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Abstract
Learning effective protein representations is crit-
ical in a variety of tasks in biology such as pre-
dicting protein function or structure. Existing ap-
proaches usually pretrain protein language models
on a large number of unlabeled amino acid se-
quences and then finetune the models with some
labeled data in downstream tasks. Despite the
effectiveness of sequence-based approaches, the
power of pretraining on known protein structures,
which are available in smaller numbers only, has
not been explored for protein property predic-
tion, though protein structures are known to be
determinants of protein function. In this paper,
we propose to pretrain protein representations ac-
cording to their 3D structures. We first present
a simple yet effective encoder to learn the ge-
ometric features of a protein. We pretrain the
protein graph encoder by leveraging multiview
contrastive learning and different self-prediction
tasks. Experimental results on both function pre-
diction and fold classification tasks show that our
proposed pretraining methods outperform or are
on par with the state-of-the-art sequence-based
methods, while using much less data. All codes
and models will be published upon acceptance.

1. Introduction
Proteins are workhorses of the cell and are implicated
in a broad range of applications ranging from therapeu-
tics to material. They consist of a linear chain of amino
acids (residues) folding into a specific 3D conformation.
As the function annotation of a new protein sequence re-
mains costly and time-consuming, accurate and efficient in
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silico protein function annotation methods are needed to
bridge the existing sequence-function gap. However, ex-
isting sequence-based methods neither directly capture nor
leverage the available protein structural information that is
known to be the determinants of protein functions (Bepler
& Berger, 2019; 2021; Rives et al., 2021).

To better utilize this critical structural information, we first
propose a simple yet effective structure-based encoder called
GeomEtry-Aware Relational Graph Neural Network
(GearNet), which encodes spatial information by relational
and edge message passing on protein residue graphs. We
further introduce five geometric pretraining methods to learn
the protein structure encoder. These methods follow popu-
lar self-supervised learning frameworks such as contrastive
learning (Chen et al., 2020) and self-prediction (Devlin et al.,
2018). For contrastive learning, we aim to maximize the sim-
ilarity between representations of different augmented views
from the same protein, while minimizing the similarity be-
tween those from different proteins. For self-prediction, the
model performs masked prediction of different geometric
or biochemical properties, such as residue types, Euclidean
distances, angles and dihedral angles.

Extensive experiments on several benchmarks verify our
GearNet augmented with edge message passing can consis-
tently outperform existing protein encoders on most tasks
in a supervised setting. Further, by employing the proposed
pretraining methods, our model trained on less than a mil-
lion samples achieves comparable or even better results than
the state-of-the-art sequence-based encoders pretrained on
million- or billion-scale datasets.

2. Structure-Based Protein Encoder
Existing protein encoders are either designed for specific
tasks or cumbersome for pretraining due to the dependency
on computationally expensive convolutions. Here we pro-
pose a simple yet effective protein structure encoder, named
GeomEtry-Aware Relational Graph Neural Network (Gear-
Net), which is further enhanced with edge message passing.
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2.1. Geometry-Aware Relational Graph Neural Network

Given protein structures, our model aims to learn repre-
sentations encoding their spatial and chemical information.
These representations should be invariant under translations
and rotations in 3D space. To achieve this requirement, we
first construct our protein graph based on the spatial features
invariant under these transformations.

Protein graph construction. We represent the struc-
ture of a protein as a residue-level relational graph G =
(V, E ,R), where V and E denotes the set of nodes and
edges respectively, and R is the set of edge types. We
use (i, j, r) to denote the edge from node i to node j with
type r. We use n and m to denote the number of nodes and
edges, respectively. In this work, each node in the protein
graph represents the alpha carbon of a residue with the 3D
coordinates of all nodes x ∈ Rn×3.

Then, we add three different types of edges into our graphs:
sequential edges, radius edges and K-nearest neighbor edges.
Among these, sequential edges will be further divided into
5 types of edges based on the relative sequential distance
d ∈ {−2,−1, 0, 1, 2} between two end nodes, where we
add sequential edges only between the nodes within the
sequential distance of 2. These edge types reflect different
geometric properties, which all together yield a compre-
hensive featurization of proteins. More details of graph
construction can be found in Appendix C.1.

Relational graph convolutional layer. To balance model
capacity and memory cost, we use a relational graph convo-
lutional neural network (Schlichtkrull et al., 2018) to learn
graph representations, where a convolutional kernel matrix
is shared within each edge type and there are |R| differ-
ent kernel matrices in total. Formally, the relational graph
convolutional layer used in our model is defined as

h
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(l−1)
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Specifically, we use node features fi as initial representa-
tions h

(0)
i . Then, given the node representation h

(l)
i for

node i at the l-th layer, we compute updated node repre-
sentation by aggregating features from neighboring nodes
Nr(i), where Nr(i) = {j ∈ V|(j, i, r) ∈ E} denotes the
neighborhood of node i with the edge type r, and Wr de-
notes the learnable convolutional kernel matrix for edge
type r. Here BN denotes a batch normalization layer and
we use a ReLU function as the activation σ(·). Finally, we
update h

(l)
i with a residual connection from last layer.

2.2. Edge Message Passing Layer

Inspired by models on small molecules (Klicpera et al.,
2020), we propose a variant of GearNet enhanced with an
edge message passing layer, named as GearNet-Edge.

We first construct a relational graph G′ = (V ′, E ′,R′)
among edges, also known as line graph in the litera-
ture (Harary & Norman, 1960). Each node in the graph
G′ corresponds to an edge in the original graph. G′ links
edge (i, j, r1) to (w, k, r2) if and only if j = w and i ̸= k.
The type of this edge is determined by the angle between
(i, j, r1) and (w, k, r2). We discretize the range [0, π] into 8
bins and use the index of the bin as the edge type.

Then, we apply a similar relational graph convolutional
network on the graph G′ for the message function. Formally,
the edge message passing layer is defined as

m
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Here we use m
(l)
(i,j,r1)

to denote the message function

for edge (i, j, r1) in the l-th layer with m
(0)
(i,j,r1)

=

f(i,j,r1). Similarly, the message function for edge (i, j, r1)
will be updated by aggregating features from its neigh-
bors N ′

r((i, j, r1)), where N ′
r((i, j, r1)) = {(w, k, r2) ∈

V ′|((w, k, r2), (i, j, r1), r) ∈ E ′} denotes the set of incom-
ing edges of (i, j, r1) with relation type r in graph G′.

Finally, we replace the update function in the original graph
with the following one:

h
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where FC(·) denotes a linear layer over the message.

Notably, it is novel to use relational message passing to
model spatial interactions among residues. In addition, to
the best of our knowledge, this is the first work that explores
edge message passing for protein representation learning.

3. Geometric Pretraining Methods
In this section, we study how to leverge massive unlabeled
protein structures to boost protein representation learning.
We follow two popular self-supervised learning frameworks:
contrastive learning and self-prediction, and propose five
different pretraining methods for structure-based encoders.

3.1. Multiview Contrastive Learning

Inspired by recent contrastive learning methods (Oord et al.,
2018; Chen et al., 2020), our framework learns representa-
tions by maximizing the similarity between representations
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of different augmented views of the same protein while min-
imizing the agreement between views of different proteins.

More specifically, given a protein graph G, we first sample
two different views Gx and Gy via a stochastic augmenta-
tion module. We then compute the graph representations
hx and hy of two views using our structure-based encoder.
Following SimCLR (Chen et al., 2020), a two-layer MLP
projection head is further applied to map the representations
to a lower-dimensional space, denoted as zx and zy. Fi-
nally, a contrastive loss function is defined by distinguishing
views from the same or different proteins using their similar-
ities. For a positive pair x and y, we treat views from other
proteins in the same mini-batch as negative pairs. Mathe-
matically, the loss function for a positive pair of views x
and y can be written as:

Lx,y = − log
exp(sim(zx, zy)/τ)∑2B

k=1 1[k ̸=x] exp(sim(zy, zk)/τ)
, (1)

where B denotes the batch size, τ denotes the temperature,
1[k ̸=x] ∈ {0, 1} is an indicator function that is equal to 1 if
and only if k ̸= x. And the similarity function sim(u,v) is
defined by the cosine similarity between u and v.

Data augmentation. As suggested in (Chen et al., 2020),
data augmentation schemes play an important role in con-
trastive learning. In this work, we propose a principled way
to generate diverse views of a protein.

We randomly choose a cropping function to make the protein
graph smaller so that larger-size batches can be used for
pretraining. Here we consider two cropping functions:

• Subsequence: randomly sample a consecutive seg-
ment of protein sequences and take the corresponding
subgraph from the protein residue graph.

• Subspace: randomly sample a residue as the center
and select all residues within a Euclidean ball with a
predefined radius.

Then, we randomly choose one of the following two trans-
formations with equal probability to apply on the cropped
protein graphs.

• Identity: no transformation.
• Random edge masking: randomly mask edges with a

fixed mask rate equal to 0.15.

3.2. Self-Prediction Methods

Another line of research is based on the recent progress of
self-prediction methods in natural language processing (De-
vlin et al., 2018; Brown et al., 2020). Given a protein, our ob-
jective is to predict one part of the protein given the remain-
der of the structure. Here, we propose four self-supervised
tasks based on geometric or biochemical properties.

Residue Type Prediction. Our first method is based on
the masked language modeling objective, which has been
widely used in pretraining large-scale protein language mod-
els (Bepler & Berger, 2021). For each protein, we randomly
mask node features of some residues and then let structure-
based encoders to predict these masked residue types. For a
masked node i, the learning objective is defined as:

Li = CE(fresidue(h
′
i),fi),

where h′
i denotes the representations of node i after mask-

ing, fresidue(·) is an MLP classification head and CE(·, ·)
denotes the cross entropy loss. This method is also known
as Attribute Masking in the literature of pretraining on small
molecules (Hu et al., 2019).

Distance Prediction. In order to learn local spatial struc-
tures, we use our learned representations to predict the Eu-
clidean distance between two nodes connected in the protein
graph. First, we randomly select a fixed number of edges
from the original graph. Then, these edges will be removed
when feeding the graph into the encoder. For a selected edge,
the representations of its two end nodes will be concatenated
to predict the distance between them. More concretely, the
loss function for an edge (i, j, r) will be defined as:

L(i,j,r) = (fdist(h
′
i,h

′
j)− ∥xi − xj∥2)2,

where fdist(·) is an MLP prediction head.

Angle Prediction. Besides distances, angles between
edges are also important features that reflect the relative po-
sition between residues. Similarly, we can define a masked
geometric loss by 1) randomly selecting two adjacent edges,
2) removing these edges from the graph, 3) using the three
end nodes of the pair of edges to predict the angle between
them. Here we discretized the angles by cutting the range
[0, π] into 8 bins. The objective for a selected pair of edges
(i, j, r1) and (j, k, r2) is to predict which bin the angle be-
tween them will belong to:

L(i,j,r1),(j,k,r2) = CE(fangle(h
′
i,h

′
j ,h

′
k), bin(∠ijk)),

where fangle(·) is an MLP classification head and bin(·) is
used to discretize the angle.

Dihedral Prediction. As shown in (Klicpera et al., 2021),
the dihedral angles between three edges can provide impor-
tant clues about the relative directional information. There-
fore, we can also construct a masked geometric objective
by predicting the dihedral angle between three consecutive
edges (i, j, r1), (j, k, r2) and (k, t, r3):

L(i,j,r1),(j,k,r2),(k,t,r3) = CE(f(h′
i,h

′
j ,h

′
k,h

′
t), bin(∠ijkt)),

where f(·) is an MLP classification head and bin(·) is used
to discretize the dihedral angles.
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Table 1: Fmax on EC and GO prediction and Accuracy (%) on fold and reaction classification. [†] denotes results taken
from (Wang et al., 2022) and [*] denotes results taken from (Hermosilla et al., 2021). For pretraining, we select the model
with the best performance when training from scratch, i.e., GearNet-Edge for EC, GO, Reaction and GearNet-Edge-IEConv
for Fold Classification. We omit the model name and use the pretraining methods to name our pretrained models.

Method Pretraining
Dataset (Size) EC GO Fold Classification Reaction

BP MF CC Fold Super. Fam. Avg.

w
/o

pr
et

ra
in

in
g

CNN (Shanehsazzadeh et al., 2020) - 0.545 0.244 0.354 0.287 11.3 13.4 53.4 26.0 51.7
ResNet (Rao et al., 2019) - 0.605 0.280 0.405 0.304 10.1 7.21 23.5 13.6 24.1
LSTM (Rao et al., 2019) - 0.425 0.225 0.321 0.283 6.41 4.33 18.1 9.61 11.0

Transformer (Rao et al., 2019) - 0.238 0.264 0.211 0.405 9.22 8.81 40.4 19.4 26.6

GCN (Kipf & Welling, 2017) - 0.320 0.252 0.195 0.329 16.8* 21.3* 82.8* 40.3* 67.3*
GAT (Veličković et al., 2018) - 0.368 0.284† 0.317† 0.385† 12.4 16.5 72.7 33.8 55.6

GVP (Jing et al., 2021) - 0.489 0.326† 0.426† 0.420† 16.0 22.5 83.8 40.7 65.5
3DCNN MQA (Derevyanko et al., 2018) - 0.077 0.240 0.147 0.305 31.6* 45.4* 92.5* 56.5* 72.2*

GraphQA (Baldassarre et al., 2021) - 0.509 0.308 0.329 0.413 23.7* 32.5* 84.4* 46.9* 60.8*
New IEConv (Hermosilla & Ropinski, 2022) - 0.735 0.374 0.544 0.444 47.6* 70.2* 99.2* 72.3* 87.2*

GearNet - 0.730 0.356 0.503 0.414 28.4 42.6 95.3 55.4 79.4
GearNet-IEConv - 0.800 0.381 0.563 0.422 42.3 64.1 99.1 68.5 83.7

GearNet-Edge - 0.810 0.403 0.580 0.450 44.0 66.7 99.1 69.9 86.6
GearNet-Edge-IEConv - 0.810 0.400 0.581 0.430 48.3 70.3 99.5 72.7 85.3

w
/p

re
tr

ai
ni

ng

DeepFRI (Gligorijević et al., 2021) Pfam (10M) 0.631 0.399 0.465 0.460 15.3* 20.6* 73.2* 36.4* 63.3*
ESM-1b (Rives et al., 2021) UniRef50 (24M) 0.864 0.470 0.657 0.488 26.8 60.1 97.8 61.5 83.1

ProtBERT-BFD (Elnaggar et al., 2021) BFD (2.1B) 0.838 0.279† 0.456† 0.408† 26.6* 55.8* 97.6* 60.0* 72.2*
LM-GVP (Wang et al., 2022) UniRef100 (216M) 0.664 0.417† 0.545† 0.527† - - - - -

New IEConv (Hermosilla & Ropinski, 2022) PDB (476K) - - - - 50.3* 80.6* 99.7* 76.9* 87.6*

Multiview Contrast AlphaFoldDB (805K) 0.874 0.490 0.654 0.488 54.1 80.5 99.9 78.1 87.5
Residue Type Prediction AlphaFoldDB (805K) 0.843 0.430 0.604 0.465 48.8 71.0 99.4 73.0 86.6

Distance Prediction AlphaFoldDB (805K) 0.839 0.448 0.616 0.464 50.9 73.5 99.4 74.6 87.5
Angle Prediction AlphaFoldDB (805K) 0.853 0.458 0.625 0.473 56.5 76.3 99.6 77.4 86.8

Dihedral Prediction AlphaFoldDB (805K) 0.859 0.458 0.626 0.465 51.8 77.8 99.6 75.9 87.0

4. Experiments
In this section, we conduct experiments on four downstream
tasks, where the experimental setups are described in Ap-
pend. E.1 and the results are reported in Table 1, including
all models with and without pretraining. The following
conclusions can be drawn from the results:

Our structure-based encoders outperform all baselines
without pretraining on 7 of 8 datasets. By comparing
the first three blocks, we find that the vanilla GearNet can
already obtain competitive results against other baselines on
three function prediction tasks (EC, GO, Reaction). After
adding the edge message passing mechanism, our method
GearNet-Edge significantly outperforms other baselines on
EC, GO-BP and GO-MF and achieves competitive results
on GO-CC. By further adding IEConv (Hermosilla & Ropin-
ski, 2022) layers into our model, the GearNet-Edge-IEConv
model can achieve the best results on the fold classification
task. These strong performance demonstrates the advan-
tages of our proposed structure-based encoders.

Structure-based encoders benefit a lot from pretraining
with unlabeled protein structures. Comparing the re-
sults in the third and fifth blocks, it can be observed that mod-
els with all five proposed pretraining methods show large
improvements over models trained from scratch. Among

these methods, Multiview Contrast is the best on 7 of 8
datasets and achieve the state-of-the-art results on EC, GO-
BP, GO-MF, Fold and Reaction classification tasks. This
proves the effectiveness of our pretraining strategies.

Pretrained structure-based encoders perform on par
with or even better than sequence-based encoders pre-
trained with much more data. The last two blocks show
the comparision between pretrained sequence-based and
structure-based models. It should be noted that our models
are pretrained on a dataset with fewer than one million struc-
tures, whereas all sequence-based pretraining baselines are
pretrained on million- or billion-scale sequence databases.
Though pretrained with an order of magnitude less data, our
model can achieve comparable or better results against these
sequence-based models. Besides, our model is the only one
that can achieve good performance on all four tasks, given
that sequence-based models do not perform well on fold
classification. This again shows the potential of structure-
based pretraining for learning protein representations.

Structure-based encoders perform well under different
sequence identity cutoffs. Besides the experiments above,
where 95% is used as the sequence identity cutoff for EC
and GO dataset splitting, we also test our models and sev-
eral important baselines under four lower sequence identity
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Table 2: Fmax on EC and GO tasks under different sequence cutoffs (30% / 40% / 50% / 70% / 95%).

Method EC GO-BP GO-MF GO-CC

CNN 0.366 / 0.361 / 0.372 / 0.429 / 0.545 0.197 / 0.195 / 0.197 / 0.211 / 0.244 0.238 / 0.243 / 0.256 / 0.292 / 0.354 0.258 / 0.257 / 0.260 / 0.263 / 0.387
ResNet 0.409 / 0.412 / 0.450 / 0.526 / 0.605 0.230 / 0.230 / 0.234 / 0.249 / 0.280 0.282 / 0.288 / 0.308 / 0.347 / 0.405 0.277 / 0.273 / 0.280 / 0.278 / 0.304
LSTM 0.247 / 0.249 / 0.270 / 0.333 / 0.425 0.194 / 0.192 / 0.195 / 0.205 / 0.225 0.223 / 0.229 / 0.245 / 0.276 / 0.321 0.263 / 0.264 / 0.269 / 0.270 / 0.283
Transformer 0.167 / 0.173 / 0.175 / 0.197 / 0.238 0.267 / 0.265 / 0.262 / 0.262 / 0.264 0.184 / 0.187 / 0.195 / 0.204 / 0.211 0.378 / 0.382 / 0.388 / 0.395 / 0.405
GCN 0.245 / 0.246 / 0.246 / 0.280 / 0.320 0.251 / 0.250 / 0.248 / 0.248 / 0.252 0.180 / 0.183 / 0.187 / 0.194 / 0.195 0.318 / 0.318 / 0.320 / 0.323 / 0.329
GearNet 0.557 / 0.570 / 0.615 / 0.693 / 0.730 0.309 / 0.309 / 0.315 / 0.336 / 0.356 0.382 / 0.397 / 0.425 / 0.474 / 0.503 0.381 / 0.385 / 0.393 / 0.398 / 0.414
GearNet-edge 0.625 / 0.646 / 0.694 / 0.757 / 0.810 0.345 / 0.347 / 0.354 / 0.378 / 0.403 0.444 / 0.461 / 0.490 / 0.537 / 0.580 0.394 / 0.394 / 0.401 / 0.408 / 0.450

DeepFRI 0.470 / 0.505 / 0.545 / 0.600 / 0.631 0.361 / 0.362 / 0.371 / 0.391 / 0.399 0.374 / 0.383 / 0.409 / 0.446 / 0.465 0.440 / 0.441 / 0.444 / 0.451 / 0.460
ESM-1b 0.737 / 0.764 / 0.797 / 0.839 / 0.864 0.394 / 0.399 / 0.407 / 0.429 / 0.470 0.546 / 0.562 / 0.588 / 0.625 / 0.657 0.462 / 0.465 / 0.468 / 0.465 / 0.488
Multiview Contrast 0.744 / 0.769 / 0.808 / 0.848 / 0.874 0.436 / 0.442 / 0.449 / 0.471 / 0.490 0.533 / 0.548 / 0.573 / 0.612 / 0.654 0.459 / 0.460 / 0.467 / 0.469 / 0.488

cutoffs and show the experimental results in Table 6. It can
be observed that, at lower sequence identity cutoffs, our
model can still achieve the best performance among mod-
els without pretraining and get comparable or better results
against ESM-1b after pretraining.

5. Conclusions
In this work, we propose a simple yet effective structure-
based encoder for protein representation learning, which
performs relational and edge message passing on protein
residue graphs. Moreover, five self-supervised pretraining
methods are proposed following two standard frameworks:
contrastive learning and self-prediction. Comprehensive
experiments over multiple tasks verify that our model out-
performs previous encoders when trained from scratch and
achieve comparable or even better results than the state-of-
the-art baselines while pretraining with much less data.
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A. Related Work
Previous works seek to learn protein representations based
on different modalities of proteins, including amino acid
sequences (Rao et al., 2019; Elnaggar et al., 2021; Rives
et al., 2021), multiple sequence alignments (MSAs) (Rao
et al., 2021; Biswas et al., 2021; Meier et al., 2021) and
protein structures (Hermosilla et al., 2021; Gligorijević et al.,
2021; Somnath et al., 2021). These works share the common
goal of learning informative protein representations that
can benefit various downstream applications, like predicting
protein function (Gligorijević et al., 2021; Rives et al., 2021)
and protein-protein interaction (Wang et al., 2019), as well
as designing protein sequences (Biswas et al., 2021).

A.1. Sequence-Based Methods

Sequence-based protein representation learning is mainly
inspired by the methods of modeling natural language se-
quences. Recent methods aim to capture the biochemical
and co-evolutionary knowledge underlying a large-scale
protein sequence corpus by self-supervised pretraining, and
such knowledge is then transferred to specific downstream
tasks by finetuning. Typical pretraining objectives explored
in existing methods include next amino acid prediction (Al-
ley et al., 2019; Elnaggar et al., 2021), masked language
modeling (MLM) (Rao et al., 2019; Elnaggar et al., 2021;
Rives et al., 2021), pairwise MLM (He et al., 2021) and
contrastive predictive coding (CPC) (Lu et al., 2020). Com-
pared to sequence-based approaches that learn in the whole
sequence space, MSA-based methods (Rao et al., 2021;
Biswas et al., 2021; Meier et al., 2021) leverage the se-
quences within a protein family to capture the conserved
and variable regions of homologous sequences, which imply
specific structures and functions of the protein family.

A.2. Structure-Based Methods

Although sequence-based methods pretrained on large-scale
databases perform well, structure-based methods should be,
in principle, a better solution to learning an informative pro-
tein representation, as the function of a protein is determined
by its structure. This line of works seeks to encode spatial
information in protein structures by 3D CNNs (Derevyanko
et al., 2018) or graph neural networks (GNNs) (Gligori-
jević et al., 2021; Baldassarre et al., 2021; Jing et al., 2021).
Among these methods, IEConv (Hermosilla et al., 2021)
tries to fit the inductive bias of protein structure modeling,
which introduced a graph convolution layer incorporating
intrinsic and extrinsic distances between nodes. Another
potential direction is to extract features from protein sur-
faces (Gainza et al., 2020; Sverrisson et al., 2021; Dai &
Bailey-Kellogg, 2021). (Somnath et al., 2021) combined
the advantages of both worlds and proposed a parameter-
efficient multi-scale model. Besides, there are also works

that enhance pretrained sequence-based models by incorpo-
rating structural information in the pretraining stage (Bepler
& Berger, 2021) or finetuning stage (Wang et al., 2022).

Despite progress in the design of structure-based encoders,
there are few works focusing on structure-based pretraining
for proteins. To the best of our knowledge, the only attempt
is two concurrent works (Hermosilla & Ropinski, 2022)
and (Chen et al., 2022), which apply contrastive learning
and self-prediction methods on a small set of tasks, respec-
tively. Compared with these existing works, our proposed
encoder is conceptually simpler and more effective on many
different tasks, thanks to the proposed relational graph con-
volutional layer and edge message passing layer, which are
able to efficiently capture both the sequential and structural
information. Furthermore, we introduce five structure-based
pretraining methods within the contrastive learning and self-
prediction frameworks, which can serve as a solid starting
point for enabling self-supervised learning on protein struc-
tures.

A.3. Structure-based Encoders for Biological Molecules

Following the early efforts (Behler & Parrinello, 2007;
Bartók et al., 2010; 2013; Chmiela et al., 2017) of building
machine learning systems for molecules by hand-crafted
atomic features, recent works exploited end-to-end mes-
sage passing neural networks (MPNNs) (Gilmer et al.,
2017) to encode the structures of small molecules and
macromolecules like proteins. Specifically, existing meth-
ods employed node/atom message passing (Gilmer et al.,
2017; Schütt et al., 2017a;b), edge/bond message pass-
ing (Jørgensen et al., 2018; Chen et al., 2019) and direc-
tional information (Klicpera et al., 2020; Liu et al., 2021;
Klicpera et al., 2021) to encode 2D or 3D molecular graphs.

Compared to small molecules, structural representations of
proteins are more diverse, including residue-level graphs,
atom-level graphs and protein surfaces. There are some
recent models designed to encode residue-level graphs (Her-
mosilla et al., 2021; Hermosilla & Ropinski, 2022) and pro-
tein surfaces (Gainza et al., 2020; Sverrisson et al., 2021),
and they achieved impressive results on various tasks. How-
ever, these models are either not expressive enough to cap-
ture edge interactions or too complicated for representation
learning.

A.4. Pretraining Graph Neural Networks

Our work is also related to the recent efforts of pretrain-
ing graph neural networks (GNNs), which sought to learn
graph representations in a self-supervised fashion. In this do-
main, various self-supervised pretext tasks, like edge predic-
tion (Kipf & Welling, 2016; Hamilton et al., 2017), context
prediction (Hu et al., 2019; Rong et al., 2020), node/edge
attribute reconstruction (Hu et al., 2019) and contrastive
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learning (Hassani & Khasahmadi, 2020; Qiu et al., 2020;
You et al., 2020; Xu et al., 2021), are designed to acquire
knowledge from unlabeled graphs. In this work, we focus
on learning representations of residue-level graphs of pro-
teins in a self-supervised way. To attain this goal, we design
several novel protein-specific pretraining methods to learn
the proposed structure-based GNN encoder.

B. Broader Impact
This research project focuses on learning effective protein
representations via pretraining with a large number of un-
labeled protein structures. Compared to the conventional
sequence-based pretraining methods, our approach is able to
leverage structural information and thus provide better rep-
resentations. This merit enables more in-depth analysis of
protein research and can potentially benefit many real-world
applications, like protein function prediction and sequence
design.

However, it cannot be denied that some harmful activities
could be augmented by powerful pretrained models, e.g.,
designing harmful drugs. We expect future studies will
mitigate these issues.

C. More Details of GearNet
In this section, we describe more details about the implemen-
tation of our GearNet. The whole pipeline of our structure-
based encoder is depicted in Figure 2.

C.1. Protein Graph Construction

For graph construction, we use three different ways to add
edges:

1. Sequential edges. The i-th residue and the j-th residue
will be linked by an edge if the sequential distance
between them is below a predefined threshold dseq, i.e.,
|j − i| < dseq. The type of each sequential edge is
determined by their relative position d = j − i in the
sequence. Hence, there are 2dseq−1 types of sequential
edges.

2. Radius edges. Following previous works, we also
add edges between two nodes i and j when the Eu-
clidean distance between them is smaller than a thresh-
old dradius.

3. K-nearest neighbor edges. Since the scales of spatial
coordinates may vary among different proteins, a node
will be also connected to its k-nearest neighbors based
on the Euclidean distance. In this way, the density of
spatial edges are guaranteed to be comparable among
different protein graphs.

Since we are not interested in spatial edges between residues

close with each other in the sequence, we further add a
filter to the latter two kinds of edges. Specifically, for a
radius or KNN edge connecting the i-th residue and j-th
residue, it will be removed if the sequential distance between
them is lower than a long range interaction cutoff dlong, i.e.,
|i− j| < dlong.

In this paper, we set the sequential distance threshold dseq =
3, the radius dradius = 10.0Å, the number of neighbors
k = 10 and the long range interaction cutoff dlong = 5. By
regarding radius edges and KNN edges as two separate edge
types, there will be totally 2dseq + 1 = 7 different types of
edges.

Figure 1: The average degree distribution on AlphaFold
Database.

Necessity of spatial edges. Here we explain the necessity
of radius and KNN edges by statistics and intuitions. These
two kinds of edges result in very different degree distribu-
tions. In Figure 1, we plot the average degree distribution
over all proteins in AlphaFold Database v1. If we only con-
sider KNN edges, the node degrees in protein graphs are
close to a constant, which makes it difficult to capture those
areas with dense interactions between residues. If we only
consider radius edges, then there will be about 45,000 pro-
teins with average degrees lower than two. In these sparse
graphs, pretraining cannot capture structural information
effectively, e.g., Angle Prediction with limited edge pairs
and Dihedral Prediction with limited edge triplets. Such
sparsity can hard be overcome by tuning radius cutoff, for
the various scales of average distance on different proteins.
By simply combining two kinds of edges, we can overcome
these issues.

C.2. Node and edge features.

Most previous structure-based encoders designed for biolog-
ical molecules (Baldassarre et al., 2021; Hermosilla et al.,
2021) used many chemical and spatial features, some of
which are difficult to obtain or time-consuming to calculate.
In contrast, we only use the one-hot encoding of residue
types with one additional dimension for unknown types as
node features, denoted as f ∈ {0, 1}n×21, which is enough
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Figure 2: The pipeline for GearNet and GearNet-edge. First, we construct a relational protein residue graph with sequential,
radius and knn edges (some edges are omitted in the figure to save space). Then, a relational graph convolutional layer is
applied. Similar message passing layers can be applied on the edge graph to improve the model capacity. This figure shows
the update iteration for node 4 and edge (4, 7, red), respectively.

to learn good representation as shown in our experiments.

The feature f(i,j,r) for an edge (i, j, r) is the concatenation
of the node features of two end nodes, the one-hot encoding
of the edge type, and the sequential and spatial distances
between them:

f(i,j,r) = Cat (fi,fj , onehot(r), |i− j|, ∥xi − xj∥2) ,
(2)

where Cat(·) denotes the concatenation operation.

C.3. Enhance GearNet with IEConv Layers

In our experiments, we find that IEConv layers are very
useful for predicting fold labels in spite of their relatively
poor performance on function prediction tasks. Therefore,
we enhance our models by adding a simplified IEConv layer
as an additional layer, which achieve better results than the
original IEConv. In this section, we describe how to simplify
the IEConv layer and how to combine it with our model.

Simplify the IEConv layer. The original IEConv layer
relies on the computation of intrinsic and extrinsic distances
between two nodes, which are computationally expensive.
Hence, we follow the modifications proposed in (Hermosilla
& Ropinski, 2022), which show improvements as reported
in their experiments. Although these modifications are not
proposed by us, we still briefly describe the model for com-
pleteness.

In the IEConv layer, we keep the edges in our graph G and

use h̃
(l)
i to denote the hidden representation for node i in

the l-th layer. The update equation for node i is defined as:

h̃
(l)
i =

∑
j∈N (i)

ko(f(G, i, j)) · h(l−1)
j , (3)

where N (i) is the set of neighbors of i, f(G, i, j) is the
edge feature between i and j and ko(·) is an MLP mapping
the feature to a kernel matrix. Instead of intrinsic and ex-
trinsic distances in the original IEConv layer, we follow
New IEConv, which adopts three relative positional features
proposed in (Ingraham et al., 2019) and further augments
them with additional input functions.

We aim to apply this layer on our constructed protein residue
graph instead of the radius graph in the original paper. There-
fore, we simply remove the dynamically changed receptive
fields, pooling layer and smoothing tricks in our setting.

Combine IEConv with GearNet. Our model is very flex-
ible to incorporate other message passing layers. To incor-
porate IEConv layers, we just use our graph and hidden
representations as input and replace the update equation
with

h
(l)
i = h

(l−1)
i + h̃

(l)
i + σ

BN

∑
r∈R

Wr

∑
j∈Nr(i)

h
(l−1)
j

 .
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Figure 3: Demonstration of geometric pretraining methods. For multiview contrastive learning, we aim to align represen-
tations of different views from the same protein while minimizing the similarity between those from different ones. For
self-prediction methods, we construct four masked prediction objectives by inferring masked geometric or biochemical
quantities with learned representations.

D. Demonstration of Geometric Preatraining
The high-level ideas of our proposed five geometric pre-
training methods are illustrated in Figure 3. For multiview
contrastive learning methods, we propose two cropping func-
tions and two transformation functions to generate different
views of proteins. Here we illustrate these augmentation
functions in Figure 4.

E. Experimental Details
E.1. Setup

Pretraining datasets. We use the AlphaFold protein struc-
ture database (CC-BY 4.0 License) (Jumper et al., 2021;
Varadi et al., 2021) for pretraining. This database contains
the protein structures predicted by the AlphaFold2 model,
and we employ both 365K proteome-wide predictions and
440K Swiss-Prot (Consortium, 2021) predictions in our ex-
periments. In Appendix G, we further report the results of
pretraining on different datasets.

Downstream tasks. We adopt two tasks proposed in (Glig-
orijević et al., 2021) and two tasks used in (Hermosilla et al.,
2021) for downstream evaluation. Enzyme Commission
(EC) number prediction (BSD 3-Clause License) seeks to
predict the EC numbers of different proteins, which de-
scribe their catalysis of biochemical reactions. The EC
numbers are selected from the third and fourth levels of the
EC tree (Webb et al., 1992), forming 538 binary classifi-
cation tasks. Gene Ontology (GO) term prediction (BSD
3-Clause License) aims to predict whether a protein belongs
to some GO terms. These terms classify proteins into hi-

erarchically related functional classes organized into three
ontologies: molecular function (MF), biological process
(BP) and cellular component (CC). Fold classification (CC-
BY 4.0 license) is first proposed in (Hou et al., 2018), with
the goal to predict the fold class label given a protein. Reac-
tion classification (BSD 3-Clause License ) aims to predict
the enzyme-catalyzed reaction class of a protein, in which
all four levels of the EC number are employed to depict the
reaction class. Although this task is essentially the same
with EC prediction, we include it to make a fair comparison
with the baselines in (Hermosilla et al., 2021).

Dataset splits. For EC and GO prediction, we follow the
multi-cutoff split methods in (Gligorijević et al., 2021) to
ensure that the test set only contains PDB chains with se-
quence identity no more than 95% to the training set, which
is also used in (Wang et al., 2022). For fold classification,
(Hou et al., 2018) provides three different test sets: Fold,
in which proteins from the same superfamily are unseen
during training; Superfamily, in which proteins from the
same family are not present during training; and Family,
in which proteins from the same family are present during
training. For reaction classification, we adopt dataset splits
proposed in (Hermosilla et al., 2021), where proteins have
less than 50% sequence similarity in-between splits.

Baselines. Following (Wang et al., 2022) and (Hermosilla
et al., 2021), we compare our encoders with many ex-
isting protein representation learning methods, includ-
ing four sequence-based encoders (CNN (Shanehsazzadeh
et al., 2020), ResNet (Rao et al., 2019), LSTM (Rao
et al., 2019) and Transformer (Rao et al., 2019)), six
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Figure 4: Illustration of four different augmentation functions. First, we randomly apply one of the two cropping functions
shown in the figure. For subsequence, we randomly sample a consecutive segment of the protein (2-7 in this case) and take
the corresponding subgraph. For subspace, we first sample a center residue (residue 4 in this case) and then sample all
residues within a distance threshold r. Then, a random transformation function will be applied on the output subgraph in the
last step. For identity, we directly return the graph without transformation, while, for random edge masking, we randomly
remove a fixed ratio of edges from the graph.

structure-based encoders (GCN (Kipf & Welling, 2017),
GAT (Veličković et al., 2018), GVP (Jing et al., 2021),
3DCNN MQA (Derevyanko et al., 2018), GraphQA (Bal-
dassarre et al., 2021) and New IEConv (Hermosilla & Ropin-
ski, 2022)). We also include two models pretrained on large-
scale sequence datasets (ProtBERT-BFD (Elnaggar et al.,
2021), ESM-1b (Rives et al., 2021)) and two models com-
bining pretrained sequence-based encoders with structural
information (DeepFRI (Gligorijević et al., 2021) and LM-
GVP (Wang et al., 2022)). For LM-GVP and New IEConv,
we only include results reported in the original paper due to
the computational burden and the lack of codes.

Training. On the four downstream tasks, we train Gear-
Net and GearNet-Edge from scratch. As we find that the
IEConv layer is important for predicting fold labels, we
also enhance our model by incorporating this as an addi-
tional layer (details in Appendix C.3). These models are
referred as GearNet-IEConv and GearNet-IEConv-Edge, re-
spectively. Following previous works (Wang et al., 2022)
and (Hermosilla & Ropinski, 2022), the models are trained
for 200 epochs on EC and GO prediction and for 300 epochs
on fold and reaction classification. For pretraining, the mod-
els with the best performance when trained from scratch
are selected, i.e., GearNet-Edge for EC, GO, Reaction and
GearNet-Edge-IEConv for Fold Classification. The models
are pretrained on the AlphaFold protein database with our

proposed five methods for 50 epochs. All these models are
trained on 4 Tesla A100 GPUs. More details can be found
in Appendix E.4.

Evaluation. For EC and GO prediction, we evaluate
the performance with the protein-centric maximum F-
score Fmax, which is commonly used in the CAFA chal-
lenges (Radivojac et al., 2013) (See Appendix E.3 for de-
tails). Experimental results with another popular metric,
pair-centric area under precision-recall curve AUPRpair, are
reported in Appendix. F. For fold and reaction classification,
the performance is measured with the mean accuracy. Mod-
els with the best performance on validation sets are selected
for evaluation on test sets.

E.2. Dataset Statistics

Table 3: Dataset statistics for downstream tasks.

Dataset # Proteins
# Train # Validation # Test

Enzyme Commission 15,550 1,729 1,919
Gene Ontology 29,898 3,322 3,415
Fold Classification - Fold 12,312 736 718
Fold Classification - Superfamily 12,312 736 1,254
Fold Classification - Family 12,312 736 1,272
Reaction Classification 29,215 2,562 5,651

Dataset statistics of our four downstream tasks are summa-
rized in Table 3. More details are introduced as follows.
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Enzyme Commission and Gene Ontology. Following
DeepFRI (Gligorijević et al., 2021), the EC numbers are
selected from the third and fourth levels of the EC tree,
forming 538 binary classification tasks, while the GO terms
with at least 50 and no more than 5000 training samples
are selected. The non-redundant sets are partitioned into
training, validation and test sets according to the sequence
identity. We retrieve all protein chains from PDB used the
code provided in their codebase and remove those with
obsolete pdb ids, so the statistics will be slightly different
from the number reported in the original paper.

Fold Classification. We directly use the dataset processed
in (Hermosilla et al., 2021), which consolidated 16,712
proteins with 1,195 different folds from the SCOPe 1.75
database (Murzin et al., 1995).

Reaction Classification. The dataset comprises 37,428
proteins categorized into 384 reaction classes. The split
methods are described in (Hermosilla et al., 2021), where
they cluster protein chains via sequence similarities and
ensure that protein chains belonging to the same cluster are
in the same set.

E.3. Evaluation Metrics

Now we introduce the details of evaluation metrics for EC
and GO prediction. These two tasks aim to answer the
question: whether a protein has a particular function, which
can be seen as multiple binary classification tasks.

The first metric, protein-centric maximum F-score Fmax, is
defined by first calculating the precision and recall for each
protein and then taking the average score over all proteins.
More specifically, for a given target protein i and some
decision threshold t ∈ [0, 1], the precision and recall are
computed as:

precisioni(t) =

∑
f 1[f ∈ Pi(t) ∩ Ti]∑

f 1[f ∈ Pi(t)]
, (4)

and

recalli(t) =

∑
f 1[f ∈ Pi(t) ∩ Ti]∑

f 1[f ∈ Ti]
, (5)

where f is a function term in the ontology, Ti is a set of ex-
perimentally determined function terms for protein i, Pi(t)
denotes the set of predicted terms for protein i with scores
greater than or equal to t and 1[·] ∈ {0, 1} is an indicator
function that is equal to 1 iff the condition is true.

Then, the average precision and recall over all proteins at
threshold t is defined as:

precision(t) =
1

M(t)

∑
i

precisioni(t), (6)

and

recall(t) =
1

N

∑
i

recalli(t), (7)

where we use N to denote the number of proteins and M(t)
to denote the number of proteins on which at least one
prediction was made above threshold t, i.e., |Pi(t)| > 0.

Combining these two measures, the maximum F-score is
defined as the maximum value of F-measure over all thresh-
olds. That is,

Fmax = max
t

{
2 · precision(t) · recall(t)
precision(t) + recall(t)

}
. (8)

The second metric, pair-centric area under precision-recall
curve AUPRpair, is defined as the average precision scores
for all protein-function pairs, which is exactly the micro
average precision score for multiple binary classification.

E.4. Implementation Details

In this subsection, we describe implementation details of
all baselines and our methods. For all models, the outputs
will be fed into a three-layer MLP to make final prediction.
The dimension of hidden layers in the MLP is equal to the
dimension of model outputs.

CNN (Shanehsazzadeh et al., 2020). Following the find-
ing in (Shanehsazzadeh et al., 2020), we directly employ
a shallow convolutional neural network (CNN) to encode
protein sequences. Specifically, 2 convolutional layers with
1024 hidden dimensions and kernel size 5 constitute this
baseline model.

ResNet (Rao et al., 2019). We also adopt a deep CNN
model, i.e., the ResNet for protein sequences proposed
by (Rao et al., 2019), in our benchmark. This model is
with 12 residual blocks and 512 hidden dimensions, and
it uses the GELU (Hendrycks & Gimpel, 2016) activation
function.

LSTM (Rao et al., 2019). The bidirectional LSTM model
proposed by (Rao et al., 2019) is another baseline for protein
sequence encoding. It is composed of three bidirectional
LSTM layers with 640 hidden dimensions.

Transformer (Rao et al., 2019). The self-attention-based
Transformer encoder (Vaswani et al., 2017) is a strong
model in natural language processing (NLP), (Rao et al.,
2019) adapts this model into the field of protein sequence
modeling. We also adopt it as one of our baselines. This
model has a comparable size with BERT-Small (Devlin
et al., 2018), which contains 4 Transformer blocks with 512
hidden dimensions and 8 attention heads, and it is activated
by GELU (Hendrycks & Gimpel, 2016).
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GCN (Kipf & Welling, 2017). We take GCN as a base-
line to encode the residue graph derived by our graph con-
struction scheme. We adopt the implementation in Torch-
Drug (Zhu et al., 2022), where 6 GCN layers with the hidden
dimension of 512 are used for encoding. We run the results
of GCN on EC and GO by ourselves and take its results
on Fold and Reaction classification from (Hermosilla et al.,
2021).

GAT (Veličković et al., 2018). We adopt another popular
graph neural network, GAT, as a structure-based baseline
model. We follow the implementation in TorchDrug and
use 6 GAT layers with the hidden dimension of 512 and 1
attention head per layer for encoding. The results on EC,
Fold and Reaction classification are based on our runs, and
the results on GO are taken from (Wang et al., 2022).

GVP (Jing et al., 2021). The GVP model (Jing et al.,
2021) is a decent protein structure encoder. It iteratively
updates the scalar and vector representations of a protein,
and these representations possess the merit of invariance and
equivariance. In our benchmark, we evaluate this baseline
method following the official source code. In specific, 3
GVP layers with 32 feature dimensions (20 scalar and 4
vector channels) constitute the GVP model.

3DCNN MQA (Derevyanko et al., 2018). We implement
the 3DCNN model from the paper (Derevyanko et al., 2018)
with a box width of 40.0 and input resolution of 120 ×
120× 120. The model has 6 residual blocks and 128 hidden
dimensions with ELU activation function.

GraphQA (Baldassarre et al., 2021). Following the
hyperparameters in the original paper, we construct the
residue graphs based on bond and spatial information and
re-implement the graph neural network in our codebase.
The best model has 4 layers with 128 node features, 32 edge
features and 512 global features.

New IEConv (Hermosilla & Ropinski, 2022). Since the
code for New IEConv has not been made public when the
paper is written, we reproduce the method according to the
description in the paper and achieve similar results on Fold
and Reaction classification tasks. Then, we evaluate the
method on EC and GO prediction tasks with the default
hyperparameters reported in the original paper and follow
the standard training procedure on these two tasks.

DeepFRI (Gligorijević et al., 2021). We also evaluate
DeepFRI (Gligorijević et al., 2021) in our benchmark, which
is a popular structure-based encoder for protein function
prediction. DeepFRI employs an LSTM model to extract
residue features and further constructs a residue graph to
propagate messages among residues, in which a 3-layer

graph convolutional network (GCN) (Kipf & Welling, 2017)
is used for message passing. We directly utilize the official
model checkpoint for baseline evaluation.

ESM-1b (Rives et al., 2021). Besides the from-scratch se-
quence encoders above, we also compare with two state-of-
the-art pretrained protein language models. ESM-1b (Rives
et al., 2021) is a huge Transformer encoder model whose
size is larger than BERT-Large (Devlin et al., 2018), and
it is pretrained on 24 million protein sequences from
UniRef50 (Suzek et al., 2007) by masked language mod-
eling (MLM) (Devlin et al., 2018). In our evaluation, we
finetune the ESM-1b model with the learning rate that is
one-tenth of that of the MLP prediction head.

ProtBERT-BFD (Elnaggar et al., 2021). The other
protein language model evaluated in our benchmark is
ProtBERT-BFD (Elnaggar et al., 2021) whose size also ex-
cesses BERT-Large (Devlin et al., 2018). This model is pre-
trained on 2.1 billion protein sequences from BFD (Steineg-
ger & Söding, 2018) by MLM (Devlin et al., 2018). The
evaluation of ProtBERT-BFD uses the same learning rate
configuration as ESM-1b.

LM-GVP (Wang et al., 2022). To further enhance the
effectiveness of GVP (Jing et al., 2021), (Wang et al., 2022)
proposed to prepend a protein language model, i.e. Prot-
BERT (Elnaggar et al., 2021), before GVP to additionally
utilize protein sequence representations. We also adopt this
hybrid model as one of our baselines, and its implementation
follows the official source code.

Our methods. For pretraining, we use Adam optimizer
with learning rate 0.001 and train a model for 50 epochs.
Then, the pretrained model will be finetuned on downstream
datasets.

For Multiview Contrast, we set the cropping length of sub-
sequence operation as 50, the radius of subspace operation
as 15Å, the mask rate of random edge masking operation
as 0.15. The temperature τ in the InfoNCE loss function is
set as 0.07. When pretraining GearNet-Edge and GearNet-
Edge-IEConv, we use 96 and 24 as batch sizes, respectively.

For Distance Prediction, we set the number of sampled
residue pairs as 256. And the batch size will be set as 128
and 32 for GearNet-Edge and GearNet-Edge-IEConv, re-
spectively. For Residue Type, Angle and Dihedral Predic-
tion, we set the number of sampled residues, residue triplets
and residue quadrants as 512. And the batch size will be set
as 96 and 32 for GearNet-Edge and GearNet-Edge-IEConv,
respectively.

For downstream evaluation, the hidden representations in
each layer of GearNet will be concatenated for the final
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Table 4: Hyperparameter configurations of our model on
different datasets. The batch size reported in the table referrs
to the batch size on each GPU. All the hyperparameters are
chosen by the performance on the validation set.

Hyperparameter EC GO Fold Reaction

GNN
#layer 6 6 6 6
hidden dim. 512 512 512 512
dropout 0.1 0.1 0.2 0.2

Learning

optimizer AdamW AdamW SGD SGD
learning rate 1e-4 1e-4 1e-3 1e-3
weight decay 0 0 5e-4 5e-4
batch size 2 2 2 2
# epoch 200 200 300 300

prediction. Table 4 lists the hyperparameter configurations
for different downstream tasks. For the four tasks, we use
the same optimizer and number of epochs as in the original
papers to make fair comparison. And for EC and GO predic-
tion, we use ReduceLROnPlateau scheduler with factor 0.6
and patience 5, while we use StepLR scheduler with step
size 50 and gamma 0.5 for fold and reaction classification.

F. Additional Experimental Results
F.1. AUPR on EC and GO Prediction

In Section 4, we have reported experimental results on EC
and GO prediction with Fmax as the metric. Here we report
another popular metric AUPR in Table 5. Note that we still
use the best model selected by Fmax on validation sets. It
can be observed that our model can still achieve the best
performance on EC prediction in both from scratch and
pretrained settings. However, there are still non-trivial gaps
between our models with the state-of-the-art results. This
probably is because of the inconsistency between the two
evaluation metrics. It would be interesting to study the
relationship between these two metrics and develop a model
good at both. We leave this problem as future works.

F.2. Experiments under Different Sequence Cutoffs

Besides the main experiments, where 95% is used as the
sequence identity cutoff for EC and GO dataset splitting,
we also test our models and several important baselines
under four lower sequence identity cutoffs and show the
experimental results in Table 6. It can be observed that, at
lower sequence identity cutoffs, our model can still achieve
the best performance among models without pretraining
and get comparable or better results against ESM-1b after
pretraining.

F.3. Ablation Studies

To analyze the contribution of different components in our
proposed methods, we perform ablation studies on the EC
prediction task. The results are shown in Table 7.

Relational graph convolutional layers. To show the ef-
fects of relational convolutional layers, we replace it with
graph convolutional layers that share a single kernel matrix
among all edges. As reported in the table, results can be sig-
nificantly improved by using relational convolution, which
suggests the importance of treating edges as different types.

Edge message passing layers. We also compare the re-
sults of GearNet with and without edge message passing
layers, the results of which are shown in Tables 1, 7. It
can be observed that the performance consistently increases
after performing edge message passing. This demonstrates
the effectiveness of our proposed mechanism.

Different augmentations in Multiview Contrast. We
investigate the contribution of each augmentation operation
proposed in the Multiview Contrast method. Instead of
randomly sampling cropping functions and transformations,
we pretrain our model with four deterministic combinations
of augmentations, respectively. As shown in Table 7, all the
four combinations can yield good results, which suggests
that arbitrary combinations of the proposed cropping and
transformation schemes can yield informative partial views
of proteins.

Sampling schemes in Self-Prediction methods. Differ-
ent sampling schemes may lead to different results for
self-prediction methods. We study the effects of sampling
schemes using Dihedral Prediction as an example. Instead of
sampling dihedral angles formed by three consecutive edges,
we try to predict the dihedrals formed by four randomly
sampled nodes. We observe that this change of sampling
schemes will make the self-prediction task more difficult to
solve, which even brings negative effects after pretraining.

G. Pretraining on Different Datasets
We use the AlphaFold protein structure database as our pre-
training database, as it contains the largest number of protein
structures and is planned to cover over 100 million proteins
in the future. However, the structures in this database are
not experimentally determined but predicted by AlphaFold2.
Therefore, it is interesting to see the performance of our
methods when pretraining on different datasets.

To study the effects of the choice of pretraining dataset, we
build another dataset using structures extracted from Protein
Data Bank (PDB) (Berman et al., 2000). Specifically, we
extract 123,505 experimentally-determined protein struc-
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Table 5: AUPR on EC and GO prediction. [†] denotes results taken from (Wang et al., 2022). For pretraining, we select the
model with the best performance when training from scratch, i.e., GearNet-Edge. We omit the model name and use the
pretraining methods to name our pretrained models.

Method Pretraining
Dataset (Size) EC GO

BP MF CC

w
/o

pr
et

ra
in

in
g

CNN (Shanehsazzadeh et al., 2020) - 0.526 0.159 0.351 0.204
ResNet (Rao et al., 2019) - 0.590 0.205 0.434 0.214
LSTM (Rao et al., 2019) - 0.414 0.156 0.334 0.192

Transformer (Rao et al., 2019) - 0.218 0.156 0.177 0.210

GCN (Kipf & Welling, 2017) - 0.319 0.136 0.147 0.175
GAT (Veličković et al., 2018) - 0.320 0.171† 0.329† 0.249†

GVP (Jing et al., 2021) - 0.482 0.224† 0.458† 0.279†

3DCNN MQA (Derevyanko et al., 2018) - 0.029 0.132 0.075 0.144
GraphQA (Baldassarre et al., 2021) - 0.543 0.199 0.347 0.265

New IEConv (Hermosilla & Ropinski, 2022) - 0.775 0.273 0.572 0.316

GearNet - 0.751 0.211 0.490 0.276
GearNet-IEConv - 0.835 0.231 0.547 0.259

GearNet-Edge - 0.872 0.251 0.570 0.303
GearNet-Edge-IEConv - 0.843 0.244 0.561 0.284

w
/p

re
tr

ai
ni

ng

DeepFRI (Gligorijević et al., 2021) Pfam (10M) 0.547 0.282 0.462 0.363
ESM-1b (Rives et al., 2021) UniRef50 (24M) 0.889 0.343 0.639 0.384

ProtBERT-BFD (Elnaggar et al., 2021) BFD (2.1B) 0.859 0.188† 0.464† 0.234†

LM-GVP (Wang et al., 2022) UniRef100 (216M) 0.710 0.302† 0.580† 0.423†

Multiview Contrast AlphaFoldDB (805K) 0.892 0.292 0.596 0.336
Residue Type Prediction AlphaFoldDB (805K) 0.870 0.267 0.583 0.311

Distance Prediction AlphaFoldDB (805K) 0.863 0.274 0.586 0.327
Angle Prediction AlphaFoldDB (805K) 0.880 0.291 0.603 0.331

Dihedral Prediction AlphaFoldDB (805K) 0.881 0.304 0.603 0.338

tures from PDB whose resolutions are between 0.0 and 2.5
angstroms, and we further extract 305,265 chains from these
proteins to construct the final pretraining dataset.

Next, we pretrain our five methods on AlphaFold Database
v1 (proteome-wide structure predictions), AlphaFold
Database v2 (Swiss-Prot structure predictions) and Protein
Data Bank and then evaluate the pretrained models on the
EC prediction task. The results are reported in Table 8. As
can be seen in the table, our methods can achieve compa-
rable performance on different pretraining datasets. Conse-
quently, our methods are robust to the choice of pretraining
datasets.

H. Results on Protein Engineering Tasks
Besides four standard tasks considered in Section 4, another
important kind of downstream tasks is related to protein
engineering, which is heavily relied on mutations on pro-
tein sequences. These tasks aim to predict the ability of a
protein to perform a desired function, termed protein fitness.
Good models are expected to have sufficient precision to
distinguish between closely-related protein sequences upon
mutations. In this section, we further evaluate our model on
four protein engineering related tasks.

H.1. Setup

We choose two protein engineering tasks from (Rao et al.,
2019) and two landscape prediction tasks from (Dallago
et al., 2021), all of which are standard benchmarks to evalu-
ate protein language models. The statistics of four datasets
are shown in Table 9 and we describe each task as follows.

Fluoresence landscape prediction (Sarkisyan et al., 2016)
This task aims to predict the log-fluorescence intensity of
mutants of the wild type green fluorescent protein (GFP).
The training set consists of single, double and triple mu-
tants, while the test set includes variants with four or more
mutations.

Stability landscape prediction (Rocklin et al., 2017)
This is a regression task that maps each input protein to
a value measuring the most extreme circumstances in which
the protein can maintain its fold above a concentration
threshold. To test the generalization ability from a broad
set of relevant sequences with multiple mutations to local
sequence neighbors with fewer mutations, the training set
includes proteins from four rounds of experimental design,
whereas the test set only contains 1-hop neighbors of top
candidate proteins.



Protein Representation Learning by Geometric Structure Pretraining

Table 6: Fmax on EC and GO tasks under different sequence cutoffs (30% / 40% / 50% / 70% / 95%).

Method EC GO-BP GO-MF GO-CC

CNN 0.366 / 0.361 / 0.372 / 0.429 / 0.545 0.197 / 0.195 / 0.197 / 0.211 / 0.244 0.238 / 0.243 / 0.256 / 0.292 / 0.354 0.258 / 0.257 / 0.260 / 0.263 / 0.387
ResNet 0.409 / 0.412 / 0.450 / 0.526 / 0.605 0.230 / 0.230 / 0.234 / 0.249 / 0.280 0.282 / 0.288 / 0.308 / 0.347 / 0.405 0.277 / 0.273 / 0.280 / 0.278 / 0.304
LSTM 0.247 / 0.249 / 0.270 / 0.333 / 0.425 0.194 / 0.192 / 0.195 / 0.205 / 0.225 0.223 / 0.229 / 0.245 / 0.276 / 0.321 0.263 / 0.264 / 0.269 / 0.270 / 0.283
Transformer 0.167 / 0.173 / 0.175 / 0.197 / 0.238 0.267 / 0.265 / 0.262 / 0.262 / 0.264 0.184 / 0.187 / 0.195 / 0.204 / 0.211 0.378 / 0.382 / 0.388 / 0.395 / 0.405
GCN 0.245 / 0.246 / 0.246 / 0.280 / 0.320 0.251 / 0.250 / 0.248 / 0.248 / 0.252 0.180 / 0.183 / 0.187 / 0.194 / 0.195 0.318 / 0.318 / 0.320 / 0.323 / 0.329
GearNet 0.557 / 0.570 / 0.615 / 0.693 / 0.730 0.309 / 0.309 / 0.315 / 0.336 / 0.356 0.382 / 0.397 / 0.425 / 0.474 / 0.503 0.381 / 0.385 / 0.393 / 0.398 / 0.414
GearNet-edge 0.625 / 0.646 / 0.694 / 0.757 / 0.810 0.345 / 0.347 / 0.354 / 0.378 / 0.403 0.444 / 0.461 / 0.490 / 0.537 / 0.580 0.394 / 0.394 / 0.401 / 0.408 / 0.450

DeepFRI 0.470 / 0.505 / 0.545 / 0.600 / 0.631 0.361 / 0.362 / 0.371 / 0.391 / 0.399 0.374 / 0.383 / 0.409 / 0.446 / 0.465 0.440 / 0.441 / 0.444 / 0.451 / 0.460
ESM-1b 0.737 / 0.764 / 0.797 / 0.839 / 0.864 0.394 / 0.399 / 0.407 / 0.429 / 0.470 0.546 / 0.562 / 0.588 / 0.625 / 0.657 0.462 / 0.465 / 0.468 / 0.465 / 0.488
Multiview Contrast 0.744 / 0.769 / 0.808 / 0.848 / 0.874 0.436 / 0.442 / 0.449 / 0.471 / 0.490 0.533 / 0.548 / 0.573 / 0.612 / 0.654 0.459 / 0.460 / 0.467 / 0.469 / 0.488

Method Fmax

GearNet-Edge 0.810
- w/o relational convolution 0.752
- w/o edge message passing 0.730

GearNet-Edge (Multiview Contrast) 0.874
- subsequence + identity 0.866
- subspace + identity 0.872
- subsequence + random edge masking 0.869
- subspace + random edge masking 0.876

GearNet-Edge (Dihedral Prediction) 0.859
- w/ random sampling 0.821

Table 7: Ablation studies on EC.

GB1 (Wu et al., 2016) This task uses the GB1 landscape
to test the model’s ability to predict the effects of interac-
tions between mutations, termed epistasis. We adopt the
low-vs-high split proposed in (Dallago et al., 2021), where
sequences with fitness value equal to or below wild type are
used to train, while sequences with fitness value above wild
type are used to test.

Thermostability (Jarzab et al., 2020) We use the screen-
ing landscape curated from (Dallago et al., 2021) to measure
the model’s ability to predict thermostability of proteins.
This landscape includes both global and local variation in-
stead of only mutants of a single protein. Similarly, we use
the low-vs-high split proposed in (Dallago et al., 2021).

All these four tasks are evaluated via Spearman’s ρ (rank
correlation coefficient).

H.2. Implementation Details

Protein structure generation. Since all these tasks are
originally designed for evaluating sequence-based encoders,
the experimentally-determined structures for proteins in
these datasets are not available. To solve this issue, we use
AlphaFold2 to generate structures for all datasets except
GB1. For GB1 dataset, we only generate the structure of
the wild type protein. Because the differences between mu-

tant structures are almost negligible on the residue level,
we directly use the residue graph constructed from the wild
type protein for all mutants and replace node and edge fea-
tures with corresponding residue types after mutations. We
scale up the number of predictions that can be performed
by AlphaFold2 by using the fast homology search of MM-
Seqs2 (Steinegger & Söding, 2017) and running AlphaFold2
in batch mode using ColabFold (Mirdita et al., 2021). Five
predictions were made for each sequence and prediction
with the highest pLDDT score was chosen. The number
of recycles were set to 3 and relaxation using amber force
fields was not used. For those proteins the structures of
which AlphaFold2 fails to generate, we only add sequen-
tial edges in the protein residue graph based on sequential
information.

Training details. We use the same pretraining and down-
stream setting as in Section E.4. Hyperparameters for each
dataset are described in Table 10.

H.3. Results

The results on four protein engineering tasks are reported
in Table 11. First, our model achieves the best result on all
tasks among models without pretraining. Moreover, it ob-
tains comparable or even better performance than pretrained
sequence encoders on Fluoresence and Stability tasks. This
can be understood because our model is a generalization of
CNN enhanced with structural information encoded in the
protein graph and thus at least as good as CNN. Surprisingly,
the improvements of edge message passing aren’t signifi-
cant on these four tasks. One potential reason is that the
structures of protein mutants are undistinguishable on the
residue level and some structures are missing in the dataset.

As for pretraining, structure-based methods show signifi-
cant improvements on Stability and GB1 datasets, which
achieve the state-of-the-art performance. However, no posi-
tive effects of pretraining are shown on the other two tasks.
Besides the reason mentioned above, it may also be at-
tributed to the fact that sequential information plays a more
important role in these tasks.
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Table 8: Results of GearNet-Edge pretrained on different pretraining datasets with different methods. Models are evaluated
on the EC prediction task.

Dataset # Proteins Multivew Contrast Residue Type Prediction Distance Prediction Angle Prediction Dihedral Prediction

AUPRpair Fmax AUPRpair Fmax AUPRpair Fmax AUPRpair Fmax AUPRpair Fmax

AlphaFold Database (v1 + v2) 804,872 0.892 0.874 0.870 0.834 0.863 0.839 0.880 0.853 0.881 0.859
AlphaFold Database (v1) 365,198 0.890 0.874 0.869 0.842 0.871 0.843 0.879 0.854 0.877 0.852
AlphaFold Database (v2) 439,674 0.890 0.874 0.868 0.838 0.868 0.846 0.881 0.853 0.883 0.861
Protein Data Bank 305,265 0.881 0.859 0.870 0.841 0.865 0.847 0.880 0.857 0.886 0.858

Table 9: Dataset statistics for protein engineering tasks.

Dataset # Proteins
# Train # Validation # Test

Fluorescence 21,446 5,362 27,217
Stability 53,614 2,512 12,851
GB1 4,580 509 3,644
Thermostability 5,149 643 1,366

Table 10: Hyperparameter configurations of our model on
protein engineering datasets. The batch size reported in the
table referrs to the batch size on each GPU. All the hyperpa-
rameters are chosen by the performance on the validation
set.

Hyperparameter Fluores Stability GB1 Thermo

GNN
#layer 6 6 6 6
hidden dim. 512 512 512 512
dropout 0.1 0.1 0.1 0.1

Learning

optimizer AdamW AdamW AdamW AdamW
learning rate 1e-4 1e-4 1e-4 1e-4
weight decay 0 0 0 0
batch size 8 32 8 2
# epoch 200 200 200 200

Overall, our methods achieve the state-of-the-art perfor-
mance on three of four datasets. Nevertheless, it still needs
further exploration and ablation studies on these mutation-
based datasets, which should be considered in future work.

I. Latent Space Visualization
For qualitatively evaluating the quality of the protein em-
beddings learned by our pretraining method, we visualize
the latent space of the GearNet-Edge model pretrained by
Multiview Contrast. Specifically, we utilize the pretrained
model to extract the embeddings of all the proteins in Al-
phaFold Database v1, and these embeddings are mapped to
the two-dimensional space by UMAP (McInnes et al., 2018)
for visualization. Following (Akdel et al., 2021), we high-
light the 20 most common superfamilies within the database
by different colors. The visualization results are shown in
Fig. 5. It can be observed that our pretrained model tends to
group the proteins from the same superfamily together and
divide the ones from different superfamilies apart. In par-

ticular, it succeeds in clearly separating three superfamilies,
i.e., Protein kinase superfamily, Cytochrome P450 family
and TRAFAC class myosin-kinesin ATPase superfamily.
Such a decent capability of discriminating protein super-
families, to some degree, interprets our model’s superior
performance on Fold Classification.

J. Residue-Level Explanation
Protein functions are often reflected by specific regions on
the 3D protein structures. For example, the binding ability of
a protein to a ligand is highly related to the binding interface
between them. Hence, to better interpret our prediction,
we apply Integrated Gradients (IG) (Sundararajan et al.,
2017), a model-agnostic attribution method, on our model
to obtain residue-level interpretation. Specifically, we first
select two molecular functions, ATP binding (GO:0005524)
and Heme binding (GO:0020037), from GO terms that are
related to ligand binding. For each functional term, we
pick one protein and feed it into the best model trained
on the GO-MF dataset. Then, we use IG to generate the
feature attribution scores for each protein. The method will
integrate the gradient along a straight-line path between a
baseline input and the original input. Here the original input
and baseline input are the node feature f and a zero vector,
respectively. The final attribution score for each protein will
be obtained by summing over the feature dimension. The
normalized score distribution over all residues are visualized
in Figure 6. As can be seen, our model is able to identify
the active sites around the ligand, which are likely to be
responsible for binding. Note that these attributions are
directly generated from our model without any supervision,
which suggests the decent interpretability of our model.



Protein Representation Learning by Geometric Structure Pretraining

Table 11: Spearman’s ρ (rank correlation coefficient) on four protein engineering tasks. [*] means the results are taken
from (Wang et al., 2022), while [†] means the results are taken from (Dallago et al., 2021).

Category Method Fluores Stability GB1 Thermo

Without Pretraining

Sequence-based

CNN (Shanehsazzadeh et al., 2020) 0.656 0.717 0.51† 0.49†

ResNet (Rao et al., 2019) 0.369 0.478 0.294 0.412
LSTM (Rao et al., 2019) 0.124 0.477 0.552 0.142
Transformer (Rao et al., 2019) 0.522 0.645 0.001 OOM

Structure-based
GAT (Veličković et al., 2018) 0.390* 0.565* - -
GVP (Jing et al., 2021) 0.545* 0.680* - -
New IEConv (Hermosilla & Ropinski, 2022) 0.635 0.529 0.205 OOM

Ours GearNet 0.682 0.719 0.546 0.632
GearNet-Edge 0.677 0.740 0.545 0.654

With Pretraining

Sequence Pretrained
ESM-1b (Rives et al., 2021) 0.682 0.734 0.59† 0.76†
ProtBERT-BFD (Elnaggar et al., 2021) 0.677* 0.734* - -
LM-GVP (Wang et al., 2022) 0.679* 0.733* - -

Ours

Multiview Contrast 0.675 0.752 0.296 0.640
Residue Type Prediction 0.675 0.787 0.597 0.543
Distance Prediction 0.675 0.688 0.583 0.622
Angle Prediction 0.673 0.727 0.512 0.645
Dihedral Prediction 0.670 0.746 0.521 0.634
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Figure 5: Latent space visualization of GearNet-Edge (Multiview Contrast) on AlphaFold Database v1.
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Figure 6: Identification of active sites on proteins responsible for binding based on attribution scores. Two proteins binding
to specific targets are selected for illustration (1NYR-A for ATP binding and 1B85-A for Heme binding). For these two
complexes, ligands are shown in yellow spheres while the residues of the receptors are colored based on attribution scores.
Residues with higher attribution scores are colored in red while those with lower scores are colored in blue.


