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Abstract

We consider weakly supervised segmentation where only a fraction of pixels1

have ground truth labels (scribbles) and focus on a self-labeling approach where2

soft pseudo-labels on unlabeled pixels optimize some relaxation of the standard3

unsupervised CRF/Potts loss. While WSSS methods can directly optimize CRF4

losses via gradient descent, prior work suggests that higher-order optimization5

can lead to better network training by jointly estimating pseudo-labels, e.g. using6

discrete graph cut sub-problems. The inability of hard pseudo-labels to represent7

class uncertainty motivates the relaxed pseudo-labeling. We systematically evaluate8

standard and new CRF relaxations, neighborhood systems, and losses connecting9

network predictions with soft pseudo-labels. We also propose a general continuous10

sub-problem solver for such pseudo-labels. Soft self-labeling loss combining the11

log-quadratic Potts relaxation and collision cross-entropy achieves state-of-the-art12

and can outperform full pixel-precise supervision on PASCAL.13

1 Introduction14

Full supervision for semantic segmentation requires thousands of training images with complete pixel-15

accurate ground truth masks. Their high costs explain the interest in weakly-supervised approaches16

based on image-level class tags [21, 4], pixel-level scribbles [26, 36, 35], or boxes [23]. This paper17

is focused on weak supervision with scribbles, which we also call seeds or partial masks. While18

only slightly more expensive than image-level class tags, scribbles on less than 3% of pixels were19

previously shown to achieve accuracy approaching full supervision without any modifications of the20

segmentation models. In contrast, tag supervision typically requires highly specialized systems and21

complex multi-stage training procedures, which are hard to reproduce. Our interest in the scribble-22

based approach is motivated by its practical simplicity and mathematical clarity. The corresponding23

methodologies are focused on the design of unsupervised or self-supervised loss functions and24

stronger optimization algorithms. The corresponding solutions are often general and can be used in25

different weakly-supervised applications.26

1.1 Scribble-supervised segmentation27

Assume that a set of image pixels is denoted by Ω and a subset of pixels with ground truth labels is28

S ⊂ Ω, which we call seeds or scribbles as subset S is typically marked by mouse-controlled UI for29

image annotations, e.g. see seeds over an image in Fig.7(a). The ground truth label at any given pixel30

i ∈ S is an integer31

ȳi ∈ {1, . . . ,K} (1)
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where K is the number of classes including the background. Without much ambiguity, it is convenient32

to use the same notation ȳi for the equivalent one-hot distribution33

ȳi ≡ (ȳ1i , . . . , ȳ
K
i ) ∈ ∆K

0,1 for ȳki := [k = ȳi] ∈ {0, 1} (2)

where [ · ] is the True operator for the condition inside the brackets. Set ∆K
0,1 represents K possible

one-hot distributions, which are vertices of the K-class probability simplex

∆K := {p = (p1, . . . , pK) | pk ≥ 0,

K∑
k=1

pk = 1}

representing all K-categorical distributions. The context of specific expressions should make it34

obvious if ȳi is a class index (1) or the corresponding one-hot distribution (2).35

Loss functions for weakly supervised segmentation with scribbles typically use negative log-36

likelihoods (NLL) over scribbles i ∈ S ⊂ Ω with ground truth labels ȳi37

−
∑
i∈S

lnσȳi

i (3)

where σi = (σ1
i , . . . , σ

K
i ) ∈ ∆K is the model prediction at pixel i. This loss is a standard in38

full supervision where the only difference is that S = Ω and usually, no other losses are needed39

for training. However, in a weakly supervised setting the majority of pixels are unlabeled, and40

unsupervised losses are needed for i ̸∈ S.41

The most common unsupervised loss in image segmentation is the Potts model and its relaxations.
It is a pairwise loss defined on pairs of neighboring pixels {i, j} ∈ N for a given neighborhood
system N ⊂ Ω × Ω, typically corresponding to the nearest-neighbor grid (NN) [6, 17], or other
sparse (SN) [38] and dense neighborhoods (DN) [22]. The original Potts model is defined for discrete
segmentation variables, e.g. as in∑

{i,j}∈N

P (σi, σj) where P (σi, σj) = [σi ̸= σj ]

assuming integer-valued one-hot predictions σi ∈ ∆K
0,1. This regularization loss encourages smooth-

ness between the pixels. Its popular self-supervised variant is

P (σi, σj) = wi,j · [σi ̸= σj ]

where pairwise affinities wij are based on local intensity edges [6, 17, 22]. Of course, in the context42

of network training, one should use relaxations of P applicable to (soft) predictions σi ∈ ∆K . Many43

types of its relaxation [33, 42] were studied in segmentation, e.g. quadratic [17], bi-linear [36], total44

variation [32, 8], and others [14].45

Another unsupervised loss highly relevant for training segmentation networks is the entropy of
predictions, which is also known as decisiveness [7, 18]∑

i

H(σi)

where H is the Shannon’s entropy function. This loss can improve generalization and the quality of46

representation by moving (deep) features away from the decision boundaries. Widely known in the47

context of unsupervised or semi-supervised classification, this loss also matters in weakly-supervised48

segmentation where it is used explicitly or implicitly1.49

Other unsupervised losses (e.g. contrastive), clustering criteria (e.g. K-means), or specialized50

architectures can be found in weakly-supervised segmentation [39, 31, 20, 9]. However, a lot can be51

achieved simply by combining the basic losses discussed above52

Lws(σ) := −
∑
i∈S

lnσȳi

i + η
∑
i̸∈S

H(σi) + λ
∑
ij∈N

P (σi, σj) (4)

which can be optimized directly by gradient descent [36, 38] or using self-labeling techniques53

[26, 28, 27] incorporating optimization of auxiliary pseudo-labels as sub-problems.54

1Interestingly, a unary decisiveness-like term is the difference between convex quadratic and tight, but
non-convex, bi-linear relaxations [33, 27] of the discrete pairwise Potts model.
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1.2 Soft pseudo-labels: motivation and contributions55

We observe that self-labeling with hard pseudo-labels yi, which is discussed in the Appendix A, is56

inherently limited as such labels can not represent the uncertainty of class estimates at unlabeled57

pixels i ∈ Ω\S. Instead, we focus on soft pseudo-labels58

yi = (y1i , . . . , y
K
i ) ∈ ∆K (5)

which are general categorical distributions p over K-classes. It is possible that the estimated pseudo-59

label yi in (5) could be a one-hot distribution, which is a vertex of ∆K . In such a case, one can treat60

yi as a class index, but we avoid this in the main part of our paper starting Section 2. However, the61

ground truth labels ȳi are always hard and we use them either as indices (1) or one-hot distributions62

(2), as convenient.63

Soft pseudo-labels can be found in prior work on weakly-supervised segmentation [25, 41] using the64

“soft proposal generation”. In contrast, we formulate soft self-labeling as a principled optimization65

methodology where network predictions and soft pseudo-labels are variables in a joint loss, which66

guarantees convergence of the training procedure. Our pseudo-labels are auxiliary variables for67

ADM-based [5] splitting of the loss (4) into two simpler optimization sub-problems: one focused on68

the Potts model over unlabeled pixels, and the other on the network training. While similar to [28],69

instead of hard, we use soft auxiliary variables for the Potts sub-problem. Our work can be seen as a70

study of the relaxed Potts sub-problem in the context of weakly-supervised semantic segmentation.71

The related prior work is focused on discrete solvers fundamentally unable to represent class estimate72

uncertainty. Our contributions can be summarized as follows:73

• convergent soft self-labeling framework based on a simple joint self-labeling loss74

• systematic evaluation of Potts relaxations and (cross-) entropy terms in our loss75

• state-of-the-art in scribble-based semantic segmentation that does not require any modifica-76

tions of semantic segmentation models and is easy to reproduce77

• using the same segmentation model, our self-labeling loss with 3% scribbles may outperform78

standard supervised cross-entropy loss with full ground truth masks.79

2 Our soft self-labeling approach80

First, we apply ADM splitting [5] to weakly supervised loss (4) to formulate our self-labeling loss (6)
incorporating additional soft auxiliary variables, i.e. pseudo-labels (5). It is convenient to introduce
pseudo-labels yi on all pixels in Ω even though a subset of pixels (seeds) S ⊂ Ω have ground truth
labels ȳi. We will simply impose a constraint that pseudo-labels and ground truth labels agree on S.
Thus, we assume the following set of pseudo-labels

YΩ := {yi ∈ ∆K | i ∈ Ω, s.t. yi = ȳi for i ∈ S}.
We split the terms in (4) into two groups: one includes NLL and entropy H terms keeping the original
prediction variables σi and the other includes the Potts relaxation P replacing σi with auxiliary
variables yi. This transforms loss (4) into expression

−
∑
i∈S

lnσȳi

i + η
∑
i̸∈S

H(σi) + λ
∑
ij∈N

P (yi, yj)

equivalent to (4) assuming equality σi = yi. The standard approximation is to incorporate constraint81

σi ≈ yi directly into the loss, e.g. using KL-divergence. For simplicity, we use weight η for82

KL(σi, yi) to combine it with H(σi) into a single cross-entropy term83

−
∑
i∈S

lnσȳi

i + η
∑
i ̸∈S

H(σi) + η
∑
i ̸∈S

KL(σi, yi)︸ ︷︷ ︸ + λ
∑
ij∈N

P (yi, yj)

η
∑
i ̸∈S

H(σi, yi)

defining joint self-labeling loss for both predictions σi and pseudo-labels yi84

Lself (σ, y) := −
∑
i∈S

lnσȳi

i + η
∑
i ̸∈S

H(σi, yi) + λ
∑
ij∈N

P (yi, yj) (6)
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bi-linear ∼ “graph cut” quadratic ∼ “random walker”
PBL(p, q) := 1− p⊤q PQ(p, q) := 1

2∥p− q∥2

normalized quadratic

PNQ(p, q) := 1− p⊤q
∥p∥∥q∥ ≡ 1

2

∥∥∥ p
∥p∥ − q

∥q∥

∥∥∥2
Table 1: Second-order Potts relaxations, see Fig.1(a,b,c)

approximating the original weakly supervised loss (4).85

Iterative minimization of this loss w.r.t. predictions σi (model parameters training) and pseudo-86

labels yi effectively breaks the original optimization problem for (4) into two simpler sub-problems,87

assuming there is a good solver for optimal pseudo-labels. The latter seems plausible since the unary88

term H(σi, yi) is convex for yi and the Potts relaxations were widely studied in image segmentation89

for decades.90

Section 2.1 discusses standard and new relaxations of the Potts model P . Section 2.2 discusses several91

robust variants of cross-entropy H for connecting predictions with uncertain (soft) pseudo-labels yi92

estimated for unlabeled points i ∈ Ω\S. Appendix B proposes an efficient general solver for the93

corresponding pseudo-labeling sub-problems.94

2.1 Second-order relaxations of the Potts model95

We focus on second-order relaxations for two reasons. First, to manage the scope of this study.96

Second, this includes several important baseline cases (see Table 1): quadratic, the simplest convex97

relaxation popularized by the random walker algorithm [17], and bi-linear, which is non-convex but98

tight [33] w.r.t. the original discrete Potts model. The latter implies that optimizing it over relaxed99

variables will lead to a solution consistent with a discrete Potts solver, e.g. graph cut [6]. On the100

contrary, the quadratic relaxation will produce a significantly different soft solution. We investigate101

such soft solutions.102

Figure 2 shows two examples illustrating local minima for (a) the bi-linear and (b) quadratic relax-
ations of the Potts loss. In (a) two neighboring pixels attempt to jointly change the common soft
label from yi = yj = (1, 0, 0) to y′′i = y′′j = (0, 1, 0), which corresponds to a “move” where the
whole object is reclassified from A to B. This move does not violate smoothness within the region
represented by the Potts model. But, the soft intermediate state y′i = y′j = ( 12 ,

1
2 , 0) will prevent this

move in bi-linear case

PBL(y
′
i, y

′
j) =

1

2
> 0 = PBL(yi, yj) = PBL(y

′′
i , y

′′
j )

while quadratic relaxation assigns zero loss for all states during this move. On the other hand, the
example in Figure 2(b) shows a move problematic for the quadratic relaxation. Two neighboring
pixels have labels yi = (1, 0, 0) and yj = (0, 0, 1) corresponding to the boundary of objects A and
C. The second object attempts to change from C to B. This move does not affect the discontinuity
between two pixels, but quadratic relaxation prefers that the second object is stuck in the intermediate
state y′j = (0, 1

2 ,
1
2 )

PQ(yi, y
′
j) =

3

4
< 1 = PQ(yi, yj) = PQ(yi, y

′′
j )

while bi-linear relaxation PBL(yi, yj) = 1 remains constant as yj changes.103

We propose a new relaxation, normalized quadratic in Table 1. Normalization leads to equivalence104

between quadratic and bi-linear formulations combining their benefits. As easy to check, normalized105

collision cross entropy log-quadratic
PCCE(p, q) := − ln p⊤q PLQ(p, q) := − ln

(
1− ∥p−q∥2

2

)
collision divergence

PCD(p, q) := − ln p⊤q
∥p∥∥q∥ ≡ − ln

(
1− 1

2

∥∥∥ p
∥p∥ − q

∥q∥

∥∥∥2)
Table 2: Log-based Potts relaxations, see Fig.1(d,e,f)
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(d) collision cr. entropy PCCE (e) collision divergence PCD (f) log-quadratic PLQ

Figure 1: Second-order Potts relaxations in Tables 1 and 2: interaction potentials P for pairs of
predictions (σi, σj) in (4) or pseudo-labels (yi, yj) in (6) are illustrated for K = 2 when each
prediction σi or label yi, i.e. distribution in ∆2, can be represented by a single scalar as (x, 1− x).
The contour maps are iso-levels of P ((xi, 1− xi), (xj , 1− xj)) over domain (xi, xj) ∈ [0, 1]2. The
3D plots above illustrate the potentials P as functions over pairs of “logits” (li, lj) ∈ R2 where each
scalar logit li defines binary distribution (xi, 1− xi) for xi =

1
1+e−2li

∈ [0, 1].

quadratic relaxation PNQ does not have local minima in both examples of Figure 2. Table 2 also106

proposes “logarithmic” versions of the relaxations in Table 1 composing them with function − ln(1−107

x). As illustrated by Figure 1, the logarithmic versions in (d-f) addresses the “vanishing gradients”108

evident in (a-c).109

(a) both pixels change (A → B) (b) only pixel q changes (C → B)

Figure 2: Examples of "moves" for neighboring pixels {i, j} ∈ N . Their (soft) pseudo-labels yi and
yj are illustrated on the probability simplex ∆K for K = 3. In (a) both pixels i and j are inside a
region/object changing its label from A to B. In (b) pixels i and j are on the boundary between two
regions/objects; one is fixed to class A and the other changes from class C to B.

2.2 Cross-entropy and soft pseudo-labels110

Shannon’s cross-entropy H(y, σ) is the most common loss for training network predictions σ from111

ground truth labels y in the context of classification, semantic segmentation, etc. However, this loss112

may not be ideal for applications where the targets y are soft categorical distributions representing113

various forms of class uncertainty. For example, this paper is focused on scribble-based segmentation114

where the ground truth is not known for most of the pixels, and the network training is done jointly115

with estimating pseudo-labels y for the unlabeled pixels. In this case, soft labels y are distributions116

representing class uncertainty. We observe that if such y is used as a target in H(y, σ), the network117

is trained to reproduce the uncertainty, see Figure 3(a). This motivates the discussion of alternative118

“cross-entropy” functions where the quotes indicate an informal interpretation of this information-119

theoretic concept. Intuitively, such functions should encourage decisiveness, as well as proximity120
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(a) standard HCE(y, σ) (b) reverse HRCE(y, σ) (c) collision HCCE(y, σ) (d) empirical comparison

Figure 3: Illustration of cross-entropy functions: (a) standard (7), (b) reverse (8), and (c) collision
(9). (d) shows the empirical comparison on the robustness to label uncertainty. The test uses
ResNet-18 architecture on fully-supervised Natural Scene dataset [30] where we corrupted some
labels. The horizontal axis shows the percentage η of training images where the correct ground truth
labels were replaced by a random label. All losses trained the model using soft target distributions
ŷ = η∗u+(1−η)∗y representing the mixture of one-hot distribution y for the observed corrupt label
and the uniform distribution u, following [29]. The vertical axis shows the test accuracy. Training
with the reverse and collision cross-entropy is robust to much higher levels of label uncertainty.

between the predictions and pseudo-labels, but avoid mimicking the uncertainty in both directions:121

from soft pseudo-labels to predictions and vice-versa. We show that the last property can be achieved122

in a probabilistically principled manner. The following three paragraphs discuss different cross-123

entropy functions that we study in the context of our self-labeling loss (6).124

Standard cross-entropy provides the obvious baseline for evaluating two alternative versions that125

follow. For completeness, we include its mathematical definition126

HCE(yi, σi) = H(yi, σi) ≡ −
∑
k

yki lnσ
k
i (7)

and remind the reader that this loss is primarily used with hard or one-hot labels, in which case it is127

also equivalent to NLL loss − lnσyi

i previously discussed for ground truth labels (3). As mentioned128

earlier, Figure 3(a) shows that for soft pseudo-labels like y = (0.5, 0.5), it forces predictions to mimic129

or replicate the uncertainty σ ≈ y. In fact, label y = (0.5, 0.5) just tells that the class is unknown130

and the network should not be supervised by this point. This problem manifests itself in the poor131

performance of the standard cross-entropy (7) in our experiment discussed in Figure 3 (d) (red curve).132

Reverse cross-entropy switches the order of the label and prediction in (7)133

HRCE(yi, σi) = H(σi, yi) ≡ −
∑
k

σk
i ln y

k
i (8)

which is not too common. Indeed, Shannon’s cross-entropy is not symmetric and the first argument134

is normally the target distribution and the second is the estimated distribution. However, in our135

case, both distributions are estimated and there is no reason not to try the reverse order. It is worth136

noting that our self-labeling formulation (6) suggests that reverse cross-entropy naturally appears137

when the ADM approach splits the decisiveness and fairness into separate sub-problems. Moreover,138

as Figure 3(b) shows, in this case, the network does not mimic uncertain pseudo-labels, e.g. the139

gradient of the blue line is zero. The results for the reverse cross-entropy in Figure 3 (d) (green)140

are significantly better than for the standard (red). Unfortunately, now pseudo-labels y mimic the141

uncertainty in predictions σ.142

Collision cross-entropy resolves the problem in a principled way. We define it as143

HCCE(yi, σi) ≡ − ln
∑
k

σk
i y

k
i ≡ − lnσ⊤y (9)

which is symmetric w.r.t. pseudo-labels and predictions. The dot product σ⊤y can be seen as a
probability that random variables represented by the distribution σ, the prediction class C, and the
distribution y, the unknown true class T , are equal. Indeed,

Pr(C = T ) =
∑
k

Pr(C = k) Pr(T = k) = σ⊤y.

Loss (9) maximizes this “collision” probability rather than the constraint σ = y. Figure 3(c) shows no144

mimicking of uncertainty (blue line). However, unlike reverse cross-entropy, this is also valid when y145
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is estimated from uncertain predictions σ since (9) is symmetric. This leads to the best performance146

in Figure 3 (d) (blue). Our extensive experiments are conclusive that collision cross-entropy is the147

best option for H in self-labeling loss (6).148

3 Experiments149

We conducted comprehensive experiments to demonstrate the choice of each element (cross-entropy,150

pairwise term, and neighborhood) in the loss and compare our method to the state-of-the-art. In151

Section 3.1, quantitative results are shown to compare different Potts relaxations. The qualitative152

examples are shown in Figure 7. Then we compare several cross-entropy terms in Section 3.2.153

Besides, we also compare our soft self-labeling approach on the nearest and dense neighborhood154

systems in Section 3.3. We summarized the results in Section 3.4. In the last section, we show that155

our method achieves the SOTA and even can outperform the fully-supervised method. More details156

on the dataset, implementation, and additional experiments are given in Appendix C.157

3.1 Comparison of Potts relaxations158

To compare different Potts relaxations under the self-labeling framework, we need to159

choose one cross-entropy term. Motivated by the properties and empirical results160

scribble length ratio
0 0.3 0.5 0.8 1.0

PBL 56.42 61.74 63.81 65.73 67.24
PNQ 59.01 65.53 67.80 70.63 71.12
PQ 58.92 65.34 67.81 70.43 71.05
PCCE 56.40 61.82 63.81 65.81 67.41
PCD 59.04 65.52 67.84 70.93 71.22
PLQ 59.03 65.44 67.81 70.80 71.21

Table 3: Comparison of Potts relaxations with
self-labeling. mIoUs on validation set are
shown here.

shown in Section 3.2, we use HCCE. The neighbor-161

hood system is the nearest neighbors. The quanti-162

tative results are in Table 3. First, One can see that163

the pairwise terms with logarithm are better than164

those without the logarithm because the logarithm165

may help with the gradient vanishing problem in166

softmax operation. Moreover, the logarithm does167

not like abrupt change across the boundaries, so the168

transition across the boundaries is smoother (see169

Figure 7 in the appendix.). Note that it is reasonable170

to have higher uncertainty around the boundaries.171

Second, the results prefer the normalized version,172

which confirms the points made in Figure 2. Third, the simplest quadratic formulation PQ can be a173

fairly good starting point to obtain decent results. Additionally, we specifically test HQ + PQ due to174

the existing closed-form solution [1, 17]. Since the pseudo-labels generated from this formula tend to175

be overly soft, we explicitly add entropy terms during the training of network parameters and the176

mIoU goes up to 68.97% from 67.8%.177

3.2 Comparison of cross-entropy terms178

In this section, we compare different cross-entropy terms while fixing the pairwise term to179

PQ due to its simplicity and using the nearest neighborhood system. The results are shown180
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Figure 4: Comparison of cross-entropy
terms.

in Figure 4. One can see that HCCE performs the181

best consistently across different supervision levels,182

i.e. scribble lengths. Both HCCE and HRCE are con-183

sistently better than standard HCE with a noticeable184

margin because they are more robust, as explained in185

Section 2.2, to the uncertainty in soft pseudo-labels186

when optimizing network parameters. We also test the187

performance of using HCCE + PQ with hard pseudo-188

labels obtained via the argmax operation on the soft189

ones. The mIoU on the validation set is 69.8% under190

the full scribble-length supervision.191

3.3 Comparison of neighborhood systems192

Until now, we only used the four nearest neighbors for the pairwise term. In this section, we also use193

the dense neighborhood and compare the results under the self-labeling framework.194
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（a) Image & scribble (b) Predictions
(c) Pseudo-labels

for NN
(d) Pseudo-labels

for DN (25)
(e) Pseudo-labels

for DN (100)

Figure 5: Pseudo-labels generated from given network predictions using different neighborhoods.

Firstly, to optimize the pseudo-labels for the dense neighborhood, we still use the gradient descent195

technique as detailed in Appendix B. The gradient computation employs the bilateral filtering196

technique following [35]. For the pairwise term, we use PQ. The cross-entropy term is HCCE. Note197

that the bilateral filtering technique only supports quadratic pairwise terms, i.e. PBL and PQ. Since198

PBL leads to hard solutions, PQ is the only practical choice for soft self-labeling. We obtained 71.1%199

mIoU on nearest neighbors while only getting 67.9% on dense neighborhoods (bandwidth is 100).200

Some qualitative results are shown in Figure 5. Clearly from this figure one can see that a larger201

neighborhood size induces lower-quality pseudo-labels. A possible explanation is that the Potts202

model gets closer to cardinality/volume potentials when the neighborhood size becomes larger [37].203

The nearest neighborhood is better for edge alignment and thus produces cleaner results.204

3.4 Soft self-labeling vs. hard self-labeling vs. gradient descent205

In this section, we give a summary in Table 4 as to what is the best framework for206

the WSSS based on losses regularized by the Potts model. Firstly, to directly optimize207

N
NN DN

GD 67.0 69.5∗ [36]

SL hard 69.6∗ [27] 63.1 [26]
soft 71.1 67.9

Table 4: Summary of comparisons. “∗” stands
for the reproduced results from their code repos-
itory.

the network parameters via stochastic gradient de-208

scent on the regularized loss, one needs a larger209

neighborhood size. One possible explanation is210

that a larger neighborhood size induces a smoother211

Potts model and it helps the gradient descent [28].212

However, larger neighborhood size is not preferred213

in the self-labeling framework. If we use Potts214

model on nearest neighborhoods, the self-labeling215

optimization should be applied and one should use216

soft pseudo-labels instead of hard ones. Note that with proper optimization the advantage of the Potts217

model on small neighborhood size can show up. In Figure 6, we also compare these approaches218

across different scribble lengths.219
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3.5 Comparison to SOTA220
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Full
GD-dense-PBL

GD-grid-PBL
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SL-grid-soft-HCCE + PQ

SL-grid-soft-HCCE + PCD

SL-dense-hard-HCCE + PQ

SL-dense-soft-HCCE + PQ

Figure 6: Comparison of different methods
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DeeplabV3+ with the backbone MobileNetV2.

In this section, we use a different network architec-221

ture, ResNet101, to fairly compare our method with222

the current state-of-the-art. We only compare the223

results before applying any post-processing steps.224

The results are shown in Table 5. Note that our225

results can outperform the fully-supervised method226

when using 12 as the batch size. We also observe227

that a larger batch size usually improves the results228

quite a lot. Our results with 12 batch size can out-229

perform several SOTA methods which use 16 batch230

size.231

Method Architecture Batchsize
Optimization

N mIoUGD SL
hard soft

Full supervision
Deeplab∗ [12] V3+ 16 ✓ - - - 78.9
Deeplab∗ [12] V3+ 12 ✓ - - - 76.6
Deeplab [11] V2 12 ✓ - - - 75.6

Scribble supervision
Architectural modification

BPG [39] V2 10 ✓ - - - 73.2
URSS [31] V2 16 ✓ - - - 74.6
SPML [20] V2 16 ✓ - - - 74.2

PSI [41] V3+ - - - ✓ - 74.9
SEMINAR [9] V3+ 12 ✓ - - - 76.2

TEL [25] V3+ 16 - - ✓ - 77.1
Loss modification - Potts relaxations

ScribbleSup [26] VGG16(V2) 8 - ✓ - DN 63.1
DenseCRF loss∗ [36] V3+ 12 ✓ - - DN 75.8
GridCRF loss∗ [27] V3+ 12 - ✓ - NN 75.6

NonlocalCRF loss∗ [38] V3+ 12 ✓ - - SN 75.7
HCCE +PQ V3+ 12 - - ✓ NN 77.5
HCCE +PCD V3+ 12 - - ✓ NN 77.7

HCCE +PCD (no pretrain) V3+ 12 - - ✓ NN 76.7
HCCE +PCD V3+ 16 - - ✓ NN 78.1

HCCE +PCD (no pretrain) V3+ 16 - - ✓ NN 77.6

Table 5: Comparison to SOTA methods (without CRF postprocessing) on scribble-supervised seg-
mentation. The numbers are mIoU on the validation dataset of Pascal VOC 2012 and use full-length
scribble. The backbone is ResNet101 unless stated otherwise. V2: deeplabV2. V3+: deeplabV3+.
N : neighborhood. “∗”: reproduced results. GD: gradient descent. SL: self-labeling. “no pretrain”
means the segmentation network is not pretrained using cross-entropy on scribbles.

4 Conclusions232

This paper proposed a convergent soft self-labeling framework based on a simple well-motivated loss233

(6) for joint optimization of network predictions and soft pseudo-labels. The latter were motivated234

as auxiliary optimization variables simplifying optimization of weakly-supervised loss (4). Our235

systematic evaluation of the cross-entropy and the Potts terms in self-labeling loss (6) provides236

clear recommendations based on the discussed conceptual advantages empirically confirmed by our237

experiments. Specifically, our work recommends the collision cross-entropy, log-quadratic Potts238

relaxations, and the earest-neighbor neighborhood. They achieve the best result that may even239

outperform the fully-supervised method with full pixel-precise masks. Our method does not require240

any modifications of the semantic segmentation models and it is easy to reproduce. Our general241

framework and empirical findings can be useful for other weakly-supervised segmentation problems242

(boxes, class tags, etc.).243
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A Self-labeling and hard pseudo-labels371

One argument motivating self-labeling approaches to weakly-supervised segmentation comes from372

well-known limitations of gradient descent when optimizing the Potts relaxatons, e.g. [28]. But even373

when using convex Potts relaxations [17, 32, 8], they are combined with the concave entropy term in374

(4) making their optimization challenging.375

Typical self-labeling methods, including one of the first works on scribble-based semantic segmenta-376

tion [26], introduce a sub-problem focused on the estimation of pseudo-labels over unlabeled points,377

separately from the network training by such labels. Pseudo-labeling is typically done by optimiza-378

tion algorithms or heuristics balancing unsupervised or self-supervised criteria, e.g. the Potts, and379

proximity to current predictions. Then, network fine-tuning from pseudo-labels and pseudo-labeling380

steps are iterated.381

We denote pseudo-labels yi slightly differently from the ground truth labels ȳi by omitting the382

bar. It is important to distinguish them since the ground truth labels ȳi for i ∈ S are given, while383

the pseudo-labels yi for i ∈ Ω\S are estimated. The majority of existing self-labeling methods384

[26, 2, 28, 3, 24, 27, 40] estimate hard pseudo-labels, which could be equivalently represented either385

by class indices386

yi ∈ {1, . . . ,K} (10)

or by the corresponding one-hot categorical distributions387

yi ≡ (y1i , . . . , y
K
i ) ∈ ∆K

0,1 for yki := [k = yi] ∈ {0, 1} (11)

analogously with the hard ground truth labels in (1) and (2). In part, hard pseudo-labels are motivated388

by the network training where the default is NLL loss (3) assuming discrete labels. Besides, there are389

powerful discrete solvers for the Potts model [6, 32, 8]. We discuss the potential advantages of soft390

pseudo-labels in the next Section 1.2.391

Joint loss vs “proposal generation”: The majority of self-labeling approaches can be divided into392

two groups. One group designs pseudo-labeling and the network training sup-problems that are not393

formally related, e.g. [26, 25, 41]. While pseudo-labeling typically depends on the current network394

predictions and the network fine-tuning uses such pseudo-labels, the lack of a formal relation between395

these sub-problems implies that iterating such steps does not guarantee any form of convergence.396

Such methods are often referred to as proposal generation heuristics.397

Alternatively, the pseudo-labeling sub-problem and the network training sub-problem can be formally398

derived from a weakly-supervised loss like (4), e.g. by ADM splitting [28] or as high-order trust-399

region method [27]. Such methods often formulate a joint loss function w.r.t network predictions400

and pseudo-labels and iteratively optimize it in a convergent manner that is guaranteed to decrease401

the loss. We consider this group of self-labeling methods as better motivated, more principled, and402

numerically safer.403

B Optimization Algorithm404

In this section, we will focus on the optimization of (6) in steps iterating optimization of y and σ.405

The network parameters are optimized by standard stochastic gradient descent in all our experiments.406

Pseudo-labels are also estimated online using a mini-batch. To solve y at given σ, it is a large-scale407

constrained convex problem. While there are existing general solvers to find global optima, such408

as projected gradient descent, it is often too slow for practical usage. Instead, we reformulate our409

problem to avoid the simplex constraints so that we can use standard gradient descent in PyTorch410

library accelerated by GPU. Specifically, instead of directly optimizing y, we optimize a set of new411

variables {li ∈ RK , i ∈ Ω} where yi is computed by softmax(li). Now, the simplex constraint on412

y will be automatically satisfied. Note that the hard constraints on scribble regions still need to be413

considered because the interaction with unlabeled regions through pairwise terms will influence the414

optimization process. Inspired by [44], we can reset softmax(li) where i ∈ S back to the ground415

truth at the beginning of each step of the gradient descent.416

However, the original convex problem now becomes non-convex due to the Softmax operation. Thus,417

initialization is important to help find better local minima or even the global optima. Empirically, we418

observed that the network output logit can be a fairly good initialization. The quantitative comparison419
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Figure 7: Illustration of the difference among Potts relaxations. The visualization of soft pseudo-
labels uses the convex combination of RGB colors for each class weighted by pseudo-label itself.

uses a special quadratic formulation where closed-form solution and efficient solver [1, 17] exist.420

We compute the standard soft Jaccard index for the pseudo-labels between the solutions given by421

our solver and the global optima. The soft Jaccard index is 99.2% on average over 100 images.422

Furthermore, our experimental results for all other formulations in Figure 7, 5, and Section 3 confirm423

the effectiveness of our optimization solver. In all experiments, the number of gradient descent steps424

for solving y is 200 and the corresponding learning rate is 0.075. To test the robustness of the number425

of steps here, we decreased 200 to 100 and the mIoU on the validation set just dropped from 71.05426

by 0.72. This indicates that we can significantly accelerate the training without much sacrifice of427

accuracy. When using 200 steps, the total time for the training will be about 3 times longer than the428

SGD with dense Potts [36].429

C Experimental settings430

Dataset and evaluation We mainly use the standard PASCAL VOC 2012 dataset [16] and scribble-431

based annotations for supervision [26]. The dataset contains 21 classes including background.432

Following the common practice [10, 35, 36], we use the augmented version which has 10,582 training433

images and 1449 images for validation. We employ the standard mean Intersection-over-Union434

(mIoU) on validation set as the evaluation metric. We also test our method on two additional datasets435

in Section 3.5. One is Cityscapes [13] which is built for urban scenes and consists of 2975 and 500436

fine-labeled images for training and validation. There are 19 out of 30 annotated classes for semantic437

segmentation. The other one is ADE20k [43] which has 150 fine-grained classes. There are 20210438

and 2000, images for training and validation. Instead of scribble-based supervision, we followed [25]439

to use the block-wise annotation as a form of weak supervision.440

Implementation details We adpoted DeepLabv3+ [12] framework with two backbones, ResNet101441

[19] and MobileNetV2 [34]. We use ResNet101 in Section 3.5, and use MobileNetV2 in other442

sections for efficiency. All backbone networks (ResNet-101 and MobileNetV2) are pre-trained on443

Imagenet [15]. Unless stated explicitly, we use batch 12 as the default across all the experiments.444

Following [35], we adopt two-stage training, unless otherwise stated, where only the cross-entropy445

loss on scribbles is used in the first stage. The optimizer for network parameters is SGD. The learning446

rate is scheduled by a polynomial decay with a power of 0.9. Initial learning is set to 0.007 in the first447

stage and 0.0007 in the second phase. 60 epochs are used to train the model with different losses448

where hyperparameters are tuned separately for them. For our best result, we use η = 0.3, λ = 6,449
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HCCE and PCD. The color intensity bandwidth in the Potts model is set to 9 across all the experiments450

on Pascal VOC 2012 and 3 for Cityscapes and ADE20k datasets.451

Method Architecture Cityscapes ADE20k
Full supervision

Deeplab [12] V3+ 80.2 44.6
Block-scribble supervision

DenseCRF loss [36] V3+ 69.3 37.4
GridCRF loss∗ [27] V3+ 69.5 37.7

TEL [25] V3+ 71.5 39.2
HCCE +PCD V3+ 72.4 39.7

Table 6: Comparison to SOTA methods (without CRF postprocessing) on segmentation with block-
scribble supervision. The numbers are mIoU on the validation dataset of cityscapes [13] and ADE20k
[43] and use 50% of full annotations for supervision following [25]. The backbone is ResNet101.
“∗”: reproduced results. All methods are trained in a single-stage fashion.
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NeurIPS Paper Checklist452

The checklist is designed to encourage best practices for responsible machine learning research,453

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove454

the checklist: The papers not including the checklist will be desk rejected. The checklist should455

follow the references and follow the (optional) supplemental material. The checklist does NOT count456

towards the page limit.457

Please read the checklist guidelines carefully for information on how to answer these questions. For458

each question in the checklist:459

• You should answer [Yes] , [No] , or [NA] .460

• [NA] means either that the question is Not Applicable for that particular paper or the461

relevant information is Not Available.462

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).463

The checklist answers are an integral part of your paper submission. They are visible to the464

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it465

(after eventual revisions) with the final version of your paper, and its final version will be published466

with the paper.467

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.468

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a469

proper justification is given (e.g., "error bars are not reported because it would be too computationally470

expensive" or "we were unable to find the license for the dataset we used"). In general, answering471

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we472

acknowledge that the true answer is often more nuanced, so please just use your best judgment and473

write a justification to elaborate. All supporting evidence can appear either in the main paper or the474

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification475

please point to the section(s) where related material for the question can be found.476

IMPORTANT, please:477

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",478

• Keep the checklist subsection headings, questions/answers and guidelines below.479

• Do not modify the questions and only use the provided macros for your answers.480

1. Claims481

Question: Do the main claims made in the abstract and introduction accurately reflect the482

paper’s contributions and scope?483

Answer: [Yes]484

Justification:485

Guidelines:486

• The answer NA means that the abstract and introduction do not include the claims487

made in the paper.488

• The abstract and/or introduction should clearly state the claims made, including the489

contributions made in the paper and important assumptions and limitations. A No or490

NA answer to this question will not be perceived well by the reviewers.491

• The claims made should match theoretical and experimental results, and reflect how492

much the results can be expected to generalize to other settings.493

• It is fine to include aspirational goals as motivation as long as it is clear that these goals494

are not attained by the paper.495

2. Limitations496

Question: Does the paper discuss the limitations of the work performed by the authors?497

Answer: [No]498

Justification: The training time is longer and more details can be found in the end of499

Appendix B.500
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Guidelines:501

• The answer NA means that the paper has no limitation while the answer No means that502

the paper has limitations, but those are not discussed in the paper.503

• The authors are encouraged to create a separate "Limitations" section in their paper.504

• The paper should point out any strong assumptions and how robust the results are to505

violations of these assumptions (e.g., independence assumptions, noiseless settings,506

model well-specification, asymptotic approximations only holding locally). The authors507

should reflect on how these assumptions might be violated in practice and what the508

implications would be.509

• The authors should reflect on the scope of the claims made, e.g., if the approach was510

only tested on a few datasets or with a few runs. In general, empirical results often511

depend on implicit assumptions, which should be articulated.512

• The authors should reflect on the factors that influence the performance of the approach.513

For example, a facial recognition algorithm may perform poorly when image resolution514

is low or images are taken in low lighting. Or a speech-to-text system might not be515

used reliably to provide closed captions for online lectures because it fails to handle516

technical jargon.517

• The authors should discuss the computational efficiency of the proposed algorithms518

and how they scale with dataset size.519

• If applicable, the authors should discuss possible limitations of their approach to520

address problems of privacy and fairness.521

• While the authors might fear that complete honesty about limitations might be used by522

reviewers as grounds for rejection, a worse outcome might be that reviewers discover523

limitations that aren’t acknowledged in the paper. The authors should use their best524

judgment and recognize that individual actions in favor of transparency play an impor-525

tant role in developing norms that preserve the integrity of the community. Reviewers526

will be specifically instructed to not penalize honesty concerning limitations.527

3. Theory Assumptions and Proofs528

Question: For each theoretical result, does the paper provide the full set of assumptions and529

a complete (and correct) proof?530

Answer: [NA]531

Justification:532

Guidelines:533

• The answer NA means that the paper does not include theoretical results.534

• All the theorems, formulas, and proofs in the paper should be numbered and cross-535

referenced.536

• All assumptions should be clearly stated or referenced in the statement of any theorems.537

• The proofs can either appear in the main paper or the supplemental material, but if538

they appear in the supplemental material, the authors are encouraged to provide a short539

proof sketch to provide intuition.540

• Inversely, any informal proof provided in the core of the paper should be complemented541

by formal proofs provided in appendix or supplemental material.542

• Theorems and Lemmas that the proof relies upon should be properly referenced.543

4. Experimental Result Reproducibility544

Question: Does the paper fully disclose all the information needed to reproduce the main ex-545

perimental results of the paper to the extent that it affects the main claims and/or conclusions546

of the paper (regardless of whether the code and data are provided or not)?547

Answer: [Yes]548

Justification: All the details are given in the Appendix C.549

Guidelines:550

• The answer NA means that the paper does not include experiments.551
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• If the paper includes experiments, a No answer to this question will not be perceived552

well by the reviewers: Making the paper reproducible is important, regardless of553

whether the code and data are provided or not.554

• If the contribution is a dataset and/or model, the authors should describe the steps taken555

to make their results reproducible or verifiable.556

• Depending on the contribution, reproducibility can be accomplished in various ways.557

For example, if the contribution is a novel architecture, describing the architecture fully558

might suffice, or if the contribution is a specific model and empirical evaluation, it may559

be necessary to either make it possible for others to replicate the model with the same560

dataset, or provide access to the model. In general. releasing code and data is often561

one good way to accomplish this, but reproducibility can also be provided via detailed562

instructions for how to replicate the results, access to a hosted model (e.g., in the case563

of a large language model), releasing of a model checkpoint, or other means that are564

appropriate to the research performed.565

• While NeurIPS does not require releasing code, the conference does require all submis-566

sions to provide some reasonable avenue for reproducibility, which may depend on the567

nature of the contribution. For example568

(a) If the contribution is primarily a new algorithm, the paper should make it clear how569

to reproduce that algorithm.570

(b) If the contribution is primarily a new model architecture, the paper should describe571

the architecture clearly and fully.572

(c) If the contribution is a new model (e.g., a large language model), then there should573

either be a way to access this model for reproducing the results or a way to reproduce574

the model (e.g., with an open-source dataset or instructions for how to construct575

the dataset).576

(d) We recognize that reproducibility may be tricky in some cases, in which case577

authors are welcome to describe the particular way they provide for reproducibility.578

In the case of closed-source models, it may be that access to the model is limited in579

some way (e.g., to registered users), but it should be possible for other researchers580

to have some path to reproducing or verifying the results.581

5. Open access to data and code582

Question: Does the paper provide open access to the data and code, with sufficient instruc-583

tions to faithfully reproduce the main experimental results, as described in supplemental584

material?585

Answer: [No]586

Justification: The code will be released upon acceptance.587

Guidelines:588

• The answer NA means that paper does not include experiments requiring code.589

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/590

public/guides/CodeSubmissionPolicy) for more details.591

• While we encourage the release of code and data, we understand that this might not be592

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not593

including code, unless this is central to the contribution (e.g., for a new open-source594

benchmark).595

• The instructions should contain the exact command and environment needed to run to596

reproduce the results. See the NeurIPS code and data submission guidelines (https:597

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.598

• The authors should provide instructions on data access and preparation, including how599

to access the raw data, preprocessed data, intermediate data, and generated data, etc.600

• The authors should provide scripts to reproduce all experimental results for the new601

proposed method and baselines. If only a subset of experiments are reproducible, they602

should state which ones are omitted from the script and why.603

• At submission time, to preserve anonymity, the authors should release anonymized604

versions (if applicable).605
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• Providing as much information as possible in supplemental material (appended to the606

paper) is recommended, but including URLs to data and code is permitted.607

6. Experimental Setting/Details608

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-609

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the610

results?611

Answer: [Yes]612

Justification: See Appendix C.613

Guidelines:614

• The answer NA means that the paper does not include experiments.615

• The experimental setting should be presented in the core of the paper to a level of detail616

that is necessary to appreciate the results and make sense of them.617

• The full details can be provided either with the code, in appendix, or as supplemental618

material.619

7. Experiment Statistical Significance620

Question: Does the paper report error bars suitably and correctly defined or other appropriate621

information about the statistical significance of the experiments?622

Answer: [No]623

Justification: We reported the best following everyone else.624

Guidelines:625

• The answer NA means that the paper does not include experiments.626

• The authors should answer "Yes" if the results are accompanied by error bars, confi-627

dence intervals, or statistical significance tests, at least for the experiments that support628

the main claims of the paper.629

• The factors of variability that the error bars are capturing should be clearly stated (for630

example, train/test split, initialization, random drawing of some parameter, or overall631

run with given experimental conditions).632

• The method for calculating the error bars should be explained (closed form formula,633

call to a library function, bootstrap, etc.)634

• The assumptions made should be given (e.g., Normally distributed errors).635

• It should be clear whether the error bar is the standard deviation or the standard error636

of the mean.637

• It is OK to report 1-sigma error bars, but one should state it. The authors should638

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis639

of Normality of errors is not verified.640

• For asymmetric distributions, the authors should be careful not to show in tables or641

figures symmetric error bars that would yield results that are out of range (e.g. negative642

error rates).643

• If error bars are reported in tables or plots, The authors should explain in the text how644

they were calculated and reference the corresponding figures or tables in the text.645

8. Experiments Compute Resources646

Question: For each experiment, does the paper provide sufficient information on the com-647

puter resources (type of compute workers, memory, time of execution) needed to reproduce648

the experiments?649

Answer: [Yes]650

Justification: See end of Appendix B.651

Guidelines:652

• The answer NA means that the paper does not include experiments.653

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,654

or cloud provider, including relevant memory and storage.655
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• The paper should provide the amount of compute required for each of the individual656

experimental runs as well as estimate the total compute.657

• The paper should disclose whether the full research project required more compute658

than the experiments reported in the paper (e.g., preliminary or failed experiments that659

didn’t make it into the paper).660

9. Code Of Ethics661

Question: Does the research conducted in the paper conform, in every respect, with the662

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?663

Answer: [Yes]664

Justification:665

Guidelines:666

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.667

• If the authors answer No, they should explain the special circumstances that require a668

deviation from the Code of Ethics.669

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-670

eration due to laws or regulations in their jurisdiction).671

10. Broader Impacts672

Question: Does the paper discuss both potential positive societal impacts and negative673

societal impacts of the work performed?674

Answer: [NA]675

Justification:676

Guidelines:677

• The answer NA means that there is no societal impact of the work performed.678

• If the authors answer NA or No, they should explain why their work has no societal679

impact or why the paper does not address societal impact.680

• Examples of negative societal impacts include potential malicious or unintended uses681

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations682

(e.g., deployment of technologies that could make decisions that unfairly impact specific683

groups), privacy considerations, and security considerations.684

• The conference expects that many papers will be foundational research and not tied685

to particular applications, let alone deployments. However, if there is a direct path to686

any negative applications, the authors should point it out. For example, it is legitimate687

to point out that an improvement in the quality of generative models could be used to688

generate deepfakes for disinformation. On the other hand, it is not needed to point out689

that a generic algorithm for optimizing neural networks could enable people to train690

models that generate Deepfakes faster.691

• The authors should consider possible harms that could arise when the technology is692

being used as intended and functioning correctly, harms that could arise when the693

technology is being used as intended but gives incorrect results, and harms following694

from (intentional or unintentional) misuse of the technology.695

• If there are negative societal impacts, the authors could also discuss possible mitigation696

strategies (e.g., gated release of models, providing defenses in addition to attacks,697

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from698

feedback over time, improving the efficiency and accessibility of ML).699

11. Safeguards700

Question: Does the paper describe safeguards that have been put in place for responsible701

release of data or models that have a high risk for misuse (e.g., pretrained language models,702

image generators, or scraped datasets)?703

Answer: [NA]704

Justification:705

Guidelines:706

• The answer NA means that the paper poses no such risks.707

20

https://neurips.cc/public/EthicsGuidelines


• Released models that have a high risk for misuse or dual-use should be released with708

necessary safeguards to allow for controlled use of the model, for example by requiring709

that users adhere to usage guidelines or restrictions to access the model or implementing710

safety filters.711

• Datasets that have been scraped from the Internet could pose safety risks. The authors712

should describe how they avoided releasing unsafe images.713

• We recognize that providing effective safeguards is challenging, and many papers do714

not require this, but we encourage authors to take this into account and make a best715

faith effort.716

12. Licenses for existing assets717

Question: Are the creators or original owners of assets (e.g., code, data, models), used in718

the paper, properly credited and are the license and terms of use explicitly mentioned and719

properly respected?720

Answer: [NA]721

Justification:722

Guidelines:723

• The answer NA means that the paper does not use existing assets.724

• The authors should cite the original paper that produced the code package or dataset.725

• The authors should state which version of the asset is used and, if possible, include a726

URL.727

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.728

• For scraped data from a particular source (e.g., website), the copyright and terms of729

service of that source should be provided.730

• If assets are released, the license, copyright information, and terms of use in the package731

should be provided. For popular datasets, paperswithcode.com/datasets has732

curated licenses for some datasets. Their licensing guide can help determine the license733

of a dataset.734

• For existing datasets that are re-packaged, both the original license and the license of735

the derived asset (if it has changed) should be provided.736

• If this information is not available online, the authors are encouraged to reach out to737

the asset’s creators.738

13. New Assets739

Question: Are new assets introduced in the paper well documented and is the documentation740

provided alongside the assets?741

Answer: [NA]742

Justification:743

Guidelines:744

• The answer NA means that the paper does not release new assets.745

• Researchers should communicate the details of the dataset/code/model as part of their746

submissions via structured templates. This includes details about training, license,747

limitations, etc.748

• The paper should discuss whether and how consent was obtained from people whose749

asset is used.750

• At submission time, remember to anonymize your assets (if applicable). You can either751

create an anonymized URL or include an anonymized zip file.752

14. Crowdsourcing and Research with Human Subjects753

Question: For crowdsourcing experiments and research with human subjects, does the paper754

include the full text of instructions given to participants and screenshots, if applicable, as755

well as details about compensation (if any)?756

Answer: [NA]757

Justification:758
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Guidelines:759

• The answer NA means that the paper does not involve crowdsourcing nor research with760

human subjects.761

• Including this information in the supplemental material is fine, but if the main contribu-762

tion of the paper involves human subjects, then as much detail as possible should be763

included in the main paper.764

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,765

or other labor should be paid at least the minimum wage in the country of the data766

collector.767

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human768

Subjects769

Question: Does the paper describe potential risks incurred by study participants, whether770

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)771

approvals (or an equivalent approval/review based on the requirements of your country or772

institution) were obtained?773

Answer: [NA]774

Justification:775

Guidelines:776

• The answer NA means that the paper does not involve crowdsourcing nor research with777

human subjects.778

• Depending on the country in which research is conducted, IRB approval (or equivalent)779

may be required for any human subjects research. If you obtained IRB approval, you780

should clearly state this in the paper.781

• We recognize that the procedures for this may vary significantly between institutions782

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the783

guidelines for their institution.784

• For initial submissions, do not include any information that would break anonymity (if785

applicable), such as the institution conducting the review.786
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