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Abstract

Conventional AI evaluation approaches concentrated within the AI stack exhibit1

systemic limitations for exploring, navigating and resolving the human and soci-2

etal factors that play out in real world deployment such as in education, finance,3

healthcare, and employment sectors. AI capability evaluations can capture detail4

about first-order effects, such as whether immediate system outputs are accurate, or5

contain toxic, biased or stereotypical content, but AI’s second-order effects, i.e. any6

long-term outcomes and consequences that may result from AI use in the real world,7

have become a significant area of interest as the technology becomes embedded in8

our daily lives. These secondary effects can include shifts in user behavior, societal,9

cultural and economic ramifications, workforce transformations, and long-term10

downstream impacts that may result from a broad and growing set of risks. This11

position paper argues that measuring the indirect and secondary effects of12

AI will require expansion beyond static, single-turn approaches conducted in13

silico to include testing paradigms that can capture what actually materializes14

when people use AI technology in context. Specifically, we describe the need for15

data and methods that can facilitate contextual awareness and enable downstream16

interpretation and decision making about AI’s secondary effects, and recommend17

requirements for a new ecosystem.18

1 Introduction19

As AI technologies have become mainstream, the number of tools for evaluating them have exploded20

within a highly active and competitive area of development and research. Measurement provides AI21

practitioners with the opportunity to test and learn whether and how the technology they build works22

once deployed 1 Evaluation enables interpretation of measurement results to place them into context.23

Metrology, the science of measurement, provides the methods and definitions of measurement that24

enable the evaluation of all measurement results, including for AI systems. Metrology provides the25

foundations for estimating measurement uncertainty that can incorporate multiple sources of random26

and systematic error.27

AI testing and evaluation is currently conducted within a computational and machine learning (ML)28

frame, with few systematic methods to account for the complex human, organizational and societal29

factors that inter-relate with the design, development, deployment and use of these technologies. This30

socio-technical 2 framing of AI technology is currently difficult for ML practitioners to operationalize,31

1Measurement: (1) Quantitative measurement is the act or process of assigning a number or category to
an entity to describe an attribute of that entity. ISO/IEC 24765:2017 (2) Qualitative measurement is based on
descriptive data such as through observations, interviews, focus groups, or open-ended text fields in surveys.

2The term "socio-technical systems" was coined in 1951 by Eric Trist and Ken Bamforth[101]to describe the
dynamic ways workers interact with technological systems in industrial settings.
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Table 1: Mapping evaluation approaches to effects measured and typical questions they answer.

.
Evaluation
Approach

Type of
Effects
(order)

What it measures Answers questions like

Benchmarking 1st Performance of the
model/system in silico.

1. How often can the AI system produce the most
accurate or relevant answer?

2. What is the inference runtime?
3. Did the model produce human-aligned responses?

Testing &
Evaluation

1st, 2nd Performance of the
model/system in silico
in vitro and in situ.

1. Does text summarization provide value for users?
2. Given current performance and user needs, should

we expect productivity gains if we deploy this
technology? If so, where?

Verification &
Validation

1st, 2nd Performance of the
model/system in silico,
in vitro and in situ..

1. Does the AI system consistently generate video
content per user specifications?

2. Does the AI system classify output according to
vendor claims?

Program
Evaluation

2nd, 3rd Real-world efficacy and
relevance in vitro and in situ.

1. Do AI assistants improve the quality of work?
2. How will AI-driven productivity gains transform

different employment categories over time?

or to know where, when and how to include which types of contextual information across the32

technology lifecycle. This paper argues that a new AI evaluation ecosystem is necessary to33

address current methodological gaps which impede the translation and contextualization of34

evaluation data and outcomes in the real world [107, 104, 16, 27, 29, 33, 85, 83, 35, 96, 37, 81, 76].35

A real world AI evaluation ecosystem can enhance understanding of AI’s second-order effects, drive36

the collection of datasets that are fit-for-purpose, foster innovation, and improve AI functionality.37

1.1 The Measurement Challenge38

The speed at which AI technology is advancing and being deployed and used across the globe [102] is39

not being met with equivalent evaluation paradigms for understanding its role and effects in societies.40

As a central topic of public policy efforts around the globe, questions about AI’s secondary effects41

abound. Private industry, civil society, the public, and governments around the world are increasingly42

interested in how AI technologies will transform our culture, economy, workforce and the broader43

society[75, 74, 72, 73, 40, 43]. The current ecosystem to investigate these topics is fragmented, with44

no single evaluation toolbox or measurement infrastructure to account for AI’s second order effects45

and place them into the broader context.46

The predominant evaluation toolbox used by the ML research community, AI benchmarking, is47

designed to answer first order questions– about what AI systems can do based on direct measures48

of immediate system output. Another broad set of domains study AI’s human, organizational and49

societal factors, which tend to focus more on second order questions such as the effects associated50

with how people leverage AI technology, and how and why those effects reverberate across society.51

Other fields can place these findings into context to forecast future technological and societal trends.52

Some approaches, like user simulations, can simultaneously model AI user behavior and evaluate53

system performance. The AI metrology community is also deeply engaged in the development54

of tools to assess systems in more realistic settings with the broader goal of ensuring AI system55

trustworthiness. This work includes development of definitions [10], and methods for calibration56

[106], and uncertainty quantification [39, 103] and propagation [100]. Yet, more effort is required,57

including efficient scalability and interpretation of measurement values.58

Table 1 lists differences between the kinds of questions that can be answered by benchmarking,59

testing and evaluation, verification and validation, and program evaluation respectively. As methods60
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Figure 1: Disciplines at the intersection of Real World AI

move from first to second order and contextual detail increases, broader claims about AI technology61

become possible 1.62

All evaluation methods have limitations which, when combined with the massive heterogeneity of63

how humans interact with AI in the real world, can present almost infinite complexities [71, 33]64

for building comprehensive paradigms. In addition to the technical and human factors of what65

and how to evaluate, there are numerous disciplinary and practical challenges to contend with.66

Reproducibility is an AI evaluation challenge of particular interest in computational domains and67

the social and behavioral sciences. In machine learning , reproducibility challenges include data68

leakage issues [51], non-systematic methods for curating training data, non-disclosure of training69

data information, unstable model versioning processes [50], and insufficient detail about experimental70

design, metadata, and related analytic processes[30, 80]. Advances in the culture of research practice71

have emerged to address the replicability crisis in the social and behavioral sciences [17]. Experiment72

pre-registration, open science standards, multiverse and sensitivity analyses, meta-analyses, and73

adversarial collaborations have led to varying levels of improvement [54, 6].74

While a new ecosystem does not eliminate the above-listed challenges, a purpose-built community75

can concentrate on improving methods for evaluating second order effects. Figure 1 illustrates a real76

world AI community at the intersection of AI and ML, measurement science, and the social and77

behavioral sciences which can adapt and re-purpose methods, tools, metrics and practices to fuel78

deeper understanding of AI’s complex societal challenges. This interdisciplinary community can79

collaboratively establish relevant measurement criteria, collect suitable datasets, formalize methods80

and practices and use resulting insights to produce better models for automation and real world81

forecasting and decision making.82

2 AI Benchmarking83

Model benchmarking is the de facto AI evaluation method. Benchmarking uses static datasets84

to assess performance of AI model capabilities on specific tasks at scale, often in comparison to85

humans. Evaluators use benchmark results to compare different models or systems on the same tasks.86

Benchmark suites are used to aggregate results and comprehensively assess capabilities, risks, and87

compliance. For example, systems may be tested for truthfulness [109], toxicity [42], and jailbreak88

vulnerability [24]. Benchmarking outcomes underpin AI system design, procurement, and oversight89

activities.90

1In the context of AI evaluation, 1st-order effects are immediate system outputs, 2nd-order effects are
longer-term impacts that may follow from system deployment, 3rd-order effects refer to broader changes that
may result from AI’s role in society. In silico refers to testing conducted via computational methods. In situ
refers to observing a phenomenon in its natural location or context. In vitro refers to traditional laboratory
experiments
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2.1 The Practice of Benchmarking91

The current benchmark landscape spans a wide range of tasks (text generation, question answering,92

summarization), modalities (text, code, audio, images, video), and evaluation dimensions such as93

factuality, fairness, safety, and alignment with human preferences[93, 14, 105, 109, 87, 63, 23, 53].94

Recent benchmarks are built on various risk taxonomies to support an increased focus on AI risks95

and safety. For example, safety benchmarks can explicitly target risks posed by prompt injection[24]96

and data leakage [32], or be used to assess subtle failure modes that require multiple tests to capture97

nuanced system characteristics[82].98

Benchmarks serve multiple purposes in the current evaluation landscape. They inform the setting of99

minimum performance thresholds-often through system requirements, regulatory norms, or technical100

standards but rarely define what constitutes “adequate” performance for a given policy context.101

With benchmarking defining the very notion of "success", these tests can shape perceptions of AI102

progress, influence research and development priorities, and inform investment cycles[35]. For this103

to be meaningful, benchmarking must be consistent and conducted before, during and after the104

development and deployment of AI tools and systems.105

Benchmark design is complex but typically starts with identifying or acquiring curated datasets and106

specifying controlled tasks. Most generative AI benchmarks are conducted at the ‘single-turn’ level107

and assess independent query/response pairs[61]. Multi-turn benchmarks can be used to simulate108

more realistic dialogue and provide richer insights. Benchmarks rely on highly structured outputs109

such as multiple-choice, or short paragraph responses). Since there are technical limitations to which110

measures and characteristics can be analyzed at scale, evaluators often use LLMs to judge LLM111

benchmark output[110].112

Benchmark test results are typically displayed via leaderboards, which provide a structured way to113

rank model performance and ease comparison [105, 89]. Undesirably, the evaluation community’s114

overreliance on leaderboards can lead to overfitting (models are optimized for test performance at the115

expense of real-world robustness) or to benchmark saturation, where further improvements on the116

test no longer translate to meaningful advances[99].117

2.2 Selected Benchmarking Limitations for Real World Evaluation118

Benchmarking’s prominence in AI evaluation has propelled the community to groundbreaking119

improvements and fostered global innovation but the outcomes can be limited. Benchmarking120

requires significant contextualization to serve the decision making needs of the many audiences121

interested in AI’s second order effects. AI benchmarks have been criticized for lacking internal and122

external validity [77, 64], encouraging leaderboard overfitting[78], and focusing narrowly on English-123

language tasks [70]. More broadly, they suffer from static design, lack of systematization, limited124

stakeholder involvement, and a failure to reflect cultural nuance. The static nature of benchmarking125

may obscure emergent behaviors, security vulnerabilities, or context-specific failures that only126

surface in deployment or over longer time periods. It is difficult to construct benchmarking tasks127

that naturally elicit generative AI risks – such as harmful bias, hallucinations, or user over-reliance –128

[83, 1, 86, 13, 49, 31, 25] and their associated impacts[77, 7], or the broad range of user responses129

and behavior that may arise from LLM-based personalization. These limitations can lead to skewed130

perceptions of AI’s real-world use and value[52].131

Even within an active community, benchmarks are unable to capture the full array of AI system132

functionality and performance. Benchmarking can lag behind new model capabilities, especially133

for complex agentic tasks or qualitative aspects like creativity and reasoning. Benchmarks can be134

prone to task contamination or data leakage resulting in erroneously high performance [51, 60]. The135

intense interest in generative AI model capabilities has driven the use of tests that were designed for136

other purposes (e.g., testing models on college admission tests or professional certifications) – or137

poorly specify human tasks, potentially distorting perceptions of progress[47, 67, 3]. Benchmarks are138

designed to mathematically represent complex human and societal phenomena, which can contribute139

to a fallacy of objectivity [83]. Benchmarking metrics focus on system accuracy or policy violations,140

which are challenging to apply to second order questions.141

Arguably the biggest weakness of benchmarking is its inability to account for the inter-dependencies142

between humans and AI, such as how people leverage AI or interpret and act upon AI-generated output143

in the real world, and what it means at a societal level. Even the most comprehensive benchmark144

suites remain abstractions that offer only partial glimpses into real world effects[71]. The need for145
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scale has led to reliance on static benchmark datasets and highly constrained tasks which are a poor146

match for deployment environments where contextual factors and user perceptions can dramatically147

alter outcomes [107, 27, 33, 85].148

3 Context is Everything: Crafting a Real World AI Evaluation Ecosystem149

The ability to make claims about the real world requires authentic and extensive contextual detail.150

Contextual awareness - knowledge about what matters in a given deployment setting - can improve151

AI’s fit within societal contexts and foster measurement validity. Contextual information can fulfill152

two requirements for real world AI evaluation that benchmarking struggles to address. First, non-ML153

actors use this information to translate and make sense of evaluation results for their own activities154

and decision making. Second, practitioners on the AI stack can gain complementary evidence of how155

the technology they build is actually being used in deployment.156

Currently, sensing and leveraging contextual information from the real world is impeded by processes157

in the AI stack. While ML models can be derived from trillions of data points, the development158

process flattens contextual detail. Recent approaches to align model outcomes to predefined and159

prescriptive values [5] reduce societal and contextual detail instead of eliciting and analyzing it. Many160

organizations also lack the skills and methods to interpret and translate contextual material from the161

real world (such as user reviews, information from redress and recourse, other stakeholder feedback)162

into AI product workflows[90]. Combined, these practices can bake in brittle performance once AI163

systems are deployed [83, 16, 55, 21, 56, 66].164

This section describes methods for how to specify context for real world evaluation and to collect and165

generate contextually-informed data. Methods for analyzing contextual information will be the focus166

of future directions.167

Establishing Contextual Awareness168

The field of value-sensitive design (VSD) and its tripartite methodology (conceptual, empirical,169

technical) provides a foundational framework to operationalize contextual awareness for real world170

AI evaluation. Table 2 summarizes how practices for specifying contextual scope and collecting real171

world data fit into the VSD framework.172

Contextual Approach Key Integration Practices Outcome VSD Method

Context Specification

Initiate Theory of Change
Systematize Real World
Concepts
Stakeholder Engagement

Contextually informed
requirements for data
collection and generation
activities.

Conceptual

Data Collection and
Generation

Field Testing
Red Teaming

Data about regular and
adversarial use of AI
systems.

Empirical
Technical

Table 2: Overview of context-aware AI evaluation approaches and their interdisciplinary roles.

By docking into the VSD framework, real world AI evaluation methods can produce continuous173

feedback loops–where context specification activities inform red teaming (to identify real-world174

failures) and field testing (to determine extent of failures in regular use). Since red teaming and175

field testing enable investigation of "the technology, the people who use it, and the social systems176

that configure, use, or are otherwise affected by the technology"[38] it satisfies both the empirical177

and technical VSD methods. VSD processes can also assist in translating evaluation outcomes into178

technical/policy adjustments.179

3.1 Context Specification Activities180

The activities described below define the real world challenge problem, the context in which it181

exists, and other relevant detail. Gathering this information is the first step in facilitating contextual182

awareness and requires input from a broad set of stakeholders to ensure measurement validity.183
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3.1.1 Theory of Change184

Real world AI evaluation activities are initiated by defining a theory of change. Key stakeholders and185

evaluators collaboratively identify challenge problems, specify desired goals over the current state186

and determine evaluation inputs, activities, outputs, and outcomes. Stakeholders also assist evaluators187

in identifying counterfactuals to estimate what might happen without the evaluation effort.188

3.1.2 Systematization of Real World Concepts189

Real world concepts that underlie the development of an AI model’s objective function and other190

variables drive system functionality, optimization and performance. The validity of an AI model191

can hinge on how well these real world concepts are systematized and operationalized [26], which192

requires technical, neutral, collectively informed and unambiguous descriptions. Models that do not193

demonstrate validity cannot maintain performance well across contexts. Systematized descriptions194

can be used to:195

• instruct AI models to properly recognize a given phenomenon and act accordingly in context,196

• optimize development of prompts for user engagement with AI systems and to ensure model197

outcome meets preferences and requirements,198

• enhance content markup and moderation for complex and ambiguous phenomena (e.g.,199

obscenity, abusive or hateful content).200

Currently, ML practitioners demonstrate difficulty with systematization and operationalization, and it201

is challenging to bridge the communication divide between computational and other disciplines and202

translate real world concepts along product lifecycles [36, 91, 34, 66, 92] .203

3.1.3 Stakeholder Feedback and Adaptive Governance204

AI evaluators are increasingly exploring methods that better reflect deployment conditions and205

integrate members of the public directly into the measurement process. Meaningful stakeholder206

engagement methods are a common component of adaptive AI governance frameworks [59, 28, 11]207

and can bolster public accountability, democratic governance, and transparency efforts such as208

recourse and redress. Engagement is conducted throughout the entire AI project lifecycle and can209

effectively inform evaluation activities. Engagement activities use a variety of qualitative methods to210

capture a range of perspectives and experiences from stakeholders external to the AI development211

organization. Stakeholder engagement activities can be built into evaluation paradigms to facilitate212

contextual awareness [57, 8, 68, 48] by:213

• revealing potential negative impacts prior to AI development and deployment and shed light214

on unanticipated AI uses and positive outcomes,215

• surfacing emergent risks or gradual declines in real world system performance216

• informing mitigation of AI harms before they become entrenched, [62, 85, 4]217

• surfacing assumptions and limitations about AI technology.218

The Alan Turing Institute’s AI Sustainability in Practice workbook [59] lays out a stakeholder engage-219

ment process which begins with a determination of the groups most likely to be negatively impacted220

by AI systems. The level of subsequent stakeholder involvement–ranging from inform or consult221

to partner or empower–is proportionate to the scope of a project’s potential risks and impacts [59].222

Participatory co-creation is another engagement method that moves beyond traditional consultation to223

enable and empower stakeholders in more active roles across the AI design, development, deployment224

processes. Stakeholders work closely with AI designers from the initial context specification phase,225

iterate on the design and user interface, support the creation of governance structures, and inform226

system monitoring [8].227

3.2 Collecting and Generating Contextually-Informed Data228

Once the contextual unit of interest has been defined, data collection activities can be designed and229

executed. Two methods for collecting and generating contextually informed data – field testing and230

red teaming– are described below. While benchmarking relies almost entirely on curated and labeled231
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datasets, red teaming and field testing can be used to design and collect response data from different232

types of audiences as they interact with AI systems in the real world.233

3.2.1 Field Testing234

Field methods and experiments have been used by social scientists for decades to gain insights into235

human and social behavior by bridging laboratory settings and the real world. Methods similar236

to field testing1 are regularly used in technology settings but its adapted use in AI evaluation is237

relatively nascent, with recent work in the field of AI risk assessment [84, 79]. Designed to elicit and238

capture detailed information about what happens under regular use, field testing is conducted through239

empirical observation of individuals as they interact with AI technologies under semi-controlled240

conditions across multiple sessions. While the focus of benchmarking is the AI model or system,241

AI field testing can focus on the "contextual unit" – or the complex and adaptive behavior that242

naturally occurs as people leverage AI technology in setting. Field testing can be used to explore how243

humans use and adapt to AI technology, investigate feedback loops between humans and technology,244

[27, 98, 41], and uncover emergent or “long-tail” scenarios that single-turn, lab-based benchmarks245

might miss.246

In a simulated sandbox and reporting environment2, hundreds or even thousands of human subjects247

interact live with AI systems and provide feedback about their experiences and subsequent actions.248

Resulting dialogues from test interactions can be annotated to determine whether various phenomena249

materialized. This descriptive reporting approach transforms evaluation paradigms beyond whether250

or not a system generated "the right answer" or asking people to judge AI output or train AI251

systems. Instead, field testing enables the collection of real world evidence about what materializes252

when certain AI features are deployed to the broader public. Since field tests are conducted in a253

controlled and protected environment, evaluators can safely configure pre-deployment testing suites254

and responsibly explore a wide variety of factors. When using field testing to measure accuracy of255

system responses, task contamination and data leakage are less likely than in benchmarking due to256

the difficulty of anticipating the heterogeneous prompts of thousands of testers.257

Field testing requires:258

• Multi-session experiments to observe how subjects adapt to AI technology over repeated259

usage (days or weeks).260

• Experimental randomization and blinding to minimize biases in user interactions or system261

responses.262

• Observation and analysis of subject responses and behaviors alongside isolated system263

outputs such as user surveys, logs, and performance metrics.264

• Test scenarios for subject interactions with AI systems that balance naturalistic conditions265

and subject safety [79].266

• Human subject research protocols.267

• Descriptive approaches for marking up interactive output [79].268

3.2.2 Red Teaming269

The rise in generative AI use and its associated impacts has contributed to increased interest in AI red270

teaming as a complement to conventional evaluation paradigms[108]. Unlike static benchmarks, red271

teaming can simulate real-world usage to272

• uncover failures, trends and patterns that emerge in complex or adversarial settings,273

• highlight misuse and weaknesses in system behavior and robustness,274

• determine boundary conditions to inform go/no-go decisions about deploying AI, and275

• verify the effectiveness of existing mitigation strategies, safety measures and frameworks.276

Red teaming is often conducted via "challenges", where individual testers use simulated attacks to277

identify vulnerabilities and evaluate the safety and security of AI systems. Red teamers may use278

1such as A/B tests
2Can also be referred to as a large-scale human testbed
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creative multi-turn prompting, role-playing, and other techniques to probe the model’s responses279

and surface undesirable model outputs, such as data leakage 1, jailbreaking 2, and information based280

harms3 Red teaming challenges can surface detailed information about how harmful outcomes occur,281

who they affect, how they circulate in social contexts or are repurposed by malicious actors, and how282

system vulnerabilities evolve over time [98, 22]. Red teaming is especially valuable in high-stakes283

domains like education, healthcare, and employment, where harms may be severe or emerge gradually,284

or disproportionately impact marginalized groups.285

Red teaming challenges require detailed instructions, rules of engagement, and a framework, policy,286

or set of rules for identifying violative outcomes. Various tasks along the AI pipeline may require287

individuals to engage with harmful test scenarios or to be exposed to toxic and violent content, and288

red teaming is no different. To protect red teamer safety, challenges require appropriate psychological289

safety mechanisms to be put in place prior to participant enrollment.290

Red teaming requires diverse backgrounds and domain expertise to cover the broad range of potential291

harms posed by AI systems. For example, multi-lingual expertise is required to test AI systems for292

linguistic and dialectal biases and gaps in language coverage. Challenges can go beyond simple Q&A293

tasks to test models on summarization and translation tasks and sentiment analysis. Red Teaming294

challenges may entail:295

• Expert Red Teaming: Highly skilled professionals with expertise in adversarial misuse296

or exploits, or in the underlying subject matter, simulate sophisticated attacks to identify297

deep-seated vulnerabilities.298

• Public Red Teaming: Members of the general public interact with AI systems under299

controlled or “challenge” conditions to complement expert red teaming and expand the300

tested risk surface. Public participants do not require expertise in adversarial testing but301

instead seek to surface real-world failures or “off-label” uses that expert red teamers may302

not anticipate or consider, such as how AI systems may fail across cultural or linguistic303

contexts.304

• Automated Red Teaming: The automated generation of adversarial prompts or test cases305

at scale to uncover issues such as data leakage or content policy circumvention. Evaluators306

can automate parts of the red teaming process to expand test coverage and reveal systemic307

model weaknesses.308

Challenge designers can combine public and expert-based red teaming exercises into hybrid challenges309

and leverage principles of collective intelligence, where testers can coordinate with – or learn from310

– each other’s discoveries.4 Collaborative and asynchronous exercises can encourage knowledge-311

sharing and expedite the discovery of edge cases. Manual and automated techniques can also be312

combined to balance the strengths and limitations of both approaches[69]. Red teaming can be used313

alongside field testing to determine whether adversarial vulnerabilities may manifest in regular use,314

or if new ones arise from repeated user queries315

Red Teaming Attack Strategies In addition to the list of red teaming attack strategies found in316

Appendix A, red teamers can systematically employ data poisoning, indirect prompt injection, or317

multi-turn “scenario chaining” to force AI systems into unforeseeable states and capture vulnerabilities318

that may only appear after multiple interactions or under disguised prompts. Periodic red teaming319

“rounds” can be used to track whether system updates inadvertently open up new exploits or degrade320

previously solved safeguards.321

Selected Red Teaming Limitations As AI systems evolve, red teaming efforts can adapt through322

interdisciplinary development of new attack vectors and multi-turn or multi-modal tasks. [46, 98]. A323

list of recommendations that challenge designers can use to address selected red teaming limitations324

is provided below:325

1Revealing sensitive information from AI system training data.
2Circumventing safety measures and generating restricted, privileged, dangerous, copyrighted and/or other-

wise unauthorized material.
3Obscene, degrading, abusive, and radicalizing material; content that may not distinguish fact from fiction;

content that may amplify, reify or exacerbate biases against different sub-groups or lead to disparities between
sub-groups; false content that may mislead or deceive users (aka hallucinations).

4Small groups of experts can collectively overcome a learning curve faster than individuals, allowing them
to identify more subtle or complex vulnerabilities in a shorter time frame.[22, 95]
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• Scoping Address scoping limitations by including multi-turn conversations, multiple lan-326

guages and dialects, and multi-modal tasks.327

• Tester Biases Address participant bias and representation issues by expanding the red328

teaming recruitment process beyond traditional settings, broadening dataset requirements,329

surveying red teamer perceptions of harm, and introducing positionality statements.330

• Automation Collaboratively develop criteria for automated generation of high-quality,331

diverse test cases while preserving the nuanced understanding of human red teamers.332

• Resource Constraints Balance the cost and efficiency of manual red teaming with scalable333

but limited automated approaches to ensure engagement from smaller organizations or334

research groups.335

• Transparency and Information Sharing Establish guidelines for the responsible, open336

and transparent sharing of red teaming findings that take ethical implications and potential337

misuse into account.338

• Evaluating Effectiveness Build off of information security red teaming metrics1 to collabo-339

ratively define criteria for desirable and undesirable system behavior and advance evaluation340

metrics and methods to track progress over time.341

4 Summary and Recommendations342

Policy makers, organizational decision makers and members of the public each require different343

types of information about AI so they can make informed decisions about whether and how to344

develop, deploy or use it in their own contexts. A real world AI evaluation ecosystem to support these345

audiences will have to contend with many trade-offs to gather information beyond the AI stack and346

within context.347

While benchmarking is too limited on its own to investigate second order effects, other types of348

evaluation that provide more fidelity are disconnected from the necessary system measurements349

central to AI benchmarking. "Contextual work" is commonly viewed as slow and resource-intensive350

compared to benchmarking, since it requires different processes, actors, skills and disciplines. For351

example, fielding qualitative research surveys and conducting ethnographies are both more expensive352

and time-consuming than using "found data". Activities surrounding problem specification are also353

consistently overlooked due to a perception that they take too long and don’t provide enough benefit.354

Both red teaming and field testing require infrastructure that can host people and technology in355

deployed scenarios while meeting human subject research requirements. All evaluation methods356

will require transparency, reproducibility, and scientific integrity. Even when built on feedback from357

thousands of people, evaluation outcomes do not automatically ladder up to societal insights such as358

impacts to democracy, the workforce and the economy, education, and culture[45, 97, 15, 2, 65].359

With no existing infrastructure or community dedicated to evaluating AI’s second order effects, other360

procedural models could be used as exemplars. A new ecosystem could be supported through the361

creation of testing hubs that include expertise from academia, industry, and civil society to develop362

rigorous science-backed evaluation methodologies and frameworks. Ecosystem inputs could be363

sourced from organizations that bring their questions to bear. Members of the public could support364

specification of contextual inputs and enroll in red teaming and field testing activities. Organizations365

that have relevant evaluation expertise and methods can provide their services as independent testers366

to enhance credibility and ensure objectivity in the evaluation process. The academic research367

community can support the development of formalized metrics and methodologies. Over time, the368

ecosystem can determine which evaluation activities produce value and should be automated (and369

semi-automated) to enhance scalability and adoption.370

Outputs from ecosystem activities will center on answering second order effects and fostering a more371

dynamic and adaptive real world AI evaluation community. Anticipated insights will include deeper372

understanding of how AI technologies function outside tightly controlled lab settings, how users373

might abuse or misunderstand AI functionality and outputs, and how AI’s role in society influences374

systemic trends.375

1such as incident detection rate, time to detect incident, and mean time to recovery
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Appendix755

A Selected Red Teaming Attack Strategies756

• Complex or leading prompts can expose common AI system vulnerabilities such as confabu-757

lation, logically inconsistent responses, faulty reasoning, flawed decision-making, incorrect758

numeric responses, erroneous code generation, and fabricated citations.759

• Counterfactual prompting and the use of repeated requests while varying demographic760

personas can uncover harmful biases [9].761

• Autocompletion, fill-in-the-blank requests and prompts designed as "honest" requests can762

be used to evaluate system guardrails and force AI systems to produce harmful completions.763

• Membership inference attacks, and probes of training data memorization can be used to764

expose sensitive or private information [18–20, 32, 94].765

• Prompting for sensitive personal or location-based details can be used to evaluate data766

handling and privacy safeguards.767

• Combining jailbreaking attacks with counterfactual prompts in multiple languages and768

dialects can be used to force culturally and linguistically biased output.769

• Data poisoning, indirect prompt injection, misleading training inputs [58], and embedding770

harmful prompts subtly within benign content [44] can be used to evaluate system integrity771

and resistance to manipulation.772

• Availability or "sponge" attacks use excessively large numbers of queries to stress test AI773

systems for performance stability and resource resilience [88].774

• Chaos testing and random attacks expose systems to excessively large numbers of random775

prompts to elicit failures or jailbreaks (these prompts can be AI generated).776

• Adversarial examples and membership inference attacks are used to probe security vulnera-777

bilities [18–20, 32, 94].778

• Prompts for copyrighted or proprietary content can be used to surface intellectual property779

risks [12].780

• Prompts for obscene or abusive content can be used to evaluate the efficacy of content781

moderation.782
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