
The Wasserstein Believer
Learning Belief Updates for Partially Observable Environments through

Reliable Latent Space Models

Raphael Avalos1˚ Florent Delgrange1,2˚

Ann Nowé1 Guillermo A. Pérez2,3 Diederik M. Roijers1,4
1 AI Lab, Vrije Universiteit Brussel (BE) 2 University of Antwerp (BE)

3 Flanders Make (BE) 4 Urban Innovation and R&D, City of Amsterdam (NL)
{raphael.avalos, florent.delgrange}@vub.be

Abstract

Partially Observable Markov Decision Processes (POMDPs) are useful tools to
model environments where the full state cannot be perceived by an agent. As such
the agent needs to reason taking into account the past observations and actions.
However, simply remembering the full history is generally intractable due to the
exponential growth in the history space. Keeping a probability distribution that
models the belief over what the true state is can be used as a sufficient statistic of
the history, but its computation requires access to the model of the environment
and is also intractable. State-of-the-art algorithms use Recurrent Neural Networks
to compress the observation-action history aiming to learn a sufficient statistic,
but they lack guarantees of success and can lead to sub-optimal policies. To over-
come this, we propose the Wasserstein Belief Updater, an RL algorithm that learns
a latent model of the POMDP and an approximation of the belief update. Our
approach comes with theoretical guarantees on the quality of our approximation
ensuring that our outputted beliefs allow for learning the optimal value function.

1 Introduction

Partially Observable Markov Decision Processes (POMDPs) [37] define a powerful framework for
modeling decision-making in uncertain environments where the state is not fully observable. These
problems are a common occurrence in many real-world applications, such as robotics [26], and
recommendation systems [41]. In contrast to in a Markov Decision Process (MDP), in a POMDP,
the agent observes a noisy observation of the state that does not suffice as a signal to condition
an optimal policy on. As such, optimal policies need to take the entire action-observation history
into account. As the space of possible histories scales exponentially in the length of the episode,
using histories to condition policies is generally intractable. An alternative is the notion of belief,
which is defined as a probability distribution over states based on the agent’s history. The beliefs
are a sufficient statistic of the history for control [23] and, when used as states, define a belief MDP
equivalent to the original POMDP [3]. While closed-form expressions of the belief exists they
requires access to a model of the environment. The computation is also in general intractable, as it
requires to integrate over the full state space and therefore only applicable to smaller problems.

To overcome those challenges, SOTA algorithms focus on compressing the history into a fixed-
size vector with the help of Recurrent Neural Networks (RNNs) [19]. However, compressing the
history using RNNs can lead to loss of information, resulting in suboptimal policies. To improve the
likelihood of obtaining a sufficient statistic, RNNs can be combined with regularization techniques.
These techniques include generative models [7, 17, 18], particle filtering [22, 28], and predicting

˚Both authors contributed equally to this research, alphabetic order.

16th European Workshop on Reinforcement Learning (EWRL 2023).

distant observations [15, 16]. It is important to note that none of these techniques guarantee that
the representation of histories induced by RNNs is suitable for optimizing the return Additionally, a
limitation of many algorithms is their assumption that beliefs are simple distributions like Gaussian
distributions, which limits their applicability [15, 27, 18].

In this paper, we propose Wasserstein Belief Updater (WBU), a model-based reinforcement learning
(RL) algorithm for POMDPs that allows learning the belief space over the unobservable states.
Specifically, WBU learns an approximation of the belief update rule through a (partially observable)
latent space model whose behaviors (expressed as expected returns) are close to the original model.
Furthermore, we show that WBU is guaranteed to induce a suitable representation of the history
to optimize the return. WBU is composed of three components that are learned in a round-robin
fashion: the model, the belief learner, and the policy (Fig. 1). As histories are not enough to learn
the full environment model, we assume that the POMDP states can be accessed during training.
While this might seem restrictive at first sight, this assumption is typically met in simulation-based
training and can also be applied in real-world settings such as robotics, where additional sensors
can be used during training in a laboratory setting. In multi-agent RL, using additional information,
such as the state, during training is a common practice [32, 4].

We learn the latent model of the POMDP via a Wasserstein auto-encoded MDP (WAE-MDP) [10].
We then learn the belief update network (BUN) by minimizing the Wasserstein distance with the
exact belief update rule in the latent POMDP through a tractable variational proxy. To allow for
complex belief distributions, we use Normalizing Flows [24]. Unlike the current SOTA algorithms,
the beliefs are only optimized towards accurately representing the current state distribution and
following the belief update rule. While we use a recursive network in our belief update architecture
we do not back-propagate through time and therefore implement it as a simple feed forward network.
The policy is then learned on the latent belief space by using as input a vector embedding the
parameters of the belief (sub-beliefs).

We note that using Normalizing Flows for the belief distribution as been experienced in FORBES
[7]. However, FORBES does not condition its policy on the beliefs but rather on sample latent states,
which is sub-optimal as it approximates the state distribution with one sample.

Our contributions are two-fold. First, we present WBU, a novel algorithm that approximates the
belief update of a learned latent environment from any POMDP, and allows the learning of a policy
conditioned on those beliefs. Second, we provide theoretical guarantees ensuring that our latent
belief learner, on top of learning the dynamics of the POMDP and replicating the belief update func-
tion, outputs a belief encoding suitable for learning the value function. Our experimental results are
promising as they show that our algorithm is able to learn to encode the history into a representation
useful to learn a policy, without using RNNs.

Other Related Work. Some other works also focus on specific types of POMDPs, such as building
compact latent representation of images for visual motor tasks [27], or environment where the obser-
vation are masked states with Gaussian noise [40]. While accessing the state is common in partially
observable deep multi-agent RL, it is not a common practice in single-agent but has already been
explored in kernel-POMDPs [31] that uses the states to build models based on RKHSs.

2 Background

2.1 Probability Distributions and Discrepancy Measures

We write ΣpX q for the set of all Borel subsets of a complete, separable space X , ∆pX q for the set
of measures on X , and δa P ∆pX q for the Dirac measure with impulse a P X . Let P,Q P ∆pX q,
the divergence between P and Q can be measured according to the following discrepancies:

• the solution of the optimal transport problem (OT), defined as Wc pP,Qq “ infλ Ex,y„λ cpx, yq,
which is the minimum cost of changing P intoQ [39], where c : X ˆX Ñ r0,8q is a cost function
and the infimum is taken over the set of all couplings of P and Q. When c is equal to a distance
metric d over X , Wd is the Wasserstein distance between the two distributions.

• the Kullback-Leibler (KL) divergence, defined as DKLpP,Qq “ Ex„P rlogpP pxq{Qpxqqs .

• the total variation distance (TV), defined as dTV pP,Qq “ supAPΣpX q |P pAq ´ QpAq|. If X is
equipped with the discrete metric 1‰, TV coincides with the Wasserstein measure.

2

A2C Agent

π

Latent Belief Learner
βt

Environment

at

ot+1

st+1

Replay Buffer

D

WAE-MDP

⟨s, o, a, r, s′, o′⟩

rt

βt →
at →

ot+1 →
φsub → βt+1 → M

next step t← t+ 1
masked

→ bt+1

τ(· | bt, at, ot+1) =
Es̄t∼bt

P(·|s̄t,at) · O(ot+1|·)
Es̄t∼bt

Es̄′∼P(·|s̄t,at)
O(ot+1|s̄′)

DKL

ϕ⟨s, o⟩ → → s̃

⟨s′, o′⟩→ →s̃′

Oµ → õ

→õ′

Rs̄→
a→ → r̃

Ps̄→
a→ ∼ s̄′

Wd̄

s̄
a

s̄′

(no gradient flow) ψS

P Mθ

(parameters of bt)

Latent belief update rule

autoregressive flow

Figure 1: High-level picture of our WBU framework. The WAE-MDP is presented in Sect. 3, and
the Latent Belief Learner is presented in Sect. 4. Learning the different components is performed
in a round-robin fashion. The WAE-MDP learns from data collected by the RL agent and stored in
a Replay Buffer. The Latent Belief Learner uses the latent transition function P and observation
decoder O of the WAE-MDP to learn an approximation of the belief update rule. The RL agent
learns a policy conditioned on the resulting sub-belief βt, i.e., the parameters of the latent belief bt.

2.2 Decision Making under Uncertainty

Markov Decision Processes (MDPs) are tuples M “ xS,A,P,R, sI , γy where S is a set of states;
A, a set of actions; P : S ˆ A Ñ ∆pSq, a probability transition function that maps the current state
and action to a distribution over the next states; R : S ˆ A Ñ R, a reward function; sI P S, the
initial state; and γ P r0, 1q a discount factor. We refer to MDPs with continuous state or action
spaces as continuous MDPs. In that case, we assume S and A are complete separable metric spaces
equipped with a Borel σ-algebra. An agent interacting in M produces trajectories, i.e., sequences
of states and actions xs0:T , a0:T´1y where s0 “ sI and st`1 „ Pp¨ | st, atq for t ă T .

Policies and probability measure. A (stationary) policy π : S Ñ ∆pAq prescribes which action to
choose at each step of the interaction. Any policy π and M induce a unique probability measure
PM
π on the Borel σ-algebra over (measurable) infinite trajectories [34]. The typical goal of an RL

agent is to learn a policy that maximizes the expected return, given by EM
π

“
ř8

t“0 γ
t ¨ Rpst, atq

‰

,
by interacting with M. We may drop the superscript when the context is clear.

Partially Observable MDPs (POMDPs) [37] are tuples P “ xM,Ω,Oy where M is an MDP
with state space S and action space A; Ω is a set of observations; and O : S ˆ A Ñ ∆pΩq is an
observation function that defines the distribution of observations that may occur when the MDP M
transitions to a state upon the execution of a particular action. An agent in P actually interacts in
M, but without directly observing the states of M: instead, the agent perceives observations, which
yields histories, i.e., sequences of actions and observations xa0:T´1, o1:T y that can be associated to
an (unobservable) trajectory xs0:T , a0:T´1y in M, where ot`1 „ Op¨ | st`1, atq for all t ă T .

Beliefs. Unlike in MDPs, stationary policies that are based solely on the current observation of P do
not induce any probability space on trajectories of M. Intuitively, due to the partial observability
of the current state st P S at each interaction step t ě 0, the agent must take into account full
histories in order to infer the distribution of rewards accumulated up to the current time step t,
and make an informed decision on its next action at P A. Alternatively, the agent can maintain
a belief bt P ∆pSq “ B over the current state of M [42]. Given the next observation ot`1, the
next belief bt`1 is computed according to the belief update function τ : B ˆ A ˆ Ω Ñ B, where
τpbt, at, ot`1q “ bt`1 iff the belief over any next state st`1 P S has for density

3

bt`1pst`1q “
Est„bt Ppst`1 | st, atq ¨ Opot`1 | st`1, atq

Est„bt Es1„Pp¨|st,atq Opot`1 | s1, atq
. (1)

Each belief bt`1 constructed this way is a sufficient statistic for the history xa0:t, o1:t`1y to opti-
mize the return [35]. We write τ˚pa0:t, o1:t`1q “ τp¨ , at, ot`1q ˝ ¨ ¨ ¨ ˝ τpδsI , a0, o1q “ bt`1 for
the recursive application of τ along the history. The belief update rule derived from τ allows to
formulate P as a continuous2 belief MDP MB “ xB,A,PB,RB, bI , γy, where PBpb1 | b, aq “

Es„b Es1„Pp¨|s,aq Eo1„Op¨|s1,aq δτpb,a,o1qpb1q RBpb, aq “ Es„b Rps, aq; and bI “ δsI . As for all
MDPs, MB and any stationary policy for MB (thus conditioned on beliefs) induce a well-defined
probability space over trajectories of MB, which allows optimizing the expected return in P [3].

2.3 Latent Space Modeling

Latent MDPs. Given the original (continuous or very large, possibly unknown) environment M, a
latent space model is another (tractable, explicit) MDP M “ xS,A,P,R, sI , γy with state space
linked to the original one via a state embedding function: ϕ : S Ñ S.

Wasserstein Auto-encoded MDPs (WAE-MDPs) [9] are latent space models that are trained based
on the OT from trajectories resulting from the execution of the RL agent policy in the real envi-
ronment M, to that reconstructed from the latent model M. The optimization process relies on a
temperature λ P r0, 1q that controls the continuity of the latent space learned, the zero-temperature
corresponding to a discrete latent state space. This procedure guarantees M to be probably approx-
imately bisimilarly close [25, 14, 10] to M as λ Ñ 0: in a nutshell, bisimulation metrics imply the
closeness of the two models in terms of probability measures and expected return [11, 12]. Specifi-
cally, a WAE-MDP learns the following components:

a state embedding function ϕ : S Ñ S a latent transition function P : S ˆ A Ñ ∆pSq

a latent reward function R : S ˆ A Ñ R a state decoder ψ : S Ñ S. (2)

3 Learning the dynamics

An RL agent does not have explicit access to the environment dynamics. Instead, it can reinforce its
behaviors through its interactions and experiences without having direct access to the environment
transition, reward, and observation functions. In this setting, the agent is assumed to operate within
a partially observable environment. The key of our approach lies in granting the RL agent access to
the true state of the environment during its training, while its perception of the environment is only
limited to actions and observations when the learned policy is finally deployed. Therefore, when
the RL agent interacts in a POMDP P “ xM,Ω,Oy with underlying MDP M “ xS,A,P,R,
sI , γy, we leverage this access to allow the agent to learn the dynamics of the environment, i.e.,
those of M, as well as those related to the observation function O. To do so, we learn an internal,
explicit representation of the experiences gathered, through a latent space model. The latter serves
as a teacher for the agent to make it learn how to perform its belief updates. The trick to learn this
latent space model is to reason on an equivalent POMDP, where the underlying MDP is refined to
encode all the crucial dynamics. We further demonstrate that the resulting model is guaranteed to
closely replicate the original environment behavior when the agent interacts with it.

3.1 The Latent POMDP Encoding

We enable learning the dynamics of P via a WAE-MDP by considering the POMDP PÒ “

xMΩ,Ω,OÒy, where (i) the state space of the underlying MDP is refined to encode the observa-
tions: MΩ “ xSΩ,A,PΩ,RΩ, xsI , oIy , γy with SΩ “ S ˆ Ω, PΩps1, o1 | s, o, aq “ Pps1 | s, aq ¨

Opo1 | s1, aq, RΩpxs, oy , aq “ Rps, aq, and oI is an observation from Ω linked to the initial state sI ;
(ii) the observation function OÒ : SΩ Ñ Ω is now deterministic and defined as the projection of the
refined state on the observation space, with OÒpxs, oyq “ o. The POMDPs P and PÒ are equivalent

2even if S is finite, there is an infinite, uncountable number of measures in ∆pSq “ B.

4

[6]: PÒ captures the stochasticity of O in the transition function through the refinement of the state
space, further resulting in a deterministic observation function, only dependent on refined states.

Henceforth, the goal is to learn a latent space model M “ xS,A,P,R, sI , γy linked to MΩ via
the embedding ϕ : SΩ Ñ S, and we achieve this via the WAE-MDP framework. Not only does the
latter allow for the learning of the observation dynamics through P, but it also enables the learning of
the deterministic observation function Ōµ through the use of the state decoder ψ, by decomposing
the latter in two networks ψS : S Ñ S and Ōµ : S Ñ Ω, which yield ψpsq “ xψSpsq, Ōµpsqy.
This way, the WAE-MDP procedure learns all the components of PÒ, the latter being equivalent
to P . With this model, we construct a latent POMDP P “ xM,Ω,Oy, where the observation
function outputs a normal distribution centered in Ōµ: Op¨ | sq “ N pŌµpsq, σ2q. Note that the
deterministic function is retrieved as the variance approaches zero. However, it is worth mentioning
that the smoothness of O is favorable for gradient descent when learning distributions, unlike Dirac
measures (see Eq. 3 below). As with any POMDP, the belief update function τ of P allows to reason
on the belief space to optimize the expected return. Formally, at any time step t ě 0 of the interaction
with latent belief bt P ∆pSq “ B, the latent belief update is given by bt`1 “ τpbt, at, ot`1q when
at is executed and ot`1 is observed iff, for any next state st`1 P S,

bt`1pst`1q “
Est„bt

Ppst`1 | st, atq ¨ Opot`1 | st`1q

Est„bt
Es1„Pp¨|st,atq

Opot`1 | s1q
. (3)

Latent policies. Given any history h P pA ¨ Ωq
˚, executing a latent policy π : B Ñ ∆pAq in P

is possible by converting h into a belief τ˚phq “ b over the latent state space and executing the
action given by πp¨ | bq. Training M gives access to the dynamics that compute the belief through
the closed form of the updater τ (Eq. 3). However, the integration over the full latent space remains
computationally intractable.

As a solution, we propose to leverage the access to the dynamics of M to learn a latent belief
encoder φ : B ˆ A ˆ S Ñ B that approximates the belief update function by minimizing

Dpτ˚phq, φ˚phqq (4)

for some discrepancy D and h P pA ¨ Ωq
˚ drawn from some distribution. The belief encoder φ

thus enables to learn a policy π conditioned on latent beliefs to optimize the return in P: given
the current history h, the next action to play is given by a „ πp¨ | φ˚phqq.

Two main questions arise: “Does the latent POMDP induced by our WAE-MDP encoding yields a
model whose behaviors are close to P?” and “Is the history representation induced by φ suitable
to optimize the expected return in P?”. Clearly, the obtained guarantees depend on the history
distribution and chosen discrepancy. The following section provides a detailed theoretical analysis
of the required distribution and losses to achieve these learning guarantees.

3.2 Losses and Theoretical Guarantees

To provide the guarantees, we assume that histories drawn from the interaction follow an episodic
RL process: the environment P is assumed to embed a special reset state so that (i) under any policy,
the environment is almost surely eventually reset; (ii) when reset, the environment transitions to the
initial state; and (iii) the reset state is observable.
Lemma 3.1. There is a well defined probability distribution Hπ P ∆

`

pA ¨ Ωq
˚

˘

over histories likely
to be perceived at the limit by the agent when it executes π in P (proof in Appendix B).

Local losses. The objective function of the WAE-MDP incorporates local losses [13] that minimize
the expected distance between the original and latent reward and transition functions:

LR “ E
s,o,a„Hπ

ˇ

ˇRps, aq ´ Rpϕps, oq, aq
ˇ

ˇ , LP “ E
s,o,a„Hπ

Wd̄

`

ϕPΩp¨ | s, o, aq,Pp¨ | ϕps, oq, aq
˘

;

and both are optimized locally, i.e., under Hπ , where s, o, a „ Hπ is a shorthand for (i) h „ Hπ

so that o is the last observation of h, (ii) s „ τ˚phq, and (iii) a „ πp¨ | φ˚phqq. Furthermore,

5

ϕPp¨ | s, aq is the distribution of transitioning to s1 „ Pp¨ | s, aq, then embedding it to the latent
space s1 “ ϕps1q, and d̄ is a metric on S. In practice, the ability of observing states during learning
enables the optimization of those local losses without the need of explicitly storing histories. In-
stead, we simply store the transitions of MΩ encountered while executing π. We also introduce an
observation loss in addition to the reconstruction loss of the decoder, which allows learning O:

LO “ E
s,o,a„Hπ

E
s1„Pp¨|s,aq

dTV

ˆ

O
`

¨ | s1, a
˘

, E
o1„Op¨|s1,aq

O
`

¨ | ϕ
`

s1, o1
˘˘

˙

; (5)

LO provides a way to gauge the variation between the observations generated in the latent space and
those actually observed, which allows to set the variance of O (while Ōµ allows to set its mean).

Belief Losses. We set D as the Wassertein distance between the true latent belief update and our be-
lief encoder. In addition, we argue that the following reward and transition regularizers are required
to bound the gap between the fully observable model M and the partially observable one P :

Lτ “ E
h„Hπ

Wd̄ pτ˚phq, φ˚phqq , Lφ

R “ E
h,s,o,a„Hπ

E
s„φ˚phq

ˇ

ˇRpϕps, oq, aq ´ Rps, aq
ˇ

ˇ ,

Lφ

P
“ E

h,s,o,a„Hπ

E
s„φ˚phq

Wd̄

`

Pp¨ | ϕps, oq, aq,Pp¨ | s, aq
˘

. (6)

Lφ

R and Lφ

P
aim at regularizing φ and minimize the gap between the rewards (resp. transition prob-

abilities) that are expected when drawing states from the current belief compared to those actually
observed. Again, the ability to observe states during training enables optimizing those losses while
the states are not required to execute the policy. The belief loss and the related two regularizers can
be optimized on-policy, i.e., coupled with the optimization of π that is used to generate the episodes.

Value difference bounds. We provide guarantees concerning the agent behaviors in P , when the
policies are conditioned on latent beliefs. To do so, we formalize the behaviors of the agent through
value functions. For a specific policy π, the value of a history is the expected return that would
result from continuing to follow the policy from the latest point reached in that history: Vπphq “

Eπ

“
ř8

t“0 γ
t rt | bI “ τ˚phq

‰

. Similarly, we write V π for the values of the latent policy π in P .
The following Theorems assert that when the agent employs a latent policy conditioned on the latent
belief, while simultaneously minimizing both the local and belief losses to zero (i) the behaviors
exhibited in the original environment align perfectly with those observed in the latent POMDP, and
(ii) any pair of histories whose belief representations are close have close values as well.

Theorem 3.2. Assume that the WAE-MDP is at the zero-temperature limit and let R‹
“

›

›R
›

›

8
,

KV “ R‹

{1´γ, then for any latent policy π : B Ñ ∆pAq, the values of P and P are guaranteed to
be bounded by the local and belief losses in average when π is executed in P via a „ πp¨ | φ˚phqq:

E
h„Hπ

ˇ

ˇVπphq ´ V πphq
ˇ

ˇ ď
LR ` Lφ

R ` R‹
Lτ ` γKV ¨

´

LP ` Lφ

P
` Lτ ` LO

¯

1 ´ γ
. (7)

Theorem 3.3. Assume that the temperature of the WAE-MDP and the variance of O go to zero,
and let π‹ be an optimal policy of P , then for any ϵ ą 0, there is a constant K ě 0 so that, for
any histories h1, h2 mapped to latent beliefs via φ˚ph1q “ b1 and φ˚ph2q “ b2, the representation
induced by φ yields:

|Vπ‹ ph1q ´ Vπ‹ ph2q| ď KWd̄

`

b1, b2
˘

` ϵ`

LR ` Lφ

R `

´

K ` γKV ` R‹
¯

Lτ ` γKV ¨

´

LP ` Lφ

P
` LO

¯

1 ´ γ

ˆ

1

Hπ‹ ph1q
`

1

Hπ‹ ph2q

˙

. (8)

We prove those theorems in Appendix C. While Thm. 3.2 guarantees the average equivalence of the
two models and justifies the usage of P as model of the environment, Thm. 3.3 shows that φ induces
a suitable representation of the history to learn a policy that optimizes the expected return since the
closeness of the encoding of histories in our latent belief space implies the closeness of their values
in the original POMDP.

6

4 Learning to Believe

In this section, we assume access to the latent model learned by the WAE-MDP. The belief updater’s
goal is to compute the belief states of the latent POMDP P so that an RL agent can learn to optimize
a latent policy based on those latent belief.

⊛

bt

s
s

s′

P
(
s′ | s, at

)
Est∼bt

P(s | st, at)

s

bt+1
Oθ(ot+1 | s)

⊛

Est∼bt
P(s | st, at)

s s s

Figure 2: The Belief Update rule: (left) transformation of the current belief bt with the transition
probability function P, evaluated on the current action at, into the next state probability density;
(right) filtering out the next states that could not have produced the next observation ot`1.

The belief update rule. The belief update rule τ (Eq. 3) outlines how to update the current belief
based on the current action and the next observation. The former is divided into two steps (cf. Fig. 2).
First, the current belief distribution bt is used to marginalize the latent transition function P over
the believed latent states, to further infer the distribution over the possible next states. This first part
corresponds to looking at the different states that can be reached from the states that have a non-zero
probability based on the latent belief. Second, the next observation ot`1 is used to filter the previous
density based on the observation probability. It is worth noting that the latent model is learned from
PÒ, whose observation function is deterministic. Without modelling the latent observation function
O as a normal distribution, the second part of the belief update would need to eliminate all next
states with different observations — which is not gradient descent friendly. The third operation (not
present in Fig. 2) normalizes the output of the observation filtering to obtain a probability density.

Architecture. Since our method generalizes to any POMDP, we do not make any assumption about
the belief distribution. This means that we cannot assume, for example, that the belief is a multi-
modal normal distribution. To accommodate complex belief distributions, we use Masked Auto-
Regressive Flows (MAF) [33], a type of normalizing flow built on the auto-regressive property.
Precisely, to accommodate with the WAE-MDP framework and leverage the guarantees presented
in Sect. 3.2, we use the MAF presented in [9] that learns multivariate, latent, relaxed distributions
which become discrete (binary) in the zero-temperature limit of the WAE-MDP.

We define the sub-belief βt as the vector that embed the parameters of the belief distribution, the
MAF allowing the transformation of sub-beliefs into beliefs, Mpβtq “ bt. The sub-belief functions
similarly to the hidden states in an RNN as it is updated recursively: φsubpβt, at, ot`1q “ βt`1.
However, as we do not allow gradients to back-propagate through time (BPTT), we use a feed-
forward network instead of an RNN. This choice is motivated by the difference between the nature
of the RNN hidden states in the partially observable version of A2C [29] (R-A2C), and sub-beliefs.

On the one hand, the goal of the RNN hidden states is to compress the history into a finite vector
that can be used to compute the policy and value that maximize returns. As the policy and values of
time steps closer to the end of an episode are easier to learn, the gradients of future time steps tend
to be more accurate. Using the gradients of future time steps with BPTT thus helps the learning. On
the other hand, the sub-belief is the vector embedding the parameters of any latent belief generated
from our belief encoder, which is learned to follow the belief update rule. Disabling BPTT improves
sub-belief learning as gradients from future time steps are typically of lower quality, due to beliefs
from earlier steps being easier to compute as the history is smaller. Fig. 3 illustrates the distinctions
in gradient flow between the two methods.

Training. We aim to train the sub-belief encoder and the MAF to approximate the update rule
by minimizing the Wasserstein Distance between the belief update rule τ of the latent POMDP,
and our belief encoder φ (Eq. 6) to leverage the theoretical learning guarantees of Thm. 3.2 and
3.3. However, Wasserstein optimization is known to be challenging, often requiring the use of

7

βt

A2C loss

at
∼

ot+1

t

sub-belief encoder

φsub
ι

βt+1

Masked

A2C loss

∼ at+1

Belief loss

t+ 1

Mι

b̄t+1

Flow
Autoregressive

V π̄ V π̄

zt

A2C loss

at
∼

ot+1

t

zt+1

A2C loss

∼ at+1

t+ 1

V π̄ V π̄

RNN

hidden state

Figure 3: The Belief A2C agent (left) learns to encode the history into a (sub-)belief solely by opti-
mizing the belief loss, the A2C component uses the sub-belief as state and does not back-propagate
through the sub-belief encoder. Both gradients do not back-propagate through time. The RNN A2C
agent (right) uses BPTT: the RNN leverages gradients from future time steps to improve its com-
pression of the history for learning a policy and value function. In both plots, the colored arrows
represent the gradient flows of the different losses.

additional networks, Lipschitz constraints, and a min-max optimization procedure (e.g., [2]), similar
to the WAE-MDP training procedure. Also, sampling from both distributions is necessary for the
Wasserstein optimization and, while sampling from our belief approximation is straightforward,
sampling from the update rule (Eq. 3) is a non-trivial task. Monte Carlo Markov Chain [1] techniques
such as Metropolis-Hastings [8] could be considered, but accessing a function proportional to the
density is not possible as the expectation would need to be approximated.

As an alternative to the Wasserstein optimization, we minimize the KL divergence between the two
distributions. KL is easier to optimize and only requires sampling from one of the two distributions
(in our case, the belief encoder). However, unlike the Wasserstein distance, guarantees can only
be derived when the divergence approaches zero. Nonetheless, in the WAE-MDP zero-temperature
limit, KL bounds Wasserstein by the Pinsker’s inequality [5, 10].

On-policy KL divergence. Using DKL as a proxy for the Wassertein distance allows to close the
gap between τ and φ while optimizing the policy; at any time step t ě 0, given the current belief bt,
the action at played by the agent, and the next perceived observation ot`1, the belief proxy loss is:

DKL

`

φ
`

bt, at, ot`1

˘

∥ τ
`

bt, at, ot`1

˘˘

“ log

˜

E
s„bt

E
s1„Pp¨|s,atq

O
`

ot`1 | s1
˘

¸

`

E
st`1„φpbt,at,ot`1q

«

logφ
`

st`1 | bt, at, ot`1

˘

´log E
s„bt

Ppst`1 | s, atq ´ logOpot`1 | st`1q

ff

. (9)

Eq. 9 consists of 4 terms: a normalization factor, negative entropy of φ, belief update conformity
with the latent MDP’s state transition function, and filtration of latent states unrelated to ot`1.

We train the belief-updater with on-policy data. Using data from the replay buffer to train the belief
updater, as is done in DRQN, would require sampling full trajectories as the belief representation
may change after multiple updates. Additionally, training the policy and belief updater on the same
samples can facilitate learning, even though gradients are not allowed to flow between the networks.

Policy learning is enabled by inputting the sub-belief into the policy, while the optimization of the
belief encoder parameters by the RL agent is not allowed. Our method is applicable to any on-policy
algorithm, and we employ A2C in our experiments. We provide the final algorihtm in Appendix D.

5 Experiments

Previous works on POMDPs typically evaluated algorithms on a modified Atari benchmark that
excludes frame stacking and may simulate a flickering screen. However, we contend that this
benchmark is limited to POMDPs where a memory of just 4 frames is adequate for state recov-
ery. POPGym [30] addresses these limitations with environments designed to assess crucial features
for generalization in POMDPs, including short-term memory for control and long-term memory.

8

Figure 4: Evolution of the un-discounted cumulative return for WBU, R-A2C and DVRL, and evo-
lution of the belief loss during learning for WBU (mean and standard deviation).

Our algorithm is evaluated on three distinct environments. The Repeat Previous environment tests
the agent ability to maintain and retrieve long-term memory. It involves shuffling two decks of cards
at the start of each episode and presenting the agent with a card at each time step. The goal is for
the agent to identify the suit of the card it saw 8 time steps earlier. The episode continues until
all the cards have been seen, with positive rewards given for correct cards and negative otherwise.
The Stateless Cart-Pole environment challenges the agent to control a cart on a rail, maintaining
an attached pole within a specific angle range. The system state includes cart position, velocity,
pole angular position, and velocity. In this partially observable variant, the agent relies on short-
term memory to estimate hidden velocity components. Positive rewards are given at each time step.
Finally, the Noisy Stateless Cart-Pole environment is a more challenging version of the previous one
featuring both partial observability and added Gaussian noise on the positions and velocities of the
cart and pole. The rewards of all the environments are scaled so that the maximum return is 1.

We compare the performance of WBU in those three environments with R-A2C and DVRL [22]
(Fig. 4). DVRL is an algorithm derived from R-A2C, utilizing a combination of Variational Auto-
Encoder and particle filtering to sustain a state distribution that acts as a proxy of the latent belief,
without providing any guarantee of being the true belief. We train 10 instances of each algorithm for
1 million time steps. Appendix E presents the hyper-parameters used and the range of the search.

In Repeat Previous, WBU stands out by achieving a positive return within a quarter of the learn-
ing process, and by the end of the learning demonstrates near-perfect memorization of the last 8
cards with appropriate actions selection (return of 0.75). In contrast, R-A2C only obtains ´0.3
and DVRL does not show any learning. This experiment demonstrates WBU’s ability to effectively
remember and recall previous observations when needed. In Stateless Cart-Pole, we observe that
R-A2C rapidly reaches a return of 0.8 and achieves a final performance of 0.9. WBU outperforms
DVRL (0.7), achieving a final performance of 0.8. Both algorithms show ongoing signs of learning.
This experiment demonstrates that WBU effectively utilizes short-term memory for control, albeit
requiring more interaction compared to R-A2C. WBU’s ability to map complete histories to beliefs
may not be necessary for optimal policy, as the optimal policy might only depend on recent history.
Focusing on recent history may aid in generalization, which could explain R-A2C’s performance in
this environment. In Noisy Stateless Cart-Pole, the three algorithms perform similarly, with R-A2C
having the lowest performance and WBU initially learning faster. Notably, DVRL is less affected by
noisy observations compared to WBU and R-A2C. The final plot in Figure 4 shows the satisfactory
decrease in WBU’s belief loss.

6 Conclusion

WBU provides a novel approach that approximates directly the belief update for POMDPs, in con-
trast to SOTA methods that uses the RL objective and regularization to attempt to turn the history
into a sufficient statistic. By learning the belief and its update rule, we provide strong guarantees
on the quality of the belief, its ability to condition the optimal value function, and ultimately, the
effectiveness of our algorithm. Our theoretical analysis and experimental results demonstrate the
potential of our approach. Overall, our WBU algorithm provides a promising new direction for
RL in POMDPs, with potential applications in a wide range of settings where decision-making is
complicated by uncertainty and partial observability.

9

In future work, we aim to explore the use of simulated trajectories for policy learning, which is
theoretically enabled through the model and representation quality guarantees (Thm 3.2 and 3.3).
Furthermore, the works of [13, 10] study similar value difference bounds to ours in the context
of fully observable environments. They further link their bounds with bisimulation theory (e.g.,
[25, 14]). We defer as future work the study of bisimulation metrics [11, 12] in POMDPs.

Acknowledgements

This research was supported by funding from the Flemish Government under the “Onderzoekspro-
gramma Artificiële Intelligentie (AI) Vlaanderen” program and was supported by the DESCARTES
iBOF project. R. Avalos is supported by the Research Foundation – Flanders (FWO), under
grant number 11F5721N. G.A. Perez is also supported by the Belgian FWO “SAILor” project
(G030020N). We thank Mathieu Reymond and Denis Steckelmacher for their valuable feedback.

References
[1] Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and Michael I. Jordan. An introduction

to MCMC for machine learning. Machine Learning, 50(1-2):5–43, 2003.

[2] Martı́n Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial net-
works. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017,
volume 70 of Proceedings of Machine Learning Research, pages 214–223. PMLR, 2017.

[3] Karl Johan Åström. Optimal control of markov processes with incomplete state information.
Journal of mathematical analysis and applications, 10(1):174–205, 1965.

[4] Raphael Avalos, Mathieu Reymond, Ann Nowé, and Diederik M. Roijers. Local Advantage
Networks for Cooperative Multi-Agent Reinforcement Learning. In AAMAS ’22: Proceedings
of the 21st International Conference on Autonomous Agents and MultiAgent Systems (Extended
Abstract), 2022.

[5] J.M. Borwein and A.S. Lewis. Convex Analysis and Nonlinear Optimization: Theory and
Examples. CMS Books in Mathematics. Springer New York, 2005.

[6] Krishnendu Chatterjee, Martin Chmelik, Raghav Gupta, and Ayush Kanodia. Optimal cost
almost-sure reachability in pomdps. Artif. Intell., 234:26–48, 2016.

[7] Xiaoyu Chen, Yao Mark Mu, Ping Luo, Shengbo Li, and Jianyu Chen. Flow-based recurrent
belief state learning for pomdps. In International Conference on Machine Learning, pages
3444–3468. PMLR, 2022.

[8] Siddhartha Chib and Edward Greenberg. Understanding the metropolis-hastings algorithm.
The American Statistician, 49(4):327–335, 1995.

[9] Florent Delgrange, Ann Nowe, and Guillermo Perez. Wasserstein auto-encoded MDPs: Formal
verification of efficiently distilled RL policies with many-sided guarantees. In International
Conference on Learning Representations, 2023.

[10] Florent Delgrange, Ann Nowé, and Guillermo A. Pérez. Distillation of rl policies with formal
guarantees via variational abstraction of markov decision processes. Proceedings of the AAAI
Conference on Artificial Intelligence, 36(6):6497–6505, Jun. 2022.

[11] Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Metrics for
labelled markov processes. Theor. Comput. Sci., 318(3):323–354, 2004.

[12] Norm Ferns, Prakash Panangaden, and Doina Precup. Bisimulation metrics for continuous
markov decision processes. SIAM J. Comput., 40(6):1662–1714, 2011.

[13] Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G. Bellemare. Deep-
mdp: Learning continuous latent space models for representation learning. In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Con-
ference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research, pages 2170–2179. PMLR, 2019.

10

[14] Robert Givan, Thomas L. Dean, and Matthew Greig. Equivalence notions and model mini-
mization in markov decision processes. Artif. Intell., 147(1-2):163–223, 2003.

[15] Karol Gregor, George Papamakarios, Frederic Besse, Lars Buesing, and Théophane Weber.
Temporal Difference Variational Auto-Encoder. 7th International Conference on Learning
Representations, ICLR 2019, 6 2018.

[16] Karol Gregor, Danilo Jimenez Rezende, Frederic Besse, Yan Wu, Hamza Merzic, and Aäron
van den Oord. Shaping Belief States with Generative Environment Models for RL. Advances
in Neural Information Processing Systems, 32, 6 2019.

[17] Danijar Hafner, Timothy Lillicrap Deepmind, Jimmy Ba, Mohammad Norouzi, and Google
Brain. Dream to Control: Learning Behaviors by Latent Imagination. 12 2019.

[18] Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari
with discrete world models. In International Conference on Learning Representations, 2021.

[19] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable
MDPs. In AAAI Fall Symposium - Technical Report, volume FS-15-06, pages 29–37. AI Ac-
cess Foundation, 2015.

[20] Milos Hauskrecht. Value-function approximations for partially observable markov decision
processes. J. Artif. Intell. Res., 13:33–94, 2000.

[21] Bojun Huang. Steady state analysis of episodic reinforcement learning. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Ad-
vances in Neural Information Processing Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[22] Maximilian Igl, Luisa Zintgraf, Tuan Anh Le, Frank Wood, and Shimon Whiteson. Deep
variational reinforcement learning for POMDPs. In 35th International Conference on Machine
Learning, ICML 2018, volume 5, 2018.

[23] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in
partially observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

[24] Ivan Kobyzev, Simon J.D. Prince, and Marcus A. Brubaker. Normalizing flows: An intro-
duction and review of current methods. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 43(11):3964–3979, nov 2021.

[25] Kim Guldstrand Larsen and Arne Skou. Bisimulation through probabilistic testing. In Con-
ference Record of the Sixteenth Annual ACM Symposium on Principles of Programming Lan-
guages, Austin, Texas, USA, January 11-13, 1989, pages 344–352. ACM Press, 1989.

[26] Mikko Lauri, David Hsu, and Joni Pajarinen. Partially observable markov decision processes
in robotics: A survey. IEEE Transactions on Robotics, 39(1):21–40, 2023.

[27] Alex X Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent actor-
critic: Deep reinforcement learning with a latent variable model. Advances in Neural Informa-
tion Processing Systems, 33:741–752, 2020.

[28] Xiao Ma, Peter Karkus, David Hsu, and Wee Sun Lee. Particle filter recurrent neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 5101–
5108, 2020.

[29] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lilli-
crap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous Methods for Deep
Reinforcement Learning. 33rd International Conference on Machine Learning, ICML 2016,
4:2850–2869, 2 2016.

[30] Steven Morad, Ryan Kortvelesy, Matteo Bettini, Stephan Liwicki, and Amanda Prorok. POP-
Gym: Benchmarking partially observable reinforcement learning. In The Eleventh Interna-
tional Conference on Learning Representations, 2023.

11

[31] Yu Nishiyama, Abdeslam Boularias, Arthur Gretton, and Kenji Fukumizu. Hilbert Space Em-
beddings of POMDPs. In Proceedings of the Twenty-Eighth Conference on Uncertainty in
Artificial Intelligence (UAI2012), 10 2012.

[32] Frans A. Oliehoek, Matthijs T.J. Spaan, and Nikos Vlassis. Optimal and approximate Q-value
functions for decentralized POMDPs. Journal of Artificial Intelligence Research, 32:289–353,
10 2008.

[33] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for den-
sity estimation. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, vol-
ume 30. Curran Associates, Inc., 2017.

[34] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley Series in Probability and Statistics. Wiley, 1994.

[35] Richard D. Smallwood and Edward J. Sondik. The optimal control of partially observable
markov processes over a finite horizon. Oper. Res., 21(5):1071–1088, 1973.

[36] Edward J. Sondik. The optimal control of partially observable markov processes over the
infinite horizon: Discounted costs. Oper. Res., 26(2):282–304, 1978.

[37] Matthijs TJ Spaan. Partially observable markov decision processes. Reinforcement learning:
State-of-the-art, pages 387–414, 2012.

[38] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. IEEE Transactions on
Neural Networks, 1998.

[39] Cédric Villani. Optimal Transport: Old and New. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2009.

[40] Yuhui Wang and Xiaoyang Tan. Deep recurrent belief propagation network for pomdps. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 10236–10244,
2021.

[41] Yaxiong Wu, Craig Macdonald, and Iadh Ounis. Partially observable reinforcement learning
for dialog-based interactive recommendation. In Proceedings of the 15th ACM Conference on
Recommender Systems, pages 241–251, 2021.

[42] K.J Åström. Optimal control of markov processes with incomplete state information. Journal
of Mathematical Analysis and Applications, 10(1):174–205, 1965.

12

Appendix

A Dirac Measures

In this work, we consider the Dirac delta function δ as a measure. Specifically, this means that for any complete, separable space
X and point a P X , the Dirac measure with impulse a is δa P ∆pX q and satisfies δapAq “ 1 if a P A and δapAq “ 0 otherwise,
for any A P ΣpX q. Interesting properties of the Dirac measure include δa “ limσÑ0 N pa, σ2q, where N pa, σ2q is the normal
distribution with mean a and variance σ2, and

ş

X δapxqfpxq dx “ fpaq for any compactly supported function f .

B Proof of Lemma 3.1: Stationarity over Histories

Let us restate the Lemma:

Lemma B.1. Let P be an episodic POMDP with action space A and observation space Ω. There is a well defined probability
distribution Hπ P ∆

`

pA ¨ Ωq
˚

˘

over histories drawn at the limit from the interaction of the RL agent with P , when it operates
under a latent policy π conditioned over the beliefs of a latent POMDP P that shares the action and observation spaces of P
and is executed via the belief encoder, i.e., a „ πp¨ | φ˚phqq for any h P pA ¨ Ωq

˚.

Proof sketch. Build a history unfolding as the MDP whose state space consists of all histories, and keeps track of the current
history of P at any time of the interaction. The resulting MDP remains episodic since it is equivalent to P: the former mimics the
behaviors of the latter under π. All episodic processes are ergodic [21], which guarantees the existence of such a distribution.

We dedicate this Section to formally detailing and proving every claim of this proof sketch. Before going further, we formally
define the notion of episodic process, and we further introduce the notions of memory-based policies, Markov Chains, and limiting
distributions in Markov Chains.

B.1 Preliminaries

We formally recall the notion of episodic process:

Definition B.2 (Episodic RL process). The RL procedure is episodic iff the environment P embeds a special reset state sreset P S
so that (i) under any policy π, the environment is almost surely eventually reset: PM

π pt s0:8, a0:8 | Dt ą 0, st “ sreset uq “ 1;
(ii) when reset, the environment transitions to the initial state: PpsI | sreset, aq ą 0 and PpSz t sI , sreset u | sreset, aq “ 0 for all
a P A; and (iii) the reset state is observable: there is an observation o‹ P Ω so that Opo‹ | s1, aq “ 0 when s1 ‰ sreset, and
Op¨ | sreset, aq “ δo‹ for a P A. An episode is a history xa0:T´1, o1:T y where Opo1 | sI , a0q ą 0 and oT “ o‹.

Assumption B.3. The environment P is an episodic process.

Policies are building blocks to define the probability space of any MDP. To deal with policies whose decisions are based on
unrolling histories, we formally define the notion of memory-based policies.

Definition B.4 (Memory-based policies). Given an MDP M “ xS,A,P,R, sI , γy, a memory-based policy for M is a policy
that can be encoded as a stochastic Mealy machine π “ xQ, πα, πµ, qIy, whereQ is a set of memory states; πα : SˆQ Ñ ∆pAq

is the next action function; πµ : S ˆQˆ A ˆ S Ñ ∆pQq is the memory update function; and qI is the initial memory state.

Example 1 (Stationary policy). A stationary policy π can be encoded as any Mealy machine π with memory space Q where
|Q| “ 1.
Example 2 (Latent policy). Let P “ xM,Ω,Oy with underlying MDP M “ xS,A,P,R, sI , γy and the latent space model P
with initial state sI be the POMDPs of Lemma B.1. Then, any latent (stationary) policy π : B Ñ ∆pAq conditioned on the belief
space B of P can be executed in the belief MDP MB of P via the Mealy machine π1 “ xB, πα, πµ, δsI y, keeping track in its
memory of the current latent belief b P B inferred by our belief encoder φ. This enables the agent to take its decisions solely
based on the latter: παp¨ | b, bq “ πp¨ | bq. When the belief MDP transitions to the next belief b1, the memory is then updated
according to the observation dynamics:

πµpb1 | b, b, a, b1q “
Es„b Es1„Pp¨|s,aq Eo1„Op¨|s1,aq δφpb,a,o1q

`

b1
˘

¨ δτpb,a,o1qpb1q

Es„b Es1„Pp¨|s,aq Eo1„Op¨|s1,aq δτpb,a,o1qpb1q
if b1 ‰ δsreset , and

πµp¨ | b, b, a, δsresetq “ δsreset otherwise (to fulfil the episodic constraint).

Note that πµ is simply obtained by applying the usual conditional probability rule: πµ

`

b1 | b, b, a, b1
˘

“

Prpb1,b1
|b,b,aq{Prpb1

|b,b,aq, where Pr
`

b1, b1 | b, b, a
˘

“ Es„b Es1„Pp¨|s,aq Eo1„Op¨|s1,aq δφpb,a,o1q

`

b1
˘

¨ δτpb,a,o1qpb1q and
Pr

`

b1 | b, b, a
˘

“ PBpb1 | b, aq since the next original belief state is independent of the current latent belief state.

13

Definition B.5 (Markov Chain). A Markov Chain (MC) is an MDP whose action space a consists of a singleton, i.e., |A| “ 1.
Any MDP M “ xS,A,P,R, sI , γy and memory-based policy π “ xQ, πα, πµ, qIy induces a Markov Chain

Mπ “ xS ˆQ,Pπ,Rπ, xsI , qIy , γy,

where:

• the state space consists of the product of the original state space and the memory of π;

• the transition function embeds the next action and the policy update functions from the policy, i.e.,

Pπ

`@

s1, q1
D

| xs, qy
˘

“ E
a„παp¨|s,qq

πµ
`

q1 | s, q, a, s1
˘

¨ P
`

s1 | s, a
˘

, and

• the rewards are averaged over the possible actions produced by the next action function, i.e., Rπpxs, qyq “

Ea„παp¨|s,qq Rps, aq.

Furthermore, the probability measure PM
π is actually the unique probability measure defined over the measurable infinite trajec-

tories of the MC Mπ [34].

We now formally define the distribution over states encountered at the limit when an agent operates in an MDP under a given
policy, as well as the conditions of existence of such a distribution.
Definition B.6 (Bottom strongly connected components and limiting distributions). Let M be an MDP with state space M and
π be a policy for M. Write M rss for the MDP where we change the initial state sI of M by s P S. The measure ξtπ : S Ñ ∆pSq

with ξtπps1 | sq “ PMrss
π

`

t s0:8, a0:8 | st “ s1 u
˘

is the distribution giving the probability for the agent of being in each state of
M rss after exactly t steps. The subsetB Ď S is a strongly connected component (SCC) of Mπ if for any pair of states s, s1 P B,
ξtπps1 | sq ą 0 for some t P N. It is a bottom SCC (BSCC) if (i) B is a maximal SCC, and (ii) for each s P B, PπpB | sq “ 1.
The unique stationary distribution of B is ξπ P ∆pBq, defined as ξπpsq “ E 9s„ξπ Pπps | 9sq “ limTÑ8

1
T

řT
t“0 ξ

t
πps | sKq for

any sK P B. An MDP M is ergodic under the policy π if the state space of Mπ consists of a unique aperiodic BSCC. In that
case, ξπ “ limtÑ8 ξtπp¨ | sq for all s P S.

To provide such a stationary distribution over histories, we define a history unfolding MDP, where the state space keeps track of
the current history of P during the interaction. We then show that this history MDP is equivalent to P under π.

B.2 History Unfolding

Let us define the history unfolding MDP MH, which consists of the tuple xSH,A,PH,RH, ‹, γy, where:

• the state space consists of the set of all the possible histories (i.e., sequence of actions and observations) that can be encountered
in P , i.e., SH “ pA ¨ Ωq

˚
Y t ‹, hreset u, which additionally embeds a special symbol ‹ indicating that no observation has been

perceived yet with τ˚p‹q “ δsI , as well as a special reset state hreset;
• the transition function maps the current history to the belief space to infer the distribution over the next possible observations,

i.e.,

PH

`

h1 | h, a
˘

“ E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1,aq

δh¨a¨o1

`

h1
˘

if τ˚phq ‰ δsreset , and

PH

`

h1 | h, a
˘

“ PBpδsreset | δsreset , aq ¨ δhreset

`

h1
˘

` PBpδsI | δsreset , aq ¨ δ‹

`

h1
˘

otherwise,

where h ¨ a ¨ o1 is the concatenation of a, o1 with the history h “ xa0:T´1, o1:T y, resulting in the history xa0:T , o1:T`1y so that
aT “ a and oT`1 “ o1; and

• the reward function maps the history to the belief space as well, which enables to infer the expected rewards obtained in the
states over the this belief, i.e., RHph, aq “ Es„τ˚phq Rps, aq.

We now aim at showing that, under the latent policy π, the POMDP P and the MDP MH are equivalent. More formally, we are
looking for an equivalence relation between two probabilistic models, so that the latter induce the same behaviors, or in other
words, the same expected return. We formalize this equivalence relation as a stochastic bisimulation between MB (that we know
being an MDP formulation of P) and MH.
Definition B.7 (Bisimulation). Let M “ xS,A,P,R, sI , γy be an MDP. A stochastic bisimulation ” on M is a behavioral
equivalence between states s1, s2 P S so that, s1 ” s2 iff

1. Rps1, aq “ Rps2, aq, and

2. PpT | s1, aq “ PpT | s2, aq,

for each action a P A and equivalence class T P S{ ”.

14

Properties of bisimulation include trajectory equivalence and the equality of their optimal expected return [25, 14]. The relation
can be extended to compare two MDPs by considering the disjoint union of their state space.

Lemma B.8. Let P be the POMDP of Lemma B.1, and π : B Ñ ∆pAq be a latent policy conditioned on the beliefs of a latent
space model of P . Define the stationary policy π♣ : SH Ñ ∆pAq for MH as π♣p¨ | hq “ πp¨ | φ˚phqq, and the memory-based
policy π♢ for MB encoded by the Mealy machine detailed in Example 2. Then, Mπ♣

H and Mπ♦

B are in stochastic bisimulation.

Proof. First, note that the MC Mπ♦

B is defined as the tuple
@

B ˆ B,Pπ♦ ,Rπ♦ ,
@

bI , bI
D

, γ
D

so that

Pπ♦
`

b1, b1 | b, b
˘

“ E
a„πp¨|bq

πµ

`

b1 | b, b, a, b1
˘

¨ PB

`

b1 | b, a
˘

“ E
a„πp¨|bq

E
s„b

E
s1„Pp¨|s,aq

E
o1„Op¨|s,aq

δφpb,o,aq

`

b1
˘

¨ δτpb,o,aq

`

b1
˘

, and

Rπ♦pb, bq “ E
a„πp¨|bq

E
s„b

Rps, aq. (cf. Definition B.5)

Define the relation Ñτ
φ as the set t

@

h, xb, by
D

| τ˚phq “ b and φ˚phq “ b u Ď SH ˆ B ˆ B. We show that Ñτ
φ is a bisimulation

relation between the states of Mπ♣

H and Mπ♦

B . Let h P SH, b P B, and b P B so that h Ñτ
φ xb, by:

1. Rπ♣phq “ Ea„πp¨|φ˚phqq Es„τ˚phq Rps, aq “ Ea„πp¨|bq Es„b Rps, aq “ Rπ♦pb, bq;

2. Each equivalence class T P
`

SH ˆ B ˆ B
˘

{ Ñτ
φ consists of histories sharing the same belief and latent beliefs. Since

τ˚ : SH Ñ B and φ˚ : SH Ñ B are surjective, each equivalence class T can be associated to a single belief and latent belief
pair. Concretely, let b1 P B, b1 P B, an equivalence class of Ñτ

φ has the form T “
“

xb1, b1y
‰

Ñτ
φ

so that

(a) the projection of
“

xb1, b1y
‰

Ñτ
φ

on SH is the set th P SH | τ˚phq “ b and φ˚phq “ b u, and

(b) the projection of
“

xb1, b1y
‰

Ñτ
φ

on the state space of Mπ♦

B is merely the pair xb1, b1y.

Therefore,

Pπ♣

´

“

xb1, b1y
‰

Ñτ
φ

| h
¯

“

ż

rxb1,b1ys
Ñτ

φ

E
a„πp¨|φ˚phqq

E
s„τ˚

E
s1„Pp¨|s,aq

E
o1„Op¨|s1,aq

δh¨a¨o1

`

h1
˘

dh1

“

ż

SH

E
a„πp¨|φ˚phqq

E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1,aq

δh¨a¨o1

`

h1
˘

¨ δτ˚ph1q

`

b1
˘

¨ δφ˚ph1q

`

b1
˘

dh1 (by definition of
“

xb1, b1y
‰

Ñτ
φ

)

“ E
a„πp¨|φ˚phqq

E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1,aq

δτ˚ph¨a¨o1q

`

b1
˘

¨ δφ˚ph¨a¨o1q

`

b1
˘

“ E
a„πp¨|bq

E
s„b

E
s1„Pp¨|s,aq

E
o1„Op¨|s1,aq

δτpb,a,o1q

`

b1
˘

¨ δφpb,a,o1q

`

b1
˘

(since h Ñτ
φ xb, by)

“Pπ♦
`

b1, b1 | b, b
˘

“Pπ♦

´

“

xb1, b1y
‰

Ñτ
φ

| b, b
¯

By 1 and 2, we have that MH and MB are in bisimulation under the equivalence relation Ñτ
φ , when the policies π♣ and π♢ are

respectively executed in the two models.

Corollary B.9. The agent behaviors, formulated through the expected return, that are obtained by executing the policies respec-
tively in the two models are the same: EMH

π♣

“
ř8

t“0 γ
t ¨ RHpa0:t, o1:tq

‰

“ EMB
π♦

“
ř8

t“0 γ
t ¨ RBpbt, atq

‰

.

Proof. Follows directly from [25, 14]: the bisimulation relation implies the equivalence of the optimal policies in the two models,
i.e., the maximum expected returns are the same in the two models. Since we consider MCs and not MDPs, the models are purely
stochastic, and the behavior equality follows.

Note that we omitted the super script of π♣ in the main text; we directly considered π as a policy conditioned over histories, by
using the exact same definition.

15

B.3 Existence of a Stationary Distribution over Histories

Now that we have proven that the history unfolding is equivalent to the belief MDP, we thus now have all the ingredients to prove
Lemma B.1.

Proof. By definition of MH, the execution of π♣ is guaranteed to remain an episodic process. Every episodic process is ergodic
(see [21]), there is thus a unique stationary distribution Hπ♣ “ limtÑ8 ξtπ♣p¨ | ‹q defined over the state space of Mπ♣

H , which
actually consists of histories of P when the latter operates under π, or equivalently, the execution of the MC Mπ♦

B .

C Value Difference Bounds

This section is dedicated to proving Theorems 3.2 and 3.3. Both Theorems bound the value difference of histories, in the original
and latent space models via our local and belief losses, to provide model and representation quality guarantees. Before proving
the Theorems, we first formally define the value function of any POMDP, and then illustrate intuitively the meaning of each loss
used to bound the value differences.

C.1 Value Functions

We start by formally defining the value function of any MDP.
Definition C.1 (Value function). Let M “ xS,A,P,R, sI , γy be an MDP, and π be a policy for M. Write Mrss for the
MDP obtained by replacing sI by s P S. Then, the value of the state s P S is defined as the expected return obtained from
that state by running π, i.e., Vπpsq “ EMrss

π

“
ř8

t“0 γ
t ¨ Rpst, atq

‰

. Let Mπ “ xSπ,Pπ,Rπ, sI , γy be the Markov Chain
induced by π (cf. Definition B.5). Then, the value function can be defined as the unique solution of the Bellman’s equation [34]:
Vπpsq “ Rπpsq ` Es1„Pπpsq rγ ¨ Vπps1qs . The typical goal of an RL agent is to learn a policy π‹ that maximizes the value of the
initial state of M: maxπ‹ Vπ‹ psI q.

Property C.2 (POMDP values). We obtain the value function of any POMDP P “ xM,Ω,Oy by considering the values obtained
in its belief MDP MB “ xB,A,PB,RB, bI , γy. Therefore, the value of any history h P pA ¨ Ωq

˚ is obtained by mapping h to
the belief space: let π be a policy conditioned on the beliefs of P , then we write Vπphq for Vπpτ˚phqq. Therefore, we have in
particular for any latent policy π : B Ñ ∆pAq:

Vπphq “ EMBrτ˚
phqs

π♦

«

8
ÿ

t“0

γt ¨ RBpbt, atq

ff

(cf. Lemma B.8 for definitions of π♢ and π♣)

“ EMHrhs

π♣

«

8
ÿ

t“0

γt ¨ RHpht, atq

ff

(cf. Corollary B.9)

“ E
a„π♣p¨|hq

„

RHph, aq ` E
h1„PHp¨|h,aq

“

γ ¨ Vπ
`

h1
˘‰

ȷ

(by Definition C.1)

“ E
a„πp¨|φ˚phqq

„

RHph, aq ` E
h1„PHp¨|h,aq

“

γ ¨ Vπ
`

h1
˘‰

ȷ

(by definition of π♣)

“ E
a„πp¨|φ˚phqq

E
s„τ˚phq

„

Rps, aq ` E
s1„Pp¨|s,aq

E
o1„Op¨|s1,aq

“

γ ¨ Vπ
`

h ¨ a ¨ o1
˘‰

ȷ

. (by definition of MH)

Similarly, we write V π for the values of a latent POMDP P .

C.2 Local and Belief Losses

Theorem C.7 involves the minimization of local (LR, LP, LO) and belief (Lτ , L
φ

P
, Lφ

R) losses. We intuitively describe how these
losses are minimized via the latent flows depicted in Fig. 5.

The procedure allowing to minimize the local losses is depicted in Fig. 5a. At each step, a state s, an observation o of s, and an
action a are drawn from the distribution Hπ of experiences encountered while executing π. First, xs, oy is mapped to the latent
space via the state embedding function of the WAE-MDP: ϕps, oq “ s. Then, the action a is executed both in the original and
latent space models (respectively from xs, oy and s), which allows to quantify the distance between the next reward and transition
produced in the two models. Finally, the original model transitions to the next state-observation pair xs1, o1y, and mapping it again
to the latent space through ϕps1, o1q “ s1 allows to quantify the distance between the original observation o1 and the one that is
produced in the latent space model, from s1 via õ1 „ Op¨ | s1q.

The procedure allowing to minimize the belief losses is depicted in Fig. 5b. This time, the optimization is performed on-policy,
which means that it is performed while executing the policy in the original environment. At time step t ě 1, the current history

16

s o s̄ϕ

a

s̄⋆s′ o′

P̄P

s̄′
ϕ

MΩ M

LR

LP

R R

Hπ̄

LO õ′
Ō

r r̃

(a) Optimization of the latent space model parameters (i.e., R,P,
and O) by minimizing local losses.

sI

h = ⟨ao:t−1, o1:t⟩

ot
st

φ∗(h)
bt

∼

s̄t

ϕ

s

aπ̄

P̄ P̄

s̄t+1 s⋆
r r̃

L
φ
R

L
φ
P

τ∗(h)

DKL

MΩ

M

B

RR

(b) Optimization of the belief encoder φ by minimizing the (proxy)
belief loss, as well as the reward and transition regularizers.

Figure 5: Latent flows used to compute the local and belief losses. Arrows represent (stochastic) mappings, the original state-
observation (resp. latent state) space is spread along the blue (resp. green) area, and the latent belief space is spread along the
yellow area. Distances (and discrepancies) are depicted in red. Notice that the blue area corresponds to the state-observation
space SΩ, which is accessible during training.

h ends up in the observation ot of state st. First, the discrepancy between the latent belief obtained via our belief encoder
bt “ φ˚phq and the one obtained via the true latent belief update function b1 “ τ˚phq is evaluated. Second, we compute the
reward and transition regularizers by minimizing the distance between rewards and transitions produced from believed states
st „ bt (i.e., states expected from the current belief bt) and those produced by mapping the current state-observation pair into the
latent space, via ϕpst, otq “ s, when the action a „ π

`

¨ | bt
˘

is produced. Finally, a is executed in the original environment and
the process is repeated until the end of the episode.

C.3 Warm Up: Some Wasserstein Properties

In the following, we elaborate on properties and definitions related to the Wasserstein metrics that will be useful to prove the
main claims. In particular, Wasserstein can be reformulated as the maximum mean discrepancy of 1-Lipschitz functions. The
main trick to prove the claim is to decay the temperature to the zero-limit, which makes the distance d̄ metric associated with the
latent state space converge to the discrete metric 1‰ : X Ñ t 1, 0 u [9], formally defined as 1‰px1, x2q “ 1 iff x1 ‰ x2.

Definition C.3 (Lipschitz continuity). Let X ,Y be two measurable set and f : X Ñ Y be a function mapping elements from X
to Y . If otherwise specified, we consider that f is real-valued function, i.e., Y “ R. Assume that X is equipped with a metric
d : X Ñ r0,8q. Then, given a constant K ě 0, we say that f is K-Lipschitz iff, for any x1, x2 P X , |fpx1q ´ fpx2q| ď

K ¨ dpx1, x2q. We write FK
d for the set of K-Lipschitz functions.

Definition C.4 (Wasserstein dual). The Kantorovich-Rubinstein duality [39] allows formulating the Wasserstein distance between
P and Q as Wd pP,Qq “ supfPF 1

d
|Ex„P fpxq ´ Ey„Q fpyq| .

Property C.5 (Lipschitz constant). Let f : X Ñ R, so that d is a metric on X . Assume that f is K-Lipschitz, i.e., f P FK
d , then

for any two distributions P,Q P ∆pX q, |Ex1„P fpx1q ´ Ex2„Q fpx2q| ď K ¨ Wd pP,Qq.

In particular, for any bounded function g : X Ñ Y with Y Ď R, when the distance metric associated with X is the discrete metric,
i.e., d “ 1‰, we have |Ex1„P gpx1q ´ Ex2„Q gpx2q| ď KY ¨W1‰

pP,Qq “ KY ¨ dTV pP,Qq, where KY ě supxPX |gpxq| (see,
e.g., [13, Sect. 6] for a discussion).

17

The latter property intuitively implies the emergence of the KV constant in the Theorem’s inequality: we know that the latent
value function is bounded by sups,a|Rps,aq|{1´γ, so given two distributions P,Q over S, the maximum mean discrepancy of the
latent value function is bounded by KV ¨ Wd̄ pP,Qq when the temperature goes to zero.

Finally, since the value difference is computed in expectation, we introduce the following useful property:

Lemma C.6 (Wasserstein in expectation). For any f : Y ˆX Ñ R so that X is equipped with the metric d, consider the function
gy : X Ñ R defined as gypxq “ fpy, xq. Assume that for any y P Y , gy is K-Lipschitz, i.e., gy P FK

d . Then, let D P ∆pYq

be a distribution over Y and P,Q P ∆pX q be two distributions over X , we have Ey„D |Ex1„P fpy, x1q ´ Ex2„Q fpy, x2q| ď

K ¨ Wd pP,Qq.

Proof. The proof is straightforward by construction of gy:

E
y„D

ˇ

ˇ

ˇ

ˇ

E
x1„P

fpy, x1q ´ E
x2„Q

fpy, x2q

ˇ

ˇ

ˇ

ˇ

“ E
y„D

ˇ

ˇ

ˇ

ˇ

E
x1„P

gypx1q ´ E
x2„Q

gypx2q

ˇ

ˇ

ˇ

ˇ

ď E
y„D

rK ¨ Wd pP,Qqs (by Property C.5, since gy is K-Lipschitz)

“K ¨ Wd pP,Qq

C.4 Model Quality Bound: Time to Raise your Expectations

Let us restate Theorem 3.2:

Theorem C.7. Let P , P , and π : B Ñ ∆pAq be respectively the original and the latent POMDP, as well as the latent policy of
Lemma B.1, so that the latent POMDP is learned through a WAE-MDP, via the minimization of the local losses LR, LP. Assume
that the WAE-MDP is at the zero-temperature limit (i.e., λ Ñ 0) and let KV “ ∥R∥8{1´γ, then for any such latent policy π, the
values of P and P are guaranteed to be bounded by the local losses in average:

E
h„Hπ

ˇ

ˇVπphq ´ V πphq
ˇ

ˇ ď
LR ` Lφ

R ` R‹
Lτ ` γKV ¨

´

LP ` Lφ

P
` Lτ ` LO

¯

1 ´ γ
. (10)

Proof. The plan of the proof is as follows:

1. We exploit the fact that the value function can be defined as the fixed point of the Bellman’s equations;

2. We repeatedly apply the triangular and the Jenson’s inequalities to end up with inequalities which reveal mean discrepancies
for either rewards or value functions;

3. We exploit the fact that the temperature goes to zero to bound those discrepancies by Wasserstein (see Porperty C.5 and the
related discussion);

4. The last two points allow highlighting the L1 norm and Wasserstein terms in the local and belief losses;

5. Finally, we set up the inequalities to obtain a discounted next value difference term, and we exploit the stationary property of
Hπ to fall back on the original, discounted, absolute value difference term;

6. Putting all together, we end up with an inequality only composed of constants, multiplied by losses that we aim at minimizing.

18

Concretely, the absolute value difference can be bounded by:

E
h„Hπ

ˇ

ˇVπphq ´ V πphq
ˇ

ˇ

“ E
h„Hπ

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
a„πp¨|φ˚phqq

„

Rps, aq ` γ E
s1„Pp¨|s,aq

E
o1„Op¨|s1,aq

Vπ
`

h ¨ a ¨ o1
˘

ȷ

(see Property C.2)

´ E
s„τ˚phq

E
a„πp¨|φ˚phqq

«

Rps, aq ` γ E
s1„Pp¨|s,aq

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

ff
ˇ

ˇ

ˇ

ˇ

ˇ

ď E
h„Hπ

E
a„πp¨|φ˚phqq

«

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

Rps, aq ´ E
s„τ˚phq

Rps, aq

ˇ

ˇ

ˇ

ˇ

` γ

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1,aq

Vπ
`

h ¨ a ¨ o1
˘

´ E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

ˇ

ˇ

ˇ

ˇ

ˇ

ff

(Triangular inequality)

For the sake of clarity, we split the inequality in two parts.

19

Part 1: Reward bounds

E
h„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

Rps, aq ´ E
s„τ˚phq

Rps, aq

ˇ

ˇ

ˇ

ˇ

“ E
h,o„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

“

Rps, aq ´ Rpϕps, oq, aq
‰

` E
s„τ˚phq

E
s„τ˚phq

“

Rpϕps, oq, aq ´ Rps, aq
‰

ˇ

ˇ

ˇ

ˇ

(o is the last observation of h; the state embedding function ϕ that links the original and latent state spaces comes into play)

ď E
h,o„Hπ

E
a„πp¨|φ˚phqq

„
ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

“

Rps, aq ´ Rpϕps, oq, aq
‰

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s„τ˚phq

“

Rpϕps, oq, aq ´ Rps, aq
‰

ˇ

ˇ

ˇ

ˇ

ȷ

(Triangular inequality)

ď E
h,o„Hπ

E
a„πp¨|φ˚phqq

„

E
s„τ˚phq

ˇ

ˇRps, aq ´ Rpϕps, oq, aq
ˇ

ˇ `

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s„τ˚phq

“

Rpϕps, oq, aq ´ Rps, aq
‰

ˇ

ˇ

ˇ

ˇ

ȷ

(Jensen’s inequality)

“ E
h,o„Hπ

E
a„πp¨|φ˚phqq

E
s„τ˚phq

ˇ

ˇRps, aq ´ Rpϕps, oq, aq
ˇ

ˇ ` E
h,o„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s„τ˚phq

“

Rpϕps, oq, aq ´ Rps, aq
‰

ˇ

ˇ

ˇ

ˇ

“LR ` E
h,o„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s„τ˚phq

“

Rpϕps, oq, aq ´ Rps, aq
‰

ˇ

ˇ

ˇ

ˇ

(by definition of LR)

“LR ` E
h,o„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s„τ˚phq

E
sK„φ˚phq

““

Rpϕps, oq, aq ´ RpsK, aq
‰

`
“

RpsK, aq ´ Rps, aq
‰‰

ˇ

ˇ

ˇ

ˇ

ˇ

(the belief encoder φ comes into play)

“LR ` E
h,o„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s„φ˚phq

“

Rpϕps, oq, aq ´ Rps, aq
‰

` E
s„τ˚phq

E
sK„φ˚phq

“

RpsK, aq ´ Rps, aq
‰

ˇ

ˇ

ˇ

ˇ

ˇ

ďLR ` E
h,o„Hπ

E
a„πp¨|φ˚phqq

«
ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s„φ˚phq

“

Rpϕps, oq, aq ´ Rps, aq
‰

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
sK„φ˚phq

“

RpsK, aq ´ Rps, aq
‰

ˇ

ˇ

ˇ

ˇ

ˇ

ff

(Triangular inequality)

ďLR ` E
h,o„Hπ

E
a„πp¨|φ˚phqq

«

E
s„τ˚phq

E
s„φ˚phq

ˇ

ˇRpϕps, oq, aq ´ Rps, aq
ˇ

ˇ `

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
sK„φ˚phq

“

RpsK, aq ´ Rps, aq
‰

ˇ

ˇ

ˇ

ˇ

ˇ

ff

(Jensen’s inequality)

“LR ` E
h,o„Hπ

E
a„πp¨|φ˚phqq

E
s„τ˚phq

E
s„φ˚phq

ˇ

ˇRpϕps, oq, aq ´ Rps, aq
ˇ

ˇ ` E
h,o„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
sK„φ˚phq

RpsK, aq ´ Rps, aq

ˇ

ˇ

ˇ

ˇ

ˇ

“LR ` Lφ

R ` E
h,o„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
sK„φ˚phq

RpsK, aq ´ Rps, aq

ˇ

ˇ

ˇ

ˇ

ˇ

(by definition of Lφ

R, Eq. 6)

ďLR ` Lφ

R ` E
h„Hπ

R‹Wd̄ pτ˚phq, φ˚phqq (as λ Ñ 0, by Lem. C.6 and Prop. C.5)

“LR ` Lφ

R ` R‹
Lτ ;

where we write R‹
for

›

›R
›

›

8
“ sups,aPSˆA

ˇ

ˇRps, aq
ˇ

ˇ.

20

Part 2: Next value bounds

γ ¨ E
h„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1,aq

Vπ
`

h ¨ a ¨ o1
˘

´ E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

ˇ

ˇ

ˇ

ˇ

ˇ

“ γ ¨ E
h„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1,aq

«

Vπ
`

h ¨ a ¨ o1
˘

´ E
ô1„Op¨|ϕps1,o1qq

V π

`

h ¨ a ¨ o1
˘

ff

`

«

E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1,aq

E
ô1„Op¨|ϕps1,o1qq

V π

`

h ¨ a ¨ ô1
˘

´ E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

ff
ˇ

ˇ

ˇ

ˇ

ˇ

(the state embedding function ϕ comes into play, as well as the latent observation function O)

ď γ ¨ E
h„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1,aq

«

Vπ
`

h ¨ a ¨ o1
˘

´ E
ô1„Op¨|ϕps1,o1qq

V π

`

h ¨ a ¨ ô1
˘

ff
ˇ

ˇ

ˇ

ˇ

ˇ

` γ ¨ E
h„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1,aq

E
ô1„Op¨|ϕps1,o1qq

V π

`

h ¨ a ¨ ô1
˘

´ E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

ˇ

ˇ

ˇ

ˇ

ˇ

(Triangular inequality)

“ γ ¨ E
h„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1,aq

«

Vπ
`

h ¨ a ¨ o1
˘

´ E
ô1„Op¨|ϕps1,o1qq

V π

`

h ¨ a ¨ ô1
˘

ffˇ

ˇ

ˇ

ˇ

ˇ

` γ ¨ E
h,o„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s1,o1„PΩp¨|s,o,aq

«

E
ô1„Op¨|ϕps1,o1qq

V π

`

h ¨ a ¨ ô1
˘

ff

´ E
s1„Pp¨|ϕps,oq,aq

«

E
o1„Ops1q

V π

`

h ¨ a ¨ ô1
˘

ff

`

«

E
s„τ˚phq

E
s1„Pp¨|ϕps,oq,aq

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

´ E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

ff
ˇ

ˇ

ˇ

ˇ

ˇ

(o is the last observation of h; the latent MDP dynamics, modeled by P, come into play)

ď γ ¨ E
h„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1,aq

«

Vπ
`

h ¨ a ¨ o1
˘

´ E
ô1„Op¨|ϕps1,o1qq

V π

`

h ¨ a ¨ ô1
˘

ff
ˇ

ˇ

ˇ

ˇ

ˇ

` γ ¨ E
h,o„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s1,o1„PΩp¨|s,o,aq

«

E
ô1„Op¨|ϕps1,o1qq

V π

`

h ¨ a ¨ ô1
˘

ff

´ E
s1„Pp¨|ϕps,oq,aq

«

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ ô1
˘

ff
ˇ

ˇ

ˇ

ˇ

ˇ

` γ ¨ E
h,o„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s1„Pp¨|ϕps,oq,aq

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

´ E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

ˇ

ˇ

ˇ

ˇ

ˇ

(Triangular inequality)

ď γ ¨ E
h„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1,aq

«

Vπ
`

h ¨ a ¨ o1
˘

´ E
ô1„Op¨|ϕps1,o1qq

V π

`

h ¨ a ¨ ô1
˘

ffˇ

ˇ

ˇ

ˇ

ˇ

` γ ¨ E
h,o„Hπ

E
a„πp¨|φ˚phqq

E
s„τ˚phq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s1„ϕPΩp¨|s,o,aq

«

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

ff

´ E
s1„Pp¨|ϕps,oq,aq

«

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

ff
ˇ

ˇ

ˇ

ˇ

ˇ

` γ ¨ E
h,o„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s1„Pp¨|ϕps,oq,aq

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

´ E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

ˇ

ˇ

ˇ

ˇ

ˇ

(Jensen’s inequality)

ď γ ¨ E
h„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1,aq

«

Vπ
`

h ¨ a ¨ o1
˘

´ E
ô1„Op¨|ϕps1,o1qq

V π

`

h ¨ a ¨ ô1
˘

ff
ˇ

ˇ

ˇ

ˇ

ˇ

` γ ¨ E
h,o„Hπ

E
a„πp¨|φ˚phqq

E
s„τ˚phq

KV ¨ Wd̄

`

ϕPΩp¨ | s, aq,Pp¨ | ϕps, oq, aq
˘

` γ ¨ E
h,o„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s1„Pp¨|ϕps,oq,aq

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

´ E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

ˇ

ˇ

ˇ

ˇ

ˇ

(as λ Ñ 0, by Lem. C.6)

21

ď γ ¨ E
h„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1,aq

«

Vπ
`

h ¨ a ¨ o1
˘

´ E
ô1„Op¨|ϕps1,o1qq

V π

`

h ¨ a ¨ ô1
˘

ff
ˇ

ˇ

ˇ

ˇ

ˇ

` γKV LP

` γ ¨ E
h,o„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s1„Pp¨|ϕps,oq,aq

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

´ E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

ˇ

ˇ

ˇ

ˇ

ˇ

(by definition of LP)

“ γ ¨ E
h„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1,aq

«

Vπ
`

h ¨ a ¨ o1
˘

´ E
ô1„Op¨|ϕps1,o1qq

V π

`

h ¨ a ¨ ô1
˘

ff
ˇ

ˇ

ˇ

ˇ

ˇ

` γKV LP

` γ ¨ E
h,o„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

«

E
s„τ˚phq

E
s1„Pp¨|ϕps,oq,aq

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

´ E
s„φ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

ff

`

«

E
s„φ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

´ E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

ff
ˇ

ˇ

ˇ

ˇ

ˇ

(the belief encoder φ comes into play)

ď γ ¨ E
h„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1,aq

«

Vπ
`

h ¨ a ¨ o1
˘

´ E
ô1„Op¨|ϕps1,o1qq

V π

`

h ¨ a ¨ ô1
˘

ffˇ

ˇ

ˇ

ˇ

ˇ

` γKV LP

` γ ¨ E
h,o„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s1„Pp¨|ϕps,oq,aq

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

´ E
s„φ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

ˇ

ˇ

ˇ

ˇ

ˇ

` γ ¨ E
h„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„φ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

´ E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

ˇ

ˇ

ˇ

ˇ

ˇ

(triangular inequality)

ď γ ¨ E
h„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1,aq

«

Vπ
`

h ¨ a ¨ o1
˘

´ E
ô1„Op¨|ϕps1,o1qq

V π

`

h ¨ a ¨ ô1
˘

ff
ˇ

ˇ

ˇ

ˇ

ˇ

` γKV LP

` γ ¨ E
h,o„Hπ

E
a„πp¨|φ˚phqq

E
s„τ˚phq

E
s„φ˚phq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s1„Pp¨|ϕps,oq,aq

«

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

ff

´ E
s1„Pp¨|s,aq

«

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

ff
ˇ

ˇ

ˇ

ˇ

ˇ

` γ ¨ E
h„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„φ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

´ E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

ˇ

ˇ

ˇ

ˇ

ˇ

(Jensen’s inequality)

ď γ ¨ E
h„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1,aq

«

Vπ
`

h ¨ a ¨ o1
˘

´ E
ô1„Op¨|ϕps1,o1qq

V π

`

h ¨ a ¨ ô1
˘

ff
ˇ

ˇ

ˇ

ˇ

ˇ

` γKV LP

` γ ¨ E
h,o„Hπ

E
a„πp¨|φ˚phqq

E
s„τ˚phq

E
s„φ˚phq

KV Wd̄

`

Pp¨ | ϕps, oq, aq,Pp¨ | s, aq
˘

` γ ¨ E
h„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„φ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

´ E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

ˇ

ˇ

ˇ

ˇ

ˇ

(as λ Ñ 0, by Lem. C.6)

22

“ γ ¨ E
h„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1,aq

«

Vπ
`

h ¨ a ¨ o1
˘

´ E
ô1„Op¨|ϕps1,o1qq

V π

`

h ¨ a ¨ ô1
˘

ff
ˇ

ˇ

ˇ

ˇ

ˇ

` γKV ¨

´

LP ` Lφ

P

¯

` γ ¨ E
h„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„φ˚phq

«

E
s1„Pp¨|s,aq

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

ff

´ E
s„τ˚phq

«

E
s1„Pp¨|s,aq

E
o1„Op¨|s1q

V π

`

h ¨ a ¨ o1
˘

ff
ˇ

ˇ

ˇ

ˇ

ˇ

(by definition of Lφ

P
, Eq. 6)

ď γ ¨ E
h„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1,aq

«

Vπ
`

h ¨ a ¨ o1
˘

´ E
ô1„Op¨|ϕps1,o1qq

V π

`

h ¨ a ¨ ô1
˘

ffˇ

ˇ

ˇ

ˇ

ˇ

` γKV ¨

´

LP ` Lφ

P

¯

` γ ¨ E
h„Hπ

E
a„πp¨|φ˚phqq

KV Wd̄ pτ˚phq, φ˚phqq

(as λ Ñ 0, by Lem. C.6; note that Wasserstein is symmetric since it is a distance metric [39])

ď γ ¨ E
h„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s1„Pp¨|s,aq

E
o1„Op¨|s1,aq

«

Vπ
`

h ¨ a ¨ o1
˘

´ E
ô1„Op¨|ϕps1,o1qq

V π

`

h ¨ a ¨ ô1
˘

ff
ˇ

ˇ

ˇ

ˇ

ˇ

` γKV ¨

´

LP ` Lφ

P
` Lτ

¯

(by definition of Lτ , Eq. 6)

“ γ ¨ E
h,o„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s1,o1„PΩp¨|s,o,aq

«

`

Vπ
`

h ¨ a ¨ o1
˘

´ V π

`

h ¨ a ¨ o1
˘˘

`

˜

V π

`

h ¨ a ¨ o1
˘

´ E
ô1„Op¨|ϕps1,o1qq

V π

`

h ¨ a ¨ ô1
˘

¸ffˇ

ˇ

ˇ

ˇ

ˇ

` γKV ¨

´

LP ` Lφ

P
` Lτ

¯

ď γ ¨ E
h,o„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s1,o1„PΩp¨|s,o,aq

“

Vπ
`

h ¨ a ¨ o1
˘

´ V π

`

h ¨ a ¨ o1
˘‰

ˇ

ˇ

ˇ

ˇ

` γ ¨ E
h,o„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s1,o1„PΩp¨|s,o,aq

«

V π

`

h ¨ a ¨ o1
˘

´ E
ô1„Op¨|ϕps1,o1qq

V π

`

h ¨ a ¨ ô1
˘

ff
ˇ

ˇ

ˇ

ˇ

ˇ

` γKV ¨

´

LP ` Lφ

P
` Lτ

¯

(triangular inequality)

ď γ ¨ E
h,o„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s1,o1„PΩp¨|s,o,aq

“

Vπ
`

h ¨ a ¨ o1
˘

´ V π

`

h ¨ a ¨ o1
˘‰

ˇ

ˇ

ˇ

ˇ

` γ ¨ E
h,o„Hπ

E
a„πp¨|φ˚phqq

E
s„τ˚phq

E
s1„Pp¨|s,aq

ˇ

ˇ

ˇ

ˇ

ˇ

E
o1„Op¨|s1,aq

«

V π

`

h ¨ a ¨ o1
˘

´ E
ô1„Op¨|ϕps1,o1qq

V π

`

h ¨ a ¨ ô1
˘

ff
ˇ

ˇ

ˇ

ˇ

ˇ

` γKV ¨

´

LP ` Lφ

P
` Lτ

¯

(Jensen’s inequality)

ď γ ¨ E
h,o„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s1,o1„PΩp¨|s,o,aq

“

Vπ
`

h ¨ a ¨ o1
˘

´ V π

`

h ¨ a ¨ o1
˘‰

ˇ

ˇ

ˇ

ˇ

` γ ¨ E
h,o„Hπ

E
a„πp¨|φ˚phqq

E
s„τ˚phq

E
s1„Pp¨|s,aq

KV dTV

ˆ

O
`

¨ | s1, a
˘

, E
o1„s1,a

O
`

¨ | ϕ
`

s1, o1
˘˘

˙

` γKV ¨

´

LP ` Lφ

P
` Lτ

¯

(cf. Prop. C.5 and Lem C.6)

“ γ ¨ E
h,o„Hπ

E
a„πp¨|φ˚phqq

ˇ

ˇ

ˇ

ˇ

E
s„τ˚phq

E
s1,o1„PΩp¨|s,o,aq

“

Vπ
`

h ¨ a ¨ o1
˘

´ V π

`

h ¨ a ¨ o1
˘‰

ˇ

ˇ

ˇ

ˇ

` γKV ¨

´

LP ` Lφ

P
` Lτ ` LO

¯

(by definition of LO, Eq. 5)

ď γ ¨ E
h,o„Hπ

E
a„πp¨|φ˚phqq

E
s„τ˚phq

E
s1,o1„PΩp¨|s,o,aq

ˇ

ˇVπ
`

h ¨ a ¨ o1
˘

´ V π

`

h ¨ a ¨ o1
˘
ˇ

ˇ ` γKV ¨

´

LP ` Lφ

P
` Lτ ` LO

¯

(Jensen’s inequality)

“ γ ¨ E
h,o„Hπ

ˇ

ˇVπphq ´ V πphq
ˇ

ˇ ` γKV ¨

´

LP ` Lφ

P
` Lτ ` LO

¯

(Hπ is a stationary distribution (Lem. B.1) which allows us to apply the stationary property (Def. B.6))

Putting all together. To recap, by Part 1 and 2, we have:

23

E
h„Hπ

ˇ

ˇVπphq ´ V πphq
ˇ

ˇ ď LR ` Lφ

R ` R‹
Lτ ` γ ¨ E

h„Hπ

ˇ

ˇVπphq ´ V πphq
ˇ

ˇ ` γKV ¨

´

LP ` Lφ

P
` Lτ ` LO

¯

E
h„Hπ

ˇ

ˇVπphq ´ V πphq
ˇ

ˇ ¨ p1 ´ γq ď LR ` Lφ

R ` R‹
Lτ ` γKV ¨

´

LP ` Lφ

P
` Lτ ` LO

¯

E
h„Hπ

ˇ

ˇVπphq ´ V πphq
ˇ

ˇ ď

LR ` Lφ

R ` R‹
Lτ ` γKV ¨

´

LP ` Lφ

P
` Lτ ` LO

¯

1 ´ γ

which finally concludes the proof.

C.5 Representation Quality Bound

We start by showing that the optimal latent value function is almost Lipschitz continuous in the latent belief space. Coupled with
Theorem C.7, this result allows to show that whenever two pairs of histories are encoded to close representations, their values
(i.e., the return obtained from that history points) are guaranteed to be close as well whenever the losses introduced in Sec. 3.2
are minimized and go to zero. Phrased differently, this Theorem ensures that the representation induced by our encoder is suitable
to optimize the value function since the distance between beliefs in the latent space characterizes the distance of behaviors of the
agent in the original environment. The latent belief space thus captures the necessary information to learn a policy that optimizes
the expected return.

Definition C.8 (Almost Lipschitzness). Let X be a measurable set equipped with a metric d : X Ñ r0,8q and f : X Ñ R.
We say that f is almost Lipschitz continuous (e.g., [45]) iff for all ϵ ą 0, there is a constant K ě 0 so that |fpx1q ´ fpx2q| ď

Kdpx1, x2q ` ϵ for any x1, x2 P X .

Notation 1 (Optimal value function). For any MDP M, let π‹ be an optimal policy of M, then we write V ‹ for Vπ‹ .

Lemma C.9. Let P “ xM,Ω,Oy be a POMDP with underlying MDP M “ xS,A,P,R, sI , γy. Assume that P is discrete,
i.e., S, A, and Ω are finite sets. Then, V ‹ is almost Lipschitz continuous.

Proof. Define V as the set of real-valued bounded functions V : B Ñ R and U : B ˆ A ˆ V as

Upb, a, V q “ RBpb, aq ` E
b1„PBp¨|b,aq

“

γV
`

b1
˘‰

.

The Bellman update operator is defined as U : V Ñ V as pUV qpbq “ maxaPA Upb, a, V q and is an isotone mapping that is a
contraction under the supremum norm with fixed point V ‹, i.e., V ‹ “ UV ‹ [34, 20, 38]. Furthermore, for any initial value
function V0 P V , the sequence resulting from value iteration (VI), Vi`1 “ UVi, converges to V ‹ (with linear convergence rate
γ [34]): for any ϵ1 ą 0, there is a i P N so that for all j ě i,

›

›Vj ´ V ‹
›

›

8
ď ϵ1. Now, let ϵ ą 0; in particular, the latter

statement holds for ϵ1 “ ϵ{2. Since the convergence of VI holds for any initial value, we assume that V0 P V has been chosen as
a piecewise linear convex (PWLC) function. Then, Vi is also PWLC [36, 35, 20]. Since S is discrete, the belief space B is the
standard |S|-dimensional simplex, so the domain of pViqiPN is compact, meaning that it is defined as a finite collection of linear
functions. Thus, pViqiPN is also 2K 1-Lipschitz: one just need take K 1 as the higher slope of these functions (in absolute value).
In consequence, for any pair of beliefs b1, b2 P B,

|V ‹pb1q ´ V ‹pb2q|

“ |V ‹pb1q ´ Vipb1q ` Vipb1q ´ Vipb2q ` Vipb2q ´ V ‹pb2q|

ď |V ‹pb1q ´ Vipb1q| ` |Vipb1q ´ Vipb2q| ` |Vipb2q ´ V ‹pb2q| (Triangular inequality)

ď2ϵ1 ` |Vipb1q ´ Vipb2q| (by the convergence of VI)
“ϵ` |Vipb1q ´ Vipb2q|

ďϵ`K ¨ dTV pb1, b2q, (with K “ 2K 1; since dTV pb1, b2q “ 1{2 }b1 ´ b2}1)

which means that V ‹ is almost Lipschitz, by definition.

Corollary C.10. When the temperature of the WAE-MDP and the variance of O go to zero, the optimal latent value function of
P is almost Lipschitz-continuous.

Proof. Assuming the WAE-MDP temperature goes to zero, the state space of P is discrete, d̄ “ 1‰, and Wd̄ “ dTV . Further-
more, O is deterministic as its variance goes to zero; therefore the set of observations of P can be limited to the set of images of
Oµ, which is finite since S is finite. Then Lemma C.9 can be applied.

Theorem C.11. Let π‹ be an optimal policy of the POMDP P , then for any couple of histories h1, h2 P pA ¨ Ωq
˚ mapped to

latent beliefs through φ˚ph1q “ b1 and φ˚ph2q “ b2 and any arbitrary error term ϵ ą 0, the belief representation induced by φ

24

yields the existence of a constant K ě 0 so that:

|Vπ‹ ph1q ´ Vπ‹ ph2q| ď KWd̄

`

b1, b2
˘

` ϵ`

LR ` Lφ

R `

´

K ` γKV ` R‹
¯

Lτ ` γKV ¨

´

LP ` Lφ

P
` LO

¯

1 ´ γ

´

Hπ‹ ph1q
´1

` Hπ‹ ph2q
´1

¯

when the WAE-MDP temperature as well as the variance of the observation decoder go to zero.

Proof. First, observe that for any history h P pA ¨ Ωq
˚,

ˇ

ˇVπ‹ phq ´ V π‹ phq
ˇ

ˇ ď Hπ‹ phq
´1

¨ Eh1„Hπ‹

ˇ

ˇVπ‹ ph1q ´ V π‹ ph1q
ˇ

ˇ (cf.
[13]). Therefore, we have:

|Vπ‹ ph1q ´ Vπ‹ ph2q|

“
ˇ

ˇVπ‹ ph1q ´ V π‹ ph1q ` V π‹ ph1q ´ V π‹ ph2q ` V π‹ ph2q ´ Vπ‹ ph2q
ˇ

ˇ

ď
ˇ

ˇVπ‹ ph1q ´ V π‹ ph1q
ˇ

ˇ `
ˇ

ˇV π‹ ph1q ´ V π‹ ph2q
ˇ

ˇ `
ˇ

ˇV π‹ ph2q ´ Vπ‹ ph2q
ˇ

ˇ (Triangular inequality)

ďHπ‹ ph1q
´1 E

h„Hπ‹

ˇ

ˇVπ‹ phq ´ V π‹ phq
ˇ

ˇ `
ˇ

ˇV π‹ ph1q ´ V π‹ ph2q
ˇ

ˇ ` Hπ‹ ph2q
´1 E

h„Hπ‹

ˇ

ˇVπ‹ phq ´ V π‹ phq
ˇ

ˇ

ď
ˇ

ˇV π‹ ph1q ´ V π‹ ph2q
ˇ

ˇ `

LR ` Lφ

R ` R‹
Lτ ` γKV ¨

´

LP ` Lφ

P
` Lτ ` LO

¯

1 ´ γ

´

Hπ‹ ph1q
´1

` Hπ‹ ph2q
´1

¯

(Thm. 3.2)

Now, let ϵ ą 0. Recall that the latent value function (defined over the latent belief space) is almost Lipschitz continuous
(Corollary C.10). In particular, for δ “ ϵ

p1`Hπ‹ ph1q´1`Hπ‹ ph2q´1q
, there is a K ě 0 so that for any b, b1 P B,

ˇ

ˇV ‹pbq ´ V ‹pb1q
ˇ

ˇ ď

KWd̄ pb, b1q ` δ. Then:
ˇ

ˇV ‹ph1q ´ V ‹ph2q
ˇ

ˇ

“
ˇ

ˇV ‹pτ˚ph1qq ´ V ‹pτ˚ph2qq
ˇ

ˇ

“
ˇ

ˇV ‹pτ˚ph1qq ´ V ‹pφ˚ph1qq ` V ‹pφ˚ph1qq ´ V ‹pφ˚ph2qq ` V ‹pφ˚ph2qq ´ V ‹pτ˚ph2qq
ˇ

ˇ

ď
ˇ

ˇV ‹pτ˚ph1qq ´ V ‹pφ˚ph1qq
ˇ

ˇ `
ˇ

ˇV ‹pφ˚ph1qq ´ V ‹pφ˚ph2qq
ˇ

ˇ `
ˇ

ˇV ‹pφ˚ph2qq ´ V ‹pτ˚ph2qq
ˇ

ˇ (Triangular inequality)

ďHπ‹ ph1q
´1 E

h„Hπ‹

ˇ

ˇV ‹pτ˚phqq ´ V ‹pφ˚phqq
ˇ

ˇ `
ˇ

ˇV ‹pb1q ´ V ‹pb2q
ˇ

ˇ ` Hπ‹ ph2q
´1 E

h„Hπ‹

ˇ

ˇV ‹pτ˚phqq ´ V ‹pφ˚phqq
ˇ

ˇ

“

´

Hπ‹ ph1q
´1

` Hπ‹ ph2q
´1

¯

E
h„Hπ‹

ˇ

ˇV ‹pτ˚phqq ´ V ‹pφ˚phqq
ˇ

ˇ `
ˇ

ˇV ‹pb1q ´ V ‹pb2q
ˇ

ˇ

ď

´

Hπ‹ ph1q
´1

` Hπ‹ ph2q
´1

¯

E
h„Hπ‹

rKWd̄ pτ˚phq, φ˚phqq ` δs `KWb

`

b1, b2
˘

` δ (V ‹ is almost Lipschitz)

“

´

Hπ‹ ph1q
´1

` Hπ‹ ph2q
´1

¯

pKLτ ` δq `KWb

`

b1, b2
˘

` δ

“

´

Hπ‹ ph1q
´1

` Hπ‹ ph2q
´1

¯

KLτ `KWb

`

b1, b2
˘

` δ
´

1 ` Hπ‹ ph1q
´1

` Hπ‹ ph2q
´1

¯

“

´

Hπ‹ ph1q
´1

` Hπ‹ ph2q
´1

¯

KLτ `KWb

`

b1, b2
˘

` ϵ

Putting all together, we have that for any ϵ ą 0, there exists a constant K ě 0 so that:

|Vπ‹ ph1q ´ Vπ‹ ph2q| ď KWd̄

`

b1, b2
˘

` ϵ`

LR ` Lφ

R `

´

K ` γKV ` R‹
¯

Lτ ` γKV ¨

´

LP ` Lφ

P
` LO

¯

1 ´ γ

´

Hπ‹ ph1q
´1

` Hπ‹ ph2q
´1

¯

D Algorithm

We describe the final WBU learning procedure in Algorithm 1. Note that they keyword Update means that we compute the
gradients of the input loss, and update the parameters of the neural networks of the pointed function/model accordingly.

Normalizing term. Given the set of parameters ι of φ, we minimize the KL divergence DKL by gradient descent on the Monte-
Carlo estimate of the divergence:

∇ιDKL

`

φ
`

bt, at, ot`1; ι
˘

∥ τ
`

bt, at, ot`1

˘˘

“

∇ι E
st`1„φpbt,at,ot`1;ιq

«

logφ
`

st`1 | bt, at, ot`1; ι
˘

´ log E
s„bt

Ppst`1 | s, atq ´ logOpot`1 | st`1q

ff

25

Notice that the first term of the divergence (the belief normalization term) of Eq. 9 does not depend on φ and thus yields zero
gradient. Nevertheless, we observed during our experiments that adding the normalizing term allows to stabilize and reduce the
variance of the belief loss.

Optimizing Wasserstein. To optimize the Wasserstein term of the belief losses, we follow the same learning procedure than [9,
Appenix A.5]: we introduce neural networks F♠ (for ♠ P tP,Ω u) that are trained to attain the supremum of the dual formulation
of the Wasserstein distance. To do so, we need enforce the Lipschitzness of F♠ and, as in [9], we do so via the gradient penalty
approach of [44], leveraging that any differentiable function is 1-Lipschitz iff it has gradients with norm at most 1 everywhere.
Finally, notice that we do not directly optimize the total variation distance of LO, but rather the Wasserstein; we take the usual
Euclidean distance as metric over Ω which is proven to be Lipschitz equivalent to a distance converging to the discrete metric as
the temperature of the WAE-MDP goes to zero [9, Appendix A.6] to recover dTV .

Algorithm 1: WASSERSTEIN BELIEF UPDATER

Input: Batch sizes BWBU, BWAE; global learning steps N ; no. of model updates per iteration NMODEL; your favorite collect
strategy πinit; replay buffer (RB) D; Lipschitz networks FP : S Ñ R, FΩ : Ω Ñ R; observation variance network
Oσ; and loss weights wR, wP

collect θ “ t si, oi, ai, ri, s
1
i, o

1
i u

Ninit
i“1 by executing πinit for Ninit steps; store θ in D

Ź Use the exploration policy πinit to collect transitions and initialize the RB
repeat N times

repeat NMODEL times
Ź Update the WAE-MDP model for NMODEL consecutive training steps
for i Ð 1 to BWAE do

xsi, oi, ai, ri, s
1
i, o

1
iy „ D Ź Sample a transition from the RB

s1 Ð ϕps1
i, o

1
iq Ź Embed xs1

i, o
1
iy to the latent space

õ1
i „ Op¨ | s1q Ź Observe the resulting latent state via O

LWAE Ð compute the WAE-MDP loss on transition batch t si, oi, ai, ri, s
1
i, o

1
i u

BWAE
i“1

Update the WAE-MDP components (in particular, those of Eq. 2) by minimizing LWAE

LO Ð 1{BWAE ¨
řBWAE

i“1 rFΩpo1
iq ´ FΩpõ1

iqs Ź Observation loss
Update FΩ by maximizing LO and enforcing its 1-Lipschizness w.r.t. metric dΩ
Update Oσ by minimizing LO

for i Ð 1 to BWBU do
s0 Ð sI ; s0 Ð sI ; b0 Ð δs0 ; β0 Ð βI Ź βI is arbitrary, e.g., zeroes
for t Ð 0 to T do

at „ πp¨ | βtq Ź Produce the action at according to the sub-belief βt
execute a in the environment, receive reward rt, and perceive the next state-observation xst`1, ot`1y

store the transition xst, ot, at, rt, st`1, ot`1y into D
βt`1 Ð φsubpsgpβtq, at, ot`1q Ź Update the sub-belief; sg is stop gradients
bt`1 Ð Mpβt`1q Ź Retrieve the belief distribution bt`1 via the MAF M
st`1 „ bt`1 Ź Believe the next latent state
Ź Marginalize the next latent state distribution w.r.t. the current belief
for j Ð 1 to BNEXT do

s „ bt; Lj

logP
Ð

“

logPpst`1 | s, atq ´ logBNEXT

‰

Li,t
KL Ð bt`1pst`1q ´ LSEptLj

logP
u
BNEXT

j“1 q ´ logOpot`1 | st`1q

Ź Pointwise decomposition of Eq. 9: divergence with the belief update rule
Li,t

R Ð
ˇ

ˇRpϕpst, otq, atq ´ Rpst, atq
ˇ

ˇ Ź Latent reward regularizer
s1 „ Pp¨ | st, atq

Ź Transition to the next latent state from the current believed latent state
Li,t

P
Ð rFPpϕpst`1, ot`1qq ´ FPps1qs Ź Latent transition regularizer

Update FP by maximizing
řBWBU

i“1

řT´1
t“0 Li,t

P
and enforcing its 1-Lipschitzness w.r.t. latent metric d̄

Update φsub and M by minimizing 1{pBWBU`T q

řBWBU
i“1

řT´1
t“0 pLi,t

KL ` wR ¨ Li,t

R ` wP ¨ Li,t

P
q

Update π by minimizing the A2C loss on the batch tβi
0:T , a

i
0:T´1, r

i
0:T´1 u

BWBU

i“1

function Op¨ | sq Ź psmoothq Observation Filter
µ Ð Ōµpsq;σ Ð Oσpsq Ź Decode the observation of s; get the standard deviation of the reconstruction
return N pµ, σ2q

26

E Hyperparameters

Table 1 provides the range of hyperparameters used in the search, along with the selected values for each environment. The
hyperparameter search was performed using OPTUNA [43]. Pre-training of the WAE-MDP involved collecting 10240 transitions
with a random policy and performing 200 training steps. These pre-training transitions are taken into account in the reported
results.

Additionally, Table 2 (for R-A2C) and Table 3 (for DVRL) present the specific hyperparameters used for each algorithm. A grid
search was conducted over all possible combinations for both baselines. The hidden size of all neural networks was set to 128
neurons and two hidden layers (except for the sub-belief encoder which uses three) without further tuning. The experiments were
carried out using 16 parallel environments. The original implementation of DVRL and their version of R-A2C were used in this
study.

We ran the experiments on a cluster composed of Intel Xeon Gold 6148 CPU.

Table 1: Range of hyperparameter search and selection per enviroment.
Range RepeatPrevious StatelessCartpole NoisyStatelessCartpole

WAE Updates per Belief Update 1-2 2 1 1
Activation function leaky relu, elu elu leaky relu leaky relu
Activation function lipshitz leaky relu, smooth elu leaky relu leaky relu leaky relu

Policy config
Learning rate 1.e-4, 3.e-4, 5.e-4, 1.e-3 1.e-4 1.e-4 1.e-4
λ 0.95, 1. 0.95 0.95 1.
Clip norm 1, 10 1 1 10

Belief config
Loss factor 1.e-5, 1.e-4, 1.e-3, 1.e-2, .1, 1. 1.e-5 1.e-4 1.e-2
Clip Norm 1, 10. 1 1 10
Filter variance min 1.e-2, 1.e-3, 1.e-4, 5.e-5 1.e-2 1.e-4 1.e-2
Normalize log obs filter True, False True True False
Sub belief prior temperature 0.33, .5, 0.66, .75, .9, .99 0.99 0.5 0.99
Reward loss scale factor 0, 0.1, 1., 10., 20., 50., 100. 50 0 20
Transition loss scale factor 0, 0.1, 1., 10., 20., 50., 100. 50 0 100
Buffer size 4096, 8192, 16384, 32768 32768 4096 4096
Use normalization term True, False True True True

WAE config
Latent state size RP: 18Ñ25; Cartpole: 5Ñ10 22 7 8
Minimizer learning rate 1.e-4, 3.e-4, 5.e-5, 1.e-3 1.e-4 5.e-5 1.e-4
Maximizer learning rate 1.e-4, 3.e-4, 5.e-5, 1.e-3 1.e-3 5.e-5 1.e-3
State encoder temperature 0.33, .5, 0.66, .75, .9, .99 0.33 0.33 0.5
State prior temperature 0.33, .5, 0.66, .75, .9, .99 0.99 0.99 0.75
Local transition loss scaling 10., 25., 50., 75., 80. 75 10 25
Steady state scaling 10., 25., 50., 75., 80. 75 25 75
N critic update 5, 10 5 10 10
Batch size 128, 256 256 128 128
Clip grad 1, 10. 100. 10 1 100
Cost function l22, l2 l2 l2 l2
State reconstruction weight vs obs 1, 2, 5, 10 10 5 5
Observation regularizer True, False True False True
Observation reg. same optimizer True, False True False
Observation reg. min learning rate 1.e-4, 3.e-4, 5.e-5, 1.e-3 1.e-4
Observation reg. max learning rate 1.e-4, 3.e-4, 5.e-5, 1.e-3 1.e-3
Observation reg. gradient penalty 50, 100, 500, 1000 100 100

Table 2: R-A2C hyperparameters
Range RepeatPrevious StatelessCartpole NoisyStatelessCartpole

Optimizer Adam, RMSProp Adam RMSProp RMSProp
Gradient clipping 0.5, 1., 10. 10. 1.0 10.
Learning rate 3.e-5, 1.e-4, 3.e-4, 5.e-4, 1.e-3 5.e-4 5.e-4 1.e-4

27

Table 3: DVRL hyperparameters
Range RepeatPrevious StatelessCartpole NoisyStatelessCartpole

Optimizer Adam, RMSProp RMSProp Adam Adam
Gradient clipping 0.5, 1., 10. 1. 0.5 1.
Learning rate 3.e-5, 1.e-4, 3.e-4, 5.e-4, 1.e-3 3.e-5 5.e-4 1.e-3

Encoding loss factor 1,.1,.5,.05 1. 0.5 1.
Number of particles 5,10,15 10 10 5

Additional References
[43] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-generation hyperpa-

rameter optimization framework. CoRR, abs/1907.10902, 2019.

[44] Ishaan Gulrajani, Faruk Ahmed, Martı́n Arjovsky, Vincent Dumoulin, and Aaron C. Courville. Improved training of wasser-
stein gans. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan,
and Roman Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Conference on Neural Infor-
mation Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 5767–5777, 2017.

[45] Robert J. Vanderbei. Uniform continuity is almost lipschitz continuity. Technical Report SOR-91–11, Statistics and Opera-
tions Research Series, Princeton University, 1991.

28

	Introduction
	Background
	Probability Distributions and Discrepancy Measures
	Decision Making under Uncertainty
	Latent Space Modeling

	Learning the dynamics
	The Latent POMDP Encoding
	Losses and Theoretical Guarantees

	Learning to Believe
	Experiments
	Conclusion
	Dirac Measures
	Proof of Lemma 3.1: Stationarity over Histories
	Preliminaries
	History Unfolding
	Existence of a Stationary Distribution over Histories

	Value Difference Bounds
	Value Functions
	Local and Belief Losses
	Warm Up: Some Wasserstein Properties
	Model Quality Bound: Time to Raise your Expectations
	Representation Quality Bound

	Algorithm
	Hyperparameters

