two specialized datasets,484

FraCaS (Cooper et al., 1994) and MED (Yanaka485

et al., 2019). None of these papers explicitly dis-486

cussed generalized quantifiers, and all were limited487

to studying the ability of neural networks to capture488

the logical semantics of English.489

Many studies have instead focused on LMs’ abil-490

ity to capture negation (Gururangan et al., 2018;491

Naik et al., 2018; Hossain et al., 2020; Ettinger,492

2020; Hartmann et al., 2021) or coreference (Ye493

et al., 2020; Varkel and Globerson, 2020; Abdou494

et al., 2020). Others have focused on LMs’ abil-495

ity to reason with numbers (Johnson et al., 2020).496

DROP (Dua et al., 2019), for example, is a question497

answering dataset designed specifically to probe498

LMs’ ability to count, add and subtract for answer-499

ing factoid questions. Models have also been tai-500

lored for numerical reasoning (Geva et al., 2020;501

Zhang et al., 2020). Cobbe et al. (2021) proposes502

to use a verification task during pretraining of LMs503

to improve their ability to solve math word prob- 504

lems. Others have studied monotonicity inference 505

(Hu et al., 2019; Yanaka et al., 2019, 2020), and 506

Fang and Lou (2021) recently focused on the two 507

quantifier words part and whole in an error analysis 508

for named entity recognition. 509

Many NLU benchmarks contain quantifier 510

words, but their influence on performance has not 511

been studied systematically. One exception to this 512

is that generalized quantifiers have been used to 513

generate adversarial examples in the context of nu- 514

merical reasoning (Naik et al., 2018; Nie et al., 515

2020). TaxiNLI (Joshi et al., 2020), which cate- 516

gorizes 15 types of reasoning abilities, is a dataset 517

drawn from MNLI. In their taxonomy, the Quanti- 518

fier category only refers to universal and existential 519

quantifiers, not to generalized quantifiers, and ditto 520

for Kim et al. (2019). All of the above focused on 521

English, but in an extension to TaxiNLI, K et al. 522

(2021) incorporated quantifiers into the Logic class 523

and found a large cross-lingual tranfer gap on LMs. 524

9 Conclusion 525

Quantifiers lie in the intersection of logic, linguis- 526

tics and NLP research. It is essential for NLU sys- 527

tems to learn quantifier reasoning. We examined 528

generalized quantifiers in NLU tasks with regards 529

to their expressiveness and logical reasoning re- 530

quirement. Our survey and experiments indicate 531

quantifiers are neglected to a degree and cause sig- 532

nificant performance drops for neural LMs. To 533

better understand LMs’ reasoning abilities, we re- 534

lease GQNLI,7 a novel generalized quantifier NLI 535

challenge dataset. With the pervasiveness of gen- 536

eralized quantifiers, we stress that more efforts are 537

necessary to investigate: (1) when and why models 538

systematically fail when quantifiers interact with 539

other operators; (2) how to improve cross-lingual 540

transferability of quantifiers; (3) how we can ex- 541

ploit the theoretical results about generalized quan- 542

tifiers from logic and linguistic studies, so as to 543

improve the logical inference ability of neural LMs. 544
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Generalized Quantifiers Regular Expressions

some(A)(B) = 1

( some | s e v e r a l | much | many ) \ / d e t . * \ / ( n s u b j | o b j | o b l ) | ( some | s e v e r a l | much | many ) \ / n s u b j
| ( some | s e v e r a l | much | many ) \ / amod \w+ \ / n s u b j : p a s s

all(A)(B) = 1

( e v e r y | a l l | each ) \ / d e t . * \ / ( n s u b j | o b j | o b l ) | a l l \ / d e t : p r e d e t . * \ / ( n s u b j | o b j | o b l ) |
e v e r y t h i n g | e v e r y o n e | eve rybody

more than k the(A)(B) = 1

( ( more | g r e a t ) \ / advmod t h a n \ / ( f i x e d | c a s e ) | a t \ / c a s e l e a s t \ / nmod ) . + \ / nummod . + \ / (
n s u b j | o b j | o b l )

less than k the(A)(B) = 1

( ( few | l e s s ) \ / advmod t h a n \ / ( f i x e d | c a s e ) | a t \ / c a s e most \ / amod ) . + \ / nummod . + \ / ( n s u b j
| o b j | o b l )

the k (A)(B) = 1

\w+ \ / nummod . + \ / ( n s u b j | o b j | o b l )

between p and k the(A)(B) = 1

between \ / c a s e \w + \ / ( nummod | n s u b j | o b j | o b l ) and \ / cc \w+ \ / c o n j | be tween \ / c a s e . + \ / (
nummod | n s u b j | o b j | o b l ) %\/ o b l

the p/k (A)(B) = 1

\ d + \ / \ d + \ / ( nummod | n s u b j | o b j | o b l ) | h a l f \ / nummod | t h i r d \ / ( n s u b j | o b j | o b l ) | f o u r t h \ / (
n s u b j | o b j | o b l ) | f i f t h \ / ( n s u b j | o b j | o b l )

the k% (A)(B = 1 )

\ d + \ / nummod % \ / ( n s u b j | o b j | o b l )

most (A)(B) = 1

most \ / amod \w + \ / ( n s u b j | o b j | o b l ) | most \ / n s u b j : p a s s o f \ / c a s e . + \ / nmod

few (A)(B) = 1

few \ / amod \w + \ / ( n s u b j | o b j | o b l ) | few \ / n s u b j : p a s s o f \ / c a s e . + \ / nmod

each other (A)(B) = 1

each \ / d e t o t h e r \ / ( n s u b j | o b j | o b l )

Table 9: Regular Expressions for generalized quantifiers.

Appendices1004

A Regular Expressions for Generalized Quantifiers1005

Table 9 lists the regex we use to parse generalized quntifiers in sentences augmented with universal1006

dependency tags. The approach does not find all the generalized quantifiers exhuastively but rather1007

approximates the common distributions.1008

B Pairwise Observation1009

While the analysis in Section 4 is based on quantifiers in hypotheses, next we consider the interaction of1010

quantifiers in hypotheses and quantifiers in premises. To this end, we calculate the difference between1011

overall performance and performance for premise-hypothesis pairs of GQs. In Figure 2, we visualize the1012

results as heatmaps (see Table 10 for exact numbers of occurences and accuracies). Surprisingly, whenever1013

quantifiers appear in both the premise and the hypothesis, LMs largely fail to predict the entailment.1014

Percentage quantifiers, supposed to be semantically more complex than counting quantifiers, are not de1015

facto harder in NLI. We studied all 27 cases of percentage quantifiers in the English NLI datasets, and1016

found that in most cases, percentage quantifiers occurrences are identical across premises and hypotheses,1017

i.e., triggering little or no inference. The other two proportional quantifiers, most and few, are hard for1018

14



Figure 2: Fine-grained analysis of RoBERTa performance on 6 English NLI subtasks. Each heatmap represents
hypotheses with a type of quantifier. The rows stand for premises with the quantifier of that label. The numbers
are calculated as the accuracy over the whole dataset minus the fine-grained accuracy given a specific premise and
hypothesis (the higher the number, the worse the performance). For each heatmap, the last column represents the
accuracy gap weighted by all 6 tasks. “UN” stands for an entry where no explicit quantifier is identified.

LMs to resolve, e.g., in some quantifier pairs, models yield 0% accuracy. Although each other is supposed 1019

to be hardest to resolve due to the complex semantics of reciprocals (Szymanik and Thorne, 2015), it is 1020

not reflected in NLI tasks as such. The reason is similar to percentage quantifiers, while annotators intend 1021

to alter counting quantifiers when writing hypotheses, reciprocality is seldomly considered a linguistic 1022

ability that needs testing for NLU systems. And the annotation for Ramsey quantifier is simply a knockoff, 1023

making reciprocal relation identification unwarranted through shallow correlations. 1024

C Fine-grained NLI Analysis 1025

D XQA Result: mBERT and XLM-R 1026

Table 11 compares the results of mBERT and XLM-R on two XQA tasks, XQuAD and MLQA. 1027

E GQNLI Examples 1028

Table 12 list one example per category in GQNLI. 1029

F GQNLI Negation Cases 1030

We present the results of seven models’ performance on cases with negation cues in GQNLI in Table 13. 1031

G GQNLI Subsumption Cases 1032

See Table 14 for models ’performance on cases requiring subsumption reasoning in GQNLI. We also 1033

break down subsumption results by entailment labels into two categories: neutral and non-neutral. 1034

15



H GQNLI Experiment Details1035

We reused the fine-tuned BERT and RobERTa in Section 4. The other fine-tuned LMs are from Hugging1036

Face. We list the models and thier links in Table 15.1037
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Hypothesis Premise MNLI_m_dev MNLI_mm_dev SNLI_test ANLI_R1_test ANLI_R2_test ANLI_R3_test Total
#occurrence %Acc #occurrence %Acc #occurrence %Acc #occurrence %Acc #occurrence %Acc #occurrence %Acc #occurrence %Acc #correctpred

some some 45 93.3 38 86.8 16 93.8 1 100 6 16.7 106 86.8 92
all 8 87.5 8 50 3 100 3 0 22 63.6 14
>k
<k
k 12 75 10 80 40 90 4 100 0 2 50 68 85.3 58
between
most
few 2 50 2 50 1
p/k
k%
eachother
"unmatched" 110 79.1 83 84.3 137 85.4 1 100 1 0 8 75 340 82.6 281

all some 11 100 12 100 2 100 1 100 26 100 26
all 73 82.2 74 86.5 3 100 4 25 2 50 6 50 162 81.5 132
>k 1 0 1 0 0
<k
k 28 85.7 19 100 22 81.8 9 22.2 5 40 13 23.1 96 70.8 68
between 1 100 1 0 2 50 1
most
few 4 100 2 100 6 100 6
p/k 1 0 1 0
k%
eachother 0 0 1 100 0 0 0 1 100 1
"unmatched" 151 86.1 144 87.5 41 92.7 5 100 2 0 13 30.8 356 85.1 303

>k some 1 100 2 50 1 0 4 50 2
all 1 0 2 0 2 50 5 20 1
>k 2 100 1 100 2 50 5 80 4
<k
k 1 0 3 100 2 100 3 66.7 9 55.6 10 40 28 57.1 16
between 2 50 2 50 1
most
few 1 100 1 100 1
p/k
k%
eachother
"unmatched" 12 100 18 100 5 80 6 66.7 6 16.7 3 66.7 50 82 41

<k some
all
>k
<k
k 3 33.3 5 40 3 100 11 54.5 6
between
most
few 1 0 1 0 0
p/k
k%
eachother
"unmatched" 3 100 3 100 3 33.3 2 100 2 50 13 76.9 10

k some 8 75 14 78.6 28 85.7 2 50 2 0 4 0 58 72.4 42
all 12 83.3 14 71.4 22 95.5 1 100 3 0 4 75 56 80.4 45
>k 3 66.7 2 0 5 40 2
<k 2 100 1 100 3 100 3
k 140 84.3 121 76.9 593 92.2 42 42.9 49 44.9 37 32.4 982 82.5 810
between 2 50 2 100 1 0 5 60 3
most
few 1 100 1 100 1
p/k 1 100 1 100 1 100 1 100 4 100 4
k%
eachother 7 100 7 100 7
"unmatched" 118 89.8 137 86.1 383 92.7 11 36.4 13 38.5 11 36.4 673 88 592

between some 1 100 1 100 1
all
k 1 100 1 0 2 50 4 50 2
between 2 100 2 50 4 75 3
most
few
>p/k:more/greaterthanp/k
<p/k:fewer/lessthanp/k
p/k
k%
eachother
"unmatched" 2 100 1 100 1 100 4 100 4

most some 2 50 2 50 1
all 2 100 2 100 2
>k 1 0 1 0 0
<k
k 5 60 1 100 2 50 1 0 9 55.6 5
between
most 7 85.7 4 75 11 81.8 9
few 1 100 1 100 1
p/k
k%
eachother
"unmatched" 23 73.9 30 83.3 1 0 54 77.8 42

few some
all 1 100 1 0 0 2 50 1
>k 1 100 0 1 100 1
<k 0 0 0
k 4 75 3 33.3 4 100 3 33.3 14 64.3 9
between
most 0 1 0 0 1 0 0
few 0 2 100 0 1 0 3 66.7 2
p/k
k%
eachother
"unmatched" 9 77.8 9 88.9 7 85.7 2 50 27 81.5 22

p/k some
all
>k
<k
k 2 100 0 1 100 0 0 3 100 3
between
most
few
p/k 2 100 1 100 3 100 3
k%
eachother
"unmatched" 1 100 3 33.3 1 100 0 1 100 0 6 66.7 4

k% some
all
>k
<k
k 6 83.3 6 100 1 100 13 92.3 12
between
most
few
p/k
k%
eachother
"unmatched" 4 100 1 100 5 100 5

eachother some 1 100 1 100 1
all 3 100 3 100 3
>k
<k
k 1 100 15 80 1 100 17 82.4 14
between
most
few
p/k
k%
eachother 1 100 1 100 1
"unmatched" 3 66.7 3 100 19 89.5 26 84.6 22

Table 10: Statistics of pairwise analysis in Monolingual NLI Benchmarks
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Quant.
mBERT XLM-R

en zh es ar vi de weighted en zh es ar vi de weighted
EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

XQuAD
some 75 84.2 50 55.5 58.3 76.1 50 50 16.6 42.4 33.3 43.8 47.2 58.7 66.7 76.1 41.6 51.3 50 71.5 66.7 73.6 66.7 76.9 66.7 80.6 59.7 71.7
all 28.5 62.2 14.2 35.2 28.5 82 42.8 52.3 14.2 29.4 28.5 56 26.1 52.9 57.1 91.8 14.2 21.4 57.1 78.6 42.8 54.9 85.7 85.7 57.1 79.3 52.3 68.6
> k
< k
k 78.1 90.1 68.7 80.4 56.2 72.1 40.6 64.3 12.5 35.7 56.2 77.1 52.1 70 75 87.4 53.1 58.8 46.8 77.4 65.6 86.3 62.5 85.4 62.5 86.9 60.9 80.4
between 100 100 33.3 72.2 66.6 93.3 100 100 0 19 0 56.5 50 73.5 100 100 66.7 66.7 33.3 60 100 100 100 100 33.3 55.5 72.2 80.4
p/k
k%
most 40 53.3 40 40 0 10 0 26.6 0 0 20 49.3 16.7 29.9 40 48 20 33.3 40 50 0 26.6 0 0 20 49.3 20 34.5
few
each other

all GQs 70 83.2 55 66.7 50 70.3 41.6 58.2 11.6 32.5 43.3 65 45.3 62.7 70 83.6 43.3 50.2 48.3 73.6 60 76 68.3 83.6 58.3 80.3 58 74.6
comp. 71.8 83.7 48 59.1 56 74.5 40.8 57.9 13.9 32.4 50.7 67.2 46.9 62.5 74.5 86 43 52.8 61 80 53.3 71.7 58.1 78 61.1 77.1 58.5 74.3

MLQA
some 59 80 28.2 52.1 34.1 59.2 36.3 54.9 5.4 24 33.3 58.4 32.7 54.8 69.6 86.1 33.3 60.6 41.4 70 43.1 62.9 43.2 78 45.4 61.1 46 69.8
all 67.7 79.8 14.2 46.4 38.4 62.8 33.3 57.9 10.5 30.1 31.2 51.6 32.6 54.8 77.4 90.6 35.7 70 42.3 66.4 38 60 57.8 79.8 37.5 51 48.1 69.6
> k
< k 0 0 0 13.3 0 6.7 0 40 0 20 0 30
k 74.9 79.4 47 63.4 41.5 65.9 27.6 50.3 6.3 23.7 38.2 53 39.3 56 69.2 82.1 45.2 66.2 48.7 73.3 43 64.9 48.5 71.9 46.3 62.1 50.2 70.1
between 50 88.5 50 83.3 0 26.6 0 68.7 0 26.6 20 58.7 50 88.5 50 50 50 65.3 0 54.6 0 77.4 30 67.2
p/k 100 100 0 0 0 0 33.3 33.3 100 100 100 100 100 100 100 100
k% 100 100 0 26.6 0 23.7 33.3 50.1 100 100 0 26.6 0 71.4 33.3 66
most 55.5 7 47.3 62.1 45.4 61.7 30 46.8 5.8 15.7 33.3 40.7 36.2 50.3 59.2 76 47.3 69.5 45.4 59.5 40 63.2 47 75.7 22.2 31.7 43.5 62.6
few
each other

all GQs 63.5 79.2 41.8 60.3 39.6 63.7 29.3 51.3 6.4 23.6 36.1 53.2 36.1 55.2 69 83 43 65.6 46.9 71.5 41.9 64.1 47.6 73.2 44.4 59.8 48.8 69.5
comp. 67.2 80.6 37.5 57.9 47.3 66 30 48.4 11.2 28 40.8 56 39 56.2 70.4 83.3 38.7 62.5 54.1 72.2 42.5 62.9 50.5 72.3 52.2 67.3 51.4 70.1

Table 11: Results of mBERT and XLM-R performance on XQA tasks decomposed by quantifier categories.

Quantifier Premise Hypothesis Label
some “There are six dogs. Three brown dogs, a black dog and

a white dog run along the green grass.”
“Some dogs sit.” Neutral

all “In 2021, there are 490 million people in Africa living
in extreme poverty, or 36% of the total population.”

“Not all people in Africa live
in extreme poverty.”

Entailment

> k “Two young men in blue stand over a stove and look
at the camera while another young man in red stands
behind them.”

“At least two men wear red.” Contradiction

< k “More than five guys chased two girls in the classroom.” “No less than four guys chased
two girls in the classroom.”

Entailment

k “There are twelve singers on a stage, less than half from
Argentina and one from Cape Verde.”

“Two singers come from Ar-
gentina.”

Neutral

between “Only half out of six cleaners are sweeping up animal
faeces from the street during a parade.”

“Between four and five clean-
ers are sweeping up animal fae-
ces.”

Contradiction

p/k “More than 50% but less than 65% of Americans worry
about global warming.”

“Two thirds of Americans
worry about global warming.”

Contradiction

k% “More than five guys chased two girls in the classroom.” “100% of the guys chased two
girls in the classroom.”

Neutral

most “Two young men in blue stand over a stove and look
at the camera while another young man in red stands
behind them.”

“Most men wear blue.” Entailment

few “More than 50% but less than 65% of Americans worry
about global warming.”

“A few people from Amer-
ica do not worry about global
warming.”

Entailment

each other “There are 100 villagers and 100 townsmen. Most vil-
lagers and most townsmen hate each other.”

“All villagers and all towns-
men hate each other.”

Neutral

Table 12: GQNLI examples.

Quantifier some all > k < k k between p/k k% most few each other Overall
# Occurrence with negation cues 9 6 6 9 18 3 6 6 6 9 3 81

Model Training Data % Performance

ELECTRA S,M,F,ANLI 33.3 16.7 0 66.7 50 100 0 100.0 16.7 11.1 33.3 27.5

BERT S,M,F,ANLI 0 66.7 100 33.3 50 0 50 0 50 22.2 33.3 39.2

SBERT S,M,F,ANLI 0 0 0 44.4 22.2 0 0 50 16.7 11.1 0 11.8

RoBERTa MNLI 33.3 16.7 0 33.3 27.8 66.7 33.3 33.3 50 33.3 33.3 31.4
S,M,F,ANLI 33.3 0 0 66.7 33.3 0 0 50 0 0 0 17.6

BART MNLI 33.3 50.0 50.0 33.3 33.3 0 50 0 0 66.7 100 35.3
S,M,F,ANLI 0.0 66.7 100.0 33.3 50.0 0.0 50.0 0.0 50.0 22.2 33.3 39.2

ALBERT S,M,F,ANLI 44.4 0 33.3 44.4 33.3 0 50 50 0 0 0 25.5

DeBERTa-v3
MNLI 33.3 0 33.3 33.3 27.8 0 16.7 0 0 33.3 0 23.5
M,F,ANLI 0 0 0 66.7 33.3 0 0 50 50 33.3 0 23.5
M,F,Ling,DocNLI 33.3 0 0 0 11.1 66.7 50 33.3 50 33.3 0 27.5

Table 13: Models’ performance on instances with negation cues in GQNLI.
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Type Subsumption (neutral) Subsumption (non-neutral) Subsumption (total) Non-subsumption
# Occurrence 90 99 189 111

Model Training Data % Performance

ELECTRA S,M,F,ANLI 3.3 37.4 21.2 36

BERT S,M,F,ANLI 22.2 24.2 23.3 41.4

SBERT S,M,F,ANLI 13.3 48.5 31.7 38.7

RoBERTa MNLI 27.8 18.2 22.8 37.8
S,M,F,ANLI 21.1 49.5 36.0 38.7

BART MNLI 36.7 15.2 25.4 41.4
S,M,F,ANLI 44.4 44.4 44.4 36.9

ALBERT S,M,F,ANLI 33.3 49.5 41.8 42.3

DeBERTa-v3
MNLI 45.6 34.3 39.7 42.3
M,F,ANLI 52.2 41.4 46.6 32.4
M,F,Ling,DocNLI 86.7 32.3 58.2 16.2

Table 14: Models’ performance on instances requiring subsumption reasoning.

Model Training Data Model’s link

ELECTRA S,M,F,ANLI https://huggingface.co/ynie/electra-large-discriminator-snli_mnli_fever_anli_R1_R2_R3-nli

BERT S,M,F,ANLI

SBERT S,M,F,ANLI https://huggingface.co/usc-isi/sbert-roberta-large-anli-mnli-snli

RoBERTa MNLI https://huggingface.co/roberta-large-mnli
S,M,F,ANLI

BART MNLI https://huggingface.co/facebook/bart-large-mnli
S,M,F,ANLI https://huggingface.co/ynie/bart-large-snli_mnli_fever_anli_R1_R2_R3-nli

ALBERT S,M,F,ANLI ynie/albert-xxlarge-v2-snli_mnli_fever_anli_R1_R2_R3-nli

DeBERTa-v3
MNLI https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli
M,F,ANLI https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
M,F,Ling,DocNLI https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-docnli-ling-2c

Table 15: Links to the models we use to test on GQNLI.
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