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ABSTRACT

Unsupervised cross-domain segmentation addresses the challenge of label depen-
dence in cross-domain medical image segmentation. Yet, most existing methods
treat domain adaptation and segmentation as Two Separate Steps and primarily
focus on global domain adaptation, lacking the ability to prioritize segmentation-
specific information during domain adaptation. Additionally, for cross-domain
segmentation, extracting domain-invariant feature representation remains an un-
avoidable challenge. These challenges significantly reduce segmentation perfor-
mance. To this end, we propose a novel Unified Uncertain Dual-prompts cross-
domain Segmentation framework (UUDS) for unsupervised cross-domain medi-
cal image segmentation. Specifically, our UUDS forms a unified framework by
integrating domain adaptation and segmentation models, facilitating interaction
between the two tasks, addressing the challenge of emphasizing segmentation
semantics while domain adaptation. Additionally, UUDS creatively uses dual-
prompts, domain and segmentation prompts, to ensure that the model can learn
domain-invariant feature representations from the cross-domain space. Further-
more, to further facilitate interaction between the two tasks, UUDS uses uncer-
tainty estimation to dynamically compute segmentation labels, enabling direct su-
pervision of the cross-domain adaptation process. Extensive experimental results
on two representative unsupervised cross-modality medical image segmentation
demonstrate that UUDS outperforms state-of-the-art methods, highlighting its ef-
fectiveness in addressing domain shifts and marking a significant breakthrough in
domain adaptation.

1 INTRODUCTION

Unsupervised cross-domain segmentation (Wu et al., 2024) is a promising approach to tackling the
challenge of domain shift in cross-modality medical image segmentation. Given the high costs asso-
ciated with pixel-level data collection and labeling from medical practitioners, it can reduce reliance
on manual labels. Existing unsupervised cross-domain segmentation methods (Zou et al., 2018; Lee
et al., 2024) attempt to overcome the domain shift between source and target data by aligning the
distribution of source and target data through unsupervised domain adaptation (UDA). Despite the
impressive performance achieved in various tasks (Li et al., 2019; Chen et al., 2019), these methods
treat domain adaptation and segmentation as Two Separate Steps, lacking the ability to establish
the interaction between the two tasks for directly using segmentation information to guide domain
adaptation. Moreover, these methods primarily focus on global domain adaptation without priori-
tizing segmentation-aware feature representation while domain adaptation. This limitation fails to
establish effective feedback between domain adaptation and segmentation and reduces the effective-
ness of methods focused on the feature distribution of segmentation regions, rendering the model
less sensitive to segmentation-specific features. Furthermore, extracting domain-invariant informa-
tion from cross-domain feature representation space remains challenging due to the entanglement
of content and domain information. This challenge is even more pronounced in the medical field,
where images often contain complex tissues and organs. Therefore, there is a critical urgent for a
segmentation-sensitive unified unsupervised cross-domain segmentation method for cross-modality
medical image segmentation.
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Recently, large-scale Vision-Language Models (VLMs)(Yao et al., 2024; Yu et al., 2023), particu-
larly the Contrastive Language-Image Pre-training (CLIP) model(Radford et al., 2021), have shown
promising performance in aligning cross-modality embedding spaces (Lai et al., 2023; Singha et al.,
2023; He et al., 2023; Jia et al., 2021). One of the most significant advantages of VLMs is they
align visual features from image to natural language sentences or phrases, rather than closed-end la-
bels. Encapsulated in natural language expressions, vision features can travel across domains while
maintaining the same semantic meanings. This important property makes the VLMs an ideal source
for obtaining domain-invariant prompts. Therefore, VLMs provide significant potential in achiev-
ing non-adversarial domain adaptation to address the well-knowledge challenges associated with
adversarial learning-based UDA, where obtaining a stable and globally optimal GAN remains diffi-
cult, especially in maintaining balance between the generator and discriminator (Sankaranarayanan
et al., 2018). However, to the best of our knowledge, no efforts have been made to utilize VLMs for
unsupervised cross-modality medical image segmentation due to the significant challenges involved.
Specifically, CLIP is trained on natural image-text pairs, resulting in a substantial domain gap be-
tween natural and medical images. This raises two key challenges: 1) how to transfer the rich knowl-
edge learned from natural image-text pairs to the medical imaging field remains an open question.
2) Medical images contain more complex anatomical structures and simple textual prompts like “a
photo of a [CT/MR]” are insufficient to accurately describe the intricate content of medical images.
Yet, medical image segmentation requires distinguishing between multiple tissues and organs for
precise localization and segmentation. Although VLMs hold great potential in the field of medical
image analysis, these challenges have left them largely unexplored for unsupervised cross-domain
medical image segmentation.

In general, a straightforward way for transferring knowledge across domains involves utilizing the
text representations from VLMs as a foundation for further fine-tuning models (Qin et al., 2022).
However, due to the non-continuous nature of language hard prompts, directly tuning randomly
initialized embedding vectors may receive more robust performance and promise to converge to a
local optimum (Lester et al., 2021). While hard prompt embeddings from large pre-trained VLMs
can effectively adapt to global-level domain information(Zhou et al., 2022), they tend to be less
sensitive to detailed information(Jia et al., 2022). Therefore, improving the utilization of knowledge
from VLMs for cross-modality medical image segmentation remains a critical area for exploration.
Additionally, fully harnessing the potential of CLIP is another important avenue worth exploring.

To this end, we propose a novel Unified Uncertain Dual-prompts cross-domain Segmentation frame-
work (UUDS) for unsupervised cross-domain medical image segmentation by leveraging CLIP’s
capability in aligning cross-modality embedding spaces. Specifically, UUDS creates a unified CLIP
based framework where segmentation and domain adaptation are seamlessly combined for estab-
lishing a segmentation-aware unsupervised cross-domain medical image segmentation framework.
Furthermore, to overcome CLIP’s limitation in describing complex organs and tissues of medical
images while maximizing its potential, UUDS innovatively uses dual prompts, domain and segmen-
tation prompts, to learn domain and segmentation invariant feature representation. It simplifies the
challenges and complexities involved in prompt learning, addresses the difficulty of describing the
intricate content of medical images, and reduces the challenge in learning domain-invariant feature
representation from cross-domain feature representation space. Furthermore, UUDS introduces un-
certainty estimation to dynamically compute the label of segmentation for directly supervising the
cross-domain adaptation, ensuring the semantic information from unlabeled target images can di-
rectly supervise the process of domain adaptation and making the model sensitive to segmentation.
It facilitates interaction between the two tasks and addresses the limitation that existing methods
are unable to directly use the segmentation information for guiding domain adaptation. Experi-
mental results from two public cross-modality medical image domain adaptation and segmentation
tasks demonstrate that our UUDS outperforms state-of-the-art UDA methods and performs best on
cross-modality domain adaptation and segmentation.

Our main contributions include:

• For the first time, a unified framework for unsupervised cross-domain semantic-aware seg-
mentation by creatively integrating domain adaptation and segmentation models is pro-
posed. It constrains domain adaptation within the segmentation semantic space and ad-
dresses the defect of insensitivity to segmentation semantics during the adaptation process.
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• The largely vision-language model (CLIP), for the first time, is extended to unsupervised
cross-domain medical image segmentation, addressing the significant domain gap chal-
lenge of transferring VLMs pre-trained on natural images to medical image field.

• Dual-prompts, domain and segmentation prompts, are proposed to learn domain and seg-
mentation invariant representation learning, simplify the challenges and complexities in-
volved in prompt learning, address the difficulty of describing the intricate content of med-
ical images and the challenge of learning domain-invariant feature representations.

• Novel using uncertainty estimation to dynamically compute the segmentation label for di-
rectly supervising the cross-domain adaptation, ensuring the semantic information from
unlabeled target images can directly supervise the domain adaptation process.

• Extensive experimental results on representative cross-modality medical image adaptation
and segmentation tasks show that our UUDS outperforms state-of-the-art methods, demon-
strating the advancements of our UUDS in addressing domain shift in a breakthrough non-
adversarial manner.

2 RELATED WORK

Unsupervised domain adaptation: Unsupervised Domain Adaptation (UDA) plays an important
role in medical image analysis, offering a promising approach to address domain shift challenges in
medical image segmentation without necessitating labeled target data. Existing UDA methods (Yao
et al., 2022) try to bridge the shift between source and target domains by aligning image distribution
through adversarial learning. For instance, CycleGAN (Zhu et al., 2017) and CUT (Park et al., 2020)
transfers the source domain to the target domain by harmonizing image appearance. DDC (Tzeng
et al., 2014) prioritizes aligning feature distribution between the source and target domains. Dou
et al. (Dou et al., 2019) proposed a method that aims to align feature spaces by using multiple
scale feature information. Additionally, UDA methods such as CycADA (Hoffman et al., 2018)
and SIFA (Chen et al., 2020) tackle domain shifts by addressing both image and feature distribu-
tion discrepancies. Bui et al. (Bui et al., 2020) introduced an effective method for image-to-image
translation based on flow-based methods and deformation information. Dar et al. (Dar et al., 2019)
proposed a novel approach for image synthesis in multi-contrast MRI based on generative adversar-
ial network (GAN) architectures. Yurt et al. (Yurt et al., 2021) proposed a multi-stream generative
adversarial network (mustGAN), for enhancing image synthesis in multi-contrast MRI via a mixture
of multiple one-to-one streams and a joint many-to-one stream. Zhang et al. (Zhang et al., 2022)
proposed a switchable CycleGAN model for image synthesis between multi-contrast brain MRI im-
ages, which outperforms the original CycleGAN on cross-contrast MRI image synthesis. Zou et
al. (Zou et al., 2020) proposed a Dual-Scheme Fusion Network (DSFN) for unsupervised domain
adaptation. DSFN builds both source-to-target and target-to-source connections to help reduce the
domain gap to improve the network performance further. DAR-Net (Yao et al., 2022) integrated a 2D
style transfer network with a 3D segmentation network to address the complexities of 3D medical
images.

Vision-Language Mode: Vision-language models (VLMs) (Radford et al., 2021; He et al., 2020;
Devlin, 2018) have made significant progress across various domains. Specifically, VLMs cap-
ture the correlation between vision and language through various cross-modal objectives, such
as image-text contrastive learning, masked cross-modal modeling, image-to-text generation, and
image-text/region-word matching. Early VLMs (Jia et al., 2021) typically employed a single pre-
training objective. For example, different single-modal objectives have been explored to fully uti-
lize the potential of each modality. For the image modality, this includes masked image modeling,
while for the text modality, masked language modeling is employed. More recent VLMs (Yao
et al., 2021) introduce multiple objectives (e.g., contrastive, alignment, and generative objectives) to
leverage their synergy, resulting in more robust models and improved performance on downstream
tasks. Yet, adapting VLMs to the medical domain presents significant challenges, largely due to
domain-specific obstacles such as the use of proprietary datasets, the need for fine-grained medical
knowledge, and the inherent difficulty in generalizing across diverse medical domains and tasks.
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1) Unified Uncertain Dual-prompts cross-domain Segmentation framework (UUDS)
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Figure 1: 1) UUDS creates a unified framework where segmentation and domain adaptation are
seamlessly combined for unsupervised segmentation-aware cross-domain medical image segmenta-
tion through dual prompts. 2) DAM creatively utilizes the domain prompt to guide domain adapta-
tion, enabling non-adversarial domain adaptation.

3 METHOD

Our Unified Uncertain Dual-prompts cross-domain Segmentation framework, named UUDS, forms
a unified segmentation-aware unsupervised cross-domain segmentation framework by integrating
domain adaptation and segmentation models (Figure. 1). Advanced than existing methods, UUDS
enables the model to leverage semantic information from segmentation feature representation space
to guide domain adaptation, ensuring that the model preserves sensitivity to segmentation tasks
throughout the whole adaptation process. Formally, given the source imaging (Source domain)
with corresponding interesting object label {Xs, Y s} ∈ RC×H×W , and unlabeled target imaging
Xt ∈ RC×H×W (Target domain). The goal is to segment the same object from Xt. To this end,
UUDS transfer xt to synthetic source imaging xt→s for overcoming the domain shift between xs

and xt. Meanwhile, the segmentation module predicates the segmentation results of xt→s by using
the features of synthetic source imaging xt→s from generator.

3.1 DUAL-PROMPTS LEANING

To achieve the domain adaptation from target domain to source domain, UUDS leverages text em-
beddings encoded by CLIP to bridge the cross-modality embedding spaces. Yet, as a VLM trained
on image-level alignment tasks, CLIP-based models are good at capturing the global-level domain
style features while showing insufficient capability to fully capture the region-level content of medi-
cal images due to the complexity of anatomical structures and the intricate details inherent in medical
imaging. To this end, our UUDS proposes a dual-prompt system to capture global and region-level
information in a disentangled manner by leveraging both a hard prompt and a soft prompt. The do-
main prompt is a hard prompt encoded by CLIP text encoder, focusing on learning domain-invariant
features for domain-adaptation tasks, covered in more detail next in subsection 3.1.1. And the soft
prompt is randomly initialized like CoOP (Zhou et al., 2022), using a few tunable continuous vectors
to capture region level or lesion features vital to segmentation tasks. The reason that we choose soft
prompts rather than hard prompts is due to the shape and characteristics of lesions and tumors being
hard to describe in natural language. In medical image analysis, many lesions and abnormalities are
uneven and vary in shape. Therefore, applying continuous and tunable soft prompts are better for
this situation.
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After all, UUDS employs dual prompts, domain and segmentation prompts, to facilitate cross-
domain invariant information learning. The domain prompt captures domain-specific information,
while the segmentation prompt focuses on learning cross-domain invariant segmentation features.

3.1.1 DOMAIN PROMPT FOR DOMAIN ADAPTATION

Formally, as shown in Figure. 1, given Xs, Xt, the CLIP text encoder converts the domain prompt,
‘A photo of a [source domain]’, into text embedding T d, which describes the domain distributions
of source data from a global aspect. At the same time, a learnable segmentation prompt T s is
initialized to learn the cross-domain invariant segmentation information. The image encoder extracts
the content and domain-specific feature representation {Xs

c , X
s
d} ∈ Rc×h×w, {Xt

c, X
t
d} ∈ Rc×h×w

from Xs, Xt, respectively. The content feature representation Xi
c is extracted from the last layer of

CLIP image encoder, the domain feature representation Xi
d is learned from ViT layer of CLIP image

encoder. To ensure that the domain prompt effectively learns the domain distribution. The global
information {xs

g, x
t
g} ∈ Rc are sampled from {Xs

d , X
t
d} are used for domain distillation.

To align the domain prompts with source and target images, respectively, We use contrastive learning
by maximizing the cosine similarity between xs

g and T d and minimizing the the cosine similarity
between xt

g and T d through LDD.

LDD(xs
g, x

t
g, T

d) = log(
exp((1− sim(xs

g, T
d))/τ

exp(1− sim(xs
g, T

d))/τ + exp(1− sim(xt
g, T

d))/τ
) (1)

where sim represents feature cosine similarity measurement, τ is a temperature hyper-parameter.
LDD distills domain information from the cross-modality space, ensuring that T d learns the source
domain distribution and maintains consistency within the intra-domain distribution. What’s more,
the domain consistency in synthetic imaging Xt→s is also ensured.

LDD(xt→s
g , xt

g, T
d) = log(

exp(1− sim(xt→s
g , T d))/τ

exp(1− sim(xt→s
g , T d))/τ + exp(1− sim(xt

g, T
d))/τ

) (2)

More specifically, the domain information from source and target imaging is first fused with the
image features by the Domain Adaption Module(DAM) that will fuse features in the early stage.
This early fusion will increase the alignment of finer-grained features, as suggested in GLIP (Li*
et al., 2022) and Grounding Dino(Liu et al., 2023). Based on the domain prompt T d, domain feature
representation Xi

d, and content information Xi
c, Domain Adaptation Module (DAM) reconstructs

the domain distribution of each content feature representation. DAM first utilizes three convolution
layers to project T d into sequence Q ∈ Rc project Xi

d into sequences K ∈ Rc×h×w, and project
Xi

c into sequences V ∈ Rc×h×w, where Q is the input Query sequence, K and V are the input
Key,Value sequence. The cross-domain attention performs domain adaptation based on Q, K, and
V .

xd = softmax(
QKT

d
)Nor(V ) (3)

where d is a learnable scaling parameter to control the magnitude of the dot product. Nor represents
the normalization operation, which uses mean and variance to eliminate original domain informa-
tion. Afterward, the adapted content xd is fed into the decoder to generate synthetic source data
Xt→s, meanwhile,reconstruct the source imaging X̃s.

3.1.2 SEGMENTATION PROMPT FOR SEMANTIC-AWARE SEGMENTATION

The segmentation prompt T s captures the semantics of the segmented object, enabling the extraction
of cross-domain invariant feature representations. Since the segmentation object is difficult to define
explicitly for specific tasks, we use a trainable prompt T s to learn such anatomical characteristics.
We follow the setting in (Zhou et al., 2022) to initialize our segmentation prompts as a combination
of continuous vectors and class names. Instead of using “a photo of a” as the context, we introduce
M learnable context vectors, {v1, v2, . . , vM}, each having the same dimension with the word
embeddings in Clip Text encoder. For our tasks, the class names are typically segmentation target.

Formally, as shown in Figure. 1, given T s, and the content feature representation Xs
c , Xt

c, T s learns
the semantic information of the segmented object through in-batch contrastive learning. Specifically,

5
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the segmentation prompt is first fused with the imaging content through the segmentation attention
module (SAM) as described below. SAM works quite similarly to the DAM module above. First
utilizes three convolution layers to project T d into sequence Q ∈ Rc project Xi

c into sequences
K ∈ Rc×h×w and V ∈ Rc×h×w.

To establish the relationship between the segmentation prompt and the segmentation feature repre-
sentation, in-batch contrastive learning is employed. Specifically, the updated content feature repre-
sentation is projected into semantic feature embeddings {z1, z2, z3, ..} using multi-layer perceptrons
(MLPs). These embeddings {z1, z2, z3, ..} are then classified into two categories based on the label:
those containing the segmentation object and those not containing the segmentation object. This
process is achieved by in-batch supervised contrastive loss LBSCL.

LBSCL =
∑
i∈B

−1

|P (i)|
∑

p∈P (i)

log
exp (zi · zp/τ)∑

a∈A(i) exp (zi · za/τ)
(4)

Here, B represents the sample in the input, P (i), A(i) is the set of indices of all images with
/without segmentation object in the input. The · symbol denotes the inner (dot) product, τ is a scalar
temperature parameter.

Afterward, by combining the multi-level features learned from the generator, these features are then
input into the segmentation decoder for segmentation. This novel and unified framework situates
domain adaptation within the segmentation space, ensuring a focus on segmentation-aware features
during the domain adaptation, and enhancing the sensitivity of domain adaptation to segmentation-
specific features.

3.2 UNCERTAINTY ESTIMATION

To address the limitation of existing unsupervised domain adaptation methods are unable to focus
on the specific features crucial for segmentation tasks while labeling is unavailable. The domain
adaptation between source and target images is directly evaluated by approximating the uncertainty
of segmentation on synthetic source imaging Xt→s. Since no label is available for Xt→s, the
uncertainty of each pixel Ŷ t→s

i,j ∈ Xt→s is computed through predictive entropy, where predictions
with high entropy indicate uncertainty in segmentation map.

ui,j = −Ŷ t→s
i,j log(Ŷ t→s

i,j + ε) (5)

Based on the uncertainty value, the pseudo label Ŷ t→s of Xt→s can be obtained by removing those
uncertainty predictions.

Y t→s
i,j = {Ŷ t→s

i,j |µi,j < χ} (6)

where ε = 1e−9 to avoid singularity, χ is a threshold for selecting the uncertain labels.

Yet, the pseudo label Y t→s cannot fully and confidently represent the segmentation performance
at each pixel. To maximize the effectiveness of the pseudo label, partial information from Y t→s

is used to supervise the domain adaptation process partially. Specifically, based on the uncertainty
value of prediction, the certain region Y mask of prediction can be computed and constructs a partial
label.

Y mask
i,j =

{
1, if µi,j < χ

0, otherwise
(7)

Based on Y t→s and Y mask, the segmentation performance on Xt→s is evaluated by segmentation
loss Lseg to guide the domain adaptation.

Luseg(Ŷ
t→s, Y t→s) = 1−

2
∑

i,j∈Y mask

Yi,j
t→s × Ŷ t→s

i,j∑
i,j∈Y mask

Yi,j
t→s +

∑
i,j∈Y mask

Ŷ t→s
i,j

(8)

Additionally, the segmentation performance on true Xs is also evaluated by segmentation loss
Lseg(Ŷ

s, Y s) to ensure the segmentation semantic consistency in true source imaging.

6
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3.3 MODEL TRAINING

In summary, during training, a total of four types of losses are used to supervise our UUDS.

Ltotal = α
(
LDD(xs

g, x
t
g, T

d) + LDD(xt→s
g , xt

g, T
d)
)
+ βLBSCL(X

s, Y s)

+ γ
(
Luseg(Ŷ

t→s, Y t→s) + Lseg(Ŷ
s, Y s)

)
+ λLid(X̃

s, Xs)

where α, β, γ, and λ represent the weight coefficients. Lid is identical loss, which computes the
difference between reconstructed X̃s and Xs at the pixel level. The definition of Lid is:

Lid(X̃
s, Xs) =

∥∥∥X̃s −Xs
∥∥∥
1

(9)

Based on the above loss function, both domain adaptation and segmentation models are joint trained
in an end-to-end manner.

4 EXPERIMENTS

4.1 DATASET AND IMPLEMENTATION DETAILS

1) BraTS Dataset: The multi-modal Brain Tumor Segmentation (BraTS) challenge 2020
dataset (Menze et al., 2014) includes spatially aligned MRI scans from 369 patients, covering four
modalities (T1, ceT1, T2, and FLAIR) with a resolution of 1.0 mm3 and an in-plane size of 240 ×
240 pixels. Since the ground truth for the official validation and testing sets is not publicly available,
we conducted our experiments using the official training set. Following previous works (Wu et al.,
2024), in our unsupervised cross-modality segmentation task, we also focused on segmenting the
whole tumor using T2 and FLAIR images. We treated images from one modality of 143 patients as
the source domain and images from the other modality of another 143 patients as the target domain,
in each direction. We used 42 images (21 for each modality) for validation and 41 images in the
target domain for testing. In the preprocessing step, we truncate the pixel value by the 5%, 95%
percentage of min-max value and normalized the intensity of each modality to [-1, 1].

2) Vestibular Schwannoma Segmentation Dataset: Vestibular Schwannoma (VS) segmentation
dataset (Shapey et al., 2021) includes 3D MRI images from 242 patients. Each patient was scanned
using contrast-enhanced T1-weighted (ceT1) and high-resolution T2-weighted (hrT2) MRI, with
an in-plane resolution of approximately 0.4 mm × 0.4 mm, an in-plane size of 512 × 512, and
a slice thickness of 1.5 mm. These two modalities were used for bidirectional adaptation, where
ceT1 and hrT2 served as the source and target domains, respectively. Following the setup of the
Cross-modality Domain Adaptation Challenge 2021 (Shapey et al., 2021), the validation set from
the target domain was used to tune hyperparameters, and the testing set was reserved solely for the
final inference. For data preprocessing, each image was normalized based on its intensity mean and
standard deviation. Following previous works (Wu et al., 2024), the dataset was randomly split into
200 patients for training, 14 patients for validation, and 28 patients for testing. For the training set,
images from one modality of 100 patients were used as the source domain, while images from the
other modality of the remaining 100 patients were used as the target domain.

3) Implementation Details: The ResNet version of CLIP is chosen as the backbone, and all param-
eters, including CLIP text encoder and image encoder, are fine-tuned during training. The source
and target decoders have the same structure and are constructed by Resblock and upsample layers,
which gradually upsample the features until they are the same size as the input image. The frame-
work is implemented on PyTorch and utilizes four L40s GPUs with 46 GB of memory each. The
Adam optimizer was used for optimization, with the learning rate set to 1e-4 and weight decay to
0.01. The weight coefficients are set as α = 1.0, β = 1.0, γ = 1.0, λ = 1.0. Remarkably, all
datasets’ domain prompt input is set as “A photo of a source domain” while learning.

4.2 COMPARISON WITH STATE-OF-THE-ART UDA METHODS

To assess the effectiveness of our UUDS, we compared it with state-of-the-art UDA methods, includ-
ing ADVENT (Vu et al., 2019), SIFA (Chen et al., 2020), CUT (Park et al., 2020), AccSeg (Zhou
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Table 1: Quantitative comparison of various UDA methods on glioma segmentation.

Method FLAIR → T2 T2 → FLAIR
Dice (%) ASSD (mm) Dice (%) ASSD (mm)

w/o DA (Lower bound) 47.16±24.39 20.82±11.31 68.46±21.74 8.71±8.38
Labeled target (Upper bound) 81.18±16.62 3.95±8.28 84.50±15.41 3.73±6.48

ADVENT (Vu et al., 2019) 39.83±24.07 16.76±8.43 55.03±23.34 10.51±8.79
SIFA (Chen et al., 2020) 55.52±20.30 14.77±9.06 66.03±14.34 7.45±4.38
CUT (Park et al., 2020) 66.03±25.81 9.79±13.95 72.33±21.94 7.21±12.43

AccSeg (Zhou et al., 2021) 63.95±15.93 17.52±8.69 69.81±22.06 8.98±6.91
HRDA (Hoyer et al., 2022) 27.48±18.39 27.52±10.31 63.06±14.65 13.63±6.37
CDAC (Wang et al., 2023) 25.55±14.11 33.61±10.24 21.40±9.83 38.96±7.88

UUDS (Our) 69.83±13.40 5.51±3.26 75.22±12.12 5.99±2.48

Image Ground Truth W/O DA SIFA AccSegADVENT HRDA CDAC MIC

CycleGAN

CUT UUDS

ceT1

Image Ground Truth

hrT2

118-45

148-73
T2

Flair

Flair

T2

SIFA AccSegADVENT HRDA CDAC MICCUT

hrT2

ceT1

ceT1

hrT2

UUDS

Image Ground Truth W/O DA SIFA

AccSeg

ADVENT

HRDA

CDAC MIC CycleGAN CUT DAR-Net FPL DpCP

Figure 2: Visualization of segmentation results obtained by different UDA methods on the BraTS
dataset.

et al., 2021), HRDA (Hoyer et al., 2022), CDAC (Wang et al., 2023), MIC (Hoyer et al., 2023). Ad-
ditionally, following prior works, we evaluated the impact of domain shift by applying the additional
segmentation model trained on source data directly to the target domain for segmentation. This per-
formance, without domain adaptation (“w/o DA”), represents the Lower Bound. Conversely, the
performance of segmentation model trained with labeled target domain data is considered the Upper
Bound.

4.2.1 PERFORMANCE ON BRATS DATASET

Table 1 presents the quantitative results of state-of-the-art UDA methods on the BraTS dataset. The
substantial performance gap between the lower and upper bounds underscores the significant do-
main shift between the T2 and FLAIR modalities, which has a major impact on tumor segmentation.
In comparison to other state-of-the-art UDA methods, our UUDS achieved the best performance,
with Dice scores of 69.83% and 75.22% and ASSD scores of 5.51mm and 5.99mm on the T2 and
FLAIR modalities, respectively. This further highlights the effectiveness of UUDS in unsupervised
cross-modality segmentation tasks. These high performances are attributed to the effectiveness of
our unified framework, which directly utilizes segmentation information to supervise the domain
adaptation. Figure.2 shows the segmentation performance on tumor segmentation. We can notice
that our method achieves more accurate and smoother tumor segmentation compared to state-of-the-
art UDA methods on both T2 and FLAIR images. It is evident that existing methods struggle to
segment the entire tumor across different modalities. This suggests that the feature distribution of
tumors varies significantly between modalities, and current UDA methods lack sensitivity to local
feature representation. In contrast, our model outperforms these state-of-the-art UDA approaches,
demonstrating higher sensitivity to domain distribution, even in small tumor regions. Moreover, the
smoother and more precise tumor boundaries produced by our model further validate its effective-
ness in overcoming domain shift, particularly in local tumor.

4.2.2 PERFORMANCE ON VESTIBULAR SCHWANNOMA (VS) SEGMENTATION

Two unsupervised cross-modality segmentation tasks on the VS dataset are used to evaluate our
UUDS, 1) ceT1 to hrT2 and 2) hrT2 to ceT1. Table 2 shows the segmentation performance from
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Table 2: Quantitative comparison of various UDA methods on VS segmentation.

Method ceT1 → hrT2 hrT2 → ceT1
Dice (%) ASSD (mm) Dice (%) ASSD (mm)

w/o DA (Lower bound) 0.00±0.00 48.30±5.29 2.65±8.18 31.01±16.61
Labeled target (Upper bound) 88.17±7.81 1.03±2.67 90.72±12.47 0.30±0.53

ADVENT (Vu et al., 2019) 5.36±9.61 35.68±11.49 21.94±23.07 34.11±15.24
CUT (Park et al., 2020) 73.64±15.57 3.96±6.86 56.27±31.37 9.25±17.14
SIFA (Chen et al., 2020) 69.75±21.54 6.01±5.88 67.48±20.32 6.51±8.89

AccSeg (Zhou et al., 2021) 30.95±31.81 15.44±10.63 37.01±31.97 17.06±21.11
HRDA (Hoyer et al., 2022) 6.15±13.38 21.69±16.67 17.72±19.74 14.69±11.48
CDAC (Wang et al., 2023) 0.32±1.38 25.39±11.00 2.98±8.13 35.54±18.57
MIC (Hoyer et al., 2023) 54.82±24.55 11.84±11.66 13.44±22.95 30.13±22.37

UUDS (Our) 67.95±14.92 4.64±3.21 68.87±19.43 4.30±7.15

Image Ground Truth W/O DA SIFA AccSegADVENT HRDA CDAC MIC

CycleGAN

CUT UUDS

ceT1

Image Ground Truth

hrT2

118-45

148-73
T2

Flair

Flair

T2

SIFA AccSegADVENT HRDA CDAC MICCUT

hrT2

ceT1

ceT1

hrT2

UUDS

Image Ground Truth W/O DA SIFA

AccSeg

ADVENT

HRDA

CDAC MIC CycleGAN CUT DAR-Net FPL DpCP

Figure 3: Visualization of segmentation results obtained by different UDA methods on the VS seg-
mentation.

state-of-the-art UDA methods. The segmentation model trained on hrT2 achieved strong results
(Dice 88.17%) when segmenting tumors from true hrT2 images. However, it struggled significantly
with detecting and segmenting VS from ceT1 images, resulting in a Dice score of 0.00%. The model
trained on hrT2 showed similar difficulties with ceT1, underscoring the significant impact of domain
shift between ceT1 and hrT2 on performance. In contrast, our UUDS outperforms existing meth-
ods, achieving superior Dice scores of 68.87% and ASSD scores of 4.30mm for ceT1 segmentation.
This highlights UUDS’s effectiveness in combining the segmentation and domain adaptation for
overcoming domain shift, also demonstrating its advanced ability to learn domain distributions and
disentangle domain information from content. Figure 3 presents representative segmentation results
by various state-of-the-art UDA methods on the VS dataset. It is evident that our UUDS produced
more accurate segmentation outcomes for both ceT1 and hrT2 images. Notably, existing adversarial
learning-based methods, such as CDAC (Wang et al., 2023), performed poorly on segmentation,
highlighting the limitations of existing methods in learning domain-discriminative features and han-
dling challenges in learning domain specific information. Our UUDS demonstrates strong alignment
and consistency with ground truth. This highlights the advancements of UUDS in tackling domain
adaptation challenges and its superior ability to learn domain-specific representations. Moreover,
the higher performance shows the advancement of our model in learning segmentation-aware fea-
ture representation.

4.3 ANALYSIS OF UUDS

To further evaluate the effectiveness of each module in our design, we conducted ablation experi-
ments as shown in Table 3. We performed experiments to assess the impact of the domain prompt,
segmentation prompt, and Uncertainty estimation individually. The results demonstrate that each
module plays a significant role in the overall performance. Notably, the model’s performance deteri-
orates significantly when any of the prompts is omitted. We will elaborate the experiments in detail
for each component in following sub-sections.

1) Domain prompt effective in domain adaptation: The effectiveness of domain prompt is further
assessed using the paired BraTS (FLAIR, T2) dataset. As shown in Figure 4, a significant domain
shift is observed between the FLAIR and T2 modalities. After applying the domain promptly, the
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Table 3: Ablation study results: each row shows the performance of different combinations of com-
ponents. A checkmark indicates that the component is present, while a cross means the component
is ablated.

Dual prompts Uncertainty estimation T2→Flair
Domain Segmentation Dice (%) ASSD (mm)

✓ ✓ ✓ 75.22±12.12 5.99±2.48
✓ ✓ × 69.36±15.67 5.66±4.01
✓ × ✓ 64.03±23.08 6.49±5.95
× ✓ ✓ 63.91±19.46 4.10±2.55

FLAIR modality

T2 modality

Before Adaptation After Adaptation

FLAIR modality

T2 modality

Figure 4: The t-SNE visualization illustrates the distribution of the FLAIR and T2 datasets before
and after domain adaptation by domain prompt.

target domain is effectively adapted to the source domain, reducing the domain shift and demonstrat-
ing the model’s ability to learn and adapt to domain distributions; Therefore, although the domain
prompt does not directly participate in the segmentation model, it still plays a crucial role by captur-
ing the feature shifts from the source to the target domain. Additionally, in table 3, we observed a
significant drop in Dice results once the Domain prompts were removed. This observation articulates
the fact that the domain prompts play a vital part in our framework.

2) Segmentation prompt sensitives to semantic representation: We also analyzed the effect of
the segmentation prompt. As mentioned above, the segmentation prompt is dedicated to capturing
regional features, such as lesions, tissues, and other anatomical characteristics. Therefore, we expect
the segmentation prompts can sharply increase the Dice results for segmentation. From table 3, we
can see that the segmentation results drop more than 10% in terms of Dice, from 75.22% to 64.03%.
These experiments clearly exhibit the importance of the segmentation prompts.

3) Uncertainty estimation for segmentation optimization: As discussed in previous sections,
uncertainty estimation helps overcome the limitation of using unlabeled target data for direct super-
vision in the cross-domain adaptation process. Our ablation experiment further demonstrates that
uncertainty estimation improves segmentation performance. As shown in Table 3, removing the
uncertainty estimation module resulted in a significant drop in segmentation performance, with the
Dice score decreasing by more than 5%, from 75.22% to 69.36%.

5 CONCLUSION

As the first end-to-end framework that unifies segmentation and domain adaptation, our experiments
validate the hypothesis that feedback from the segmentation model is essential in the domain adap-
tation process. We innovatively leverage the cross-domain invariance of vision-language models
(VLMs) to bridge the gap between the two domains and employ a dual prompts system to simulta-
neously learn domain-invariant style and content features. Extensive experiments demonstrate the
effectiveness of our dual-prompts method. To address the challenge of missing labels in the target
domain, we introduce uncertainty estimation, which further enhances the stability of our segmen-
tation results. We achieved state-of-the-art performance on multiple public datasets, and ablation
studies confirm the importance of each module. We hope our work will inspire future research to
recognize that domain adaptation and segmentation can be unified within a single framework.
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