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ABSTRACT

Electroencephalography (EEG)-based brain-computer interfaces (BCIs) serve
many control paradigms by relying on a variety in active brain regions and EEG
features. Developing a universal EEG foundation model1 has been challenging
due to the large variety in recording setups and experimental tasks. Additionally,
researchers often contend with limited labeled data, making it difficult to utilize
large deep-learning models effectively. While there have been successful attempts
to develop EEG foundation models, few studies have systematically evaluated
their adaptability across diverse BCI control paradigms. To address this gap, we
propose a novel, yet simple spatiotemporal EEG transformer (ST-EEGFormer)
that projects segments (“patches”) of raw EEG data into an embedding space
enriched with a spatial and temporal embedding, allowing the model to effectively
handle EEG data exhibiting various channel set-ups and time lengths. To improve
data efficiency, we first employed a masked autoencoder (MAE) task to pre-train
the ST-EEGFormer in a self-supervised learning manner on a dataset combining
six different motor imagery (MI) datasets, a P300 dataset, and a steady-state visual
evoked potential (SSVEP) dataset, all of which are public. Next, we benchmarked
the pre-trained model, after fine-tuning, on diverse downstream classification
tasks. To evaluate the generalization capability, we conducted additional exper-
iments on two public datasets, not used for pre-training: a seizure classification
dataset and an online MI BCI dataset. We compared the performance against
a simple linear model, EEGNet (a classic CNN-based benchmark model), the
state-of-the-art supervised EEG Conformer model, and two foundation models,
BIOT and Large Brain Model (LaBraM). The pre-trained ST-EEGFormers could
learn robust EEG representations, achieving higher classification accuracies than
the benchmarked models across all eight pre-training datasets and exhibiting
strong generalization on new datasets with limited training data. Finally, we report
several visualizations of the model including the features on which the results are
based.

1 INTRODUCTION

Electroencephalography (EEG) is a non-invasive recording technique widely utilized in the
development of Brain-Computer Interfaces (BCIs), the aim of which is to enhance the quality
of life of disabled patients and to augment the performance of healthy individuals. Several
EEG paradigms have been explored to facilitate BCI development. Motor imagery (MI), for
instance, involves the mental simulation of physical movement and can be used to control various
applications, such as exoskeletons (Soekadar et al., 2016; Choi et al., 2020), navigation in real
or virtual environment (Choi & Cichocki, 2008; Tsui et al., 2011; Yang & Van Hulle, 2023),
or assist in rehabilitation (Baniqued et al., 2021; Liao et al., 2023). Event-related potentials
(ERPs), such as the P300 response—a positive potential elicited when a user experiences an
infrequent event—have been employed to decode user attention and to develop smart home control
applications (Holzner et al., 2009; Masud et al., 2017). Visual-evoked potentials (VEPs), including

1A model that is trained on broad data (generally using self-supervision with a large scale of data) that can
be adapted (e.g., fine-tuned) to a wide range of downstream tasks (Bommasani et al., 2021)
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steady-state visual-evoked potentials (SSVEPs), are EEG amplitude changes in response to visual
stimuli, which in turn can be used to construct high-speed spelling devices (Nakanishi et al., 2018;
Xing et al., 2018).

Although the aforementioned paradigms can be recorded with a standard EEG cap, they differ in
spatial and temporal response patterns. This often implies training decoding models tailored to
specific paradigms and applications. Traditional decoding methods include steps such as temporal
filtering, spatial filtering (Blankertz et al., 2008), feature extraction (Singh & Krishnan, 2023),
and classification using linear classifiers like linear discriminant analysis (LDA) or support vector
machines (SVM) (Neto et al., 2016; Richhariya & Tanveer, 2018). These models typically require
prior knowledge about the EEG signal. For example, the prime feature for MI is the temporal change
in the mu and beta frequency bands, the extraction of which involves a pipeline of band-pass filtering,
and the application of common spatial pattern (CSP) filtering, using variance as a feature (Ang et al.,
2012). For P300, the time-locked feature is obtained by sampling the EEG amplitude over 500 ms
post-onset of the infrequent event. For SSVEP, different flashing stimuli elicit EEG rhythm in sync
with the stimulation frequencies, therefore canonical-correlation analysis (CCA) can be applied to
occipital channels to find out the best-matching template representing the stimulation frequency (Lin
et al., 2007).

Recently, deep learning has rapidly advanced in the BCI field, achieving state-of-the-art performance
in various tasks. However, differences in BCI paradigms, recording devices, and the relatively
small dataset sizes necessitate training models on individual tasks (Murad & Rahimi, 2024). Even
within the same paradigm, significant subject variance hinders the development of a universal EEG
decoder. Additionally, the small dataset sizes discourage the use of large deep-learning models.
Consequently, small models that typically rely on convolutional neural networks (CNNs) impose
restrictions on input shape (e.g., the number of EEG channels, and the number of samples), further
complicating the use of different datasets as they usually exhibit different data formats. A few
pioneering works have attempted to address these limitations. For instance, BIOT (Yang et al., 2023),
a biosignal foundation model, was designed to learn from diverse biosignal data and handle miss-
ing data, while the Large Brain Model (LaBraM) (Jiang et al., 2024), an EEG foundation model
pre-trained on large-scale EEG datasets, demonstrated superior performance in tasks such as seizure
classification, emotion recognition, and gait prediction. However, the applicability of such models
to diverse BCI paradigms with limited data remains unexplored.

Contributions: This paper introduces the ST-EEGFormer, a large transformer-based model for BCI
applications. The model was pre-trained on 3 million 5-second EEG epochs sourced from diverse
EEG-BCI datasets using the masked autoencoder (MAE) method (He et al., 2021). For the first
time, we evaluated such a large model on various small BCI datasets, demonstrating promising
results across six MI datasets, one P300 dataset, and one SSVEP dataset. Additionally, experiments
conducted on a seizure dataset and an online MI BCI dataset—neither of which were included in the
pre-training data—highlight the model’s robust representation capabilities, particularly in scenarios
with limited training data. This work provides a versatile and high-performing BCI model, offering
valuable insights and tools for advancing BCI research across diverse tasks.

2 PROPOSED APPROACH

In this study, we propose the ST-EEGFomer model, which, when pre-trained using MAE, can be
directly fine-tuned on other datasets. The pre-training task involves reconstructing the original
EEG inputs from masked tokens (see figure 1 and Appendix A.2.4 for detailed descriptions). The
motivation for this architecture is to address the following issues:
The architecture is designed to address the following issues:
1):Achieve end-to-end EEG decoding that is not vulnerable to variations in EEG data formats.
2):Demonstrate the feasibility of pre-training on combined diverse BCI tasks and show the
effectiveness of the model fine-tuning in different small BCI classification tasks.
3):Benchmark the model on a variety of datasets including new datasets to provide a fair comparison
with other state-of-the-art models.

To address issue 1, we adopted a spatiotemporal slicing and encoding approach, similar to methods
explored in previous studies (Xie et al., 2022; Yang et al., 2023; Jiang et al., 2024), which encodes
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Figure 1: Model architecture: During pre-training, the input EEG data (a) are divided into segments along
spatial and temporal dimensions (b). Each segment is tokenized through a linear projection layer (c), with
each token receiving its corresponding temporal positional embedding (TPE) and spatial positional embedding
(SPE). After randomly masking 75% of all tokens (d), the encoder (e) processes the remaining unmasked
tokens. The mask tokens, with their added temporal and spatial positional embeddings, are then concatenated
with the encoder output to form a full set of tokens. This full set of tokens is input to a small decoder (f),
which reconstructs the original EEG signal. Once the model is pre-trained, only the encoder is utilized as the
ST-EEGFormer model for fine-tuning on a downstream dataset.

individual channels rather than small patches consisting of all channels. The concept of slicing
time series along temporal and spatial dimensions can be traced back to works such as the channel
encoder proposed by (Mohsenvand et al., 2020), PatchTST (Nie et al., 2023), iTransformer (Liu
et al., 2024), and the spatial-transformer combined with the temporal-transformer proposed by Xie
et al. (Xie et al., 2022). This modeling approach has proven effective in learning from various
biosignal sources, as demonstrated in BIOT (Yang et al., 2023) and the recent EEG foundation
model LaBraM (Jiang et al., 2024). However, compared to these foundation models, the proposed
model is characterized by its simplicity. Inspired by ViT (Dosovitskiy et al., 2021), it employs a
straightforward linear projection for tokenization and a single-stage pre-training process focused
solely on the MAE reconstruction task. A graphical representation of the proposed model is shown
in figure 1.

Given prior successes with MAE in EEG decoding, we also selected MAE as the pre-training
task. However, a distinction between our approach and other EEG-MAE attempts lies in the use
of spatiotemporal segmentation, incorporating both spatial and temporal positional embeddings.
While this spatiotemporal masking-and-reconstruction approach shares similarities with LaBraM,
our model is simpler in both its architecture and pre-training procedures. To address issues 2
and 3, we pre-trained our model using data from eight different datasets collectively and then
fine-tuned it on six MI classification tasks, one P300 task, and one SSVEP task. We compared
the performance of our model against a simple common spatial pattern (CSP)-based linear model,
the classic EEG benchmark model EEGNet (Lawhern et al., 2016), and the state-of-the-art EEG
Conformer model (Song et al., 2023).

3 EXPERIMENTS

3.1 MAE PRE-TRAINING

Three different ST-EEGFormers (small, base, and large models) were pre-trained using 5-second
EEG segments extracted from eight publicly available EEG-BCI datasets. The base and large
models have the same architecture as the base, large models proposed in the ViT implementa-
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Table 1: Details of ST-EEG-MAE variants, all with an EEG segment (patch) size of 16 samples and a mask
ratio of 0.75.

Model Encoder
layers

Encoder
embed size

Encoder
MLP size

Encoder
heads

Decoder
layers

Decoder
embed size

Decoder
MLP size

Decoder
heads Params

small 8 512 2048 8 4 384 1536 16 32.7M
base 12 768 3072 12 8 512 2048 16 110.9M
large 24 1024 4096 16 8 512 2048 16 328.4M

tion (Dosovitskiy et al., 2021), while the corresponding decoders have the same architecture as
in the MAE implementation (He et al., 2021). Details about the proposed model can be found in
table 1, and details of the datasets in Appendix A.2.1. Minimal preprocessing steps were applied to
these datasets, including:
1): Power-line noise filtering using a notch filter to remove power-line noise at 50 Hz or 60 Hz.
2): Broadband band-pass filtering with all channels filtered within the 1 to 64 Hz range.
3): Downsampling all datasets to 128 Hz.
Note: When benchmarking BIOT and LaBraM, we applied their respective preprocessing steps and
recommended training strategies, resulting in identical trials but with a different sampling frequency
(200 Hz). For further details, please refer to their publications. (Yang et al., 2023; Jiang et al., 2024)
Detailed preprocessing implementations are provided in Appendix A.2.2 and A.2.3, the complete
MAE pre-training methodology in Appendix A.2.4 and the experiment settings in Appendix A.2.5.
The results of the pre-training are listed in Appendix A.7.

3.2 BENCHMARK ON MULTIPLE BCI TASKS

After MAE pre-training, each dataset was individually benchmarked using the pre-trained ST-
EEGFormer and compared against several established models: a linear spatial filtering model
that mimics the classic common spatial pattern (CSP) filtering approach (Zheng & Lu, 2015);
EEGNet (Lawhern et al., 2016), a classic CNN-based backbone model known for its robust
generalization across different BCI tasks; EEG Conformer (Song et al., 2023), which combines
a CNN feature extractor with a transformer module, achieving state-of-the-art performance in motor
imagery tasks. Additionally, we also compared our model with two open-source pre-trained EEG
foundation models, BIOT (Yang et al., 2023) and LaBraM (Jiang et al., 2024). Note that for
classification, the ST-EEGFormer could either use the class token or the average token as the feature
to train a classification head. Meanwhile, one can perform end-to-end fine-tuning or freeze all
layers and only train a linear head (linear probing). This study primarily focuses on motor imagery
tasks to assess the model’s performance. However, experiments with BIOT were not conducted on
BCI-Comp-IV2a and BCI-Comp-IV2b datasets as the original channels could not be re-referenced
to the required bipolar channels. Additionally, a P300 and an SSVEP dataset were included to
introduce more variety during pre-training and to demonstrate the model’s generalization capability
across different classification tasks. For SSVEP, we also benchmarked the state-of-the-art SSVEP
decoding model SSVEP DNN (Guney et al., 2022). Model details are described in Appendix A.3.
For all experiments, population decoding with 5-fold cross-validation was performed, within each
fold, 20% of the current training data were used as a validation set for model selection. If a
hidden test set was available, it was used as an additional test set. We adopted a population
decoding approach, where the model is trained on data from all available subjects to develop a
subject-independent model. This approach is more computationally efficient, as per-subject training
can be time-consuming and computationally intensive in a multi-subject study. Implementation
details for this experiment can be found in Appendix A.4. The benchmark results for all MI datasets
are presented in table 2. SSVEP dataset results and P300 results are presented in table 3 and figure 2.
Detailed results are presented in Appendix A.8.

3.3 GENERALIZATION TO A NEW DATASET

To assess the generalization ability of the pre-trained models, two additional datasets were used.
Detailed descriptions of the two datasets and tasks can be found in Appendix A.5.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 2: MI datasets benchmark results. “-cv” represents the average k-fold cross-validation accuracy, while
“-test” represents the average accuracy on the hidden test set. The highest and second-highest accuracies are in
bold, with the highest one marked in bold and surrounded by a box. For ST-EEGFormer, the default fine-tuning
strategy is end-to-end fine-tuning with the average token, “lp” denotes a linear probed model, and “cls” refers
to an end-to-end fine-tuned model using the class token.

Dataset Linear EEGNet EEG
Conformer BIOT LaBraM

ST-
EEGFormer
small

ST-
EEGFormer
base

ST-
EEGFormer
base-lp

ST-
EEGFormer
base-cls

ST-
EEGFormer
large

EEG-MI-BCI-
cv (Cho et al.,
2017)

0.683±0.007 0.781±0.011 0.821±0.012 0.718±0.020 0.736±0.010 0.905±0.020 0.937 ± 0.005 0.693±0.011 0.936 ± 0.010 0.931±0.005

HGD-
cv (Schirrmeis-
ter et al., 2017)

0.631±0.017 0.899±0.010 0.914 ± 0.003 0.651±0.005 0.892±0.007 0.888±0.010 0.874±0.011 0.630±0.014 0.873±0.009 0.954 ± 0.004

HGD-
test (Schirrmeis-
ter et al., 2017)

0.593±0.021 0.859±0.003 0.878±0.010 0.612±0.015 0.902 ± 0.040 0.858±0.011 0.838±0.006 0.579±0.014 0.817±0.007 0.935 ± 0.002

BCI-Comp-
IV2a-
cv (Tanger-
mann et al.,
2012)

0.436±0.030 0.684 ± 0.025 0.598±0.016 NA 0.381±0.020 0.502±0.025 0.480±0.024 0.435±0.022 0.489±0.018 0.673 ± 0.028

BCI-Comp-
IV2a-
test (Tanger-
mann et al.,
2012)

0.431±0.011 0.651 ± 0.011 0.566±0.017 NA 0.389±0.006 0.510±0.014 0.472±0.012 0.441±0.006 0.475±0.024 0.642 ± 0.004

BCI-Comp-
IV2b-
cv (Tanger-
mann et al.,
2012)

0.623±0.020 0.749±0.011 0.777 ± 0.014 NA 0.734±0.012 0.752 ± 0.026 0.737±0.029 0.696±0.011 0.751±0.009 0.692±0.040

BCI-Comp-
IV2b-
test (Tanger-
mann et al.,
2012)

0.697±0.011 0.810 ± 0.004 0.831 ± 0.005 NA 0.798±0.006 0.776±0.015 0.752±0.010 0.723±0.007 0.775±0.004 0.722±0.013

Large-MI-
Classic-
cv (Kaya
et al., 2018)

0.442±0.009 0.644±0.004 0.722±0.004 0.455±0.012 0.763 ± 0.005 0.763 ± 0.008 0.754±0.006 0.439±0.004 0.731±0.004 0.831 ± 0.003

Large-MI-5F-
cv (Kaya et al.,
2018)

0.320±0.015 0.479±0.006 0.529 ± 0.004 0.287±0.008 0.464±0.023 0.500±0.008 0.483±0.010 0.294±0.008 0.462±0.003 0.627 ± 0.013

Table 3: SSVEP dataset benchmark results. The average accuracies from the leave-one-session-out experiment
are reported. The highest and second-highest accuracies are in bold, with the highest one marked in bold and
surrounded by a box. For ST-EEGFormer, the default fine-tuning strategy is end-to-end fine-tuning using the
average token. Models denoted by “-cls” indicate end-to-end fine-tuned models utilizing the class token.

Model Window = 1s Window = 2s
Top1-Acc Top2-Acc Top1-Acc Top2-Acc

Linear 0.047 0.088 0.047 0.087
EEGNet 0.433 0.625 0.646 0.785

EEG Conformer 0.328 0.517 0.419 0.618
BIOT 0.316 0.449 0.492 0.627

LaBraM 0.518 0.669 0.700 0.818
SSVEP-DNN 0.385 0.570 0.442 0.606

ST-EEGFormer-small 0.387 0.551 0.441 0.604
ST-EEGFormer-base 0.218 0.344 0.217 0.342
ST-EEGFormer-large 0.590 0.748 0.807 0.893

ST-EEGFormer-base-cls 0.251 0.385 0.267 0.404

3.3.1 SEIZURE CLASSIFICATION

Firstly, we tested our approach on a single-channel seizure classification task using the famous
Bonn dataset (Andrzejak et al., 2002). The hypothesis is that if the model learns robust EEG
representations from normal EEG-BCI recordings during the pre-training step, it should be able
to classify abnormal EEG data as well. Therefore, in the first experiment, we varied the amount of
learning examples from only 5% to 60% and compared the classification accuracies among different
models. In this experiment, we tested the performance of 1) directly applying linear probing on
the pre-trained model; 2) directly fine-tuning the pre-trained model; 3) further calibrating the model
by performing the MAE task, followed by linear probing on the seizure dataset, and 4) further
calibrating the model by performing the MAE task and then fine-tuning on the seizure dataset. This
was done to determine which approach yields the best performance. The results are presented in
figure 3 a). The confusion matrix of the base model is shown in figure 3 b). Moreover, we also
checked the effects of the mask ratio in the MAE pre-training step by varying the mask ratio and
comparing the finetuned model and linear probing model performance under different mask ratios
with only 5% training data. The results are presented in figure 3 c).

Figure 3 a) demonstrates that all pre-trained ST-EEGFormer models outperformed both EEGNet
and Conformer, particularly when training data were limited. Moreover, performance could be
further improved by calibration, as the highest accuracy was obtained by the ST-EEGFormer
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Figure 2: P300 benchmark results: Row-column selection accuracy of the P300 BCI. The original interface
consists of 6 rows and 6 columns. A prediction is made for the row in which the attended character is present
after all rows have flashed for the specified number of repetition rounds and, similarly, for the columns. EEG
data of the same row or column, but from different repetition rounds, are averaged to create an averaged epoch
for classification. The random chance level for selection accuracy is therefore 1/6.
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Figure 3: a): Top-1 and top-2 classification accuracy on the seizure dataset with varying training data sizes,
comparing EEGNet, EEG Conformer, fine-tuned ST-EEGFormer models (small, base, and large), and the
linearly-probed base model (ST-EEGFormer base-lp). Additionally, the base model was further calibrated
on the seizure dataset by performing the MAE SSL task using a mask ratio of 0.75, then fine-tuned and
linearly-probed, referred to as ST-EEGFormer base-cali and ST-EEGFormer base-cali-lp, respectively. b):
Confusion matrix of the ST-EEGFormer base model trained with 60% of the data. c): Accuracy of fine-tuned
and linearly-probed ST-EEGFormer base-cali models with varying mask ratios during the calibration stage.

base-cali model. In contrast to results from MI datasets, where linear-probed models significantly
underperformed finetuned models, the linear-probed models in this study achieved satisfactory
results, especially after calibration, surpassing other models. This success can be attributed not
only to the robust EEG representations learned during the MAE pre-training stage that help
classify abnormal EEG data but also to the relatively straightforward classification task, which
exhibits distinguishable characteristics that are easily visually inspected, making linear probing more
effective. These findings provide a solid foundation for the future application of ST-EEGFormer in
seizure classification, as the model could potentially learn even better representations from large
open public seizure datasets not included in this study.
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Figure 4: a): Top-1 and top-2 classification accuracy on the 2-session MI dataset. Models were trained
on the first session’s training data with varying training data sizes and tested on both the first session’s test
data (first row) and zero-shot tested on the second session (second row). The comparison includes EEGNet,
EEG Conformer, fine-tuned ST-EEGFormer models (small, base, and large), and the linearly-probed base
model (ST-EEGFormer base-lp). Additionally, the base model was further calibrated on the seizure dataset
by performing the MAE SSL task using a mask ratio of 0.75, then fine-tuned and linearly-probed, which is
referred to as ST-EEGFormer base-cali and ST-EEGFormer base-cali-lp, respectively. b): Confusion matrix of
the ST-EEGFormer base model trained with 60% of the first session data with results reported for both sessions.
c): Accuracy of fine-tuned ST-EEGFormer base-cali models, with varying mask ratios during the calibration
stage, with accuracies reported for both sessions.

3.3.2 TWO-SESSION ONLINE MI BCI CLASSIFICATION

In order to show the usability of the pre-trained models on future datasets or BCI applications, we
validated the performance on a new MI BCI dataset (Stieger et al., 2021) not included in the initial
MAE learning stage. This dataset contains EEG recordings of 4 classes of MI online tasks: imagined
left hand- (LHand), imagined right hand- (RHand), imagined both hand movement (2Hand), and
resting task (Rest). Similar to the seizure task described in Section 3.3.1, we varied the number of
training examples to evaluate the model’s performance with limited data. Additionally, we tested the
models in a zero-shot manner on data from the second session to assess cross-session generalization
ability. A detailed description of this dataset and experiment can be found in Appendix A.5.2. The
results are presented in figure 4. Similar to the seizure classification experiments, the pre-trained
ST-EEGFormer models demonstrated superior performance, particularly when training data was
limited. The ST-EEGFormer large model consistently achieved the highest classification accuracy
across all experiments. However, unlike the seizure classification results, the linearly-probed model
did not perform as well, suggesting that motor imagery EEG data may contain more nonlinear
features. Additionally, the cross-session experiment revealed a decrease in accuracy during zero-shot
testing, indicating that the model still struggles with cross-session variability.
Finally, the two experiments yielded different optimal mask ratios: 0.3 for the single-channel seizure
dataset and 0.9 for the 62-channel MI dataset, indicating varying behaviors that warrant further
investigation.

4 DISCUSSION

4.1 PRE-TRAINING A LARGE EEG FOUNDATION MODEL FOR BCI TASKS

Results from table 2 demonstrate that the pre-trained ST-EEGFormer achieves the highest classifica-
tion accuracies across multiple BCI datasets. The large model outperformed both the base and small
models on most datasets. For all MI datasets, the finetuned base models exhibited higher accuracies
compared to the linearly probed models, though the latter performed similarly to supervised linear
models trained from scratch. Additionally, the linear model used as a baseline in this study was
validated by comparison to existing benchmarks, as reported in figure 3 of (Gwon et al., 2023).
The mean accuracies across all subjects using subject-specific linear models were comparable to our
population models, achieving an average accuracy of 60%. This demonstrates the effectiveness
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of the proposed approach, where performing self-supervised learning (SSL) pre-training on a
foundation model with large EEG recordings enables the model to learn robust EEG features,
comparable to a linear model.

Furthermore, table 3 and figure 2 also demonstrate the effectiveness of the proposed MAE-pre-
trained ST-EEGFormer as a foundation model for general BCI decoding, outperforming EEGNet,
and EEG conformer. However, the relatively poor performance on the SSVEP dataset requires
further investigation. We acknowledge that the classification accuracies listed in table 3 are
significantly lower than those reported in other studies. For instance, in the original SSVEP deep
neural network (DNN) paper (Guney et al., 2022), using a 1-second window, the model achieved
an accuracy exceeding 0.9. This substantial performance difference could be attributed to several
factors:
1): We only conducted population training, which is considered the first stage in (Guney et al., 2022).
The reported accuracy is only around 47% with first-stage training alone (Guney et al., 2022).
2): Typical SSVEP decoders utilize EEG data with filter banks, whereas in this study, we
benchmarked our model on raw EEG data in an end-to-end manner, effectively using only one
frequency band, which generally results in suboptimal performance, as shown in Table 1 of (Guney
et al., 2022).
3): The amount of training data was limited. Unlike other MI datasets, where subjects performed
many trials per class, the SSVEP benchmark dataset contains only four trials per target. In
the leave-one-trial classification setting, we used a sliding window approach to increase training
examples, which also increases the risk of overfitting.

Despite these challenges, the ST-EEGFormer large model still achieved the highest performance,
reaching above 80% accuracy with a 2-s window, suggesting potential future SSVEP applications.
Possible ways to improve the model can be further pre-training the model with additional SSVEP
datasets and exploring subject-specific fine-tuning strategies. Moreover, the large model performed
well across all tasks, showing evidence of using deep, large models and demonstrating a successful
approach to overcoming the challenge of limited data availability, which often hampers the
development of deep learning models (Ahn et al., 2022; Dong et al., 2023; Khademi et al., 2023;
Forenzo et al., 2024). The present study proposes a new approach for developing improved BCI
decoders: pre-training the model on a large-scale BCI dataset composed of open public datasets
with related tasks, followed by fine-tuning on smaller, application-specific datasets.

4.2 PERFORMANCE COMPARISON

When comparing the proposed foundation model with BIOT and LaBraM, it is evident that BIOT
performs the worst, with some tasks—such as P300—even underperforming the linear model. This
can be attributed to two primary factors. First, and most significantly, the pre-trained EEG model in
BIOT uses only 18 bipolar channels. This limited spatial coverage hinders its ability to perform well
in tasks requiring broader spatial coverage, such as in the case of P300, where the P300 component
spans the occipital, central, and parts of the parietal regions. Second, BIOT’s pre-training datasets
primarily consist of clinical seizure, sleep, and resting-state EEG data, which differ substantially
from EEG data associated with BCI tasks.

In contrast, LaBraM performs better than BIOT and ranks as the second-highest-performing model
on several datasets, such as the HGD-test and the SSVEP dataset. This highlights the effectiveness
of LaBraM’s pre-training process, during which it was exposed to over 2,500 hours of EEG data,
including several BCI-specific datasets. However, we acknowledge that this comparison is not en-
tirely fair, as BIOT and LaBraM did not undergo the same pre-training steps on the datasets used in
this study. Additionally, the pre-training datasets for our model were much smaller than those used
for BIOT and LaBraM.

Another notable difference lies in model size: the open-sourced BIOT and LaBraM models are
relatively small compared to the proposed ST-EEGFormer. The reported performance differences
provide valuable insights into the importance of pre-training datasets and highlight the potential bias
introduced by mismatches between pre-training datasets and downstream tasks. However, since a
key motivation for foundation models is their generalization ability to unseen datasets, performance
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on such datasets becomes more critical than the specifics of pre-training. This is particularly relevant
when little training data is available for real-life BCI tasks.

Our experiments demonstrate superior generalization ability of the proposed ST-EEGFormer, which
outperformed both BIOT and LaBraM on unseen datasets. Notably, LaBraM also outperformed
classic models when limited training data was available, further demonstrating the effectiveness of a
pre-trained model. Based on these findings, we recommend that future foundation model developers
not only report performance on datasets included in their pre-training (as was done for BIOT) but
also evaluate and compare performance on unseen datasets. This approach would encourage the
development of models that generalize well across diverse and unseen BCI tasks, even when trained
on different pre-training datasets.

4.3 TOWARDS AN INTERPRETABLE MODEL

4.3.1 LEARNED EEG CHANNEL EMBEDDINGS

First, we visualized the learned spatial embeddings after MAE pre-training by performing hierar-
chical clustering analysis using cosine similarity as the distance metric and by identifying different
channel clusters in a topographic plot. The corresponding figures for the small, base, and large
models are shown in Appendix figures I.1, I.2, and I.3. In all three models, a consistent pattern
emerged with two clusters: one cluster in the front and another in the back. However, differences
were observed when additional clusters were introduced. Although each model tended to learn
slightly different clusters, these clusters generally corresponded to conventional functional mappings
of EEG channels, with regions such as frontal, central, occipital, and temporal areas being identified
by the model. This demonstrates the effectiveness of learning spatial information from EEG data
using the proposed channel embeddings.

4.3.2 ATTENTION WEIGHTS VISUALIZATION FOR CLASSIFICATION

A typical way of analyzing deep learning-based EEG decoders is by drawing learned channel
weights on a topo map (Cecotti & Graser, 2011; Lawhern et al., 2016; Salami et al., 2022; Song
et al., 2023). Here we demonstrate that by looking at the attention matrix of the ST-EEGFormer, we
can get more interesting visual interpretations directly from the raw EEG data. We performed the
analysis on the seizure dataset (Andrzejak et al., 2002) and two MI-BCI datasets (EEG-MI-BCI (Cho
et al., 2017) and Large-MI-5F (Kaya et al., 2018)) as the first shows a simple case of single-channel
EEG data with visually distinguishable features while the two MI-BCI datasets involve multiple
channels and have more subtle features that are not easy to spot.

Single-Channel Seizure Classification Visualization First, we visualized some representative
trials using the attention rollout method (Abnar & Zuidema, 2020). The corresponding results are
shown in Appendix figure I.4. Then we used the gradient rollout approach proposed in (Chefer
et al., 2021) to visualize all EEG segments for class-specific explainability. The corresponding
results are shown in Appendix figure I.5. Detailed descriptions can be found in Appendix A.6.

From figure I.4, we observe that the attention rollout with a discard ratio of 0.9 appears to be
the most informative. A higher discard ratio highlights only a few segments, while a lower
discard ratio tends to attend to all EEG segments, potentially diluting the focus on key areas.
Interestingly, different head fusion methods highlight different regions, indicating that the model
focuses on distinct features across different heads. Figure I.4 e) provides a clear example of how
the model focuses on abnormal EEG signals, with each segment corresponding to a seizure spike
being prominently highlighted. This finding suggests promising potential for explainable seizure
detection and diagnosis applications.

In Figure I.5, the use of min-fusion often results in all segments being highlighted (as seen in
figures I.5 a, b, c, e, g, h, i), due to the final rollout weights being too small. After scaling the weights
to the range of 0–1, they become inflated, leading to a failure in identifying the most important
segments. On the other hand, the mean and max gradient rollouts highlight different segments of
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interest within the signal. However, since this dataset contains only selected signals with clear,
continuous features, a more realistic evaluation is needed in future studies. Such an evaluation could
leverage gradient rollout to detect specific intervals where one of the classes of interest occurs during
continuous EEG monitoring.

Multi-Channel MI-BCI Classification Visualization For multi-channel EEG data classification,
we first compared the learned spatial filters from the linear model, EEGNet, and EEG Conformer
with the ST-EEGFormer attention rollout weights. A detailed description of this comparison can
be found in Appendix A.6.5. The results are shown in figures I.6 and I.7. Figure I.8 to I.14 also
visualize the attention weights on top of the raw EEG signal along with a spatiotemporal topo map.

As observed in the figures, all convolution-based kernels fail to capture spatially localized
information, as each spatial filter is spread across the scalp, with multiple red regions indicating
that the filters are less sparse compared to the attention rollout results from the ST-EEGFormer. In
the ST-EEGFormer, important regions are clustered and sparse. It is difficult to draw meaningful
conclusions from the spatial filters learned by the convolutional kernels, whereas the attention
rollout results provide clear indications of important channels.

It is also worth noting that head fusion may not be the optimal approach for the analysis. Both the
mean and max head-fused plots in figure I.6 d) show a similar pattern that closely resembles the
pattern of head 11 in figure I.6 e). The differences observed between different heads in figure I.6 e)
highlight that each attention head learns to focus on different regions of the scalp. Similar results
can be obtained in figure I.7 d) and e), in which each head has a unique pattern, whereas the head
fused patterns yield similar regions of interest.

4.4 LIMITATIONS AND FUTURE WORKS

Due to computational resource constraints, this study did not attempt to search for the most optimal
combination of hyperparameters, such as embedding dimension size, the number of encoder layers,
or the pre-training mask ratio. Additionally, to benchmark the effectiveness of the model, we limited
our selection to eight datasets. Expanding the pre-training dataset, especially with high-density EEG
data, could further enhance generalization. While this study demonstrated promising offline popula-
tion classification results, future work should explore the model’s online performance in real-world
subject-dependent BCI settings. We believe the demonstrated effectiveness of the ST-EEGFormer
will facilitate BCI decoders, and encourage the use of large models in the field. Furthermore, the
experiment on seizure detection with intracranial data suggests a clinical application for monitoring
epilepsy patients. Future works can focus on exploring different tokenization methods, developing
lightweight models, and studying possible strategies to develop subject-dependent models from the
pre-trained population model.

4.5 REPRODUCIBILITY

We open-source our codes and pre-trained model weights in the following repository: [...]. (Upon
acceptance of this paper, we will make the link public)

5 CONCLUSION

We propose a novel yet simple ST-EEGFormer architecture as a foundation model for general EEG-
based BCIs, designed to be insensitive to channel configurations and recording setups. The model
leverages self-supervised pre-training on open public EEG datasets through a masked autoencoder
task. Experimental results demonstrate that the proposed model outperforms the classic benchmark
model (EEGNet), the state-of-the-art model (EEG Conformer), and two BCI foundation models
(BIOT and LaBraM) in population decoding tasks across diverse BCI applications. Moreover, the
ST-EEGFormer learned robust EEG representations that generalized effectively to unseen datasets,
even with limited training data. Additionally, we analyzed the attention matrix for improved model
interpretation and visualization. We believe this study establishes a strong foundation for future
research into leveraging pre-trained large models to advance EEG BCI decoding performance.
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APPENDIX

A.1 RELATED WORKS

Supervised learning in BCI
Early attempts in applying deep learning models to BCI decoding primarily focused on CNNs,
utilizing 1D-convolutional kernels for spatial and temporal filtering. Notable architectures include
ConvNet (Cecotti & Graser, 2011) for P300 classification and both shallow and deep ConvNets
for motor imagery classification (Schirrmeister et al., 2017), EEGNet (Lawhern et al., 2016),
which builds upon these earlier architectures, demonstrated superior performance across various
EEG-BCI tasks, including P300, error-related negativity (ERN), event-related potentials (ERP),
movement-related cortical potential (MRCP), and sensory-motor rhythm (SMR) (Lawhern et al.,
2016). Since its introduction, EEGNet has been regarded as a classic benchmark model, inspiring
numerous subsequent studies that incorporated specific modules to create its variants (Ingolfsson
et al., 2020; Riyad et al., 2020; Salami et al., 2022). More recently, advances in attention-based
transformer models from natural language processing, e.g., BERT (Devlin et al., 2019), and
computer vision, e.g., ViT (Dosovitskiy et al., 2021), have inspired BCI researchers, among which
is the EEG Conformer (Song et al., 2023), one of the most successful models as it achieved
state-of-the-art performance on motor imagery and emotion datasets. However, these models still
rely on convolutional kernels for feature extraction, making transferring them between different
datasets cumbersome. the spatial filters in these models have a fixed size of RC×1, where C
represents the number of EEG channels, which can vary significantly across datasets. Additionally,
these models employ temporal filters of size R1×T and pooling layers to extract temporal features,
making them dependent on the input size, which also varies between tasks and datasets. As a
result, these models are typically trained on individual datasets and are not easily transferable to
other datasets. Lashgari et al. (Lashgari et al., 2021) proposed an architecture to use CNN as a
single-channel feature extractor followed by the attention mechanism to learn from datasets with
varying channels. Spatiotemporal patching was explored by Xie, etal (Xie et al., 2022), in which the
authors explored various ways of applying the transformer to a motor imagery dataset, achieving
state-of-the-art performance. To solve the cross-subject variability issue, one can use a generative
adversarial network (GAN) to learn invariant representations across subjects (Özdenizci et al.,
2020), The same problem was also addressed using contrastive learning to learn subject-invariant
EEG representations for cross-subject emotion recognition (Shen et al., 2021). Kobler et al. used
multi-source batch normalization directly on the space of SPD matrices from EEG signals to reduce
inter-subject variability issue (Kobler et al., 2022). Although these approaches show promising
results, they still focus on specific tasks and remain challenging to transfer to other datasets and
tasks.

Self-supervised pre-training in BCI
Several attempts have been made to utilize different sources of EEG data to create large datasets for
representation learning. This typically involves pre-training tasks. For example, Jiang et al. applied
contrastive learning for EEG-based sleep staging classification (Jiang et al., 2021). Mohsenvand
et al. extended the SimCLR framework (Chen et al., 2020) and combined multiple datasets to
learn data representations (Mohsenvand et al., 2020) by introducing channel encoders to process
one channel at a time. However, their model was only tested on the SEED emotion dataset (Duan
et al., 2013; Zheng & Lu, 2015), the normal vs. abnormal EEG dataset (López et al., 2015), and
the sleep stage classification dataset (Goldberger et al., 2000), which are large, non-BCI-related
datasets. BENDR (Kostas et al., 2021) employs contrastive learning to extract representations from
raw EEG signals. However, as the model is adapted from Wav2vec 2.0 (Baevski et al., 2020), it
faces challenges in transferring effectively between different datasets without discarding non-shared
channels. Chien, et al. applied a masked autoencoder to learn EEG representations combined with
a CNN-based feature extractor (Chien et al., 2022). Although the model performed well on the
sleep stage dataset, it is still unknown whether it could perform well on small BCI datasets, and
furthermore, the CNN feature extractor is hard to transfer between datasets. NeuroGPT faces a
similar limitation, as its EEG encoder has a fixed channel constraint, making it difficult to adapt
to varying channel configurations (Cui et al., 2024). BrainBERT (Wang et al., 2023) focuses on
learning single-channel representations from stereo-electroencephalographic (SEEG) spectrograms,
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enabling its use as a feature extractor for downstream tasks. More recently, Cai and Zeng (Cai &
Zeng, 2024) employed MAE pre-training task on small segments consisting of all EEG channels
across two motor imagery datasets, BCI Competition IV Dataset 2a and 2b (Tangermann et al.,
2012) and the PhysioNet EEG Dataset (Goldberger et al., 2000). However, since their encoder
module works with patches of EEG signals in fixed channels and time length, transferring between
datasets remains unrealistic and challenging.

BCI foundation models
Biosignal Transformer (BIOT) (Yang et al., 2023) is the first biosignal encoding model that can
handle biosignals of various formats. It was first pre-trained on multiple EEG, ECG, and sensory
datasets by first dropping out channels and part of tokens from the remaining channels, and tried
to predict the correct original tokens using a contrastive loss. The EEG datasets used in this study
are resting-state, sleep EEG, and clinical seizure datasets, focusing on clinical EEG applications.
Very recently, the Large Brain Model (LaBraM) (Jiang et al., 2024) was proposed to enable
cross-dataset learning and was trained on 2500 hours of EEG data. The model pre-training involves
two stages, first to train a temporal encoder and a neural tokenizer that compress the EEG signal
into vector-quantized encodings by reconstructing the spectral amplitude and phase of input signals.
Then in the second stage, the model is trained to reconstruct the encodings from a masked input.
Although LaBraM was pre-trained using EEG data from various sources, the model was only
benchmarked on TUAB (abnormal detection), TUEV (different event type classification), SEED-V
(emotion recognition), and MoBI (gait prediction) datasets, all large datasets that are not classic
BCI control paradigms. EEGFormer (Chen et al., 2024) was proposed which relies on a masked
autoencoder approach to be pre-trained on the Temple University EEG Corpus (TUH Corpus) (Obeid
& Picone, 2016) and onwards fine-tuned on downstream datasets. Although they reported successful
results, their benchmarks were limited to high-quality clinical EEG datasets thereby focusing on
similar clinical applications. Additionally, the number of channels was restricted, using only 24
or 36 channels from the TUH Corpus dataset. Moreover, this approach also required applying fast
Fourier transformation (FFT) to obtain frequency domain amplitude as the input feature, rather than
a pure end-to-end approach only using raw EEG signals as the input. A more detailed comparison
of various models with our proposed model is presented in Appendix Table A.1. As highlighted in
the table, the ST-EEGFormer stands out due to its simple architecture, straightforward pre-training
process, focus on BCI applications, and ease of use.

A.2 PRE-TRAINING

A.2.1 PRE-TRAINING DATASETS

The MAE reconstruction task was conducted on eight public datasets. These datasets include:
1) EEG-MI-BCI (Cho et al., 2017): This dataset contains 52 subjects performing 2-class imagined
left and right-hand movements, recorded with 64 EEG channels using a Biosemi ActiveTwo system.
It includes approximately 5,000 trials of 3-second motor imagery (MI) data per class.
2) HGD (Schirrmeister et al., 2017): The High Gamma Dataset comprises 20 subjects performing
4-second trials of executed movements with four classes (left hand, right hand, both feet, and rest).
The data were recorded with 128 high-density EEG caps (WaveGuard Original, ANT, Enschede,
NL) and sampled at 5 kHz using a NeurOne amplifier (Mega Electronics Ltd, Kuopio, FI). It includes
roughly 3,000 trials per class.
3) BCI-Comp-IV2a (Tangermann et al., 2012): This dataset includes nine subjects performing
four-second trials of four classes (imagined left hand, right hand, feet, and tongue movements),
recorded with 22-electrode EEG caps. It contains a training set and a test set from two separate
sessions, each with roughly 600 trials per class.
4) BCI-Comp-IV2b (Tangermann et al., 2012): This dataset consists of nine subjects performing
2-class imagined left and right-hand movements, recorded with three EEG channels. It contains a
training set of approximately 1,800 trials per class and a separate test set of approximately 1400
trials per class.
5) Large-MI-Classic (Kaya et al., 2018): This dataset comprises 13 subjects performing 1-second
trials of six classes (imagined left hand, right hand, left foot, right foot, tongue, and rest). The data
were recorded with 19-channel EEG caps plus 2 ground lead channels (Electro-Cap International,
USA) and were mostly sampled at 200 Hz, with some recordings sampled at 1000 Hz using the
EEG-1200 system. In total, it includes approximately 50,000 trials (different classes have an unequal
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number of trials).
6) Large-MI-5F (Kaya et al., 2018): From the same study as 5) but different experiments, this
dataset comprises 13 subjects performing 1-second trials of five classes of finger movements
(imagined thumb, index, middle, ring, pinkie). In total, it includes around 18000 trials.
7) P300 (Won et al., 2022): This dataset consists of 55 participants performing a P300 speller
experiment and 50 participants performing a rapid serial visual representation (RSVP). In total,
it includes 99000 training P300 trials and 277200 test trials.
8) SSVEP (Liu et al., 2020): This dataset consists of 70 participants performing cue-guided SSVEP
target-selecting experiments, comprising 40 flickering stimuli ranging between 8 Hz to 15.8 Hz with
an interval of 0.2 Hz. For each target, it contains 20 trials of 5-s stimulation data.

The MI datasets were selected based on their size and quality as reported in the latest review
paper (Gwon et al., 2023), with datasets 3 and 4 chosen due to their status as classic benchmark
datasets. The P300 dataset was included as it is one of the largest available P300 datasets, and the
SSVEP dataset was selected for its widespread use as a benchmark in SSVEP research.

A.2.2 DATA PREPROCESSING

All datasets underwent the following minimal preprocessing steps:
1) Power-line noise filtering: Visual inspection of the power spectrum density plots was
conducted for each dataset. For those with visibly strong power-line noise, The function
mne.filter.notch filter() (Python 3.8.19, MNE 1.6.1) was applied to remove it.
2) Broadband band-pass filtering: A bandpass filter with cutoff frequencies at 1 Hz and 64 Hz was
applied to all channels using mne.filter.filter data() (Python 3.8.19, MNE 1.6.1). The
filter was designed with a windowed FIR design (fir design=‘firwin’).
3) Downsampling: All channels were downsampled to 128 Hz from their original sampling
frequency using the mne.filter.resample() function with default settings.
4) Standardization: Each channel was standardized to have a mean value of 0 and a standard
deviation of 1.

A.2.3 DATA SEGMENTATIONS FOR PRE-TRAINING

Some datasets provide continuous EEG recordings while some datasets contain only task-related
epochs. Therefore, the following data segmentation approach was used to generate examples for
pre-training:
1): For EEG-MI-BCI (Cho et al., 2017), HGD (Schirrmeister et al., 2017), BCI-Comp-IV2a (Tanger-
mann et al., 2012), BCI-Comp-IV2b (Tangermann et al., 2012), P300 (Won et al., 2022), these
datasets consist of full continuous recordings for each participant. Pre-training examples were
generated using a sliding window of 5 seconds in length with a hop size of 0.25 seconds, resulting
in over 360,000, 70,000, 190,000, 380,000, and 620,000 EEG segments, respectively.
2): For Large-MI-Classic (Kaya et al., 2018), and Large-MI-5F (Kaya et al., 2018), since these two
datasets jointly represent one of the largest datasets used in this study, a 5-second sliding window
with a 0.5-second hop size was used to balance the number of pre-training examples, instead of
the previously used 0.25-second hop size. Combined, they contribute approximately 500,000 EEG
segments.
3) For SSVEP (Liu et al., 2020), this dataset provides only 5-second stimulation epochs. A small
sliding window of 2 seconds with a small hop size of 0.125 seconds was used to generate pre-training
examples, resulting in approximately 170,000 EEG segments.

In summary, the dataset specs are summarized in table A.2.

A.2.4 MAE PRE-TRAINING METHODOLOGY

The same pre-training methodology was used as in the original MAE paper (He et al., 2021).
However, since multiple datasets were combined in this step, a subsampling strategy was used to
generate a small batch of training examples from one dataset at a time and the loss was accumulated
across all datasets that are available in the current iteration.
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Tokenization: First, EEG data are sliced into non-overlapping small segments in both spatial and
temporal dimensions (Figure 1, step b); segmented EEG data are then projected into an embedding
dimension, adding the corresponding spatial positional- (SPE) and temporal positional embeddings
(TPE) (Figure 1, step c). For the spatial positional embeddings, a learned embedding per channel was
used, similar to the learned positional embedding in (Gehring et al., 2017), while for the temporal
positional embeddings, a sine-cosine positional embedding approach was used, as shown in Eq A.1

p⃗
(i)
t = f(t)(i) :=

{
sin(ωk · t), if i = 2k

cos(ωk · t), if i = 2k + 1
, where ωk =

1

10000
2k
d

(A.1)

Masking: Tokenized EEG data are randomly masked with a high masking ratio (Figure 1, step d),
here we fixed the masking ratio to 0.75, as it has been reported to be the best-performing one (Chien
et al., 2022). The remaining unmasked tokens pass through the transformer encoder.

MAE Encoder: The encoder is a ViT (Dosovitskiy et al., 2021) implemented the same way as in
the original MAE paper (He et al., 2021). The encoder only initially processes the unmasked tokens
concatenated with a class token (Figure 1, step e).

MAE Decoder: The encoder output is concatenated with mask tokens added with the spatial and
temporal embedding of the corresponding masked segments (Figure 1, step f).

Reconstruction Task: The MAE reconstructs the input EEG by projecting the MAE decoder output
(without the class token) back to segments of EEG samples and the loss is the mean squared error
(MSE) between the original and reconstructed signals using the masked segments only, in the same
way as in MAE (He et al., 2021) and BERT (Devlin et al., 2019).
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Table A.3: Pre-training settings.
Config Value

optimizer AdamW (Loshchilov & Hutter, 2019)
base learning rate 3e-4
weight decay 0.05
batch size 256
learning rate schedule cosine decay (Loshchilov & Hutter, 2017)
warmup epochs (Goyal et al., 2018) 10

Table B.1: Linear CSP model architecture. Input EEG data consist of Nch channels and L time samples. The
output corresponds to Nclass, representing the number of different classes to classify.

Layer Name Type Layer specific settings Output shape

0 input NA NA (Nch×L)
1 spatial filter Conv1d kernel size:(Nch, 1)

number of kernels:8
(8×L)

2 drop out Dropout p=0.2 (8×L)
3 feature extractor NA see table B.2 (8× 12)
4 flatten NA NA (1× 96)

5 classification head Linear weights and bias shape:
(96, Nclass)

(1, Nclass)

A.2.5 MAE PRE-TRAINING SETTINGS

The pre-training settings are listed in table A.3. In the pre-training stage, the model is initialized
using the xavier uniform (Glorot & Bengio, 2010) method. We used the same codes from
the original MAE (He et al., 2021) implementation, which uses the official ViT (Dosovitskiy et al.,
2021) implementation and the linear lr scaling rule (Goyal et al., 2018) as shown in Eq A.2.

lr = base lr × (batch size/256) (A.2)

A.3 MODEL IMPLEMENTATIONS

A.3.1 LINEAR NEURAL NETWORK MODEL FOR COMMON SPATIAL FILTERING (LINEAR
MODEL)

The linear model consists of a spatial filter, a feature extractor, and a fully connected layer, without
any non-linear activation functions between layers. This model serves as a simple linear baseline
for comparison. The traditional CSP approach was not directly implemented for two reasons: first,
numerous benchmarks using the traditional approach have already been performed, and second, this
linear model allows for a fair comparison by utilizing the same gradient-backpropagation training
approach as other networks. The model architecture is detailed in table B.1, and the calculated
features are listed in table B.2.

A.3.2 EEGNET

EEGNet is a CNN-based model (Lawhern et al., 2016). The architecture of EEGNet is listed in
table B.3. EEGNet is designed for general EEG classification tasks, which has shown to return good
results on multiple EEG-BCI tasks, especially MI classification, and it has been widely used as a
benchmark model.

A.3.3 EEG CONFORMER

EEG Conformer (Song et al., 2023) is a compact convolutional transformer that integrates local and
global features within a unified EEG classification framework. The EEG input first passes through
a convolutional module, which learns low-level local features via one-dimensional temporal- and
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Table B.2: Features calculated in the feature extractor layer.
Feature Definition Remark

mean x̄ = 1
n

∑n
i=1 xi

n: total number of samples,
xi: the i-th sample.

variance σ2 = 1
n

∑n
i=1(xi − x̄)2 x̄: the mean value

power P = 1
n

∑n
i=1 x

2
i NA

skewness µ̃3 =
∑n

i=1(xi−x̄)3

(n−1)·σ3 σ: the standard deviation

kurtosis K = 1
n

∑n
i=1

(
xi−x̄

σ

)4
NA

entropy H = −
∑n

i=1 p(xi) log (p(xi) + ϵ)
n = 256: the number of intensity bins

p(xi): the probability of the i-th intensity bin
ϵ = 10−8: a small constant for stability

maximum max(x) = maxn
i=1 xi NA

minimum min(x) = minn
i=1 xi NA

the first quartile Q1 = Quantile(x, 0.25) NA
the secoond quartile Q2 = Quantile(x, 0.50) NA
the third quartile Q3 = Quantile(x, 0.75) NA

zero cross rate

ZCR = 1
2n

∑n
i=2 |sgn(xi)− sgn(xi−1)|,

sgn(x) =


1, if x > 0

0, if x = 0

−1, if x < 0

NA

Table B.3: EEGNet architecture. Input EEG data consist of Nch channels and L time samples. The output
corresponds to Nclass, representing the number of different classes to classify. The dropout ratio is set to 0.40.

Layer Type Input shape Output shape Kernels Kernel size Stride Padding

0 input (Nch × L) (Nch × L) NA NA NA NA
1 Conv2d (Nch × L) (8×Nch × L) 8 (1, 64) (1, 1) same
2 BatchNorm2d (8×Nch × L) (8×Nch × L) NA NA NA NA
3 Depthwise Conv2d (8×Nch × L) (32× 1× L) 32 (Nch, 1) (1, 1) (0, 0)
4 BatchNorm2d (32× 1× L) (32× 1× L) NA NA NA NA
5 ELU (32× 1× L) (32× 1× L) NA NA NA NA
6 AvgPool2d (32× 1× L) (32× 1× L/4) NA (1, 4) (1, 4) (0, 0)
7 Dropout (32× 1× L/4) (32× 1× L/4) NA NA NA NA
8 Seperable Conv2d (32× 1× L/4) (32× 1× L/4) 32 (1, 16) (1, 1) same
9 BatchNorm2d (32× 1× L/4) (32× 1× L/4) NA NA NA NA
10 ELU (32× 1× L/4) (32× 1× L/4) NA NA NA NA
11 AvgPool2d (32× 1× L/4) (32× 1× L/16) NA (1, 4) (1, 4) (0, 0)
12 Dropout (32× 1× L/16) (32× 1× L/16) NA NA NA NA
13 Linear (1× 2L) (1×Nclass) NA NA NA NA

spatial convolution layers. Next, the self-attention module extracts global correlations from the
localized temporal features. Finally, a simple classifier module, consisting of fully connected
layers, is used to predict the categories of the EEG signals. EEG Conformer has achieved
state-of-the-art performance in both motor imagery and emotion classification tasks, making it a
suitable representative high-performance model. The model architecture is listed in table B.4.

A.3.4 BIOT AND LABRAM

The BIOT model used in this study is the version pre-trained on all six EEG datasets, titled ”EEG-
six-datasets-18-channels.ckpt”, obtained from the official repository (https://github.com/
ycq091044/BIOT).

The LaBraM model utilized in this study is the ”labram-base.pth”, retrieved from its official
repository (https://github.com/935963004/LaBraM/tree/main).

For further details on the two models, please refer to their respective publications (Yang et al., 2023;
Jiang et al., 2024).
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Table B.4: EEG Conformer architecture. Input EEG data consist of Nch channels and L time samples. The
output corresponds to Nclass, representing the number of different classes to classify.

Layer Name Type Layer specific settings Output shape

0 input NA NA (Nch×L)

1 CNN-module Conv2d kernel size:(1, 25)
number of kernels:40 (40×Nch × L)

2 CNN-module Conv2d kernel size:(Nch, 1)
number of kernels:40 (40× 1× L)

3 CNN-module BatchNorm2d NA (40× 1× L)
4 CNN-module ELU NA (40× 1× L)

5 CNN-module AvgPool2d kernel size:(1, 37)
stride:(1, 7) (40,

⌊
L−37

7

⌋
+ 1)

6 CNN-module Dropout dropout p=0.5 (40,
⌊
L−37

7

⌋
+ 1)

7 CNN-module Conv2d kernel size:(1, 1)
number of kernels:40 (40,

⌊
L−37

7

⌋
+ 1)

8 Transformer-module Transformer encoder layers

embed size:40
number of heads:10

drop p:0.5
forward expansion:4
forward drop p:0.5

depth:6

(40,
⌊
L−37

7

⌋
+ 1)

9 Classification head Linear
weights and bias shape:
(40×

⌊
L−37

7

⌋
+ 1, 256)

(1, 256)

10 Classification head ELU NA (1, 256)
11 Classification head Dropout dropout p=0.5 (1, 256)

12 Classification head Linear weights and bias shape:
(256, 32)

(1, 32)

13 Classification head Elu NA (1, 32)
14 Classification head Dropout dropout p=0.3 (1, 32)

15 Classification head Linear weights and bias shape:
(32, Nclass)

(1, Nclass)

A.3.5 SSVEP DNN

In this study, we worked with broadband EEG signals, which are rarely used in SSVEP decoding,
as frequency-band filtered EEG signals are typically used as input. To ensure a fair comparison,
we also benchmarked the state-of-the-art SSVEP deep neural network (DNN) model (Guney et al.,
2022) under this setting. The implemented model architecture is detailed in table B.5. To obtain
the necessary frequency-band signals, as required by the DNN model, we adapted the same
frequency-band filtering approach used in EEGNet by applying a Conv1D in the first layer. In the
experiment, we set the number of frequency bands (no fb) to 3, the number of combined channels
(no comb ch) to 120, the first dropout ratio (dropout ratio 1) to 0.2, and the second dropout
ratio (dropout ratio 2) to 0.9. The number of classes (Nclass) was set to 40.

A.4 BENCHMARK EXPERIMENTS

A.4.1 DATASET SPLIT AND MODEL SELECTION

For all MI datasets, we employed a 5-fold cross-validation strategy, using the StratifiedKFold
function from sklearn.model selection to ensure class balance within each fold. This
approach was applied individually to each recording. During the 5-fold cross-validation, 4 folds are
used as the current training set, and the remaining set is the test set for this fold:
1) Training and Validation Split: For each fold, 20% of the training data was set aside as a validation
set, used for model selection.
2) Model Selection: The model achieving the highest classification accuracy on this validation set
was chosen as the best model during different training epochs.
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Table B.5: SSVEP DNN architecture. Nch represents the number of EEG channels, L represents the number
of time samples.

Layer Type Input shape Output shape Kernels Kernel size Stride Padding

0 input (Nch × L) (Nch × 1× L) NA NA NA NA
1 Conv1d (Nch × 1× L) (Nch × no fb× L) no fb (1, 33) 1 same
2 reshape (Nch × no fb× L) (no fb×Nch × L) NA NA NA NA
3 Conv2d (no fb×Nch × L) (1×Nch × L) 1 (1, 1) (1, 1) (0, 0)
4 Conv1d (1×Nch × L) (1× no comb ch× L) no comb ch 1 1 0
5 Dropout1 (1× no comb ch× L) (1× no comb ch× L) NA NA NA NA
6 Conv1d (1× no comb ch× L) (1× no comb ch× L/2) no comb ch 2 2 0
7 Dropout1 (1× no comb ch× L/2) (1× no comb ch× L/2) NA NA NA NA
8 ReLU (1× no comb ch× L/2) (1× no comb ch× L/2) NA NA NA NA
9 Conv1d (1× no comb ch× L/2) (1× no comb ch× L/2) no comb ch 10 1 same
10 Dropout2 (1× no comb ch× L/2) (1× no comb ch× L/2) NA NA NA NA
11 Flatten (1× no comb ch× L/2) (1× no comb ch ∗ L/2) NA NA NA NA
12 Linear (1× no comb ch ∗ L/2) (1×Nclass) NA NA NA NA

Table C.1: Model training settings for the linear model, EEGNet, EEG Conformer, and SSVEP DNN.
Config Value

optimizer AdamW
base learning rate 3e-3(Linear, EEGNet), 3e-4 (EEG Conformer, SSVEP DNN)
weight decay 0.05
Optimizer momentum β1, β2 = 0.9, 0.999
batch size 64
training epochs 300

3) Testing: The selected model was then evaluated on the test set of the current fold.

Additionally, for the HGD (Schirrmeister et al., 2017), BCI-Comp-IV2a (Tangermann et al., 2012),
and BCI-Comp-IV2b (Tangermann et al., 2012) datasets, separate hidden test sets were available.
These hidden test sets were used as additional test sets in this study, and the models selected
from the cross-validation step were further evaluated on these sets to assess their performance
comprehensively.

For the SSVEP (Liu et al., 2020) dataset, we followed the approach outlined in the SSVEP DNN
paper (Guney et al., 2022), using a sliding window method to generate training samples of 1-second
and 2-second lengths, with a hop size of 0.1 seconds. The test set also contains small segments of
EEG data generated using the same sliding window on the hidden test trial data. We employed the
same leave-one-session-out validation strategy for the experiment, as in (Guney et al., 2022), and
the model selection process was consistent with that used in the MI experiments.

For the P300 (Won et al., 2022) dataset, we utilized the provided training and test sets. As in
other P300 decoding experiments, we evaluated the model’s performance under varying numbers of
trial averaging. These trials were averaged based on the flashing of rows and columns during the
experiment.

Remark that the training data in each fold were kept the same when training different models.

A.4.2 MODEL TRAINING SETTINGS

The linear model, EEGNet, EEG Conformer, and SSVEP DNN were trained using the settings listed
in table C.1. End-to-end fine-tuning of the ST-EEGFormer model followed the common practice of
supervised ViT training, with the specific settings outlined in table C.2. Similar to the original MAE
implementation that follows the practice laid out in (Chen et al., 2021), when linear probing the
ST-EEGFormer model, in which case we froze all pre-trained weights and only trained a linear end
stage of the model. The linear probing settings are provided in table C.3. It is important to note that
we also tested using the same fine-tuning settings from table C.2 to train other models; however,
this approach did not empirically yield better performance than the settings provided in table C.1.
Specifically, the linear model and EEGNet required a larger learning rate to achieve convergence.
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Table C.2: ST-EEGFormer end-to-end
fine-tuning settings.

Config Value

optimizer AdamW
base learning rate 3e-4
weight decay 0.05
Optimizer momentum β1, β2 = 0.9, 0.999
layer-wise lr decay (Bao
et al., 2022; Clark et al.,
2020)

0.75

batch size 128
learning rate schedule cosine decay
warmup epochs 5
training epochs 60
label smoothing (Szegedy
et al., 2015) 0.1

drop path (Huang et al.,
2016) 0.1

Table C.3: ST-EEGFormer linear probing
settings.

Config Value

optimizer AdamW
base learning rate 0.05
weight decay 0
Optimizer momentum β1, β2 = 0.9, 0.999
batch size 128
learning rate schedule cosine decay
warmup epochs 10
training epochs 100
label smoothing 0.1

A.5 GENERALIZATION TO A NEW DATASET

A.5.1 SEIZURE DATASET EXPERIMENT

A.5.1.1 DATASET DESCRIPTION

This Bonn dataset (Andrzejak et al., 2002) consists of human expert-selected single-channel EEG
data from five healthy volunteers and five individuals with epilepsy. The data are divided into two
classes for healthy volunteers, including scalp EEG segments recorded while the volunteers were
relaxed and awake with eyes closed and open, respectively (Dataset A and B, referred to as “Eyes
Closed” and “Eyes Open” in figure 3b). Three classes of data are from epileptic patients, consisting
of intracranial EEG (iEEG) segments recorded during pre-surgical evaluation. Specifically, one class
contains interictal iEEG segments from the epileptogenic zone in the opposite hemisphere (dataset
C, referred to as “NSeizure-Opposite” in figure 3b), while another class includes interictal iEEG
segments from the epileptogenic zone itself (dataset D, referred to as “NSeizure-Epileptogenic” in
figure 3b). The final class consists of iEEG segments recorded from the epileptogenic zone during
seizure activity (dataset E, referred to as “Seizure” in figure 3b). Each subset contains 100 single-
channel EEG segments, each 23.6 seconds in duration (4096 samples). The data were sampled at
173.61 Hz, and any artifacts caused by muscle activity or eye movement were manually removed
by the database owners after visual inspection.

A.5.1.2 EXPERIMENT DETAILS

In this experiment, the objective was to evaluate the pre-trained model’s performance on previously
unseen abnormal EEG data. Two conditions were considered: first, using the pre-trained model
directly; and second, further calibrating the model on the new dataset by performing the MAE
pre-training task. For the first condition, we employed the pre-trained small, base, and large models,
which underwent end-to-end average token fine-tuning. Additionally, we applied linear probing on
the base model with the average token. For the second condition, we first performed the MAE pre-
training task on the base model for 20 iterations, followed by end-to-end average token fine-tuning
and average token linear probing. To better evaluate model performance, we varied the amount of
training data from 5% to 60% of the total available data. With only 5% of the training data, there
were 225 training examples across 5 classes. Additionally, we experimented to assess the effect of
the mask ratio. In this experiment, the base model underwent several MAE calibration tasks with
varying mask ratios and was subsequently fine-tuned and linearly probed on the same task as the
previous experiment.
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A.5.1.3 DATA PREPROCESSING

Minimal data preprocessing was performed to evaluate the model’s generalization ability. First,
all data were downsampled to 128 Hz, then standardized to have zero mean and unit standard
deviation to align with the data features encountered during the pre-training step. It is important
to note that the original data were band-pass filtered by the data provider between 0.5 and 85 Hz,
which differs from our preprocessed range of 1 to 64 Hz during the initial model pre-training stage.
We chose to retain the original band-pass settings to better assess the model’s generalization ability
and the impact of calibration. For MAE calibration, each 23.6-second recording was segmented
into 3-second windows using a sliding window with a 0.25-second hop size, resulting in a total of
41,500 calibration examples. For classification, each 23.6-second recording was similarly divided
into 3-second segments, but with a 0.5-second overlap, producing a total of 4,500 classification
examples.

A.5.1.4 DATA SPLIT AND MODEL TRAINING SETTINGS

In the classification experiment, we varied the amount of training data to 5%, 10%, 20%,
40%, and 60% of the total dataset. These training samples were selected using a stratified
split method to maintain class balance, implemented with the train test split function
from sklearn.model selection. It is important to note that since the dataset does not
provide channel information, we adapted the ST-EEGFormer model to be channel-unaware. In
this adaptation, the tokens only incorporate temporal positional embeddings (TPE, as shown in
figure 1), without the inclusion of spatial positional embeddings (SPE, as depicted in figure 1). This
modification allows the model to function as a general EEG feature extractor, disregarding channel
differences. Since the dataset consists of only single-channel recordings, the linear model based on
spatial filtering could not be applied. Therefore, we compared ST-EEGFormer with EEGNet and
EEG Conformer, using the same training settings as listed in tables C.1 to C.3.

A.5.2 TWO-SESSION ONLINE MI BCI EXPERIMENT

A.5.2.1 DATASET DESCRIPTION

This dataset (Stieger et al., 2021) contains 600 hours of 62-channel EEG recordings, sampled at
1000 Hz, collected during online and continuous BCI control from 62 healthy adults, spanning
multiple sessions across different days. The BCI paradigm involves imagining left, right, and both
hand movements (opening and closing), as well as a resting state condition, to control a virtual
cursor. The provided data consists of epoched trials of varying lengths, structured with a 2-second
inter-trial interval, followed by a 2-second target presentation. The task imagination phase varies in
length, with a maximum duration of up to 6.04 seconds, followed by a 1-second post-trial interval.

A.5.2.2 EXPERIMENT DETAILS

Slightly different from the seizure classification experiment, where the objective was to assess
whether the learned normal EEG representations could transfer and aid in abnormal EEG classifica-
tion, this experiment aimed to determine whether the pre-trained model could be easily transferred
to a new MI task and perform well across sessions, which can help future BCI applications if
applicable. To address this, we conducted the following two-step experiment: First, we trained
our models using data from the first session, varying the amount of training data in the same manner
as in the seizure classification experiment, and evaluated the model’s performance on the remaining
data from the first session. Then, for each model, we performed zero-shot testing on all data from
the second session to assess cross-session performance. For the base model, we also evaluated the
effects of calibration and mask ratio, as done in the seizure experiment.

A.5.2.3 DATA PREPROCESSING

First, we selected the last two session recordings of 20 subjects (subjects 1–20) out of 60
total subjects for this experiment to reduce computational load. For each recording, the same
preprocessing steps as described in Appendix A.2.2 were applied. For MAE calibration, instead
of using all available data, we only utilized the non-task resting-state 2-second signals preceding
each trial (−2s to 0s). This approach reflects a more realistic BCI scenario, where little or no
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labeled data are available. This resulted in a total of 18,000 pre-training examples across the two
sessions. For classification, we used the first 3-second segment of the imagination phase, yielding
9,000 classification examples per session.

A.5.2.4 DATA SPLIT AND MODEL TRAINING SETTINGS

The same data split method used in the seizure classification experiment was applied here.
However, since this dataset includes channel information, we utilized the standard ST-EEGFormer
implementation as described in figure 1. The same training settings outlined in tables C.1 to C.3
were also employed for this experiment.

A.6 MODEL VISUALIZATION

The model used in the following experiments is ST-EEGFormer base finetuned on the corresponding
dataset using the class token.

A.6.1 ATTENTION ROLLOUT

Attention rollout tracks the information flow from the input layer to the final layer in a transformer
model through Eq E.1 (Abnar & Zuidema, 2020), where, Ã is the attention rollout, and A(li) the
raw attention matrix in layer i. In order to focus on the most important tokens while ignoring less
relevant ones, we apply a discard ratio that retains only the largest rollout weights at each layer.
For instance, a discard ratio of 0.9 will keep only the top 10% of the largest weights, setting the
remaining weights to zero. After calculating the rollout, each head produces a weight matrix. The
final weights are obtained by fusing the weights across different heads, using one of the following
methods: mean fusion, where the final weight is the average of all head weights; max fusion, where
the final weight is the maximum value across all heads; and min fusion, where the final weight is the
minimum value across all heads.

Ã(li) =

{
(A(li) + I)Ã(li−1) if i > 1

A(li) + I if i = 1
(E.1)

A.6.2 GRADIENT ATTENTION ROLLOUT

The gradient rollout method for attention visualization in class-specific explanations aims to
interpret the contribution of individual input features to the model’s decision for a particular class.
Similar to standard attention rollout, it recursively calculates a weighted rollout score, but in this
case, the gradients with respect to the class of interest are used as weights. The gradients are
obtained by selectively backpropagating the output score corresponding to the chosen class. This
process replaces the A(li) term in Eq E.1 with a weighted term, where the attention value Aij is
multiplied by the corresponding gradient gradij .

A.6.3 SEIZURE CLASSIFICATION VISUALIZATION

A.6.3.1 ATTENTION ROLLOUT

In the seizure classification experiment, each signal contains 384 samples, which, after patching and
tokenization, results in 24 tokens. The attention matrix, therefore, has a shape of (25 × 25), with
an additional class token concatenated at the beginning. After calculating the final attention rollout
matrix using Eq E.1, the first row of the matrix was extracted for visualization, as it represents
how the class token “attends” to different patches of the signal. Before visualization, the weights
corresponding to the patches were normalized by dividing them by the maximum weight, scaling
them between 0 and 1.
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A.6.3.2 GRADIENT ATTENTION ROLLOUT

Using the same trials as visualized in figure I.4, we performed a gradient attention rollout analysis
to check the importance of each patch corresponding to the top-2 model prediction classes. For this
comparison, we only used a discard ratio of 0.9, compared with the three head fusion methods.

A.6.4 MULTI-CHANNEL MI CLASSIFICATION VISUALIZATION

We used the MI-BCI dataset (Cho et al., 2017) and the Large-MI-5F dataset (Kaya et al., 2018) for
the following multi-channel MI classification visualization.

A.6.5 COMPARE SPATIAL FILTERS WITH ATTENTION ROLLOUT RESULTS

For the linear model and EEGNet, we simply extracted the learned weights of the spatial filters.
Specifically, for the linear model, we used the weights of the first Conv1D layer (table B.1). For
EEGNet, the weights from the Depthwise Conv2D layer (table B.3) were used, for the EEG
Conformer the weights of the second Conv2D layer (table B.4). For the ST-EEGFormer model, we
calculated the average attention rollouts for each class by following these steps:
1): For all testing trials, we computed the attention rollout for each trial using Eq E.1, with a
discard ratio of 0.9. The single-trial attention rollouts for the same class were averaged to obtain a
class-specific average attention rollout.
2): For each class, an attention rollout matrix Ã of shape (Seq + 1 × Seq + 1) was generated. As
in the analysis in Appendix A.6.3.1, the first row Ã1 was extracted to evaluate how the class token
attends to other tokens.
3): We reshaped Ã1 (excluding the first element, which corresponds to the class token itself) into
a spatial-temporal score matrix Si,j ∈ Rchannel×number of patches. The weight scores per channel were
obtained by averaging Si,j over the number of patches.

Before visualizing the weight vector on a topographic map, we scaled the weights by first subtracting
the mean and then dividing by the maximum absolute value (Eq E.2), so the final weights were scaled
between -1 and 1.

w̄ = w − mean(w)

wscaled =
w̄

max(|w̄|)
(E.2)

A.7 PRE-TRAINING RESULTS

The pre-training learning curves of the small, base, and large models are shown in figure F.1. The
large model had the lowest loss at 100 epochs, followed by the small model, while the base model
had the largest loss. It can be observed that the small model had the smoothest learning curve, while
the large and base models both showed some instability issues.

Some examples of the reconstructed signals compared to the original ones are presented in
figures F.2 and F.3. It is noteworthy that the model was able to effectively reconstruct the
low-frequency trends, though it encountered difficulties in accurately reconstructing high-frequency
spikes. This could be attributed to the lower signal-to-noise ratio (SNR) of high-frequency EEG
components, making them more challenging to learn. Given that the passband used in this study
ranges from 1 to 64 Hz, future work could explore a wider frequency range to capture more
information from high-frequency components.

A.8 BENCHMARK RESULTS

The classification accuracy for each fold per MI dataset for the linear model, EEGNet, EEG
Conformer, ST-EEGFormer small (average token fine-tuning), base (average token fine-tuning),
large (average token fine-tuning), base-linear probing, and base-class token fine-tuning are listed
in tables G.1 to G.5 and G.7 to G.10, respectively.
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Figure F.1: Learning curves of the small, base, and large ST-EEG MAE models during the MAE pertaining
phase.

The benchmark results of the SSVEP dataset are listed in tables G.11 and G.12.

Table G.1: Linear model benchmark results. “-cv” represents the test accuracy on the cross-validation set, and
“-test” represents the test accuracy on the hidden test set. Model size is measured by the number of trainable
parameters, expressed in millions.

Fold Dataset

HGD-cv HGD-test BCI-Comp-
IV2a-cv

BCI-Comp-
IV2a-test

BCI-Comp-
IV2b-cv

BCI-Comp-
IV2b-test

Large-MI-
Classic-cv

Large-MI-
5F-cv

EEG-MI-
BCI-cv

0 0.6267 0.6049 0.4751 0.4255 0.6549 0.7018 0.4523 0.3176 0.6930
1 0.6089 0.5616 0.4387 0.4387 0.5992 0.6817 0.4433 0.3114 0.6740
2 0.6367 0.5897 0.3927 0.4437 0.6168 0.6908 0.4463 0.3181 0.6858
3 0.6566 0.6172 0.4483 0.4167 0.6182 0.7120 0.4399 0.3462 0.6844
4 0.6266 0.5924 0.4269 0.4286 0.6236 0.6982 0.4280 0.3066 0.6773
mean 0.6311 0.5931 0.4363 0.4306 0.6225 0.6969 0.4420 0.3200 0.6829
std 0.0174 0.0207 0.0302 0.0107 0.0203 0.0114 0.0090 0.0154 0.0075
model
size 0.001412 0.001412 0.000564 0.000564 0.000218 0.000218 0.000075 0.000653 0.000706

Table G.2: EEGNet benchmark results. “-cv” represents the test accuracy on the cross-validation set, and
“-test” represents the test accuracy on the hidden test set. Model size is measured by the number of trainable
parameters, expressed in millions.

Fold Dataset

HGD-cv HGD-test BCI-Comp-
IV2a-cv

BCI-Comp-
IV2a-test

BCI-Comp-
IV2b-cv

BCI-Comp-
IV2b-test

Large-MI-
Classic-cv

Large-MI-
5F-cv

EEG-MI-
BCI-cv

0 0.9009 0.8603 0.7222 0.6671 0.7541 0.8109 0.6429 0.4800 0.7771
1 0.9080 0.8580 0.6935 0.6543 0.7391 0.8049 0.6457 0.4732 0.7809
2 0.8831 0.8603 0.6686 0.6404 0.7649 0.8067 0.6477 0.4872 0.7652
3 0.8937 0.8536 0.6706 0.6393 0.7500 0.8144 0.6383 0.4722 0.7937
4 0.9070 0.8625 0.6628 0.6528 0.7378 0.8144 0.6476 0.4804 0.7894
mean 0.8985 0.8589 0.6835 0.6508 0.7492 0.8103 0.6444 0.4786 0.7813
std 0.0104 0.0034 0.0246 0.0114 0.0112 0.0045 0.0040 0.0061 0.0111
model
size 0.010388 0.010388 0.006996 0.006996 0.004338 0.004338 0.004406 0.004149 0.005778

A.9 PRACTICAL INFORMATION

The models were trained on high-performance computing clusters. Details on GPU usage and train-
ing time are provided in table H.1. Calibration and fine-tuning on downstream tasks were signifi-
cantly faster; for the large model, each iteration took approximately 90 seconds on a P100 GPU.
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Table G.3: EEG Conformer benchmark results. “-cv” represents the test accuracy on the cross-validation
set, and “-test” represents the test accuracy on the hidden test set. Model size is measured by the number of
trainable parameters, expressed in millions.

Fold Dataset

HGD-cv HGD-test BCI-Comp-
IV2a-cv

BCI-Comp-
IV2a-test

BCI-Comp-
IV2b-cv

BCI-Comp-
IV2b-test

Large-MI-
Classic-cv

Large-MI-
5F-cv

EEG-MI-
BCI-cv

0 0.9151 0.8857 0.6226 0.5729 0.7649 0.8222 0.7198 0.5313 0.8398
1 0.9080 0.8634 0.6054 0.5432 0.7962 0.8335 0.7228 0.5287 0.8165
2 0.9151 0.8875 0.5920 0.5575 0.7867 0.8359 0.7275 0.5297 0.8088
3 0.9151 0.8728 0.5828 0.5899 0.7704 0.8335 0.7183 0.5317 0.8232
4 0.9154 0.8821 0.5887 0.5671 0.7677 0.8303 0.7214 0.5216 0.8189
mean 0.9137 0.8783 0.5983 0.5661 0.7772 0.8311 0.7220 0.5286 0.8213
std 0.0032 0.0101 0.0159 0.0174 0.0136 0.0053 0.0035 0.0041 0.0117
model
size 1.000132 1.000132 0.830532 0.830532 0.800066 0.800066 0.265798 0.265798 0.713346

Table G.4: BIOT benchmark results. “-cv” represents the test accuracy on the cross-validation set, and “-
test” represents the test accuracy on the hidden test set. Model size is measured by the number of trainable
parameters, expressed in millions.

Fold Dataset

HGD-cv HGD-test BCI-Comp-
IV2a-cv

BCI-Comp-
IV2a-test

BCI-Comp-
IV2b-cv

BCI-Comp-
IV2b-test

Large-MI-
Classic-cv

Large-MI-
5F-cv

EEG-MI-
BCI-cv

0 0.6529 0.6382 NA NA NA NA 0.4677 0.2830 0.7374
1 0.6473 0.6099 NA NA NA NA 0.4413 0.2830 0.7254
2 0.6529 0.6006 NA NA NA NA 0.4536 0.2841 0.7013
3 0.6579 0.6006 NA NA NA NA 0.4462 0.3001 0.7344
4 0.6451 0.6123 NA NA NA NA 0.4683 0.2823 0.6923
mean 0.6512 0.6123 NA NA NA NA 0.4554 0.2865 0.7182
std 0.0051 0.0154 NA NA NA NA 0.0123 0.0076 0.0200
model
size 3.187716 3.187973 NA NA NA NA 3.18823 3.187973 3.187202

Table G.5: LaBraM benchmark results. “-cv” represents the test accuracy on the cross-validation set, and
“-test” represents the test accuracy on the hidden test set. Model size is measured by the number of trainable
parameters, expressed in millions.

Fold Dataset

HGD-cv HGD-test BCI-Comp-
IV2a-cv

BCI-Comp-
IV2a-test

BCI-Comp-
IV2b-cv

BCI-Comp-
IV2b-test

Large-MI-
Classic-cv

Large-MI-
5F-cv

EEG-MI-
BCI-cv

0 0.8898 0.8844 0.4023 0.3912 0.7419 0.8039 0.7684 0.4551 0.7467
1 0.9044 0.8821 0.3506 0.3908 0.7160 0.7898 0.7663 0.4588 0.7414
2 0.8906 0.9738 0.3812 0.3773 0.7378 0.7937 0.7611 0.4911 0.7210
3 0.8888 0.8884 0.3957 0.3912 0.7459 0.8011 0.7561 0.4324 0.7405
4 0.8883 0.8799 0.3762 0.3928 0.7296 0.8004 0.7634 0.4815 0.7319
Acc 0.8924 0.9017 0.3812 0.3887 0.7342 0.7977 0.7631 0.4638 0.7363
Std 0.0068 0.0404 0.0201 0.0064 0.0118 0.0058 0.0048 0.0232 0.0101
Model
Size 5.82554 5.82554 5.82554 5.82554 5.825138 5.825138 5.825942 5.825741 5.825138

Table G.6: ST-EEGFormer-small fine-tuning with average token benchmark results. “-cv” represents the test
accuracy on the cross-validation set, and “-test” represents the test accuracy on the hidden test set. Model size
is measured by the number of trainable parameters, expressed in millions.

Fold Dataset

HGD-cv HGD-test BCI-Comp-
IV2a-cv

BCI-Comp-
IV2a-test

BCI-Comp-
IV2b-cv

BCI-Comp-
IV2b-test

Large-MI-
Classic-cv

Large-MI-
5F-cv

EEG-MI-
BCI-cv

0 0.8828 0.8714 0.5130 0.5270 0.7326 0.7734 0.7735 0.4957 0.9261
1 0.8929 0.8643 0.5026 0.4954 0.7378 0.7749 0.7611 0.4913 0.8870
2 0.8789 0.8513 0.4688 0.5066 0.7865 0.7805 0.7563 0.5038 0.8918
3 0.9023 0.8442 0.5361 0.5220 0.7743 0.7962 0.7545 0.5128 0.9285
4 0.8828 0.8576 0.4904 0.5004 0.7309 0.7536 0.7682 0.4965 0.8930
mean 0.8879 0.8578 0.5022 0.5103 0.7524 0.7757 0.7627 0.5001 0.9053
std 0.0096 0.0107 0.0251 0.0137 0.0260 0.0153 0.0080 0.0084 0.0202
model
size 25.4008 25.4008 25.4008 25.4008 25.3998 25.3998 25.4019 25.4013 25.3998
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Table G.7: ST-EEGFormer-base fine-tuning with average token benchmark results. “-cv” represents the test
accuracy on the cross-validation set, and “-test” represents the test accuracy on the hidden test set. Model size
is measured by the number of trainable parameters, expressed in millions.

Fold Dataset

HGD-cv HGD-test BCI-Comp-
IV2a-cv

BCI-Comp-
IV2a-test

BCI-Comp-
IV2b-cv

BCI-Comp-
IV2b-test

Large-MI-
Classic-cv

Large-MI-
5F-cv

EEG-MI-
BCI-cv

0 0.8789 0.8388 0.5000 0.4857 0.7431 0.7649 0.7584 0.5007 0.9369
1 0.8895 0.8344 0.4792 0.4595 0.7483 0.7425 0.7538 0.4819 0.9387
2 0.8594 0.8299 0.4609 0.4653 0.7465 0.7557 0.7547 0.4778 0.9309
3 0.8744 0.8455 0.5072 0.4653 0.7604 0.7539 0.7604 0.4780 0.9435
4 0.8700 0.8388 0.4519 0.4846 0.6858 0.7408 0.7439 0.4792 0.9339
mean 0.8744 0.8375 0.4798 0.4721 0.7368 0.7516 0.7542 0.4832 0.9368
std 0.0111 0.0058 0.0239 0.0122 0.0293 0.0100 0.0064 0.0100 0.0048
model
size 85.3271 85.3271 85.3271 85.3271 85.3256 85.3256 85.3256 85.3279 85.3256

Table G.8: ST-EEGFormer-large fine-tuning with average token benchmark results. “-cv” represents the test
accuracy on the cross-validation set, and “-test” represents the test accuracy on the hidden test set. Model size
is measured by the number of trainable parameters, expressed in millions.

Fold Dataset

HGD-cv HGD-test BCI-Comp-
IV2a-cv

BCI-Comp-
IV2a-test

BCI-Comp-
IV2b-cv

BCI-Comp-
IV2b-test

Large-MI-
Classic-cv

Large-MI-
5F-cv

EEG-MI-
BCI-cv

0 0.9559 0.9362 0.6707 0.6408 0.7049 0.7376 0.8333 0.6502 0.9369
1 0.9487 0.9321 0.6274 0.6420 0.7135 0.7188 0.8333 0.6198 0.9243
2 0.9515 0.9366 0.6779 0.6478 0.6684 0.7308 0.8305 0.6250 0.9303
3 0.9548 0.9371 0.6947 0.6397 0.7378 0.7024 0.8270 0.6201 0.9321
4 0.9581 0.9353 0.6947 0.6381 0.6354 0.7184 0.8325 0.6219 0.9309
mean 0.9538 0.9354 0.6731 0.6417 0.7216 0.7213 0.8313 0.6274 0.9309
std 0.0038 0.0020 0.0276 0.0037 0.0403 0.0135 0.0027 0.0129 0.0045
model
size 302.6729 302.6729 302.6729 302.6729 302.6709 302.6709 302.675 302.6729 302.6709

Table G.9: ST-EEGFormer-base linear probing with average token benchmark results. “-cv” represents the
test accuracy on the cross-validation set, and “-test” represents the test accuracy on the hidden test set. Model
size is measured by the number of trainable parameters, expressed in millions.

Fold Dataset

HGD-cv HGD-test BCI-Comp-
IV2a-cv

BCI-Comp-
IV2a-test

BCI-Comp-
IV2b-cv

BCI-Comp-
IV2b-test

Large-MI-
Classic-cv

Large-MI-
5F-cv

EEG-MI-
BCI-cv

0 0.6138 0.5871 0.4453 0.4465 0.6927 0.7262 0.4346 0.2987 0.6761
1 0.6384 0.5795 0.4479 0.4418 0.6944 0.7234 0.4367 0.2802 0.6899
2 0.6412 0.5826 0.4219 0.4328 0.6997 0.7135 0.4367 0.2958 0.7067
3 0.6401 0.5540 0.4557 0.4449 0.7118 0.7205 0.4425 0.3003 0.6959
4 0.6150 0.5906 0.4036 0.4375 0.6806 0.7319 0.4426 0.2969 0.6959
mean 0.6297 0.5788 0.4349 0.4407 0.6958 0.7231 0.4386 0.2944 0.6929
std 0.0140 0.0145 0.0216 0.0056 0.0113 0.0068 0.0037 0.0081 0.0112
model
size 0.0031 0.0031 0.0031 0.0031 0.0015 0.0015 0.0046 0.0038 0.0015

Table G.10: ST-EEGFormer-base fine-tuning with the class token benchmark results. “-cv” represents the test
accuracy on the cross-validation set, and “-test” represents the test accuracy on the hidden test set. Model size
is measured by the number of trainable parameters, expressed in millions.

Fold Dataset

HGD-cv HGD-test BCI-Comp-
IV2a-cv

BCI-Comp-
IV2a-test

BCI-Comp-
IV2b-cv

BCI-Comp-
IV2b-test

Large-MI-
Classic-cv

Large-MI-
5F-cv

EEG-MI-
BCI-cv

0 0.8783 0.8183 0.4974 0.5063 0.7604 0.7724 0.7351 0.4663 0.9483
1 0.8767 0.8156 0.4844 0.4598 0.7378 0.7791 0.7297 0.4587 0.9267
2 0.8677 0.8210 0.4609 0.4520 0.7535 0.7727 0.7305 0.4611 0.9267
3 0.8599 0.8054 0.5078 0.4609 0.7448 0.7727 0.7244 0.4601 0.9447
4 0.8839 0.8241 0.4948 0.4965 0.7569 0.7802 0.7335 0.4622 0.9339
mean 0.8733 0.8169 0.4891 0.4751 0.7507 0.7754 0.7307 0.4619 0.9361
std 0.0095 0.0072 0.0178 0.0245 0.0092 0.0039 0.0041 0.0028 0.0101
model
size 85.3271 85.3271 85.3271 85.3271 85.3256 85.3256 85.3256 85.3279 85.3256
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Table G.11: SSVEP dataset benchmark results. Top-1 and top-2 classification accuracies from the leave-
one-session-out experiment using 1-s EEG segments are reported. For ST-EEGFormer, the default fine-tuning
strategy is end-to-end fine-tuning using the average token. Models denoted by “-cls” indicate end-to-end fine-
tuned models utilizing the class token.

Model Top-1 accuracy Top-2 accuracy
Fold 0 Fold 1 Fold 2 Fold 3 Mean Std Fold 0 Fold 1 Fold 2 Fold 3 Mean Std

Linear 0.0462 0.0429 0.0472 0.0496 0.0465 0.0028 0.0852 0.0841 0.0912 0.0903 0.0877 0.0036
EEGNet 0.4313 0.4269 0.4327 0.4392 0.4325 0.0051 0.6215 0.6172 0.6300 0.6318 0.6251 0.0070

EEG Conformer 0.3226 0.3225 0.3220 0.3454 0.3281 0.0115 0.5069 0.5118 0.5114 0.5373 0.5169 0.0138
BIOT 0.3074 0.3194 0.3238 0.3123 0.3157 0.0073 0.4362 0.4512 0.4621 0.4453 0.4487 0.0108

LaBraM 0.5209 0.5338 0.4853 0.5325 0.5181 0.0226 0.66742 0.6870 0.6392 0.6803 0.6685 0.0211
SSVEP DNN 0.3845 0.3824 0.3669 0.4075 0.3853 0.0168 0.5719 0.5598 0.5477 0.5993 0.5697 0.0221

ST-EEGFormer-small 0.3869 0.3855 0.3843 0.3928 0.3874 0.0038 0.5495 0.5462 0.5498 0.5571 0.5507 0.0046
ST-EEGFormer-base 0.2075 0.2168 0.2225 0.2267 0.2184 0.0083 0.3374 0.3439 0.3442 0.3494 0.3437 0.0049
ST-EEGFormer-large 0.5721 0.5881 0.5934 0.6046 0.5895 0.0135 0.7309 0.7445 0.7515 0.7639 0.7477 0.0138

ST-EEGFormer-base-cls 0.2469 0.2509 0.2488 0.2557 0.2506 0.0038 0.3803 0.3820 0.3896 0.3868 0.3847 0.0043

Table G.12: SSVEP dataset benchmark results. Top-1 and top-2 classification accuracies from the leave-
one-session-out experiment using 2-s EEG segments are reported. For ST-EEGFormer, the default fine-tuning
strategy is end-to-end fine-tuning using the average token. Models denoted by “-cls” indicate end-to-end fine-
tuned models utilizing the class token.

Model Top-1 accuracy Top-2 accuracy
Fold 0 Fold 1 Fold 2 Fold 3 Mean Std Fold 0 Fold 1 Fold 2 Fold 3 Mean Std

Linear 0.0427 0.0484 0.0452 0.0514 0.0469 0.0038 0.0841 0.0877 0.0884 0.0871 0.0868 0.0019
EEGNet 0.6101 0.6532 0.6444 0.6763 0.6460 0.0274 0.7582 0.7830 0.7905 0.8082 0.7850 0.0208

EEG Conformer 0.3906 0.4218 0.4292 0.4333 0.4187 0.0194 0.5862 0.6231 0.6221 0.6391 0.6176 0.0224
BIOT 0.4813 0.5007 0.4969 0.4892 0.4920 0.0086 0.6124 0.6363 0.6340 0.6244 0.6268 0.0109

LaBraM 0.68242 0.70823 0.71194 0.6956 0.6995 0.0134 0.79883 0.82653 0.8323 0.81552 0.8183 0.0147
SSVEP DNN 0.4460 0.4333 0.4199 0.4692 0.4421 0.0210 0.6115 0.5984 0.5709 0.6436 0.6061 0.0302

ST-EEGFormer-small 0.4409 0.4487 0.4271 0.4470 0.4409 0.0098 0.6011 0.6094 0.5960 0.6111 0.6044 0.0071
ST-EEGFormer-base 0.2137 0.2233 0.2093 0.2235 0.2174 0.0071 0.3392 0.3465 0.3391 0.3427 0.3419 0.0035
ST-EEGFormer-large 0.7908 0.7996 0.8176 0.8194 0.8068 0.0140 0.8742 0.8846 0.9040 0.9099 0.8932 0.0166

ST-EEGFormer-base-cls 0.2624 0.2689 0.2652 0.2714 0.2670 0.0040 0.3977 0.4033 0.4089 0.4065 0.4041 0.0048

Table H.1: Pre-training GPU usage, resource allocation, and training time

Model Num.cores GPU Num.GPUs GPU Mem
(Mb) Batch size training time

small 16 A100 40GB 2 35539 64 9.7 days
base 192 A100 80GB 16 67650 52 6.0 days
large 288 A100 80GB 24 69085 32 9.8 days
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Original MAE-small MAE-base MAE-large Original MAE-small MAE-base MAE-large

BCI Comp Iv2a Large MI Classic

Figure F.2: Random samples from the BCI-Comp-IV2a (Tangermann et al., 2012), Large-MI-Classic (Kaya
et al., 2018). For each example (4 rows), the following are shown, from left to right: the original signals
with masked segments highlighted in white and unmasked segments in grey; the reconstructed signals in red
produced by the MAE-Small model, overlaid on the original signals in white; the reconstructed signals in red
produced by the MAE-Base model, overlaid on the original signals in white; and the reconstructed signals in
red produced by the MAE-Large model, overlaid on the original signals in white. The corresponding mean
squared error (MSE) loss is displayed at the bottom of each figure.

A.10 MODEL INTERPRETABILITY

A.10.1 LEARNED EEG CHANNEL EMBEDDINGS

Figures I.1 to I.3 display the learned EEG channel embedding clusters of the ST-EEGFormer small,
base, and large respectively. In all three models, a consistent pattern emerged with two clusters.
With three clusters, while all models identified clusters in the frontal, left and right temporal, and
occipital regions, the small model grouped the left temporal and occipital regions, the base model
clustered the frontal and right temporal regions, and the large model grouped the occipital region
with the right temporal channels. With four clusters, the small and base models showed a similar
pattern, with symmetrical clusters in the frontal, left, right, and occipital regions, whereas the large
model tended to group central channels into a separate cluster. When six clusters were used, more
fine-grained regions were grouped.
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EEG MI BCI SSVEP

Original MAE-small MAE-base MAE-large Original MAE-small MAE-base MAE-large

Figure F.3: Random samples from the EEG-MI-BCI (Cho et al., 2017), and SSVEP (Liu et al., 2020) datasets.
For each example (4 rows), the following are shown, from left to right: the original signals with masked
segments highlighted in white and unmasked segments in grey; the reconstructed signals in red produced by
the MAE-Small model, overlaid on the original signals in white; the reconstructed signals in red produced by
the MAE-Base model, overlaid on the original signals in white; and the reconstructed signals in red produced
by the MAE-Large model, overlaid on the original signals in white. The corresponding mean squared error
(MSE) loss is displayed at the bottom of each figure.

A.10.2 VISUALIZATION OF ATTENTION WEIGHTS OF THE SEIZURE DATASET

Appendix figure I.4 shows the visualization of seizure classification attention weights using attention
rollout. Appendix figure I.5 shows the visualization of the top-2 class-specific seizure classification
attention weights using gradient attention rollout.

A.10.3 VISUALIZATION OF ATTENTION WEIGHTS OF THE MI BCI DATASET

Appendix figures I.6 and I.7 compare the learned spatial weights by different benchmark models on
the MI-BCI dataset and the Large-MI-5F dataset.

A.10.4 SPATIOTEMPORAL VISUALIZATION OF ATTENTION WEIGHTS

Figures I.8 and I.9 show a left-hand MI trial and a right-hand MI trial, respectively, with raw EEG
highlighted using attention rollout. The corresponding topographic maps at different time points
are also included. Both trials are from the EEG-MI-BCI dataset (Cho et al., 2017). Similarly,
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Figure I.1: Learned EEG channel embedding clusters of the pre-trained ST-EEGFormer small model. a):
Dendrogram showing the cosine similarity between all channel embeddings. b): Visualization of 2, 3, 4, and 6
clusters based on the dendrogram results, with channels belonging to the same cluster represented by the same
color.

ST-EEGFormer base
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Figure I.2: Learned EEG channel embedding clusters of the pre-trained ST-EEGFormer base model. a):
Dendrogram showing the cosine similarity between all channel embeddings. b): Visualization of 2, 3, 4, and 6
clusters based on the dendrogram results, with channels belonging to the same cluster represented by the same
color.

figure I.10 to I.14 show 5-finger MI trials from the thumb, to the pinky finger, respectively, from
the Large-MI-5F dateset (Kaya et al., 2018).
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Figure I.3: Learned EEG channel embedding clusters of the pre-trained ST-EEGFormer large model. a):
Dendrogram showing the cosine similarity between all channel embeddings. b): Visualization of 2, 3, 4, and 6
clusters based on the dendrogram results, with channels belonging to the same cluster represented by the same
color.
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a) Linear

b) EEGNet c) EEG Conformer

Left Right Left-Right Left Right Left-Right Left Right Left-Right Left Right Left-Right

M
ea

n
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ax
M

in

d) ST-EEGFormer: head fused e) ST-EEGFormer: per head

Figure I.6: Visualization of different models using topographic (topo) plots on the MI-BCI dataset (Cho et al.,
2017). a): Learned spatial filters of the linear model. b): Learned spatial filters of EEGNet. c): Learned spatial
filters of EEG Conformer. d): Averaged attention rollout weights per class, across all trials and sequences, from
the ST-EEGFormer model. The attention weights for left-hand motor imagery trials are in the first column,
right-hand motor imagery trials are in the middle column, and the difference between the two is in the third
column. The three rows represent different head fusion methods: mean fusion (top), max fusion (middle), and
min fusion (bottom). The discard ratio for attention rollout is set to 0.9. e): Each triplet visualizes the same
attention rollout as in d) but without head fusion.
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a) Linear

b) EEGNet

c) EEG Conformer

d) ST-EEGFormer: head fused

M
ea

n
M

ax
M

in

Thumb Index Middle Ring Pinkie

Thumb Index Middle Ring Pinkie Thumb Index Middle Ring Pinkie
e) ST-EEGFormer: per head

Figure I.7: Visualization of different models using topographic (topo) plots on the Large-MI-5F dataset (Kaya
et al., 2018). a): Learned spatial filters of the linear model. b): Learned spatial filters of EEGNet. c):
Learned spatial filters of EEG Conformer. d): Averaged attention rollout weights per class, across all trials
and sequences, from the ST-EEGFormer model. The attention weights for the five fingers are in a row. The
three rows represent different head fusion methods: mean fusion (top), max fusion (middle), and min fusion
(bottom). The discard ratio for attention rollout is set to 0.9. e): Each triplet visualizes the same attention
rollout as in d) but without head fusion.
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