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Abstract
Reinforcement learning from human feedback
(RLHF), which aligns a diffusion model with in-
put prompt, has become a crucial step in building
reliable generative AI models. Most works in
this area use a discrete-time formulation, which is
prone to induced discretization errors, and often
not applicable to models with higher-order/black-
box solvers. The objective of this study is to de-
velop a disciplined approach to fine-tune diffusion
models using continuous-time RL, formulated as
a stochastic control problem with a reward func-
tion that aligns the end result (terminal state) with
input prompt. The key idea is to treat score match-
ing as controls or actions, and thereby making
connections to policy optimization and regular-
ization in continuous-time RL. To carry out this
idea, we lay out a new policy optimization frame-
work for continuous-time RL, and illustrate its
potential in enhancing the value networks design
space via leveraging the structural property of
diffusion models. We validate the advantages of
our method by experiments in downstream tasks
of fine-tuning large-scale Text2Image models of
Stable Diffusion v1.5.

1. Introduction
Diffusion models (Sohl-Dickstein et al., 2015), with the
capacity to turn a noisy/non-informative initial distribution
into a desired target distribution through a well-designed
denoising process (Ho et al., 2020; Song et al., 2020; 2021b),
have recently found applications in diverse areas such as
high-quality and creative image generation (Ramesh et al.,
2022; Shi et al., 2020; Saharia et al., 2022; Rombach et al.,
2022), video synthesis (Ho et al., 2022), and drug design
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(Xu et al., 2022). And, the emergence of human-interactive
platforms like ChatGPT (Ouyang et al., 2022) and Stable
Diffusion (Rombach et al., 2022) has further increased the
demand for diffusion models to align with human preference
or feedback.

To meet such demands, (Hao et al., 2022) proposed a natu-
ral way to fine-tune diffusion models using reinforcement
learning (RL, (Sutton & Barto, 2018)). Indeed, RL has al-
ready demonstrated empirical successes in enhancing the
performance of LLM (large language models) using hu-
man feedback (Christiano et al., 2017; Ouyang et al., 2022;
Bubeck et al., 2023), and (Fan & Lee, 2023) is among the
first to utilize RL-like methods to train diffusion models for
better image synthesis. Moreover, (Lee et al., 2023; Fan
et al., 2023; Black et al., 2023) have improved the text-to-
image (T2I) diffusion model performance by incorporating
reward models to align with human preference (e.g., CLIP
(Radford et al., 2021), BLIP (Li et al., 2022), ImageReward
(Xu et al., 2024)).

Notably, all studies referenced above that combine diffusion
models with RL are formulated as discrete-time sequential
optimization problems, such as Markov decision processes
(MDPs, (Puterman, 2014)), and solved by discrete-time RL
algorithms such as REINFORCE (Sutton et al., 1999) or
PPO (Schulman et al., 2017).

Yet, diffusion models are intrinsically continuous-time as
they were originally created to model the evolution of ther-
modynamics (Sohl-Dickstein et al., 2015). Notably, the
continuous-time formalism of diffusion models provides
a unified framework for various existing discrete-time al-
gorithms as shown in (Song et al., 2021b): the denoising
steps in DDPM (Ho et al., 2020) can be viewed as a discrete
approximation of a stochastic differential equation (SDE)
and are implicitly score-based under a specific variance-
preserving SDE (Song et al., 2021b); and DDIM (Song
et al., 2020), which underlies the success of Stable Diffu-
sion (Rombach et al., 2022), can also be seen as a numerical
integrator of an ODE (ordinary differential equation) sam-
pler (Salimans & Ho, 2022). Awareness of the continuous-
time nature informs the design structure of the discrete-time
SOTA large-scale T2I generative models (e.g.,(Dhariwal &
Nichol, 2021; Rombach et al., 2022; Esser et al., 2024)), and
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enables simple controllable generations by classifier guid-
ance to solve inverse problems (Song et al., 2021b;a). It also
motivates more efficient diffusion models with continuous-
time samplers, including the ODE-governed probability
(normalizing) flows (Papamakarios et al., 2021; Song et al.,
2021b) and rectified flows (Liu et al., 2022; 2023) underpin-
ning Stable Diffusion v3 (Esser et al., 2024). A discrete-time
formulation of RL algorithms for fine-tuning diffusion mod-
els, if/when directly applied to continuous-time diffusion
models via discretization, can nullify the models’ contin-
uous nature and fail to capture or utilize their structural
properties.

For fine-tuning diffusion models, discrete-time RL algo-
rithms (such as DDPO) require a prior chosen time dis-
cretization in sampling. We thus examine the robustness
of a fine-tuned model to the inference time discretization,
and observe an “overfitting” phenomenon as illustrated in
Figure 1. Specifically, improvements observed during infer-
ence at alternative discretization timesteps (25 and 100) are
significantly smaller than that of sampling timestep (50) in
RL.

Figure 1. Reward curve of model checkpoints sampling under dif-
ferent discretization steps (25, 50, 100): After training Stable
Diffusion v1.4 for a fixed prompt with 60 training steps by DDPO
(Black et al., 2023) with 50 discretization steps, the average re-
ward of images generated by the checkpoints obtained (under 50
discretization steps) evaluated by ImageReward (Xu et al., 2024)
increases by 0.046, while the average reward of images generated
with 100 discretization steps only increases by less than 0.016.

In addition, for high-order solvers (such as 2nd order Heun
used in EDM (Karras et al., 2022)), discrete-time RL meth-
ods will require solving a high-dimension root-finding prob-
lem for each inference step, which is inefficient in practice.

Main contributions. To address the above issues, we de-
velop a unified continuous-time RL framework to fine-tune
score-based diffusion models.

Our first contribution is a continuous-time RL framework for
fine-tuning diffusion models by treating score functions as
actions. This framework naturally accommodates discrete-
time diffusion models with any solver as well as continuous-
time diffusion models, and overcomes the afore-mentioned
limitations of discrete-time RL methods. (See Section 3.)

Second, we illustrate the promise of leveraging the structural

property of diffusion models to generate tractable optimiza-
tion problems and to enhance the design space of value
networks. This includes transforming the KL regularization
to a tractable running reward over time, and a novel design
of value networks that involves “sample prediction” (also
known as x-prediction in diffusion literature) by sharing
parameters with policy networks and fine-tuned diffusion
models. Through experiments, we demonstrate the drastic
improvements over naive value network designs.

Third, we provide a new theory for RL in continuous-time
and space, which leads to the first scalable policy optimiza-
tion algorithm (for continuous-time RL), along with esti-
mates of policy gradients via generated samples. Compared
with existing works in continuous-time PPO, we consider
a special case of state-independent diffusion coefficients
cater for the diffusion models design, which yields sharper
bounds and closed-form advantage-rate functions instead of
estimations. (See Section 4.)

1.1. Related Works

Papers that relate to our work are briefly reviewed below.

Continuous-time RL. (Wang et al., 2020) models the noise
or randomness in the environment dynamics as following an
SDE, and incorporates an entropy-based regularizer into the
objective function to facilitate the exploration-exploitation
tradeoff. Follow-up works include designing model-free
methods and algorithms under either finite horizon (Jia
& Zhou, 2022a;b; 2023) or infinite horizon (Zhao et al.,
2024b).

RL for fine-tuning T2I diffusion models. DDPO (Black
et al., 2023) and DPOK (Fan et al., 2023) both discrete the
time steps and fine-tune large pretrained T2I diffusion mod-
els through the reinforcement learning algorithms. More-
over, (Ren et al., 2024) introduces DPPO, a policy gradient-
based RL framework for fine-tuning diffusion-based policies
in continuous control and robotic tasks.

Other Preference Optimizations for diffusion models.
(Wallace et al., 2024) proposes an adaptation of Direct Pref-
erence Optimization (DPO) for aligning T2I diffusion mod-
els like Stable Diffusion XL to human preferences. (Yuan
et al., 2024) proposes a novel fine-tuning method for diffu-
sion models that iteratively improves model performance
through self-play, where a model competes with its previous
versions to enhance human preference alignment and visual
appeal. See Section 4.5 in (Winata et al., 2024) for a review.

Stochastic Control. (Uehara et al., 2024), which also for-
mulated the diffusion models alignment as a continuous-
time stochastic control problem with a different parameter-
ization of the control; (Tang, 2024) also provides a more
rigorous review and discussion. (Domingo-Enrich et al.,
2024) proposes to use adjoint methods instead to solve the
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similar control problem. In a concurrent work to ours, (Gao
et al., 2024) uses q-learning (Jia & Zhou, 2023) for infer-
ring the score of diffusion models (instead of fine tuning a
pretrained model), whose formulation relies on an earlier
version (Zhao et al., 2024a) of this paper.

The rest of the paper is organized as follows. In Sec-
tion 2, we review the preliminaries of continuous-time RL
and score-based diffusion models. Section 3 presents our
continuous-time framework for fine-tuning diffusion mod-
els using RLHF, with the theory and algorithm for policy
optimization detailed in Section 4, and the effectiveness of
the algorithm illustrated in Section 5. Concluding remarks
and discussions are presented in Section 6.

2. Preliminaries
2.1. Continuous-time RL

Diffusion Process. We consider the state space Rd, and
denote by A the action space. Let π(· | t, x) be a feedback
policy given t ∈ [0, T ] and x ∈ Rd. The state dynamics
(Xπ

t , 0 ≤ t ≤ T ) is governed by the following SDE:

dXπ
t = b (t,Xπ

t , at) dt+ σ(t)dBt, Xπ
0 ∼ ρ, (1)

where (Bt, t ≥ 0) is a d-dimensional Brownian motion;
b : R+ × Rd × A → Rd and σ : R+ → R+

1 are given
functions; the action at follows the distribution π (· | t,Xπ

t )
by external randomization; and ρ is the initial distribution
over the state space.

Performance Metric. Our goal is to find the optimal feed-
back policy π∗ that maximizes the expected reward over a
finite time horizon:

V ∗ :=max
π

E

[∫ T

0

r (t,Xπ
t , a

π
t ) dt+ h(Xπ

T ) | Xπ
0 ∼ ρ

]
,

(2)
where r : R+ × Rd × A → R and h : Rd → R are the
running and terminal rewards respectively. Given a policy
π(·), let b̃(t, x, π(·)) :=

∫
A b(t, x, a)π(a)da. We consider

the following equivalent representation of (1):

dX̃t = b̃
(
t, X̃t, π(· | t, X̃t)

)
dt+ σ(t)dB̃t, X̃0 ∼ ρ,

(3)
in the sense that there exists a probability measure P̃ that sup-
ports a d-dimensional Brownian motion (B̃t, t ≥ 0), and
for each t ≥ 0, the distribution of X̃t under P̃ agrees with
that of Xt under P defined by (1). Note that the dynamics
(3) does not require external randomization. Accordingly,
set r̃(t, x, π) :=

∫
A r(t, x, a)π(a)da.

1For our applications here we assume that the diffusion co-
efficient σ(t) only depends on time t. Note, however, that the
general continuous-time RL theory also holds for time-, state- and
action-dependent σ(t, x, a), see (Jia & Zhou, 2022a;b).

The value function associated with the feedback policy
{π(· | t, x) : x ∈ Rd} is

V (t, x;π) := E

[∫ T

t

r (s,Xπ
s , a

π
s ) ds+ h (Xπ

T ) | Xπ
t = x

]

= E

[∫ T

t

r̃(s, X̃π
s , π(·|s, X̃π

s ))ds+ h(X̃π
T ) | X̃π

t = x

]
(4)

The performance metric is V π :=
∫
Rd V (0, x;π)ρ(dx), and

V ∗ := maxπ V
π. The task is to construct a sequence of

(feedback) policies πk, k = 1, 2, . . . recursively such that
the performance metric is non-decreasing in k.

q-Value. Following the definition in (Jia & Zhou, 2023),
given a policy π and (t, x, a) ∈ [0,∞) × Rn × A, we
construct a “perturbed” policy, denoted by π̂: It takes the
action a ∈ A on [t, t + ∆t), and then follows π on [t +
∆t,∞). Specifically, the corresponding state process X π̂,
given X π̂

t = x, breaks into two pieces: on [t, t+∆t), it is
Xa following (1) with at ≡ a (i.e., π(t, x, a) = 1); while
on [t +∆t,∞), it is Xπ following (3) but with the initial
time-state pair

(
t+∆t,Xa

t+∆t

)
. The q-value measures the

rate of the performance difference between the two policies
when ∆t→ 0, and is shown in (Jia & Zhou, 2023) to take
the following form:

q(t, x, a;π) =
∂V

∂t
(t, x;π)+

H
(
t, x, a,

∂V

∂x
(t, x;π) ,

∂2V

∂x2
(t, x;π)

)
, (5)

where H(t, x, a, y, A) := b(t, x, a) · y + 1
2σ

2(t)
∑

i Aii +
r(t, x, a) is the (generalized) Hamilton function in stochas-
tic control theory (Yong & Zhou, 1999).

2.2. Score-Based Diffusion Models

Forward and Backward SDE. We follow the presentation
in (Tang & Zhao, 2024). Consider the following SDE that
governs the dynamics of a process (Xt, 0 ≤ t ≤ T ) in Rd

(Song et al., 2021b),

dXt = f(t,Xt)dt+ g(t)dBt, X0 ∼ pdata(·), (6)

where (Bt, t ≥ 0) is a d-dimensional Brownian motion,
f : R+ × Rd → Rd and g : R+ → R+ are two given
functions (up to the designer to choose), and the initial state
X0 follows a distribution with density pdata(·), which is
shaped by data yet unknown a priori. Denote by pt(·) the
probability density of Xt.

Run the SDE in (6) until a given time T > 0, to obtain
XT ∼ p(T, ·). Next, consider the “time reversal” of Xt,
denoted X rev

t , such that the distribution of X rev
t agrees with
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that of XT−t on [0, T ]. Then, (X rev
t , 0 ≤ t ≤ T ) satisfies

the following SDE under mild conditions on f and g:

dX rev
t =

(
−f(T − t,X rev

t ) + g2(T − t)∇ log pT−t(X
rev
t )
)

dt+ g(T − t)dBt, (7)

where∇ log pt(x) is known as Stein’s score function. Below
we will refer to the two SDE’s in (6) and (7), respectively,
as the forward and the backward SDE.

For sampling from the backward SDE, we replace pT (·)
with some pnoise(·) as an approximation. The initialization
pnoise(·) is commonly independent of pdata(·), which is the
reason why diffusion models are known for generating data
from “noise”.

Score Matching. Since the score function ∇x log pt(x) in
(7) is unknown, the idea is to learn the score sθpre(t, x) ≈
∇x log pt(x), which is often referred to as pretraining. It
boils down to solving the following denoising score match-
ing (DSM) problem (Vincent, 2011) 2:

JDSM(θ) = E
[
λ(t) ∥sθ(t, xt)−∇ log pt(xt|x0)∥22

]
, (8)

where xt ∼ pt(·|x0) and λ : [0, T ] → R>0 is a chosen
positive-valued weight function.

Inference Process. Once the best approximation sθpre is
obtained, we use it to replace ∇ log pt(x) in (7). The cor-
responding approximation to the reversed process X rev

t , de-
noted as X←t , then follows the SDE:

dX←t =
(
−f(T − t,X←t ) + g2(T − t)sθpre(T − t,X←t )

)
dt

+ g(T − t)dBt, (9)

with X←0 ∼ pnoise(·). At time t = T , the distribution of X←T
is expected to be close to pdata(·). The well-known DDPM
(Ho et al., 2020) can be viewed as a discretized version of
the SDE in (9). This has been established in (Song et al.,
2021b; Salimans & Ho, 2022; Zhang & Chen, 2022; Zhang
et al., 2022); also refer to further discussions in Appendix
A. Throughout the rest of the paper, we will focus on the
continuous formalism (via SDE).

3. Continuous-time RL for Diffusion Models
Fine Tuning

Here we formulate the task of fine-tuning diffusion models
as a continuous-time stochastic control problem. The high-
level idea it to treat the score function approximation as a
control process applied to the backward SDE.

2There are several existing score matching methods, among
which the DSM is the most tractable one because pt(·|x0) is ac-
cessible for a wide class of diffusion processes; in particular, it is
conditionally Gaussian if (6) is a linear SDE (Song et al., 2021b).

Scores as Actions. First, to broaden the application context
of the diffusion model, we add a parameter c to the score
function, interpreted as a “class” index or label (e.g., for
input prompts). Then, the backward SDE in (9) becomes:

dX←t =
(
−f(T − t,X←t ) + g2(T − t)sθpre(T − t,X←t , c)

)
dt+ g(T − t)dBt. (10)

Next, comparing the continuous RL process in (3) and the in-
ference process (10), we choose b and σ in the RL dynamics
in (3) as:{

σ(t) := g(T − t),

b (t, x, a) := −f(T − t, x) + g2(T − t)a.
(11)

In the sequel, we will stick to this definition of b and σ.

Define a specific feedback control, a
θpre
t = sθpre(T −

t,X←t , c), and the backward SDE in (10) is expressed as:

dX←t = b
(
t,X←t , a

θpre
t

)
dt+ σ(t)dBt. (12)

This way, the score function is replaced by the action (or
control/policy), and finding the optimal score becomes a
policy optimization problem in RL. Denote by pθpre(t, ·, c)
the probability density of X←t in (12).

Exploratory SDEs. As we will deal with the time-reversed
process X←t exclusively from now on, the superscript ← will
be dropped to lighten the notation. To enhance exploration,
we will use a Gaussian control:

aθt ∼ πθ(· | t,Xθ
t , c) = N(µθ(t,Xθ

t , c),Σt). (13)

Specifically, the dependence on θ is through that of the mean
function µθ, while the covariance matrix Σt only depends
on time t, representing a chosen exploration level at t. For
brevity, write Xθ

t for the (time-reversed) process Xπθ

t driven
by the policy πθ. Then (Xθ

t , 0 ≤ t ≤ T ) is governed by
the SDE:

dXθ
t =

[
−f(T − t,Xθ

t ) + g2(T − t)µθ(t,Xθ
t , c)

]
dt

+ g(T − t)dBt, Xθ
0 ∼ ρ. (14)

Denote by pθ(t, ·, c) the probability density of Xθ
t .

Objective Function. The objective function of the RL
problem consists of two parts. The first part is the terminal
reward, i.e., a given reward model (RM) that is a function of
both XT and c. For instance, if the task is T2I generation,
then RM(XT , c) represents how well the generated image
XT aligns with the input prompt c. The second part is a
penalty (i.e., regularization) term, which takes the form of
the KL divergence between pθ(T, ·, c) and its pretrained
counterpart. This is similar in spirit to previous works on
fine-tuning diffusion models by discrete-time RL, see e.g.,
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(Ouyang et al., 2022; Fan et al., 2023). As for exploration,
note that it has been represented by the Gaussian noise in
aθt ; refer to (13), and more on this below. So, here is the
problem we want to solve:

max
θ

E
[
RM(c,Xθ

T )− βKL
(
pθ(T, ·, c)∥pθpre(T, ·, c)

)]
,

(15)
where β > 0 is a (given) penalty cost.

To connect the problem in (15) to the objective function
of the RL model in (2), we need the following explicit
expression for the KL divergence term in (15).

Theorem 3.1. For any given c, the KL divergence between
pθ and pθpre is:

KL(pθ(T, ·, c)∥pθpre(T, ·, c))

= E
∫ T

0

g2(T − t)

2
∥µθ(t,Xθ

t , c)− µθpre(t,Xθ
t , c)∥2dt.

(16)

Proof Sketch. The full proof is given in Appendix B.1.

As a remark, it is important to use the “reverse”-KL diver-
gence KL

(
pθ(T, ·, c)∥pθpre(T, ·, c)

)
, because it yields the

expectation under the current policy πθ that can be estimated
from sample trajectories. By Theorem 3.1, the objective
function in (15) is equivalent to the following:

ηθ :=E
∫ T

0

−β

2
g2(T − t)∥µθ

t − µ
θpre
t ∥2︸ ︷︷ ︸

r(t,Xθ
t ,a

θ
t )

dt

+ ERM(Xθ
T , c)︸ ︷︷ ︸

h(Xθ
T ,c)

, (17)

where we abbreviate µθ(t,Xθ
t , c) and µθpre(t,Xθ

t , c) by µθ
t

and µ
θpre
t respectively. Thus, maximizing the objective

function in (15) aligns with the RL model formulated in (2).
We can also define the corresponding value function as:

V θ(t, x; c) =E
[ ∫ T

t

−β

2
g2(T − t)∥µθ

t − µ
θpre
t ∥2dt

+ RM(Xθ
T , c) | Xθ

t = x

]
, (18)

Value Network Design. We also adopt a function approxi-
mation to learn the value function (i.e., the critic). For the
value function V θ(t, x; c) associated with policy πθ, there
is the boundary condition:

V θ(T, x; c) = E
[
RM(Xθ

T , c) | Xθ
T = x

]
= RM(x, c).

(19)
To meet this condition, we propose the following
parametrization that leverages the structural property of

diffusion models:

V θ(t, x; c) ≈ Vθ
ϕ(t, x; c) :=

cskip(t) · RM(x̂θ(t, x, c))︸ ︷︷ ︸
reward mean predictor

+ cout(t) · Fϕ(t, x, c)︸ ︷︷ ︸
residual term corrector

, (20)

where Vθ
ϕ denotes a family of functions parameterized by

(θ, ϕ), and

x̂θ(t, x, c) =
1

αt

(
σ2
t sθ(t, x, c) + x

)
, (21)

with αt and σt being noise schedules of diffusion models
(see Appendix A.2 for details). When θ = θpre, x̂θ predicts
a denoised sample given the current x and the score estimate
sθ(t, x, c), which is known as Tweedie’s formula. To treat
the second term in (18), our intuition comes from that

RM(E(XT | Xt)) ≈ E(RM(XT ) | Xt), (22)

if we are allowed to exchange the conditional expectation
and the reward model score (though generally it’s not true).
Fϕ(t, x, c) are effectively approximations to the residual
term, which can be seen as a composition of the possible
reward error and the first term in (18).

We refer these two parts to as reward mean predictor and
residual corrector. There cskip(t) and cout(t) are differen-
tiable functions such that cskip(T ) = 1 and cout(T ) = 0, so
the boundary condition (19) is satisfied. Notably, similar
parametrization trick has also been used to train successful
diffusion models such as EDM (Karras et al., 2022) and
consistency models (Song et al., 2023).

For learning the value function, we use trajectory-wise
Monte Carlo estimation to update ϕ by minimizing the mean
square error (MSE). In our experiments, we observe that
choosing cskip(t) = cos( π

2T t) and cout(t) = sin( π
2T t) yields

the smallest loss (see Table 1). Also refer to Section 5.2 for
more architecture details.

Figure 2. Pretraining Value Function with Different Architecture.

Note that it is possible to learn the value function by either
solving the associated Hamilton-Jacobi-Bellman equation,
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Architecture Predictor Corrector cout MSE

Baseline RM(x, c) F (x, c) 1-cos( π
2T

t) 2.63
Org+Denoised RM(x, c) F (x̂θ, c) 1-cos( π

2T
t) 2.51

Denoised+Orig RM(x̂θ, c) F (x, c) 1-cos( π
2T

t) 0.67
Denoised+Denoised RM(x̂θ, c) F (x̂θ, c) 1-cos( π

2T
t) 0.66

Denoised+Orig RM(x̂θ, c) F (x, c) sin( π
2T

t) 0.29

Table 1. Comparison of different architecture configurations: x̂θ is
abbreviated for x̂θ(t, x, c).

or minimizing Bellman’s error rate (which can be seen as the
continuous-time analog of temporal difference). However,
both approaches will yield a supervised learning objective
that contains the second-order derivative of the value func-
tion, which is hard to optimize. We leave for future work
the investigation of policy evaluation methods that are based
on partial differential equations or temporal difference rates.

4. Continuous-time Policy Optimization
To efficiently optimize the continuous-time RL problem
raised above, we further develop the theory of policy opti-
mization in continuous time and space for fine-tuning dif-
fusion models. Different from the general formalism in the
literature (Schulman et al., 2015; Zhao et al., 2024b), we
focus on the case of (1) KL regularized rewards, and (2)
state-independent diffusion coefficients in the continuous-
time setup, which yield new results not only in the analysis
but also in the resulting algorithms.

Policy Gradient. We first show that the continuous-time
policy gradient can be directly computed without any prior
discretization of the time variable.
Theorem 4.1. The gradient of an admissible policy πθ

parameterized by θ takes the form:

∇θV
θ = E

[∫ T

0

∇θ log π
θ(aθt |t,Xθ

t )q(t,X
θ
t , a

θ
t ;π

θ)dt

]
,

(23)
where πθ, aθt and q are as defined in (13) and (5).

Proof Sketch. The full proof is given in Appendix B.2.

Note that the only terms in the q-value function that involve
action a are (the second order term is irrelevant to action a):

g2(T − t)a
∂V θ

∂x
(t, x) =: q̃θ(t, x, a).

In addition, the value function approximation can be com-
puted by Monte Carlo or the martingale approach as in Jia &
Zhou (2022a), and then ∂V

∂x can be evaluated by backward
propagation. Since the reward can be non-differentiable, and
also for the sake of efficient computation, we can approxi-
mate q̃θ(t, x, a) ≈

(
V (t, x+ η g2(T − t)a)− V (t, x)

)
/η,

where η is a scaling parameter.

Continuous-time TRPO/PPO. We also derive the
continuous-time finite horizon analogies of TRPO and PPO
for the discrete RL in the finite horizon setting (Schulman
et al., 2015; 2017), and in the continuous-time infinite hori-
zon setup (Zhao et al., 2024b). The Performance Difference
Lemma (PDL) is as follows.

Lemma 4.2. We have that:

V θ̂ − V θ = E
∫ T

0

q(t,X θ̂
t , a

θ̂
t ;π

θ)dt. (24)

The proof is similar to Theorem 2 in (Zhao et al., 2024b).
In the same essence of (Kakade & Langford, 2002; Schul-
man et al., 2015; Zhao et al., 2024b), we define the local
approximation function to V θ̂ by

Lθ(θ̂) = V θ + E
∫ T

0

πθ̂(aθt |t,Xθ
t )

πθ(aθt |t,Xθ
t )

q(t,Xθ
t , a

θ
t ;π

θ)dt. (25)

Observe that

(i) Lθ(θ) = V θ, (ii) ∇θ̂L
θ(θ̂) |θ̂=θ= ∇θ̂V

θ̂ |θ̂=θ,

i.e., the local approximation function and the true perfor-
mance objective share the same value and the same gradi-
ent with respect to the policy parameters. Thus, the local
approximation function can be regarded as the first order
approximation to the performance metric.

Now we provide analysis on the gap V θ̂ − Lθ(θ̂), which
guarantees the policy improvement (similar to approaches
for discounted/average reward MDP (Schulman et al., 2015;
Zhang & Ross, 2021), and for continuous-time RL in the
infinite horizon (Zhao et al., 2024b)).

Assumption 4.3. (Bounded Reward and q function): There
exists M > 0 such that for any c, x and a, |RM(x, c)| ≤M
and |q(t, x, a;πθ)| ≤M for any t, πθ.

Theorem 4.4. Under Assumption 4.3, then for any policy θ̂

such that
∣∣ln( pθ̂(x)

pθpre (x)

)∣∣ is bounded, and KL(pθ ∥ pθ̂) ≤ 1,
there exists a constant C > 0 such that:

|V θ̂ − Lθ(θ̂)| ≤

C

(
E
∫ T

0

KL(πθ(·|t,Xθ
t )∥πθ̂(·|t,Xθ

t ))dt

) 1
2

. (26)

Proof Sketch. Different from the proofs in (Schulman et al.,
2015; Zhao et al., 2024b), which bound the difference
through PDL, our proof relies on the structural property
of diffusion models by bounding:

|V θ̂ − V θ| and |Lθ(θ̂)− V θ|

separately. The detailed proof is given in Appendix B.3.

By Theorem 4.4, we can apply the same technique as in PPO
(Schulman et al., 2017) by clipping the ratio and replacing q
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with q̃ (which is equivalent to adapting a baseline function).
This yields the policy update rule as:

θn+1 = max
θ

E
∫ T

0

min
(
ρθt q

θn
t , clip

(
ρθt , ϵ

)
qθnt

)
dt,

(27)
where the advantage rate function and the likelihood ratio
are defined by

qθnt = q̃(t,Xθn
t , aθnt ;πθ

n), ρθt =
πθ(aθnt |t,X

θn
t )

πθn(aθnt |t,X
θn
t )

.

The surrogate objective can then be optimized by stochastic
gradient descent. The pseudo-code of our algorithm is listed
in Appendix C.1.

5. Experiments
5.1. Enhancing Small-Steps Diffusion Models

Setup. We evaluate the ability of our proposed algorithm to
train short-run diffusion models with significantly reduced
generation steps T , while maintaining high sample quality.
In the experiment, we take T = 10. Our experiments are
conducted on the CIFAR-10 (32×32) dataset (Krizhevsky
et al., 2009). We fine-tune pretrained diffusion model back-
bone using DDPM (Ho et al., 2020). The primary evaluation
metric is the Fréchet Inception Distance (FID) (Heusel et al.,
2017), which measures the quality of generated samples.

To benchmark our method, we compare it against DxMI
(Yoon et al., 2024), which formulates the diffusion model
training as an inverse reinforcement learning (IRL) problem.
DxMI jointly trains a diffusion model and an energy-based
model (EBM), where the EBM estimates the log data den-
sity and provides a reward signal to guide the diffusion
process. To ensure a fair comparison, we replace the policy
improvement step in DxMI with our continuous-time RL
counterpart, maintaining consistency while evaluating the
effectiveness of our approach. We set the learning rate of
the value network to 2× 10−5 and U-net to 3× 10−7.

Result. Figure 3 shows our approach converges signifi-
cantly faster than DxMI, and achieves consistently lower
FID scores throughout training. The samples from the two
fine-tuned models are shown in Figures 4 and 5. In compar-
ison, the samples generated from the model fine-tuned by
continuous-time RL have clearer contours, better aligned
with real-world features, and exhibit superior aesthetic qual-
ity.

5.2. Fine-Tuning Stable Diffusion

Setup. We also validate our proposed algorithm for fine-
tuning large-scale T2I diffusion models, Stable Diffusion

Figure 3. Training curves of DxMI and continuous-time RL.

Figure 4. DxMI samples at the
6000-th step

Figure 5. Continuous-time RL
samples at the 6000-th step

Figure 6. We adopt the similar backbone of ImageReward for two
parts in value network, both by adding an MLP layer over the BLIP
encoded latents.

v1.5 3. We adopt the pretrained ImageReward (Xu et al.,
2024) as the reward signal during RL, as it has been shown
in previous studies to achieve better alignment with human
preferences to other metrics such as aesthetic scores, CLIP
and BLIP scores.

3https://huggingface.co/stable-diffusion-v1-5/stable-
diffusion-v1-5
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We train the value networks with full parameter tuning,
while we use LoRA (Hu et al., 2021) for tuning the U-nets
of diffusion models. We adopt a learning rate of 10−7 for
optimizing the value network, 3× 10−5 for optimizing the
U-net and β = 5 × 10−5 for regularization. We train the
models on 8 H200 GPUs with 128 effective batch sizes.

Value Network Architecture. Since we fix the reward
model as ImageReward, we design the value network by
using a similar backbone to the ImageReward model, which
is composed of BLIP and a MLP header (see Figure 6).
To ensure the boundary condition, we fix the parameters
(i.e., BLIP and MLP) in the left part (skyblue) of the value
network and only tune 30% of the parameters of BLIP in
the right part (green). The VAE Decoder on both parts is
fixed for efficiency and stabilized training.

As a remark, replacing x with xθ(t, x) in the “residual cor-
rector” leads to minimum gain, compared to the drastic
improvement brought forth by using xθ(t, x) as the input in
the “reward mean predictor”. See Figure 2 and Table 1 for
our ablation of network architecture and MSE statistics.

Policies trained by Continuous-time RL are robust to
time discretization. We find that the policies trained by
continuous-time RL achieve coherent performance in terms
of the reward mean evaluated by ImageReward. In Figure
7, three line plots that correspond to 25, 50, and 100 steps
almost always overlap after 20 epochs of training.

Figure 7. Performance of continuous-time RL’s checkpoints with
respect to discretization timesteps.

This showcases that our continuous-time RL trained policy
is robust to time discretization, which is consistent with our
theoretical analysis. Qualitative examples with the same
prompt generated by the base model, checkpoints of 50
steps and 100 steps after continuous-time RL training can
be found in Figure 8.

Continuous-time RL outperforms Discrete-time RL
baseline methods in both efficiency and stability. We
also compare the reward curves of discrete-time RL with
our continuous-time RL algorithms. In Figure 9, the perfor-
mance of the continuous-time RL is much more stable, and
is more efficient in achieving a high average reward.

Figure 8. Model generations with prompt “A unicorn in a clearing.
it has a single shining horn. volumetric light.” a) Top: Base
model Stable Diffusion v1.5; b) Mid: continuous-time RL after
50 training steps; c) Bot: continuous-time RL after 100 training
steps.

Figure 9. Performance of continuous-time RL against discrete-time
RL under the same 50 discretization timesteps.

Why continuous-time approaches show better performance?
Here we provide a heuristic explanation. Discrete-time
RL methods optimize the objective with a priori time-
discretization, which induces an error such that the result-
ing optimal policy can be significantly away from the true
optimum in continuous time. Continuous-time RL meth-
ods, on the other hand, only require time-discretization in
estimating the policy gradient. The error caused by this
discretization — the gap between the resulting optimum and
the true (continuous-time objective) optimum — is bounded
by a polynomial of the step size (in gradient estimation)
under suitable regularity conditions.

6. Discussion and Conclusion
We have proposed in this study a continuous-time reinforce-
ment learning (RL) framework for fine-tuning diffusion
models. Our work introduces novel policy optimization
theory for RL in continuous time and space, alongside a
scalable and effective RL algorithm that enhances the gen-
eration quality of diffusion models, as validated by our
experiments.
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In addition, our algorithm and network designs exhibit a
striking versatility that allows us to incorporate and leverage
some of the advantages of prior works in diffusion mod-
els design, so as to better exploit model structures and to
improve value network architectures. In view of this, we be-
lieve the continuous-time RL, in providing cross-pollination
between diffusion models and RLHF, presents a highly
promising direction for future research.
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A. Connection between discrete-time and continuous-time sampler
In this section, we summarize the discussion of popular samplers like DDPM, DDIM, stochastic DDIM and their continuous-
time limits being a Variance Preserving (VP) SDE.

A.1. DDPM sampler is the discretization of VP-SDE

We review the forward and backward process in DDPM, and its connection to the VP SDE following the discussion in (Song
et al., 2021b; Tang & Zhao, 2024). DDPM considers a sequence of positive noise scales 0 < β1, β2, · · · , βN < 1. For each
training data point x0 ∼ pdata (x), a discrete Markov chain {x0, x1, · · · , xN} is constructed such that:

xi =
√
1− βixi−1 +

√
βizi−1, i = 1, · · · , N, (28)

where zi−1 ∼ N (0, I), thus p (xi | xi−1) = N
(
xi;
√
1− βixi−1, βiI

)
. We can further think of xi as the ith point of a

uniform discretization of time interval [0, T ] with discretization stepsize ∆t = T
N , i.e. xi∆t = xi; and also zi∆t = zi. To

obtain the limit of the Markov chain when N →∞, we define a function β : [0, T ]→ R+ assuming that the limit exists:
β(t) = lim∆t→0 βi/∆t with i = t/∆t. Then when ∆t is small, we get:

xt+∆t ≈
√
1− β(t)∆txt +

√
β(t)∆tzt ≈ xt −

1

2
β(t)xt∆t+

√
β(t)∆tzt.

Further taking the limit ∆t→ 0, this leads to:

dXt = −
1

2
β(t)Xtdt+

√
β(t)dBt, 0 ≤ t ≤ T,

and we have:

f(t, x) = −1

2
β(t)x, g(t) =

√
β(t).

Through reparameterization, we have pᾱi
(xi | x0) = N (xi;

√
ᾱix0, (1− ᾱi) I), where ᾱi :=

∏i
j=1 (1− βj). For

the backward process, a variational Markov chain in the reverse direction is parameterized with pθ (xi−1 | xi) =

N
(
xi−1;

1√
1−βi

(xi + βisθ (i, xi)) , βiI
)

, and trained with a re-weighted variant of the evidence lower bound (ELBO):

θ∗ = argmin
θ

N∑
i=1

(1− ᾱi)Epdata (x)Epᾱi
(x̃|x)

[
∥sθ(i, x̃)−∇x̃ log pᾱi(x̃ | x)∥

2
2

]
.

After getting the optimal model sθ∗(i, x), samples can be generated by starting from xN ∼ N (0, I) and following the
estimated reverse Markov chain as:

xi−1 =
1√

1− βi
(xi + βisθ∗ (i, xi)) +

√
βizi, i = N,N − 1, · · · , 1. (29)

Similar discussion as for the forward process, the equation (29) can further be rewritten as:

x(i−1)∆t ≈
1√

1− βi∆t∆t
(xi∆t + β(i∆t)∆t · sθ∗ (i∆t, xi∆t)) +

√
βizi,

≈ (1 +
1

2
βi∆t∆t) (xi∆t + β(i∆t)∆t · sθ∗ (i∆t, xi∆t)) +

√
βizi,

≈ (1 +
1

2
βi∆t∆t)xi∆t + β(i∆t)∆t · sθ∗ (i∆t, xi∆t) +

√
βizi,

(30)

when βi∆t is small. This is indeed the time discretization of the backward SDE:

dX←t = (
1

2
β(T − t)X←t + β(T − t)sθ∗(T − t,X←t ))dt+

√
β(t)dBt,

=
(
−f(T − t,X←t ) + g2(T − t)sθ∗(T − t,X←t )

)
dt+ g(T − t)dBt.

(31)

12
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A.2. DDIM sampler is the discretization of ODE

We review the backward process in DDIM, and its connection to the probability flow ODE following the discussion in (Song
et al., 2021b; Kingma et al., 2021; Salimans & Ho, 2022; Zhang & Chen, 2022).

(i) DDIM update rule: The concrete updated rule in DDIM paper (same as in the implementation) adopted the following rule
(with σt = 0 in Equation (12) of (Song et al., 2020)):

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵ

(t)
θ (xt)√

ᾱt

)
︸ ︷︷ ︸

“predicted x0”

+
√

1− ᾱt−1 · ϵ(t)θ (xt)︸ ︷︷ ︸
“direction pointing to xt”

(32)

To show the correspondence between DDIM parameters and continuous-time SDE parameters, we follow one derivation in
(Salimans & Ho, 2022) by considering the “predicted x0”: note that define the predicted x0 parameterization as:

x̂θ (t, x) =
x−
√
1− ᾱtϵ

(t)
θ (x)√

ᾱt
, or , ϵ(t)θ (x) =

x−
√
ᾱtx̂θ (t, x)√
1− ᾱt

,

above (32) can be rewritten as:

xt−1 =

√
1− ᾱt−1√
1− ᾱt

(
xt −

√
ᾱtx̂θ (t, x)

)
+
√
ᾱt−1 · x̂θ (t, x) (33)

Using parameterization σt =
√
1− ᾱt and αt =

√
ᾱt, we have for t− 1 = s < t:

Xs =
σs

σt
[Xt − αtx̂θ (t,Xt)] + αsx̂θ (t,Xt) , (34)

which is the same as derived in (Kingma et al., 2021; Salimans & Ho, 2022).

A.2.1. ODE EXPLANATION BY ANALYZING THE DERIVATIVE

We further assume a VP diffusion process with α2
t = 1− σ2

t = sigmoid (λt) for λt = log
[
α2
t /σ

2
t

]
, in which λt is known

as the signal-to-noise ratio. Taking the derivative of (34) with respect to λs, assuming again a variance preserving diffusion
process, and using dαλ

dλ = 1
2αλσ

2
λ and dσλ

dλ = − 1
2σλα

2
λ, gives

Xλs

dλs
=

dσλs

dλs

1

σt
[Xt − αtx̂θ (t,Xt)] +

dαλs

dλs
x̂θ (t,Xt)

= −1

2
α2
s

σs

σt
[Xt − αtx̂θ (t,Xt)] +

1

2
αsσ

2
s x̂θ (t,Xt) .

Evaluating this derivative at s = t then gives

Xλs

dλs

∣∣∣∣
s=t

= −1

2
α2
λ [Xλ − αλx̂θ (t,Xλ)] +

1

2
αλσ

2
λx̂θ (t,Xλ)

= −1

2
α2
λ [Xλ − αλx̂θ (t,Xλ)] +

1

2
αλ

(
1− α2

λ

)
x̂θ (t,Xλ)

=
1

2

[
αλx̂θ (t,Xλ)− α2

λXλ

]
.

(35)

Recall that the forward process in terms of an SDE is defined as:

dXt = f(t,Xt)dt+ g(t)dBt, t ∈ [0, T ]

and (Song et al., 2021b) shows that backward of this diffusion process is an SDE, but shares the same marginal probability
density of an associated probability flow ODE (by taking t := T − t) :

dXt =

[
f(t,Xt)−

1

2
g2(t)∇x log p(t,Xt)

]
dt, t ∈ [T, 0]

13
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where in practice∇x log p(t, x) is approximated by a learned denoising model using

∇x log p(t, x) ≈ sθ(t, x) =
αtx̂θ (t, x)− x

σ2
t

= −
ϵ
(t)
θ (x)

σt
. (36)

with two chosen noise scheduling parameters αt and σt, and corresponding drift term f(t, x) = d logαt

dt xt and diffusion

term g2(t) =
dσ2

t

dt − 2d logαt

dt σ2
t .

Further assuming a VP diffusion process with α2
t = 1− σ2

t = sigmoid (λt) for λt = log
[
α2
t /σ

2
t

]
, we get

f(t, x) =
d logαt

dt
x =

1

2

d logα2
λ

dλ

dλ

dt
x =

1

2

(
1− α2

t

) dλ
dt

x =
1

2
σ2
t

dλ

dt
x.

Similarly, we get

g2(t) =
dσ2

t

dt
− 2

d logαt

dt
σ2
t =

dσ2
λ

dλ

dλ

dt
− σ4

t

dλ

dt
=
(
σ4
t − σ2

t

) dλ
dt
− σ4

t

dλ

dt
= −σ2

t

dλ

dt
.

Plugging these into the probability flow ODE then gives

dXt =

[
f(t,Xt)−

1

2
g2(t)∇x log p(t, x)

]
dt

=
1

2
σ2
t [Xt +∇x log p(t,Xt)] dλt.

(37)

Plugging in our function approximation from Equation (36) gives

dXt =
1

2
σ2
t

[
Xt +

(
αtx̂θ (t,Xt)−Xt

σ2
t

)]
dλt

=
1

2

[
αtx̂θ (t,Xt) +

(
σ2
t − 1

)
Xt

]
dλt

=
1

2

[
αtx̂θ (t,Xt)− α2

tXt

]
dλt.

(38)

Comparison this with Equation (35) now shows that DDIM follows the probability flow ODE up to first order, and can thus
be considered as an integration rule for this ODE.

A.2.2. EXPONENTIAL INTEGRATOR EXPLANATION

In (Zhang & Chen, 2022) that the integration role above is referred as ”exponential integrator” of (38). We adopt two ways
of derivations:

(a) Notice that, if we treat the x̂θ (t,Xt) as a constant in (38) (or assume that it does not change w.r.p. t along the ODE
trajectory), we have:

dXt +
1

2
α2
tXtdλt = x̂θ (t,Xt) ·

1

2
αtdλt. (39)

Both sides multiplied by 1/σt and integrate from t to s yields:

Xs

σs
− Xt

σt
= x̂θ (t,Xt) ·

(
exp(

1

2
λs)− exp(

1

2
λt)

)
= x̂θ (t,Xt) ·

(
αs

σs
− αt

σt

)
. (40)

which is thus

Xs =
σs

σt
Xt +

[
αs − αt

σs

σt

]
x̂θ (t,Xt) , (41)

which is the same as DDIM continuous-time intepretation as in (34).

(b) We also notice that we can also simplify the whole proof by treating the scaled score (same as in (Zhang & Chen, 2022)):

σt∇x log p(t, x) ≈ σtsθ(t, x) =
αtx̂θ (t, x)− x

σt
(42)
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as a constant in (37) (or assume that it does not change w.r.p. t along the ODE trajectory). Notice that from backward ODE,
we have:

dXt =
1

2
σ2
t

[
Xt +

1

σt
σt∇x log p(t,Xt)

]
dλt. (43)

Both sides multiplied by 1/αt and integrate from t to s yields:

Xs

αs
− Xt

αt
=

(
αtx̂θ (t,Xt)−Xt

σt

)
·
(
−σs

αs
+

σt

αt

)
. (44)

which is thus

Xs =
σs

σt
Xt +

[
αs − αt

σs

σt

]
x̂θ (t,Xt) , (45)

which is the same as DDIM continuous-time intepretation as in (34).

As a summary, treating the denoised mean or the noise predictor as the constants will both recovery the rule of DDIM.
Usually, for ODE flows, the denoised mean assumption naturally holds; however, why the scaled score leads to the same
integration rule remains to be an interesting question, probably comes from the design property of DDIM, see e.g. discussions
in (Karras et al., 2022).

B. Theorem Proofs
B.1. Proof of Theorem 3.1

The main proof technique relies on Girsanov’s Theorem, which is similar to the argument in (Chen et al., 2022). First, we
recall a consequence of Girsanov’s theorem that can be obtained by combining Pages 136-139, Theorem 5.22, and Theorem
4.13 of Le Gall (2016).

Theorem B.1. For t ∈ [0, T ], let Lt =
∫ t

0
bs dBs where B is a Q-Brownian motion. Assume that EQ

∫ T

0
∥bs∥2 ds <∞.

Then, L is a Q-martingale in L2(Q). Moreover, if

EQE(L)T = 1, where E(L)t := exp

(∫ t

0

bs dBs −
1

2

∫ t

0

∥bs∥2 ds

)
, (46)

then E(L) is also a Q-martingale, and the process

t 7→ Bt −
∫ t

0

bs ds (47)

is a Brownian motion under P := E(L)TQ, the probability distribution with density E(L)T w.r.t. Q.

If the assumptions of Girsanov’s theorem are satisfied (i.e., the condition (46)), we can apply Girsanov’s theorem to Q as the
law of the following reverse process (we omit c for brevity),

dXt =
(
−f(T − t,Xt) + g2(T − t)sθpre(T − t,Xt)

)
dt+ g(T − t)dBt, X0 ∼ p∞(·) (48)

and
bt = g(T − t)

[
sθ(T − t,Xt)− sθpre(T − t,Xt)

]
, (49)

where t ∈ [0, T ]. This tells us that under P = E(L)TQ, there exists a Brownian motion (βt)t∈[0,T ] s.t.

dBt = g(T − t)
[
sθ(T − t,Xt)− sθpre(T − t,Xt)

]
dt+ dβt. (50)

Plugging (50) into (48) we have P -a.s.,

dXt =
(
−f(T − t,Xt) + g2(T − t)sθ(T − t,Xt)

)
dt+ g(T − t)dβt, X0 ∼ p∞(·) (51)
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In other words, under P , the distribution of X is the same as the distribution generated by current policy parameterized by θ,
i.e., pθ(·) = PT = E(L)TQ. Therefore,

DKL

(
pθ∥pθpre

)
= EPT

ln
dPT

dQT
= EPT

ln E(L)T

= EPT

[∫ t

0

bs dBs −
1

2

∫ t

0

∥bs∥2
]

= EPT

[∫ t

0

bs dβs +
1

2

∫ t

0

∥bs∥2
]

=
1

2

∫ t

0

g2(T − t)EP

∥∥sθ(T − t,Xt)− sθpre(T − t,Xt)
∥∥2︸ ︷︷ ︸

ϵ2t

dt

Thus we can bound the discrepancy between distribution generated by the policy θ and the pretrained parameters θpre as

DKL(pθ∥pθpre) ≤
1

2

∫ T

0

g2(T − t)ϵ2tdt (52)

B.2. Proof of Theorem 4.1

First we include the policy gradient formula theorem for finite horizon in continuous time from (Jia & Zhou, 2022b):

Lemma B.2 (Theorem 5 of (Jia & Zhou, 2022b) when R ≡ 0). Under some regularity conditions, given an admissible
parameterized policy πθ, the policy gradient of the value function V

(
t, x;πθ

)
admits the following representation:

∂

∂θ
V (t, x;πθ) =EP

[∫ T

t

e−β(s−t)
{

∂

∂θ
log πθ(aπ

θ

s |s,Xπθ

s )
(
dV (s,Xπθ

s ;πθ)

+
[
rR(s,X

πθ

s , aπ
θ

s )− βV (s,Xπθ

s ;πθ)
]
ds
)}
| Xπθ

t = x
]
, (t, x) ∈ [0, T ]× Rd

(53)

in which we denote the regularized reward

rR(t,X
πθ

t , aπ
θ

t ) = γ(t)∥aπ
θ

t − sθ
∗
(t,Xt)∥2.

First, by applying Itô’s formula to V (t,Xt), we have:

dV (t,Xt) =

[
∂V

∂t
(t,Xt) +

1

2
σ(t)2 ◦ ∂

2V

∂x2
(t,Xt)

]
dt+

∂V

∂x
(t,Xt)dXt. (54)

Further recall that:

q(t, x, a;π) =
∂V

∂t
(t, x;π) +H

(
t, x, a,

∂V

∂x
(t, x;π) ,

∂2V

∂x2
(t, x;π)

)
− βV (t, x;π) , (55)

this implies that (similar discussion also appeared in (Jia & Zhou, 2023))

q (t,Xπ
t , a

π
t ;π) dt = dJ (t,Xπ

t ;π) + r (t,Xπ
t , a

π
t ) dt− βJ (t,Xπ

t ;π) dt+ {· · · }dBt. (56)

Plug this equality back in (53) yields:

∂

∂θ
V (t, x;πθ) =EP

[∫ T

t

e−β(s−t)
∂

∂θ
log πθ(aπ

θ

s |s,Xπθ

s )q (t,Xπ
t , a

π
t ;π) ds | Xπθ

t = x

]
, (57)

Let t = 0, β = −α and further taking expectation to the initial distribution yields Theorem 4.1.
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B.3. Proof of Theorem 4.4

We recall the definition of terms and rewrite the bound in Theorem 4.4 for convenience. It suffices to prove that there exists
constant C1 and C2, such that

|V θ̂ − V θ| ≤ C1 ·

(
E
∫ T

0

KL(πθ(·|t,Xθ
t )∥πθ̂(·|t,Xθ

t ))dt

) 1
2

, (58)

and

|Lθ(θ̂)− V θ| ≤ C2 ·

(
E
∫ T

0

KL(πθ(·|t,Xθ
t )∥πθ̂(·|t,Xθ

t ))dt

) 1
2

. (59)

To prove (58), we need to utilize the KL-regularized objective we study for this paper, as this might not hold under general
cases. Explicitly writing the definition of V θ and V θ̂, we have (excluding contents c for simplicity):

|V θ̂ − V θ| ≤ |E(RM(X θ̂
T ))− E(RM(Xθ

T ))|︸ ︷︷ ︸
(i) reward difference

+β |KL
(
pθ̂(T, ·)∥pθpre(T, ·)

)
−KL

(
pθ(T, ·)∥pθpre(T, ·)

)
|︸ ︷︷ ︸

(ii) KL difference

.

For bounding (i), we have:

(i) =
∫
x

(pθ̂(T, x)− pθ(T, x))RM(x)dx| ≤ |
∫
x

|pθ̂(T, x)− pθ(T, x)||RM(x)|dx ≤ N ·
√

KL
(
pθ(T, ·)∥pθ̂(T, ·)

)
,

where the last equality is due to Pinsker’s inequality. For bounding (ii), a standard identity for Kullback–Leibler divergences
gives

KL
(
pθ̂ ∥ pθpre

)
− KL

(
pθ ∥ pθpre

)
= −KL

(
pθ ∥ pθ̂

)
+

∫ [
pθ̂(x) − pθ(x)

]
ln
(

pθ̂(x)

pθpre (x)

)
dx.

Hence, by the triangle inequality,∣∣∣KL
(
pθ̂ ∥ pθpre

)
−KL

(
pθ ∥ pθpre

)∣∣∣ ≤ KL
(
pθ ∥ pθ̂

)
+

∣∣∣∣∫ (pθ̂ − pθ) ln
(

pθ̂

pθpre

)∣∣∣∣.
By the bounded log-ratio assumption, ∣∣ln( pθ̂(x)

pθpre (x)

)∣∣ ≤ C3,

so ∣∣∣∣∫ (pθ̂ − pθ) ln
(

pθ̂

pθpre

)∣∣∣∣ ≤ C3 ∥pθ̂ − pθ∥1.

Finally, Pinsker’s inequality implies ∥pθ̂ − pθ∥1 ≤
√
2KL

(
pθ ∥ pθ̂

)
. Combining these bounds yields

∣∣∣KL
(
pθ̂ ∥ pθpre

)
−KL

(
pθ ∥ pθpre

)∣∣∣ ≤ KL
(
pθ ∥ pθ̂

)
+ C4

√
2KL

(
pθ ∥ pθ̂

)
.

Further given the assumption that pθ̂ is close to pθ such that KL(pθ ∥ pθ̂) ≤ 1, we have

|V θ̂ − V θ| ≤ C5 ·
√

KL(pθ ∥ pθ̂).

Further applying the same argument in Theorem 3.1 proves (58). To prove (59), it suffices to bound

E
∫ T

0

πθ̂(aθt |t,Xθ
t )

πθ(aθt |t,Xθ
t )

q(t,Xθ
t , a

θ
t ;π

θ)dt (60)
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By importance sampling, we have

Eθ

[πθ̂(aθt | t,Xθ
t )

πθ(aθt | t,Xθ
t )

q(t,Xθ
t , a

θ
t ;π

θ)
]

= Eθ̂[ q(t,X
θ
t , a

θ̂
t ;π

θ) ].

Hence the left side equals
∫ T

0
Eθ̂[ q(· · · ) ]dt. Assume that |q| ≤M , we get

∣∣Eθ̂[q]− Eθ[q]
∣∣ ≤ M ∥πθ̂ − πθ∥1 ≤ M

√
2KL(πθ ∥πθ̂),

by Pinsker’s inequality. Therefore,

Eθ̂[q(· · · )] ≤ Eθ[q(· · · )] + M

√
2KL(πθ ∥πθ̂).

Integrate over t from 0 to T , and the result follows that:

|Lθ(θ̂)− V θ| ≤ C6 · E
∫ T

0

√
KL(πθ(·|t,Xθ

t )∥πθ̂(·|t,Xθ
t ))dt ≤ C7

(
E
∫ T

0

KL(πθ(·|t,Xθ
t )∥πθ̂(·|t,Xθ

t ))dt

) 1
2

(61)

where the last inequality follows from Jensen’s ineqality and Cauchy-Schwarz inequality.
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C. More Experimental Details
C.1. Algorithm Pseudocode

We present the algorithm pseudocode as below.

Algorithm 1 CTRL for Diffusion Models
Input: Initial policy parameters θ0, value function parameters ϕ0 (after pretraining), clip parameter ϵ, learning rates αθ,
αϕ, number of epochs K, number of trajectories N , a fixed exploration level σ, number of exploration actions M , scaling
parameter η.
for n = 0, 1, 2, . . . do

Collect N trajectories {(ti, Xθn
ti , aθnti , r

θn
ti )}

N
i=1 by running policy πθn

Compute returns R̂i =
∑T

t=ti
rθnt for each trajectory

Initialize value function dataset DV = {(ti, Xθn
ti , R̂i)}

# Train value function
for k = 1, 2, . . . ,K do

Sample batch BV ⊂ DV

Update ϕn+1 ← ϕn − αϕ∇ϕ
1
|BV |

∑
(t,Xt,R̂)∈BV

(V ϕ(t,Xt)− R̂)2

end for
# Compute advantage rate function estimates
for each (ti, X

θn
ti , aθnti ) in collected trajectories do

Sample M samples of random noise ϵj ∼ N (0, I).
Compute M pseudo samples aθnti,j = aθnti + σϵj .

Compute advantage qθnti,j =
(
V (ti, X

θn
ti + η g2(T − t)ϵj)− V (ti, X

θn
ti )
)
/η

end for
Initialize policy optimization dataset Dπ = {(ti, Xθn

ti , aθnti,j , q
θn
ti,j

)}
# Update policy using PPO objective
for k = 1, 2, . . . ,K do

Sample batch Bπ ⊂ Dπ

Compute likelihood ratios ρθt,j =
πθ(aθn

t,j |t,X
θn
t )

πθn (aθn
t,j |t,X

θn
t )

for all (t,Xθn
t , aθnt,j , q

θn
t,j) ∈ Bπ

Compute clipped objective:
L(θ) = 1

|Bπ|
∑

(t,Xt,at,j ,qt,j)∈Bπ
min(ρθt,jq

θn
t,j , clip(ρθt,j , 1− ϵ, 1 + ϵ)qθnt,j)

Update θ ← θ + αθ∇θL(θ)
end for
θn+1 ← θ

end for
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