
Analyzing the Quality and Stability of a Streaming End-to-End On-Device
Speech Recognizer

Yuan Shangguan*, Kate Knister*, Yanzhang He, Ian McGraw, Franoise Beaufays

Google LLC, 1600 Amphitheatre Parkway, Mountain View, CA
yuansg@fb.com,kateknister@google.com

Abstract
The demand for fast and accurate incremental speech recognition
increases as the applications of automatic speech recognition
(ASR) proliferate. Incremental speech recognizers output chunks
of partially recognized words while the user is still talking. Par-
tial results can be revised before the ASR finalizes its hypothesis,
causing instability issues. We analyze the quality and stability
of on-device streaming end-to-end (E2E) ASR models. We first
introduce a novel set of metrics that quantify the instability at
word and segment levels. We study the impact of several model
training techniques that improve E2E model qualities but de-
grade model stability. We categorize the causes of instability and
explore various solutions to mitigate them in a streaming E2E
ASR system.
Index Terms: ASR, stability, end-to-end, text normalization,
on-device, RNN-T

1. Introduction
Modern applications of automatic speech recognition have
brought to users fast and accurate incremental speech recog-
nition experiences. These speech recognizers stream chunks of
partially recognized words to the user interface while the user
is still talking. We hereby refer to these chunks as partials. Not
only do users see text appear in real-time before the ASR rec-
ognizer finalizes the transcription, downstream models such as
spoken dialog systems [1], real-time translation system [2] and
multimodal user interfaces [3] also rely on partials to reduce
overall application latencies.

Prior works in streaming ASR highlight a significant obsta-
cle: model stability [1, 4, 5]. Recognizers often change emitted
words before finalizing the hypothesis. These revisions of par-
tials cause flicker on the speech user interface. They also increase
the cognitive load of the users, distracting them from speaking
and resulting in frustration. Revisions also cause the downstream
models to repeat operations, increasing overall application la-
tency.

In this paper, we analyze the stability issues of an on-device,
streaming, Recurrent Neural Network Transducer (RNN-T) ASR
recognizer. It is a state-of-the-art E2E ASR recognizer that pro-
duces transcripts with low word error rates (WER) on devices
while staying within the constraints of latency, memory storage
and computational resources [6]. We improve the training data
diversity by mixing data from multiple speech domains [7, 8].
Multi-domain training data improves robustness of the model
for conditions not seen during training, such as long-form au-
dio recognition [9]. In this paper, we analyze the impact of
the diverse training data on the quality and stability of RNN-T
recognizers. Moreover, to avoid the additional latency from text
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normalizers, we include capitalizations, spoken punctuations,
and Arabic numerals in the training data, so that the trained mod-
els output these written-text formats [10]. Due to the diversity of
transcript text formats present in the multi-domain training data,
the on-device RNN-T is especially prone to instability, revising
its transcripts frequently during the generation of partials.

Prior work proposed different methods for improving and
evaluating stability of traditional streaming ASR recognizers.
Both [5] and [11] defined a stable partial as an unchanging prefix
that prepends the growing hypothesis. They modeled the stabil-
ity statistics of partial hypotheses using logistic regression or a
single-hidden-layer feedforward network and suggested emitting
only partials that are classified as stable. In constrast, Selfridge
et al. [1] defined partial prefixes as stable only if they prefix the
final transcription hypothesis. They reported the percentage of
stable partials by generating partials only at certain nodes in the
lattice. Baumann [4] measured the cumulative differences be-
tween subsequent partials up to the hypothesis. When users see
incremental changes in transcription, the cumulative measure-
ment provides better insight into user experience. In a similar
vein, a recent paper in speech-to-translation [2] used erasure.
Erasure measures the number of tokens to be removed from the
suffix of the previous translation partials to produce the next
sequence of partials. The ratio between aggregated erasure and
the final translation length measures instability of the translation
system.

To examine the stability of on-device streaming E2E ASR
models, we propose a novel set of metrics in Section 2 that ex-
plicitly measure the speech recognizer stability users perceive.
These metrics are simple and intuitive. They can be captured
live without incurring extra latency on user devices. More impor-
tantly, this set reflects both the frequency and span of revisions in
the partials of a speech recognizer. We then analzye the quality,
latency and stability of a RNN-T based E2E streaming speech
recognizer. We look at the impact of training techniques we used
for E2E models on the stability of RNN-T recognizers: mixed-
case data, multi-domain training data, and text normalization
training. We categorize the causes of instability in Section 3.
Most existing methods to improve ASR stability focus on delay-
ing partials from the speech recognizer. We follow this trend to
analyze the trade-offs between end-to-end speech recognizer’s
latencies and stabilty in Section 5. In addition, we evaluate
our strategies in improving speech recognizer stability without
delaying partial emissions in Section 4.

2. Instability Metrics
We illustrate the way we measure stability with the example in
Table 1. In this contrived example, the user said “here comma
lived a man who sailed to sea”. The final recognizer output is
“Here, lived a man who sailed to sea”. A segment, or partial
result, can contain multiple words. The emitted segments are
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chronologically indexed. There are 9 segments in total, although
the number could change if the frequency of partial emissions
changes. A segment differs from the previous segment either
by growth (addition of words) or by revision (changes in the
previous words). Revisions indicate unstable segments. For
example, segment 2 is a stable segment because it simply grows
from segment 1. Segment 3, however, is an unstable segment
because it contains a revision of the word “come” into “comma”.
Similar to [2, 5], we consider a partial prefix stable if and only if
all future hypotheses contain the same prefix. In segment 5, for
instance, “a man who” are unstable words because they follow
an unstable word “Lived”. As a result, we count 4 unstable
words in segment 6.

Seg Streamed Segment Text # Unstable
# Word Seg
1 Here
2 Here come
3 Here comma +1 +1
4 Here, +1 +1
5 Here, Lived a man who
6 Here, lived a man who sell +4 +1
7 Here, lived a man who sell two seeds
8 Here, lived a man who sell 2 seeds +2 +1
9 Here, lived a man who sailed to sea +3 +1

Table 1: Incremental speech recognition segments ordered by
emission sequences, with unstable words and segment counts to
calculate UPWR and UPSR.

We measure the instability of partials with unstable partial
word ratio (UPWR) and unstable partial segment ratio (UPSR).
UPWR is the ratio of total number of unstable words in a test
corpus to the total number of words in the final hypotheses.
UPSR captures the ratio between the aggregated number of
revised segments and the total number of utterances in a dataset.
The ranges of UPWR and UPSR are [0,∞). The closer they are
to 0, the more stable the system. UPWR captures the magnitude
of the model’s instability in terms of number of words, while the
UPSR measures the frequency of occurences of revisions.

In Table 1, we have a total of 11 unstable words, and 9 words
in the final hypothesis. Therefore UPWR=11/9=1.22. There are
5 unstable segments over one utterance, so UPSR=5/1=5.0.

3. Stability of the Streaming RNN-T
3.1. On-Device Streaming RNN-T

We train a streaming RNN-T with either 128 grapheme targets
or 4096 word-pieces targets [10]. The RNN-T model is trained
to handle multiple speech recognition domains [8]. In addition,
this RNN-T is trained to run on modern edge devices [6]. Since
on-device speech recognizers face serious constraints in latency,
memory, and CPU resources, we avoid adding text normalizers to
the speech pipeline. Instead, we include capitalizations, spoken
punctuations and Arabic numerals in the training data, so that the
trained RNN-T model learns to output transcripts with correct
text normalization formats.

3.2. Types of On-Device RNN-T Instabilities

We analyze the streaming RNN-T output and divide the oc-
currences of instability into two categories. The first is text-
normalization instability. The second is streaming instability.
We further identify 4 subtypes of text-normalization instabil-
ity. Table 2 shows the percentage breakdown of each instability

subtype in terms of the frequency of occurrences in the output
of the multi-domain RNN-T model, introduced in [9], which
corresponds to Model F in Table 4.

Type of Stability Percentage
A. Text Normalization Instabilities 47.6%
1,2. Punctuation & spacing related 21.2%
3. Capitalization 24.7%
4. Numeral 1.7%
B. Streaming instability 52.4%

Table 2: Types of instability and their percentages of occurrences
in an offline dataset.

Streaming instability When the model is forced to output
partial words faster, more premature partials occur when the
user is still in the process of uttering a word. For example, one
might see “my open” before “my opinion”. We analyze the
relationship between streaming instability and partial emissions
rate in section 5. The streaming instability problem is more
pronounced when the E2E models output subword targets instead
of word targets as in the traditional models.

Text normalization instabilities arise when the RNN-T
model revises its transcripts in terms of the formats of the output.

1. Punctuation instability refers to the change of partials re-
lated to spoken punctuation phrases. Examples include segment
2 to 4 in Table 1, where “come”→“comma” →“,” are partial re-
sult revisions due to the comma symbol. Punctuation instability
gets worse as the punctuation phrases get longer. “left quotation
mark”, for example, causes more instability than “period”.

2. Spacing instability refers to the changes in spaces delim-
iting the partial words during the recognition process. It often
happens hand-in-hand with punctuation instability. A commonly
occurring observation is that the space between a word and the
subsequent punctuation is being removed and re-inserted mul-
tiple times: “Hi,” → “Hi ,” → “Hi, ”. Languages that do not
require delimitation, such as Chinese and Japanese, have no
spacing instabilities.

3. Capitalization instability is caused by the model revis-
ing uppercase outputs into lowercase outputs or vise-versa. Seg-
ments 5 to 6 in Table 1 are examples of capitalization instability
(i.e. “Lived” → “lived”). Capitalization instability is more pro-
nounced in languages like German, where nouns are capitalized.

4. Numeral instability occurs when users dictate phone
numbers, street addresses, dates, time or other numeric enti-
ties. When the user is speaking, the ASR models output these
numbers in spoken format first - “Call eight” - before outputting
numbers - “Call 800-123-1234”.

3.3. Factors Impacting Stability in RNN-T

We identify factors that adversely impact the stability of a mixed-
case streaming RNN-T model in the following subsections.

3.3.1. Wordpieces and Spoken Punctuation Tokens

Word-piece targets in E2E speech models allow models to cap-
ture longer linguistic and phoneme contexts, resulting in better
model performance [12]. We train a word-piece model (WPM)
with n-gram counts obtained from text data to segment words
into sub-word units. WPMs are depicted by Schuster in [13].
These WPM targets do not contain spoken punctuation tokens.
For example, “exclamation” is represented by sub-word units
as {“exclam”, “a”, “tion”}. As a result, the RNN-T models
emit partial punctuation words like “exclam” before completely
converting the spoken punctuations “exclamation mark” into “!”.



3.3.2. Mixed-case Training Data and WPM Targets

In Section 3.1, we explain why we introduce mixed-case training
data to RNN-T models. In terms of WER, RNN-T with WPM
targets have lower WER than RNN-T with grapheme targets. In
terms of stability, mixed-case training inevitably increases the
perplexity of the RNN-T decoder. RNN-T models with WPM
targets suffer greater stability degradations than RNN-T models
with grapheme targets when the training data changes from
lowercase to mixed-case. Table 3 shows stabilities of Model
A (grapheme) and B (WPM) with lowercase traing data. They
have similar stability. However, RNN-T Model D, trained with a
mixed-case WPM, is 31.3% worse in stability than its grapheme-
trained counterpart C. Comparing grapheme model pairs C and
A, the grapheme-trained RNN-T has > 40% increase in UPWR
and UPSR. Comparing the WPM models B and D, the RNN-T
experiences a 61.5% increase in UPWR and 90.7% increase in
UPSR.

One might surmise that mixed-case data mainly contributes
to an increase in capitalization instability. Evidence suggests
otherwise: mixed-case training causes other types of instabil-
ity in WPM-target RNN-T. To show this, we post-process the
outputs of models C and D with a lowercasing Finite State Trans-
ducer (FST). This FST converts all partial outputs into lowercase
text, eliminating capitalization instability completely. The newly
augmented models are Cnorm and Dnorm in Table 3. Cnorm
has the same level of instability as Model A, suggesting that for
grapheme RNN-T models, the > 40% increase in mixed-case
instability is due to capitalization instabilities alone. Dnorm,
however, has 30.2% higher UPSR than Model B. We find that
the mixed-case decoding beams of the WPM-targeted RNN-T
often contain more words with both upper and lower cases than
the grapheme-targeted RNN-T. For example, “used” and “Used”
can both exist in two otherwise identical top-N hypotheses be-
cause both are valid words. As a result, the diversity of the top N
hypotheses decreases, and the top-1 hypothesis is more likely to
change during the decoding process when the top-n hypotheses
swap their rankings.

3.3.3. Multi-domain Training Data

Multi-domain training data improves the quality of the RNN-T
model. It supplies a variety of acoustics and linguistic content to
the speech model, improving model performance [9]. The cost
of multi-domain training data is that the transcription standard
may not be the same across all domains. Capitalizations, for
instance, might not be enforced in the YouTube transcriptions.
As the diversity of transcription format increases, multi-domain
training leads to more model instability. In Table 4, we compare
two models: D, trained with data from a single domain, and
E, trained with data from multiple domains. Although multi-
domain RNN-T model E has a better word error rate (WER) than
model D, its punctuation error rate (PER) increases by 10.7%,
case-insensitive WER increases by 1.5%, and its instability met-
rics increase even more drastically: UPWR +76.2% and UPSR
+45%.

4. Improving Text Normalization Stability
In this section, we discuss methods that improve E2E RNN-T
recongizer stability without introducing a delay in partial emis-
sions. We develop strategies to reap the benefits of improved
WER while alleviating the degradations of model stability ex-
plained in section 3.3.

4.1. Numeral Instability

To reduce numeral instability, we included Text-to-speech (TTS)
synthesized number data as introduced in [10] to fine-tune the
models so that the RNN-T models automatically output the
correct numeral formats.

4.2. Punctuation Words as WPM Tokens

To eliminate punctuation instabilities, we force the RNN-T mod-
els to predict punctuation phrases as single tokens. We add a list
of possible punctuation phrases in the single-token format, such
as “{exclamation-mark}” or “{left-curly-bracket}”. We then
add these tokens in the WPM vocabulary. At training time, we
pre-process the audio transcriptions to ensure that dictated punc-
tuations occur in the same token format. The trained ASR model
learns to distinguish common words from punctuation phrases
in their linguistic context; it predicts “period” when it means a
stretch of time and “{period}” when it means end-of-sentence.
At inference time, punctuation words with curly brackets are
instantly converted into symbols by a simple regular expression
logic.

4.3. Text Normalization and Domain-id

To alleviate the capitalization instability in mixed-cased trained
RNN-T models, we implement two solutions: text normalization
on the multi-domain dataset, and separation of domains using
domain-id as a model input feature.

We apply text normalization models to the multi-domain
training data [14] to unify the format of capitalization, spo-
ken punctuations, numerics, and spacing clean-ups. Comparing
Model E to F in Table 4, text normalization improves the stabil-
ity of multi-domain model by 29.7% in UPWR and 19.3% in
UPSR.

We use domain-id as input to the RNN-T model as explained
in [8]. Domain-id allows the model to distinguish different text
normalization standards and learn a more consistent text format
from each domain. Model G with domain-id shows about 50%
stability improvement over Model F.

With text normalization and domain-id, we develop Model
G, a mixed-case streaming RNN-T with WPM targets. It has
23.4% better WER, 15.9% better case-insensitive WER, 8%
better punctuation error rate and 12.5% improved UPWR than
our baseline mixed-case single-domain grapheme-based RNN-T
(Model C).

Model Vocab Training UPWR UPSR
Index Data
A Grph lowercase 0.11 0.48
B WPM lowercase 0.13 0.43
C Grph mixed-case 0.16 0.68
D WPM mixed-case 0.21 0.82
Cnorm Model C 0.11 0.47

+ lowercaseFST 0% wrt A -2.08% wrt A
Dnorm Model D 0.13 0.56

+ lowercaseFST 0% wrt B +30.2% wrt B

Table 3: Stability of WPM and grapheme RNN-T models with
training data from a single domain. “Grph” is abbreviation for
grapheme.



ID Vocab PEI Training Domain & Data WER PER mWER UPWR UPSR
C Grapheme 50 Single 4.7(0%) 2.5 6.9(0%) 0.16 0.68
D WPM 50 Single 4.3(-8.51%) 2.8 6.6(-4.3%) 0.21 0.82
E WPM 50 Multi 4.0(-14.9%) 3.1 6.7(-2.9%) 0.37 1.19
F WPM 50 Multi + Text Norm 3.8(-19.1%) 2.6 6.2(-10.1%) 0.26 0.96
G WPM 50 Multi + Text Norm + Domain-id 3.6(-23.4%) 2.3 5.8(-15.9%) 0.14 0.48
H WPM 200 Multi + Text Norm + Domain-id 3.6(-23.4%) 2.3 5.8(-15.9%) 0.04 0.15

Table 4: RNN-T model quality and stability. PEI: partial emission interval (ms); PER: punctuation error rate; mWER: mixed-case WER.

5. Improving Streaming Stability
5.1. Stability vs Partial Emission Intervals

Previous works have shown trade-offs between partial emission
intervals (PEI) and model stability [3, 4, 5, 2]. PEI is the time we
set between showing consequtive partial results from the ASR
recognizer. Naturally, the longer a partial lives in the lattice
beam, the less likely the partial word is going to be revised.
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Figure 1: Instability (UPWR, UPSR) with respect to partial
emission intervals (ms) in Model G and Model F. Mean partial
delay (ms) of Model G is also shown.

We thus explore the relationship between partial emission
intervals (in ms) and model stability with a streaming RNN-T
E2E speech recognizer. Figure 1 shows how the instability met-
rics decrease logarithmically when the partial emission interval
lengthens. In Section 4, we introduce methods to stablize WPM
target RNN-T models by pushing the UPWR and UPSR curves
to a lower magnitude. For instance, by using domain-ID, we
show improvement of stability from model F to model G at no
delay of the partial emission intervals at every point along the
UPWR and UPSR curves in Figure 1. In this section, we show
how stability can be improved by sliding to different PEI’s along
the curves. We also measure the latency of the speech recognizer
in terms of mean partial delay, which is the average time before
each hypothesized word is first shown on the screen after the
beginning of the utterance.

Changing the partial emission interval from 50ms to 200ms
results in 75ms increase in mean partial delay (see Figure 1).
However, at 200ms PEI, as shown in Table 4, model H has 71.6%
improvement in UPWR, and 68.8% improvement in UPSR, com-
pared to model G, achieving a good tradeoff between latency
and stability.

5.2. Stability Thresholding vs Mean Partial Delay Tradeoff

In [5], McGraw and Gruenstein developed a logistic regression
approach to estimate the stability of partial results. We analyze
the impact on model stability by thresholding the stability scores
of partials. Each partial is scored based on the proposed logistic
regression model, and partial words that have stability score
exceeding the threshold are immediately shown on the screen

while the others are withheld. Figure 2 shows that increasing
the threshold improves model stability. UPWR and UPSR drop
sharply when the threshold grows from 0.1 to 0.2, and decrease
linearly when the threshold score is bigger than 0.2.

Accompanying the precipitous drop in the speech recog-
nizer’s UPSR and UPWR is a perceptible increase in recognizer
latency. This is measured by a 18.6% increase of the mean
partial delay from 1243ms to 1474ms. This delay is expected
because the logistic regression model depends on a feature, age,
which measures the length of time that a partial survives the best
decoding path. Partials at the beginning of an utterance usually
do not have long age, and thus are predicted to be less stable.
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Figure 2: UPWR, UPSR and mean partial delay with respect to
the threshold of stability score in Model G.

6. Conclusion
In this paper, we describe the problem of instability in the frame-
work of a streaming E2E RNN-T based multi-domain ASR. We
observe that model training methods such as mixing data from
multiple speech domains and adopting WPM-targets have ad-
versely impacted on the stability of the streaming RNN-T models.
In addition, the introduction of text normalization features, in-
cluding mixed-case data, numerics and spoken punctuations, has
also resulted in model stability degradation. We first introduce a
novel set of metrics, UPWR and UPSR, to quantify the magni-
tude and frequency of instability occurences. We then categorize
instability into 5 types. We outline model training techniques
that dramatically improve the stability of streaming E2E models
at no delay to the output words. We show partial emission delay
is an effective tool to reduce streaming instability of the RNN-T
models but only up to a point before the partial emissions delays
become perceptible.
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