
No Trust, No Learning? Improving Federated

Learning Security and Robustness with

Reputation and Trust

Sergei Chuprov1*, Dmitrii Korobeinikov2, Raman Zatsarenko2,
Leon Reznik2

1*Department of Computer Science, The University of Texas Rio
Grande Valley, 1201 W University Dr, Edinburg, 78539, TX, USA.

2Department of Computer Science, Rochester Institute of Technology, 1
Lomb Memorial Dr, Rochester, 14623, NY, USA.

*Corresponding author(s). E-mail(s): sergei.chuprov@utrgv.edu;
Contributing authors: dk9148@rit.edu; rz4983@rit.edu;

leon.reznik@rit.edu;

Abstract

In this paper, we address the vulnerability of Federated Learning (FL) to data
poisoning attacks, where malicious clients can degrade global model performance
through manipulation of local data. Existing defenses often face limitations in
computational complexity and unrealistic assumptions about attacker’s knowl-
edge. To overcome these challenges, we develop a novel FL defense mechanism
based on Reputation and Trust metrics. This approach dynamically identi-
fies and excludes malicious clients by detecting statistical anomalies in their
model updates and calculating historical metrics. Evaluated on the BloodMNIST
dataset under data poisoning attacks, our method demonstrates superior perfor-
mance compared to Multi-Krum, effectively detecting and removing malicious
clients with lower errors. This results in improved model accuracy and robustness
with no prior knowledge of the number of attackers. Our key contribution is a
practical and effective defense strategy that enhances the security and robustness
of FL systems operating in adversarial environments.
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1 Introduction

Federated Learning (FL) has emerged as a transformative approach to Machine Learn-
ing (ML), enabling collaborative model training across multiple decentralized clients
without direct data sharing [1]. This paradigm is particularly crucial in privacy-
sensitive domains like healthcare and finance, where legal and ethical considerations
prohibit centralized data aggregation. While FL offers significant advantages in terms
of privacy and data access, a critical challenge is its vulnerability to malicious actors.
The inherent distributed nature of FL, while beneficial for privacy, exposes it to two
major types of attacks: data poisoning and model poisoning. Data poisoning involves
adversaries manipulating the training data on their local devices, while model poi-
soning involves directly manipulating the model updates sent to the central server.
Of these, data poisoning is generally considered more relevant in practical scenarios
because it requires less technical expertise and access to the system’s inner workings
[2].

Existing defense mechanisms in FL often rely on analyzing client updates (gra-
dients or model parameters) using distance-based metrics to identify outliers [3–5].
While offering some protection, these methods can be computationally demanding and
risk misclassifying legitimate clients as malicious, potentially reducing the diversity of
the training data and hindering the model’s overall performance. Furthermore, many
of these approaches, especially those like Krum [3], depend on a priori knowledge
or estimation of the number of malicious clients, a condition rarely met in realistic
scenarios.

This paper introduces a novel defense mechanism based on Reputation and Trust,
designed to address these limitations and assure model effectiveness in the conditions
of adversarial attacks. Reputation and Trust are social concepts that were adapted in
computing to enhance security in decentralized systems [6–8]. Our approach leverages
a dynamic scoring system to identify and exclude malicious clients [9–12]. Specifi-
cally, it analyzes the statistical properties of the model updates contributed by each
client. Legitimate clients, training on genuine data, are expected to produce updates
that, while diverse, exhibit certain statistical consistencies. Malicious clients, inject-
ing poisoned data, will generate updates that are dissimilar from those of honest
clients, creating outliers in the distribution of update characteristics. Our method uses
this principle, calculating a Reputation score for each client based on the distance of
their updates from a central tendency (approximated by the centroid of all updates).
Trust, derived from Reputation, reflects the server’s confidence in a client’s ongoing
contributions. Clients consistently exhibiting anomalous behavior, indicated by low
Trust scores, are flagged and excluded from model aggregation. This step directly
enhances the effectiveness of the resulting model by preventing the integration of mali-
cious, performance-degrading updates, and the security of FL, as malicious clients are
detected and excluded.

The key contributions of this work include: (1) we introduce a novel FL defense
mechanism based on Reputation and Trust, designed to detect and mitigate the influ-
ence of malicious clients without requiring prior knowledge of their number; (2) we
empirically demonstrate that incorporating our defense mechanism into the FL pro-
cess significantly improves the effectiveness of the trained model in the presence of
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data poisoning attacks. The core of our contribution is demonstrating this improve-
ment in model performance resulting from malicious client removal; (3) we evaluate
our approach on a state-of-the-art medical imaging dataset (BloodMNIST from the
Medical MNIST collection) and compare its effectiveness with Multi-Krum [3] defense.

2 Background

FL has rapidly gained traction as a powerful paradigm for collaborative ML, par-
ticularly in domains where data privacy is paramount, such as healthcare. The core
principle of FL is to train a global model across a network of decentralized clients
(e.g., hospitals, mobile devices) without requiring those clients to share their raw
data. Instead, each client trains a local model on its own data, and only the model
updates (e.g., gradients, weights) are transmitted to a central server for aggregation.
This approach significantly reduces the risk of data breaches and facilitates compliance
with privacy regulations like HIPAA and GDPR.

Conventional FL, while beneficial for privacy, introduces security vulnerabilities
due to its decentralized and asynchronous nature, making it susceptible to poisoning
attacks, broadly categorized as data, model, and backdoor attacks. Data poisoning,
the most common and practically relevant attack, involves manipulating local training
data and is easily executed by malicious clients with minimal expertise [2], aiming to
degrade the global model’s performance. Model poisoning attacks, conversely, require
deeper system understanding to directly manipulate model updates [13, 14], while
backdoor attacks, the most sophisticated, embed hidden triggers for specific misbe-
havior [15, 16], both being more challenging to implement than data poisoning. Given
the practical relevance and high probability of untargeted data poisoning attacks, this
research focuses on their detection and mitigation.

Malicious client detection is crucial for defending against poisoning attacks in
FL, with methods like Krum and Multi-Krum [3], Bulyan [4], and Robust Federated
Averaging (RFA) [5] aiming to identify and mitigate malicious updates during server-
side aggregation. Krum and its extensions select updates “closest” to the majority,
while Bulyan refines this with outlier removal and trimmed means, and RFA uses the
robust geometric median for aggregation. However, these defenses are limited by their
requirement for prior knowledge of the number of malicious clients and their quadratic
computational complexity, (O(n2d)), where n is the number of clients and d is the
gradient space’s dimension, which becomes a bottleneck in large-scale FL, and fun-
damentally, they focus on mitigating malicious data’s impact without addressing the
root cause of client untrustworthiness.

In FL, the concept of model anomaly is central to security as even with non-IID
data, client model updates are expected to exhibit underlying similarity due to the
shared goal of training a global model; therefore, a model anomaly is an update that
significantly deviates from the typical distribution of updates, indicating potential
malicious activity like data poisoning. Aggregating these anomalous updates intro-
duces bias, disrupts learning convergence, and degrades model performance, accuracy,
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and reliability, making their detection and exclusion crucial for FL security, unbi-
ased models, and effective learning, necessitating robust and assumption-free defenses
adaptable to unpredictable adversarial behavior.

3 Our Defense Methodology

In FL, clients collaboratively train an ML model without direct data sharing, coordi-
nated by a central server, often using the FedAvg aggregation [1], where a global model
with weights w0 is initialized and, in each round t, participating clients receive global
weights wt, train locally, and send updated weights wi

t back for server aggregation
via averaging: wt+1 = 1

|N |
∑

i∈N wi
t. Our defense aims to enhance FL effectiveness by

proactively identifying and excluding “malicious” clients in a cross-silo setting with full
client participation, focusing on performance improvement through the detection and
removal of detrimental contributions, particularly from data poisoning attacks, and
introducing Reputation and Trust metrics to quantify client reliability for informed
inclusion decisions.

1. Centroid Calculation. A crucial step in our defense is the calculation of
the centroid of the client models. In each round t, after receiving the updated model
weights wi

t from all participating clients i ∈ N , the server computes the centroid µt

as the average of these weights: µt =
1

|N |
∑

i∈N wi
t. This centroid, µt, represents the

“center of mass” of the model updates in the weight space. It serves as a reference
point for evaluating the deviation of individual client models.

2. Reputation. Reputation is a distance-based metric that reflects the consistency
of a client’s model updates with the overall direction of the federated learning process,
represented by the centroid. We define a distance metric d(wa, wb) that measures
dissimilarity between models wa and wb.

Initially, each client’s Reputation is set based on its distance from the centroid:
Ri

t0 = 1 − d(wi
t0 , µt0), R

i
t0 ∈ [0, 1], where d(wi

t0 , µt0) is the distance between client i’s
initial model wi

t0 and the initial centroid µt0 . We normalize this distance so that the
initial reputation Ri

t0 is between 0 and 1.
In each subsequent round t, we calculate dit = d(wi

t, µt), which is the distance
between client i’s model wi

t and the centroid µt. Reputation is then updated according
to (1) and (2).

Xi
t =

Ri
t−1 + dit −

Ri
t−1

t , if dit ≤ α,

Ri
t−1 + dit − e1−di

t

(
Ri

t−1
t

)
, if dit > α.

(1)

Ri
t =


β + (1− β) ·Ri

t−1, if Xi
t ≥ 1

(1− β) ·Ri
t−1, if Xi

t ≤ 0

β ·Xi
t + (1− β) ·Ri

t−1 otherwise

. (2)

Here, α is a predefined distance threshold. Clients whose updates are close to the

centroid (i.e., dit ≤ α) are rewarded. The term
Ri

t−1

t diminishes over time. Clients with
updates far from the centroid (dit > α) are penalized.
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3. Trust. Trust builds upon Reputation and serves as the decisive factor for client
exclusion. The Trust metric, T i

t , is calculated for each client i at round t:

Y i
t =

√
(Ri

t)
2 + (dit)

2 −
√

(1−Ri
t)

2 + (1− dit)
2 (3)

T i
t =


β + (1− β) · T i

t−1, if Y i
t ≥ 1,

(1− β) · T i
t−1, if Y i

t ≤ 0,

β · Y i
t + (1− β) · T i

t−1 otherwise

(4)

Initially, T i
0 is set to 0. Equation (3) calculates Y i

t based on the current Reputation
(Ri

t) and the distance (dit). Equation (4) then updates the Trust value. If a client’s
Trust (T i

t ) falls below a predefined threshold (we use 0.15 in our experiments), that
model provided by the client is excluded from the aggregation in the current and all
the consequent rounds.

4 Attack Model

In our study, we investigate untargeted data poisoning attacks within a realistic
FL setting, assuming an adversary controls a minority of clients (up to 25%) with-
out knowledge of the global model, communication protocol, or non-compromised
client data, and is limited to manipulating training data labels, prioritizing data
poisoning due to the challenges of model-level attacks in FL [2]. The attacker’s
objective is to degrade the global model’s performance, formalized as maximizing
the average loss difference over rounds T0 to T0 + T between the attacked model
wA

t and the non-attacked model wt, evaluated on a clean validation dataset D:

maxA
1
T

∑T0+T
t=T0

[
L(wA

t ,D)− L(wt,D)
]
, where L(w,D) is the loss function evaluated

on a clean, held-out validation dataset D.

5 Empirical Study

For experimental evaluation, we used a testbed based on the Flower Framework1 to
execute FL and assess our defense mechanism’s effectiveness under varying attack
intensities and settings, including different aggregation strategies, number of simu-
lation rounds, and amount of participating clients. This testbed collects ML model
performance metrics like cross-entropy loss and evaluation accuracy (using a 9:1
train/evaluation dataset split), alongside defense mechanism metrics such as False
Positives (FP), False Negatives (FN), and client removal accuracy, as detailed in Table
1, enabling comprehensive evaluation of both model training and defense efficiency in
preventing model degradation under attacks.

We executed our experiments with the total of 20 clients participating in the FL
simulation. Initially, we randomly partitioned the entire BloodMNIST dataset into 40
subsets, which were then assigned to clients, resulting in the average number of 210
samples per client. Subsequently, we determined that the setup with only 20 partici-
pating clients is sufficient and representative enough for the purpose of evaluation of
our defense mechanism.

1https://flower.ai
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Metric Description

Aggregated loss Weighted loss of all aggregated client models. Weight of each client’s
model is defined by the number of samples in the client’s subset. In
our case, all clients have the same weight

Evaluation accuracy Average evaluation accuracy of all benign client models. We pur-
posefully calculate the accuracy this way in order to showcase the
indirect effects of participating malicious clients on the accuracy of
benign clients

Total count of FP and FN At each aggregation round, FP is if a benign client was excluded
from the aggregation. FN is when a malicious client was not
excluded from the aggregation

Removal accuracy The accuracy of the client exclusion process:

TP + TN

TP + TN + FP + FN
(5)

Table 1 Description of the metrics collected at each aggregation round during the experiment
execution.
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Fig. 1 Robustness of Reputation and Trust (R&T) defense under varied attack intensities and
comparison of the attack impact on the resulting model accuracy and convergence with conventional
FL setting with no defense – Vanilla (V.) FedAvg: (a) – loss; (b) - evaluation accuracy of benign
clients.

5.1 Robustness of Reputation and Trust Defense Under
Various Attack Intensities

We altered the number of malicious clients that aim to participate in aggregation
between the experiments. We conducted these experiments with the engaged Repu-
tation and Trust (R&T) defense. Additionally, we executed one experiment with the
presence of malicious clients, but without the defense mechanism, using the Vanilla
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FedAvg aggregation. This allowed for more clear demonstration of the benefits of
timely exclusion of malicious parties.

In Figs. 1(a) and 1(b) we demonstrate the loss and accuracy metrics collected dur-
ing executions with a varied number of malicious clients participating in the training
process, respectively. As one can see, on each figure, the dotted line represents the loss
and accuracy in the no-attack scenario: none of the clients were malicious. In this case,
the loss converges to the optimal value, indicating that the training process is per-
forming as intended. Subsequently, the evaluation accuracy increases with each round,
reaching values of around 0.8 by round 30, demonstrating more than adequate ML
model performance for 8-class classification. The red line represents the case where 5
malicious clients were present, but the model training was performed in a conventional
FL setting without defense techniques. In Fig. 1(a), the red line represents the loss
behavior for this case. As one can see, it does not converge to optimal values, meaning
that the model training is not performing well. Although the evaluation accuracy of
benign clients, found in Fig. 1(b), does not demonstrate a similarly drastic difference,
it still reflects the negative impact of participating malicious clients that is acquired
during the local model updates after centralized aggregation.

R&T defense was applied for the rest of the experimental simulations with the
number of clients varied between 1 and 5. As clearly demonstrated in Figs. 1(a) and
1(b), this defense mechanism renders more robust FL setup. Given the various number
of malicious parties participating in the FL model training, the algorithm was able to
detect and remove them in all cases. After the exclusion of these clients, both loss and
evaluation accuracy of benign clients shifted towards the values typical for the setup
without any active attacks.

5.2 Robustness of Reputation and Trust Compared to
Multi-Krum

We conducted a series of experiments that compare the algorithm performance with
Multi-Krum (MK) [3]. MK requires prior knowledge of the number of malicious clients
participating in the training process. While this approach was shown to be theoretically
robust, in our experiments we did not observe the reliable exclusion of malicious clients
when their amount is not precisely estimated prior FL simulation execution.

The results of these experiments are presented in Fig. 2. We conducted three
experimental scenarios. First, we executed FL training with five malicious clients par-
ticipating in aggregation while applying the R&T defense mechanism. Since the MK
approach necessitates an estimate of the number of malicious clients involved in the
model training, we designed two experimental setups to evaluate its performance. In
the first setup, we precisely estimated (p.e.) the number of malicious clients. However,
in real-world scenarios, such precise knowledge may not be feasible. Instead, it is often
only possible to approximate the fraction of malicious clients that may be present in
the system. Therefore, in the third experiment, we assumed that no more than 10%
of the clients were malicious. This assumption led to an underestimation (u.e.) of the
actual proportion of malicious clients, which in our setup was 25%.

As demonstrated in Fig. 2(a), when the MK defense is applied with the underes-
timated number of malicious clients, the loss does not converge. The accuracy in Fig.
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Fig. 2 Comparison of metrics collected during executions with Trust and Reputation (R&T) and
Multi-Krum (MK) with the precise estimation of number of malicious clients and with underesti-
mation (10% estimated amount of malicious clients, 25% real amount). (a) – loss; (b) - evaluation
accuracy of benign clients; (c) - total count of FP and FP; (d) - removal accuracy.

2(b) also fluctuates and does not provide a stable result. This happens because, in the
case of underestimation, MK only excludes the number of clients that is within the
provided constraint, in our case, 10%, or two clients. Three malicious clients continue
to participate in the aggregation, negatively affecting the training process.

Fig. 2(c) depicts the total count of FP and FN in each aggregation round for all
three experiment executions. In the first five aggregation rounds, R&T defense does
not exclude any clients, since we consider this to be a reasonable number of rounds
for the initial model warm-up. Then, immediately after round five, R&T excludes
malicious clients, resulting in the total of 0 FP and FN for the rest of the simulation.
However, that is not the case for MK with the underestimation. For the entire training
process, it produces a consistent count of 3 FN. This happens because the algorithm
does not exclude more than 10% of the clients, an estimate provided prior to the
training process. This behavior also reflects on the removal accuracy, demonstrated in
Fig. 2(d).
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6 Conclusion

In this paper, we developed and implemented Reputation and Trust-based mecha-
nisms to enhance the security of FL against data poisoning attacks, achieving better
results compared to the existing Multi-Krum defense strategy. Our defense allowed
to effectively identify and exclude malicious clients, leading to fewer detection errors
and improved client removal accuracy. This enhanced FL security and translated to a
more robust and effective global model produced, evidenced by improved performance
metrics under adversarial conditions. The empirical evaluation using the BloodMNIST
dataset provides encouraging evidence for the practical applicability of our Reputa-
tion and Trust-based defense, suggesting it as a promising approach for enhancing the
security of FL systems, particularly due to its ability to operate effectively without
prior knowledge of the number of attackers.
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