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ABSTRACT

Self-supervised learning (SSL) has advanced significantly in visual representation
learning, yet large-scale evaluations of its adversarial robustness remain limited.
In this study, we evaluate the adversarial robustness of seven SSL models and
one supervised model across a range of tasks, including ImageNet classification,
transfer learning, segmentation, and detection. Our findings demonstrate that SSL
models generally exhibit superior robustness to adversarial attacks compared to
their supervised counterpart on ImageNet, with this advantage extending to trans-
fer learning in classification tasks. However, this robustness is less pronounced
in segmentation and detection tasks. We also explore the role of architectural
choices in model robustness, observing that their impact varies depending on the
SSL objective. Finally, we assess the effect of extended training durations on ad-
versarial robustness, finding that longer training may offer slight improvements
without compromising robustness. Our analysis highlights promising directions
for enhancing the adversarial robustness of visual self-supervised representation
systems in complex environments.

1 INTRODUCTION

Self-supervised learning (SSL) Balestriero et al. (2023) has emerged as a foundational approach
for training models with remarkable capabilities in areas such as language Touvron et al. (2023),
vision Oquab et al. (2024), and decision-making Kim et al. (2024). As these models become in-
creasingly widespread and integrated into various applications, ensuring their reliability and safety
has become a critical concern Bommasani et al. (2022); Bengio et al. (2024).

One particular challenge is the surprising vulnerability of deep learning models to adversarial ex-
amples, where slight input alterations can significantly impact model performance Szegedy et al.
(2013); Goodfellow et al. (2014). This phenomenon has sparked significant debate, seeking to un-
derstand and mitigate these vulnerabilities Fawzi et al. (2016); Tanay & Griffin (2016); Shafahi et al.
(2020); Schmidt et al. (2018); Wang et al. (2022; 2020); Wu et al. (2020); Bai et al. (2022). One
prominent theory Ilyas et al. (2019) suggests that adversarial examples arise from the model’s sen-
sitivity to non-robust features in the input data. According to this view, both robust (stable) and
non-robust (vulnerable) features contribute to classification, with adversarial attacks manipulating
the latter to cause misclassification. However, this theory, developed primarily in the context of
supervised learning, faces challenges when extended to other self-supervised paradigms. Li et al.
(2024) indicates that non-robust features are less effective in SSL methods such as contrastive learn-
ing Chen et al. (2020b), masked image modeling He et al. (2021), or diffusion models Ho et al.
(2020). This discrepancy suggests that non-robust features may lack the transferability across learn-
ing paradigms that robust or natural features possess. Thus, it becomes essential to investigate the
model once more, particularly in contexts like SSL, where there is a need for comprehensive research
on the adversarial robustness of SSL models.

Notwithstanding the progress made in understanding the adversarial robustness of SSL, particularly
contrastive learning, which we extensively discuss in section 2, several key questions remain unre-
solved. First, with the wide variety of self-supervised representations available, employing different
pretext tasks and data augmentations, which approaches demonstrate the greatest adversarial robust-
ness? This remains unclear since most methods don’t provide any results on adversarial robustness
unless it is a specific focus of the proposed approach. Secondly, robustness is typically assessed
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Figure 1: Performance scores for tasks such as ImageNet classification, transfer learning, segmen-
tation, and detection, are shown in relation to the percentage drop in adversarial robustness. The
shaded regions indicate the 95% confidence interval around the regression line.

by the model’s accuracy on the pretraining dataset. Still, its adversarial impact on other object
recognition datasets or downstream tasks like detection and segmentation has not been thoroughly
investigated Kowalczuk et al. (2024).

The choice of model architecture also raises questions about robustness. Standard vision SSL pre-
training typically utilizes a ResNet He et al. (2015) as the backbone, but more recently, larger and
more powerful models Chen* et al. (2021); Caron et al. (2021); Oquab et al. (2024) have been
developed using vision transformers Dosovitskiy et al. (2021). This leads to the question: Which
architecture demonstrates greater robustness under the same SSL objective and with comparable
parameter sizes?

Another factor to consider is the training duration. State-of-the-art SSL models are trained for longer
durations compared to their supervised counterparts. Several studies indicate that this extended
training consistently enhances performance, raising the question of whether this might compromise
the models’ adversarial robustness.

To address these questions and others, we carry out an extensive empirical benchmarking study on
the adversarial robustness of various pre-trained SSL models. Specifically, we assess seven different
SSL models, namely Barlow Twins Zbontar et al. (2021), BYOL Grill et al. (2020), DINO Caron
et al. (2021), MoCoV3 Chen* et al. (2021), SimCLR Chen et al. (2020b), SwAV Caron et al. (2020),
and VICReg Bardes et al. (2022), alongside a supervised model against over 20 distinct IAA (In-
stance Adversarial Attacks) Chakraborty et al. (2018) and UAP (Universal Adversarial Perturba-
tions) Chaubey et al. (2020) on ImageNet Russakovsky et al. (2015) and nine other image recog-
nition datasets Maji et al. (2013); Fei-Fei et al. (2004); Krause et al. (2013); Krizhevsky (2009);
Cimpoi et al. (2013); Nilsback & Zisserman (2008); Bossard et al. (2014); Parkhi et al. (2012).
Furthermore, we evaluate their adversarial robustness in segmentation Everingham et al. and de-
tection Dalal & Triggs (2005) tasks, with over five attacks to each. To guide our investigation,
we address the key questions outlined below, aiming to provide a comprehensive understanding of
adversarial robustness in SSL models.

1. How does the adversarial robustness of various SSL models compare to that of super-
vised models on the ImageNet?
We find that all SSL models demonstrate greater robustness than the supervised model,
both in terms of final performance and the drop in adversarial accuracy. Our results contrast
with the previous study Gupta et al. (2022) that suggests contrastive learning, particularly
SimCLR, lags behind supervised learning. While this holds true when considering only In-
stance Adversarial Attacks (IAA), including Universal Adversarial Perturbations (UAP) re-
veals that the supervised model performs exceptionally poorly. Notably, MoCoV3 exhibits
the highest robustness under IAA, despite using a contrastive objective. Furthermore, non-
contrastive methods generally outperform SimCLR and supervised learning, except DINO
under IAA, though all SSL models perform well against UAP. Our findings highlight that
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SSL models are indeed more robust than supervised ones, but the diversity of attacks is
crucial in assessing adversarial robustness.

2. Can SSL models retain robustness in downstream tasks like transfer learning, seg-
mentation, and detection?
While our robustness findings on ImageNet generalize to transfer learning in classification,
where SSL models not only show robustness but also significantly outperform supervised
models, we find that in segmentation and detection tasks, the models exhibit very similar
performance and robustness and do not reflect ImageNet results.

3. What architectures showcase better robustness under the same SSL objective and
comparable parameter sizes?
Interestingly, we observe that MoCoV3 shows reduced robustness with vision transform-
ers, whereas DINO’s robustness improves significantly, bringing it in line with other top-
performing SSL models when using ResNet which demonstrates that neither excels over
the other and significantly influenced by the SSL objective.

4. Does longer training in SSL models lead to weakening adversarial robustness?
We evaluate SwAV and MoCoV3, each with several checkpoints trained for different num-
bers of epochs, and find that training longer does not reduce adversarial performance; in
fact, it slightly enhances it in both cases.

2 RELATED WORK

Self Supervised Learning Self-supervised learning(SSL) seeks to extract meaningful and general
representations from unlabeled data by leveraging pretext tasks. These tasks can vary, such as pre-
dicting the next word Radford & Narasimhan (2018) or neighboring words Devlin et al. (2019) in
a text, reconstructing masked sections of an image He et al. (2021), or ensuring that two different
perspectives of the same image result in similar visual representations Chen et al. (2020b).

Avoiding collapse is a key challenge in SSL for computer vision, and various methods can be classi-
fied based on how they address this issue. Contrastive approaches like SimCLR Chen et al. (2020b)
and MoCo He et al. (2019); Chen et al. (2020c); Chen* et al. (2021) use an objective that pushes apart
representations of different inputs (negative samples) while bringing together those of the same input
(positive samples). The performance and scalability of these methods heavily depend on the number
and selection of negative samples. In another category, distillation methods such as BYOL Grill
et al. (2020), SimSiam Chen & He (2020), and DINO Caron et al. (2021), prevent collapse by intro-
ducing asymmetry between different encoder branches and employing algorithmic adjustments [26].
Additional SSL techniques, including DeepCluster Caron et al. (2019), SeLa Asano et al. (2020),
and SwAV Caron et al. (2020), enforce a clustering structure in the feature space to avoid constant
representations. Meanwhile, methods like Barlow Twins Zbontar et al. (2021), Whitening MSE (W-
MSE) Ermolov et al. (2021), VICReg Bardes et al. (2022), CorInfoMax Ozsoy et al. (2022) prevent
collapse by using feature decorrelation.

Adversarial Self-Supervised Learning While self-supervised learning (SSL) has outperformed su-
pervised training Chen et al. (2020b), numerous studies highlight that contrastive learning remains
susceptible to adversarial attacks when transferring the learned features to downstream classification
tasks Ho & Vasconcelos (2020); Kim et al. (2020). To improve the robustness of contrastive learning,
adversarial training has been adapted to self-supervised settings. In the absence of labels, adversarial
examples are generated by maximizing the contrastive loss with respect to all input samples. Several
prior works, such as ACL Jiang et al. (2020), RoCL Kim et al. (2020), and CLAE Ho & Vasconcelos
(2020), adopt this approach. Additionally, ACL incorporates the dual-BN technique Xie et al. (2020)
to further enhance performance. DeACL Zhang et al. (2022) introduces a two-stage approach, dis-
tilling a standard pretrained encoder through adversarial training. Nguyen et al. (2022) establishes
an upper bound on the adversarial loss of a prediction model, which is based on the learned rep-
resentations, for any downstream task. This upper bound is determined using the model’s loss on
clean data and a robustness regularization term, which helps make the prediction model more resis-
tant to adversarial attacks. Gupta et al. (2022) demonstrates that adversarial sensitivity stems from
the uniform distribution of data representations on a unit hypersphere in the representation space.
The presence of false negative pairs during training contributes to this effect, increasing the model’s
vulnerability to input perturbations.
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Figure 2: Averaged scores of SSL models on ImageNet across various attack types, including In-
stance Adversarial Attacks (IAA) and Universal Adversarial Perturbations (UAP). Adv Avg refers
to the average score across all attacks combined. The shaded regions indicate the 95% confidence
interval around the regression line.

Although self-supervised adversarial training has made progress, it still does not match the perfor-
mance of supervised methods. Luo et al. (2023) suggest that this shortfall is due to data augmenta-
tion and propose a dynamic data augmentation scheduler to achieve comparable results to supervised
training. Xu et al. (2023) efficiently apply ACL on the ImageNet Russakovsky et al. (2015) to obtain
a robust representation using robustness-aware core set selection.

Robustness of Self-Supervised Learning

Hendrycks et al. (2019) found that incorporating an extra self-supervised task in a multi-task frame-
work can enhance the adversarial robustness of supervised models. In a similar vein, Carmon
et al. (2022) discovered that using additional unlabeled data also strengthens the model’s adver-
sarial resilience. Furthermore, Chen et al. (2020a) created robust variants of pretext-based SSL
tasks, showing that their integration with robust fine-tuning leads to a notable increase in robustness
compared to standard adversarial training.

Chhipa et al. (2023) demonstrates a clear relationship between the performance of learned represen-
tations within SSL paradigms and the severity of distribution shifts and corruptions and highlights
the critical impact of distribution shifts and image corruptions on the performance and resilience of
SSL methods. Similarly, Zhong et al. (2022) conduct robustness tests to assess the behavioral dif-
ferences between contrastive and supervised learning under changes in downstream or pre-training
data distributions, while also exploring the effects of data augmentation and feature space charac-
teristics. Kowalczuk et al. (2024) conducts a comprehensive empirical evaluation of the adversarial
robustness of self-supervised vision encoders across multiple downstream tasks, revealing the need
for broader enhancements in encoder robustness.

3 EXPERIMENTAL SETUP

3.1 SSL MODELS

While numerous SSL approaches have been proposed Ozbulak et al. (2023), we focus exclusively on
the following well-known SSL models because of computational constraints: Barlow Twins Zbontar
et al. (2021), BYOL Grill et al. (2020), DINO Caron et al. (2021), MoCoV3 Chen* et al. (2021),
SimCLR Chen et al. (2020b), SwAV Caron et al. (2020), and VICReg Bardes et al. (2022). We
utilize ResNet50 He et al. (2015) models by default, as most models are trained exclusively in this
format. Our experiments utilize the best publicly available ImageNet checkpoints from these mod-
els. However, we carried out linear evaluation on Barlow Twins and VICReg since only the backbone
weights are available. We used the official repositories for these models for the linear evaluation,
but this led to a 2% decrease in performance Furthermore, we assess a supervised baseline for com-
parison, a standard pre-trained ResNet50 model obtained from the PyTorch library Paszke et al.
(2019). All models feature 23.5 million parameters in their backbones and were pre-trained on
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Table 1: Performance of various models on ImageNet, Transfer Learning, Segmentation, and De-
tection tasks, showing both original (Orig.) and adversarial (Adv.) score. The percentage drop in
performance from original to adversarial is indicated in red. More detailed results of ImageNet in
B.1, transfer learning in B.7, segmentation in B.2, and detection in B.3.

Model ImageNet Transfer Learning Segmentation Detection

Orig. Adv. Orig. Adv. Orig. Adv. Orig. Adv.

Barlow Twins 71.2 38.6 ↓46% 80.3 40.1 ↓50% 76.9 20.5 ↓73% 88.4 21.9 ↓75%

BYOL 74.6 45.9 ↓39% 78.7 47.3 ↓40% 76.7 19.0 ↓75% 87.4 17.3 ↓80%

DINO 75.3 35.1 ↓53% 80.7 35.6 ↓56% 77.0 18.9 ↓76% 87.6 22.0 ↓75%

MoCoV3 74.6 41.3 ↓45% 80.5 42.1 ↓47% 76.2 19.9 ↓74% 87.3 18.5 ↓79%

SimCLR 68.9 32.8↓52% 73.1 32.6 ↓55% 75.6 19.3 ↓74% 88.3 15.4 ↓82%

Supervised 76.1 31.8 ↓58% 74.6 26.6 ↓64% 74.2 16.5 ↓78% 86.1 18.0 ↓79%

SwAV 75.3 39.3 ↓48%. 79.2 35.7 ↓55% 76.5 19.2 ↓75% 86.6 20.5 ↓76%

VICReg 71.3 38.5 ↓46% 79.9 39.9 ↓50% 77.9 20.5 ↓74% 88.4 14.0 ↓84%

the ImageNet Russakovsky et al. (2015) training set, containing 1.28 million images, with only the
supervised baseline utilizing labels.

3.2 IMAGENET AND TRANSFER LEARNING

We use the benchmark suite introduced in the transfer learning study Huh et al. (2016), which
encompasses the target datasets like FGVC Aircraft Maji et al. (2013), Caltech-101 Fei-Fei et al.
(2004), Stanford Cars Krause et al. (2013), CIFAR 10 Krizhevsky (2009), CIFAR 100 Krizhevsky
(2009), DTD Cimpoi et al. (2013), Oxford 102 Flowers Cimpoi et al. (2013), and Food-101 Bossard
et al. (2014). We follow Ericsson et al. (2021) for linear evaluation of these datasets. We conducted
only linear evaluation because the backbone remains frozen during this process, allowing for a more
equitable comparison of objectives within this setup.

For both ImageNet and transfer learning, we apply the same adversarial techniques: Instance Ad-
versarial Attacks (IAA) and Universal Adversarial Perturbations (UAP). In brief, instance-based
methods generate unique perturbations for each individual image, while UAP involves creating a
single perturbation that applies across the entire dataset. Given the variety of attacks used, further
details are provided in Appendix A.1.1, A.1.2, and A.2.

3.3 SEGMENTATION

For segmentation, we use only the Pascal VOC 2012 dataset Everingham et al. and train a
DeepLabV3+ model Chen et al. (2018a). To conduct the attacks, we follow the setup from Rony
et al. (2023), utilizing Alma Rony et al. (2023), Asma Rony et al. (2023), DAG Xie et al. (2017),
DDN Rony et al. (2023), FGSM Goodfellow et al. (2014), FMN Pintor et al. (2021), and PGD Madry
et al. (2017). While our primary metric is the mean Intersection Over Union (IOU), we also report
the Attack Pixel Success Rate (APSR) introduced by Rony et al. (2023). Although our main focus
is on using a frozen backbone, we also perform training following the standard procedure.

3.4 DETECTION

For object detection, we utilized the INRIA Person Dalal & Triggs (2005) dataset and trained a Faster
R-CNN Ren et al. (2016). To perform adversarial attacks, we followed the setup described by Huang
et al. (2023), employing the Transfer-based Self-Ensemble Attack (T-SEA). The T-SEA attack can
be deployed using various methods and optimizers. In our experiments, we employed BIM Huang
et al. (2023), MIM Dong et al. (2018a), PGD Madry et al. (2017), and Optim Huang et al. (2023)
methods. Additionally, we explored simpler methods that rely on common optimizers, such as
Adam Kingma & Ba (2017), SGD, and Nesterov Nesterov (1983). Throughout our evaluation,
we report the mean average precision (mAP) scores as the primary performance metric. While
our primary focus was on employing a frozen backbone, we also conducted training experiments
following the standard training procedures for comparative analysis.
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4 RESULTS AND DISCUSSION

In this section, we present our experimental findings on ImageNet, transfer learning, and detection,
and discuss each in turn. While we address the results individually, the full detailed results are
provided in Appendix B.

4.1 IMAGENET

4.1.1 SSL VS SUPERVISED

Most robustness studies on contrastive learning Ho & Vasconcelos (2020); Kim et al. (2020); Jiang
et al. (2020); Xie et al. (2020); Zhang et al. (2022); Nguyen et al. (2022) focus on small datasets
like CIFAR10 Krizhevsky (2009) and primarily evaluate robustness using adversarial attacks such
as FGSM Goodfellow et al. (2014) and PGD Madry et al. (2017). While this is reasonable given
that many proposed defenses struggle to scale to larger datasets like ImageNet Russakovsky et al.
(2015) due to computational demands, the evaluation process still has a limitation: the infrequent
use of UAP. However, since our goal is to assess robustness rather than develop a new defense, this
limitation is less relevant for us. To achieve this, we evaluate the robustness of seven different SSL
models, as well as a supervised model, against both IAA and UAP.

Our findings, summarized in Tables 3.1 and B.1, show that all SSL models demonstrate higher
robustness compared to the supervised model, both in terms of final performance and the drop in
adversarial accuracy. This differs from Gupta et al. (2022) which suggests that contrastive learning
approaches, like SimCLR and MoCoV3, underperform relative to supervised learning. Their reason-
ing is that false negative pairs in contrastive SSL lead to instance-level uniformity, weakening class
separation in the feature space and making models more susceptible to adversarial attacks. They
also argue that SwAV maintains uniformity in its representation space, which similarly contributes
to this weakening. However, this doesn’t fully apply to MoCoV3, which shows the highest adver-
sarial robustness when paired with ResNet which we further discuss in section 4.1.2. It’s important
to note that their MoCoV3 assessment is based only on testing the ViT version, which they state
it performs worse than both DINO and the supervised model that are both ViT. Additionally, they
claim that non-contrastive methods like DINO and BYOL are not impacted by the same limitations
as contrastive learning. Yet, in our case, DINO with ResNet shows the weakest adversarial robust-
ness score on IAA, though their evaluation focuses on the ViT variant. We provide a more detailed
discussion of this in section 4.1.4.

Furthermore, the presence of UAP exposes significant weaknesses in the supervised model, as shown
in Figure 2, illustrating how it alters the robustness compared to IAA and influences the overall av-
erage. In contrast, SSL models like SimCLR and DINO, despite facing challenges, perform notably
better. Notably, SwAV, which ranks as the second-worst model in IAA, emerges as the second-best
overall and BYOL significantly outperforms other models on UAP and maintains its lead even when
combined with IAA. Overall, our findings emphasize that the diversity and type of attacks are critical
when evaluating the adversarial robustness of SSL models and comparing them against supervised
model. Moreover, the distinction between contrastive and non-contrastive approaches doesn’t fully
hold, as there is at least one model from each category that challenges the conclusion from Gupta
et al. (2022) that non-contrastive methods are more robust due to their exclusion of negative samples
in the loss function.

4.1.2 WHAT MAKES MOCOV3 ROBUST?

Although MoCoV3 and SimCLR both utilize the InfoNCE Sohn (2016); van den Oord et al. (2019)
objective, there is a notable difference in their adversarial robustness and baseline accuracy. To
understand this disparity, we assess the adversarial robustness of MoCoV1 He et al. (2019) and
MoCoV2 Chen et al. (2020c), aiming to identify the enhancements responsible for this effect. Full
results of MoCo experiments are in Appendix B.6.

A brief MoCo History. MoCoV1 introduced the idea of using a dynamic dictionary with a queue
and a momentum-updated encoder to improve the quality of learned representations. This approach
addresses the challenge of negative sample mining in contrastive learning by maintaining a large
and consistent set of negative samples over time. MoCoV2 builds on this by incorporating simple
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architectural improvements, such as using a multi-layer projection head and stronger data augmen-
tation techniques. MoCoV3 enhances MoCoV1 and V2 by removing the memory bank, as large
batch sizes reduce the need for it. Additionally, it incorporates a prediction head similar to those in
BYOL and SimSiam Chen & He (2020).

MoCoV2 achieves its most significant improvement over MoCoV1 primarily due to the introduction
of a non-linear projector, resulting in a 10% performance increase, while stronger augmentation
yields only a marginal benefit. We observe that MoCoV2 shows slight improvements over MoCoV1
in terms of IAA attacks, but it demonstrates significant advancements against UAP attacks. It could
be argued that this highlights the subpar representations learned in MoCoV1, rather than being
solely due to the projection head’s output. Ibrahim et al. (2024) suggest that a non-linear projector
isn’t always essential for acquiring effective representations. However, given that a strong model
without projections has yet to be established, it appears that projections are crucial for enhancing
both performance and adversarial robustness.

The enhancement in MoCoV3’s performance over MoCoV2 primarily stems from the introduction
of the prediction head in the query encoder and the use of a larger batch size. Unlike MoCoV2,
MoCoV3 shows significant improvements in both IAA and UAP, highlighting the prediction head’s
critical role in the robustness of MoCoV3. Momentum appears to be a common feature in robust
models such as MoCoV3 and BYOL, whereas MoCoV2 exhibits performance similar to SimCLR.

4.1.3 AUGMENTATIONS VS ALGORITHMS

Morningstar et al. (2024) demonstrate that, in their analysis of several popular SSL methods, many
algorithmic improvements, such as prediction networks or new loss functions, had minimal impact
on downstream task performance. In contrast, stronger augmentation techniques resulted in more
significant performance gains. Their findings challenge the view that SSL progress is primarily
driven by algorithmic advancements and suggest that augmentation diversity, along with data and
model scale, are more critical to recent advancements in SSL.

This complicates the comparison because we lack controlled baselines for the augmentations across
different objectives. For instance, when examining the robustness of MoCoV3 relative to V2, it
suggests the importance of the prediction head, but it’s important to acknowledge a slight variation
in augmentation, the impact of which is unclear. Despite this, the noticeable drop in accuracy across
objectives indicates that algorithmic innovations do play a role in adversarial robustness, as a higher
performance score doesn’t always equate to improved robustness on ImageNet.

4.1.4 RESNET VS VIT IN ADVERSARIAL ROBUSTNESS

While ViTs are generally seen as more robust than CNNs Naseer et al. (2020), Pinto et al. (2022);
Bai et al. (2021) demonstrate that with the right training methods, CNNs Lecun et al. (1998) can
achieve comparable robustness. Despite ViT’s success Dehghani et al. (2023); Dosovitskiy et al.
(2021); Chen* et al. (2021); Caron et al. (2021); Oquab et al. (2024), most SSL methods still use
ResNet for validation. For this reason, we focus on MoCoV3 and DINO, as they are the only
models that include ViT training. Additionally, we focus exclusively on the smaller versions of
these models, which have parameter counts comparable to ResNet50 and we share all results of ViT
vs ResNet in Appendix B.4. As previously noted in Section 4.1.1, there is a notable difference in
adversarial performance between ResNet and ViT. Specifically, MoCoV3 performs worse with ViT,
while DINO achieves strong results, though it shows weaker performance with ResNet.

There are two key algorithmic differences between MoCoV3 and DINO: the presence of a prediction
network and the structure of the SSL objective. MoCoV3 includes a prediction network, while DINO
does not, even though other distillation-based methods rely on it to avoid collapse. MoCoV3 uses the
standard InfoNCE objective, whereas DINO employs a distinct approach. DINO centers the student
network’s output using a running mean to minimize sensitivity to mini-batch size and applies a
softmax to discretize the representations smoothly. Balestriero et al. (2023) argue that the softmax-
based discretization in DINO functions as an online clustering mechanism, where the final layer
before the softmax contains clustering prototypes and their corresponding weights. As a result, the
output of the penultimate layer is clustered using the weights of the final layer. Furthermore, DINO
uses multi-crop augmentation similar to SwAV. With this, DINO becomes very similar to SwAV
which uses Sinkhorn-Knopp Cuturi (2013) clustering instead.
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We note that both SwAV and DINO demonstrate brittleness on IAA, with SwAV showing a marked
improvement over DINO on UAP. This suggests that clustering methods, whether implicit (DINO)
or explicit (SwAV), are fragile when applied to IAA, while DINO faces significant challenges with
UAP. Conversely, DINO-ViT emerges as the most robust model for IAA and also performs better
on UAP than ResNet. However, MoCo’s findings are contrary to those observed with DINO, com-
plicating the assessment of architectural robustness. It’s important to highlight that MoCo-ViT was
only trained for 300 epochs, whereas DINO was trained for 800 epochs. This discrepancy is notable,
as ViT is inherently computationally demanding, which may lead to brittleness due to undertraining.
Unfortunately, without multiple checkpoints for these models at various epochs, we are unable to
evaluate this further.

4.1.5 IMPACT OF TRAINING DURATION

SSL models tend to demonstrate better performance as training epochs increase Chen et al. (2020b);
Chen* et al. (2021); Caron et al. (2020). However, due to computational constraints, many models
are reported with different numbers of epochs. This prompts the question of whether longer training
durations enhance or reduce adversarial robustness. As noted earlier in section 4.1.4, ViT mod-
els do not have checkpoints at various epochs, so we instead focus on ResNet-based SSL models,
specifically SwAV and MoCoV3, which offer multiple checkpoints throughout the training process
and full results are in Appendix B.5

We find that both SwAV and MoCo show a modest improvement of 1% on IAA across various
epochs, which is minimal compared to the rise in original accuracy. In contrast, both methods exhibit
a significant increase in UAP after surpassing 100 epochs, with the 200 and 300-epoch checkpoints
in SwAV and MoCo aligning well with the best-performing models. Overall, our results suggest that
despite differences in reported checkpoints, robustness generally remains stable or slightly improves
during training, reinforcing our earlier analysis, even when models are trained for varying numbers
of epochs.

4.2 TRANSFER LEARNING

A key question is whether robustness on ImageNet correlates with robustness on other classification
datasets. We present the averaged total resılts in Table 3.1, along with combined scores that dif-
ferentiate by attack type, as well as individual dataset results in AppendixB.7. Our results show a
strong correlation, with a coefficient of 0.97. Notably, most models achieve similar transfer learn-
ing performance, except for Supervised and SimCLR, supporting the conclusions of Ericsson et al.
Despite a significant performance gap between SimCLR and Supervised on ImageNet, Supervised
not only ranks second-lowest but is also the least robust overall, indicating that SSL models better
transfer their robustness from ImageNet to other datasets.

On IAA, VICReg, Barlow Twins, BYOL, and MoCoV3 exhibit similar levels of robustness, while
DINO, SimCLR, SwAV, and supervised lag behind, though the performance gap is narrower com-
pared to ImageNet. The most striking differences emerge under UAP, where BYOL significantly
outperforms others, and Supervised performs poorly, with a 17% deficit compared to DINO and
SimCLR, the next least robust models. Overall, our findings confirm that robustness on ImageNet
translates well to other datasets.

4.3 SEGMENTATION AND DETECTION

Both the ImageNet and transfer learning experiments have so far focused on linear evaluation across
various datasets with a frozen backbone, which helps to capture differences between different SSL
models. However, tasks like segmentation and detection are inherently different from object recog-
nition, not just in nature but also in their experimental setups. These tasks require adding multiple
modules to adapt ResNet or other vision backbones, which leads to a substantial increase in the num-
ber of parameters, often nearly doubling the size of ResNet. Therefore, studying how different SSL
models perform in these alternative setups, beyond typical classification, becomes particularly in-
triguing. Segmentation and Detection results are in table 3.1 with ImageNet and Transfer Learning
and their individual scores are in Appendix B.2 and B.3 respectively.
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Segmentation

Unlike in classification, we didn’t observe a strong correlation between ImageNet robustness and
segmentation performance which. One notable point is that the supervised model performs slightly
worse than others, including in terms of robustness, though the differences are small, making it
difficult to draw definitive conclusions. A similar argument applies to the APSR scores. One pos-
sible explanation for this is that adversarial attacks may target the segmentation modules more than
the backbones, which make up a large portion of the overall model and could be enough to cause
incorrect predictions.

Since freezing the backbone isn’t the standard practice for training segmentation models, we also
tested SSL models with the backbone unfrozen. Interestingly, the clean scores were generally lower
than with a frozen backbone, except for the Supervised model. This is because our reproduction of
the Supervised model performed significantly worse than the available checkpoints, so we used the
standard segmentation model from MMSegmentation Contributors (2020). Despite this, our findings
were similar to the frozen backbone case, though SimCLR performed slightly worse. Overall, these
experiments suggest that the adversarial robustness of segmentation models has almost no reliance
on the backbone, meaning SSL models have virtually no effect on the final robustness. This contrasts
with object recognition, where we observe significant differences between different SSL objectives.

Detection

The observations for detection closely mirror those for segmentation, highlighting that robustness
in ImageNet does not necessarily indicate robustness in detection tasks. However, there are some
important distinctions from the segmentation analysis. With the frozen backbone, we find VICReg to
be the least robust, which strongly contradicts our earlier findings in recognition and segmentation.
In contrast, Barlow Twins continues to perform well and maintains a reasonable level of robustness
across various objectives. DINO and SwAV also show respectable performance, even though we
previously identified them as fragile on ImageNet. In standard model training with an unfrozen
backbone, the supervised model exhibits significantly lower robustness. In summary, the intricate
models designed for various tasks significantly influence performance, reducing the importance of
the backbone and making it more challenging to extend our analysis to these downstream tasks.

5 CONCLUSIONS

In essence, our exploration of the adversarial robustness of SSL models suggests that these mod-
els generally outperform their supervised counterparts, particularly in ImageNet classification and
transfer learning tasks. However, we recognize that their robustness is less pronounced in segmen-
tation and detection tasks. Our findings indicate that architectural choices can influence robustness,
though the extent of this impact varies depending on the SSL objective used. Additionally, while
extending training durations may provide slight improvements in robustness, the benefits appear
limited. Overall, this study highlights the need for further research into enhancing the adversar-
ial robustness of visual SSL systems. We hope our findings contribute to the ongoing dialogue in
this area and encourage future investigations aimed at developing more resilient models in complex
environments.
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Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You,
Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kait-
lyn Zhou, and Percy Liang. On the opportunities and risks of foundation models, 2022. URL
https://arxiv.org/abs/2108.07258.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative com-
ponents with random forests. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars
(eds.), Computer Vision – ECCV 2014, pp. 446–461, Cham, 2014. Springer International Publish-
ing. ISBN 978-3-319-10599-4.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
ieee symposium on security and privacy (sp), pp. 39–57. Ieee, 2017.

Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, Percy Liang, and John C. Duchi. Unlabeled data
improves adversarial robustness, 2022. URL https://arxiv.org/abs/1905.13736.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsu-
pervised learning of visual features, 2019. URL https://arxiv.org/abs/1807.05520.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Herv’e J’egou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. 2021 IEEE/CVF

10

https://api.semanticscholar.org/CorpusID:258298825
https://api.semanticscholar.org/CorpusID:258298825
https://arxiv.org/abs/2105.04906
http://dx.doi.org/10.1126/science.adn0117
http://dx.doi.org/10.1126/science.adn0117
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/1905.13736
https://arxiv.org/abs/1807.05520


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

International Conference on Computer Vision (ICCV), pp. 9630–9640, 2021. URL https:
//api.semanticscholar.org/CorpusID:233444273.

Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay, and Debdeep Mukhopad-
hyay. Adversarial attacks and defences: A survey, 2018. URL https://arxiv.org/abs/
1810.00069.

Ashutosh Chaubey, Nikhil Agrawal, Kavya Barnwal, Keerat K Guliani, and Pramod Mehta. Uni-
versal adversarial perturbations: A survey. arXiv preprint arXiv:2005.08087, 2020.

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-
decoder with atrous separable convolution for semantic image segmentation, 2018a. URL
https://arxiv.org/abs/1802.02611.

Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. Ead: elastic-net attacks
to deep neural networks via adversarial examples. In Proceedings of the AAAI conference on
artificial intelligence, volume 32, 2018b.

Tianlong Chen, Sijia Liu, Shiyu Chang, Yu Cheng, Lisa Amini, and Zhangyang Wang. Adversarial
robustness: From self-supervised pre-training to fine-tuning, 2020a. URL https://arxiv.
org/abs/2003.12862.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework
for contrastive learning of visual representations. ArXiv, abs/2002.05709, 2020b. URL https:
//api.semanticscholar.org/CorpusID:211096730.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15745–15753, 2020. URL
https://api.semanticscholar.org/CorpusID:227118869.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020c.

Xinlei Chen*, Saining Xie*, and Kaiming He. An empirical study of training self-supervised vision
transformers. arXiv preprint arXiv:2104.02057, 2021.

Prakash Chandra Chhipa, Johan Rodahl Holmgren, Kanjar De, Rajkumar Saini, and Marcus Li-
wicki. Can self-supervised representation learning methods withstand distribution shifts and cor-
ruptions?, 2023. URL https://arxiv.org/abs/2308.02525.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild, 2013. URL https://arxiv.org/abs/1311.3618.

MMSegmentation Contributors. MMSegmentation: Openmmlab semantic segmentation toolbox
and benchmark. https://github.com/open-mmlab/mmsegmentation, 2020.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In International conference on machine learning, pp. 2206–
2216. PMLR, 2020.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In
C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger (eds.), Ad-
vances in Neural Information Processing Systems, volume 26. Curran Associates, Inc.,
2013. URL https://proceedings.neurips.cc/paper_files/paper/2013/
file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf.

N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In 2005 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 1, pp.
886–893 vol. 1, 2005. doi: 10.1109/CVPR.2005.177.

11

https://api.semanticscholar.org/CorpusID:233444273
https://api.semanticscholar.org/CorpusID:233444273
https://arxiv.org/abs/1810.00069
https://arxiv.org/abs/1810.00069
https://arxiv.org/abs/1802.02611
https://arxiv.org/abs/2003.12862
https://arxiv.org/abs/2003.12862
https://api.semanticscholar.org/CorpusID:211096730
https://api.semanticscholar.org/CorpusID:211096730
https://api.semanticscholar.org/CorpusID:227118869
https://arxiv.org/abs/2308.02525
https://arxiv.org/abs/1311.3618
https://github.com/open-mmlab/mmsegmentation
https://proceedings.neurips.cc/paper_files/paper/2013/file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, Rodolphe Jenatton,
Lucas Beyer, Michael Tschannen, Anurag Arnab, Xiao Wang, Carlos Riquelme, Matthias Min-
derer, Joan Puigcerver, Utku Evci, Manoj Kumar, Sjoerd van Steenkiste, Gamaleldin F. Elsayed,
Aravindh Mahendran, Fisher Yu, Avital Oliver, Fantine Huot, Jasmijn Bastings, Mark Patrick
Collier, Alexey Gritsenko, Vighnesh Birodkar, Cristina Vasconcelos, Yi Tay, Thomas Mensink,
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A APPENDIX

A.1 ADVERSARIAL ATTACKS

A.1.1 INSTANCE ADVERSARIAL ATTACKS

Instance adversarial methods, or per-instance generation, involve crafting distinct perturbations for
each individual image within the dataset on which the model has been trained or fine-tuned. The
generation of these perturbations relies on various techniques, which are determined by the specific
goals of the attack, the level of access granted to the model—such as full access to model weights,
predictions alone, or prediction scores (logits)—and the distance metrics employed. While multiple
classification schemes for adversarial attacks exist, we adopt the widely accepted taxonomy for
clarity and consistency.

White-box attacks, in this context, presume complete access to the model, including its architec-
ture and parameters. The primary approach utilizes the gradients derived from the loss function to
generate adversarial perturbations. These perturbations are then applied to the image within the con-
straints of specific distance metrics, such as l0, l1, l2, or l∞. Specifically, l0 measures the number
of altered pixels, l1 quantifies the absolute difference between images, l2 computes the Euclidean
distance, and l∞ captures the magnitude of the largest perturbation applied to any pixel.

Gradient-based methods exploit the gradient of the neural network’s loss function with respect to
the input data, strategically altering the input to increase the loss and induce misclassification. The
foundational work in this domain is attributed to the Fast Gradient Sign Method (FGSM) Good-
fellow et al. (2014), which represents the first successful application of gradient-based adversarial
perturbations. Over time, iterative approaches such as I-FGSM/BIM Kurakin et al. (2018) and
momentum-based techniques like MI-FGSM Dong et al. (2018b) have been introduced to enhance
the effectiveness of these perturbations, particularly for classification tasks. However, these meth-
ods often exhibit limited transferability to other models, a key challenge in black-box settings Madry
et al. (2017); Dong et al. (2019).

Some studies suggest that sharp curvatures around data points can obscure the true direction of
steepest ascent, reducing the success of cross-model transferability in adversarial attacks. To address
this issue, methods such as the R-FGSM algorithm introduce random perturbations to the single-step
FGSM algorithm, allowing a small step in the loss space to discover more generalizable and robust
perturbations that may effectively transfer to other models Tramèr et al. (2017).

Building on techniques designed to improve model generalization, several methods have been devel-
oped specifically to enhance cross-model transferability. For instance, Lin et al. (2019) introduces
NI-FGSM and SINI-FGSM, which leverage Nesterov momentum to avoid suboptimal local maxima.
The look-ahead property of Nesterov momentum, combined with the ”scale-invariant” property of
deep neural networks (as detailed in their paper), helps mimic the effect of an ensemble model by
using loss-preserving data augmentation. Similarly, Wang & He (2021) establishes a connection be-
tween model generalization and the cross-model transferability of adversarial examples, proposing
VMI-FGSM, a more stable update algorithm. VMI-FGSM calculates the variance of the gradient by
sampling multiple examples from the neighborhood of a data point, refining the gradient to produce
more stable perturbations. This method can be extended to more complex attacks, as demonstrated
with VNI-FGSM in the same work Wang & He (2021). Likewise, PI-FGSM and PI-FGSM++ mod-
ify the gradient update rule by focusing on patch-based rather than pixel-wise perturbations Gao
et al. (2020a;b). DI-FGSM, as discussed in relation to SINI-FGSM Lin et al. (2019), employs ran-
dom padding and resizing operations to enhance data input for auxiliary models Xie et al. (2019).
TAP also tries to increase cross-model transferability by introducing distance maximization between
intermediate feature maps of the adversarial and benign datapoints. It also regularize the images to
reduce high frequency perturbations as they claim Convolution may act as a smoother, and it will
increase the black-box transferability performance of perturbation Zhou et al. (2018).

Improving the transferability of per-instance attacks can, however, lead to reduced effectiveness
against auxiliary models, and vice-versa Tramèr et al. (2017); Gao et al. (2020a). Therefore, various
strategies have been proposed to optimize attack performance based on the level of access to the
target model.
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In contrast, optimization-based attacks approach the generation of adversarial examples as an op-
timization problem, where a specific objective is minimized subject to given constraints. While
gradient-based methods update images directly using gradient information and typically rely on the
l∞ norm as a boundary, optimization-based methods employ a more formal problem definition that
allows for the use of advanced optimization techniques such as L-BFGS. Consequently, the l2 norm
is frequently utilized in these methods alongside other l norms.

The first demonstration of adversarial examples by Szegedy et al. (2013) employed the L-BFGS
method to identify images within an l2 ball that were visually similar to the original image. Similarly,
Carlini & Wagner (2017) modified the original minimization problem—focusing on minimizing
the distance between adversarial examples and the original data points across several l norms—to
develop the CW attack, one of the most prominent adversarial attack methods, which also leverages
L-BFGS for optimization.

On the other hand, Projected Gradient Descent (PGD) employs an iterative approach, projecting
updates back onto the l∞ ball of the original data point to generate adversarial perturbations Madry
et al. (2017). The key distinction between PGD and other iterative gradient-based methods, such as
FGSM variants, lies in the fact that PGD treats each iteration as a solution to the same optimization
problem. PGD ensures that each iterative step remains within the neighborhood of the original data
point, while iterative FGSM methods use the newly generated steps to continue further processing.

The EADL1 and EADEN attacks adopt a similar approach to the CW attack but introduce a mod-
ification to the loss function by incorporating an additional l1 distance term in the minimization
problem. The l1 distance, which measures the total variation of the perturbation, promotes spar-
sity in the adversarial perturbation. While sparsity is not widely employed in adversarial example
generation, it is commonly used in image denoising and restoration techniques. These methods uti-
lize the Iterative Shrinkage-Thresholding Algorithm (ISTA) to solve the corresponding optimization
problem Chen et al. (2018b).

As with gradient-based methods like FGSM, several improvements have been made to optimization-
based methods to address specific needs, with a particular focus on enhancing PGD Madry et al.
(2017). For example, PGD-l2 incorporates the l2 norm instead of the l∞ norm to better fool tar-
get models Madry et al. (2017), while TPGD replaces the Cross-Entropy loss in PGD with KL-
Divergence to optimize the perturbation process Zhang et al. (2019). Additionally, Auto-PGD mod-
ifies the step size in PGD within a budget-aware context, arguing that the original PGD method does
not account for trends that lead to more effective adversarial perturbations Croce & Hein (2020).

The Jitter attack introduces a novel objective function for adversarial perturbation generation, de-
parting from the conventional Cross-Entropy objective. The study suggests that many adversarial
attacks predominantly fool a limited set of classes rather than broadly deceiving the entire model.
The proposed objective seeks to enhance the fooling rate across a wider range of classes, aiming for
more generalized misclassification Schwinn et al. (2023).

Additionally, there are gradient-free approaches that remain relatively underexplored. For instance,
the Simultaneous Perturbation Stochastic Approximation (SPSA) method estimates gradients by
perturbing the input in random directions, enabling the approximation of gradients for objectives
that cannot be differentiated analytically. This approach offers deeper insights into the model’s
behavior, with the paper also claiming that the stochastic perturbations introduced by sampling allow
algorithms to converge toward a global minimum Uesato et al. (2018).

While white-box attacks exploit full access to the model, this is often not a realistic scenario. In
many cases, model weights are not shared, or gradient information is unavailable. Although ef-
forts have been made to enhance cross-model transferability, as discussed previously, there are also
specific attack schemes designed to target models in black-box settings. For example, the Square
Attack leverages random search combined with model scores—probability distributions over class
predictions—to generate perturbations. In essence, the algorithm makes random modifications to
the input data and retains changes that yield progress toward the objective function Andriushchenko
et al. (2020).

Among black-box attacks, some methods focus on l0 norm-based perturbations. Pixle, for instance,
is a black-box attack that utilizes random search and the l0 norm, altering a small number of pixels
to generate adversarial examples Pomponi et al. (2022). On a more constrained scale, the OnePixel
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attack modifies only a single pixel, maintaining an l0 norm of 0, and despite its simplicity, it is
capable of fooling models to some extent. However, it is less effective than other methods due to
its significant restrictions. This raises important questions about our understanding of Deep Neural
Networks and their vulnerability to minimal perturbations Su et al. (2019).

A.1.2 UNIVERSAL ADVERSARIAL PERTURBATIONS

The Universal Adversary (UAP) represents a singular perturbation crafted for an entire image
dataset. The rationale behind UAP is to identify a perturbation, subject to specified constraints,
capable of deceiving the model across a majority of images in the dataset, as initially demonstrated
by Moosavi-Dezfooli et al. (2017), which utilizes DeepFool to create an average perturbation for the
entire dataset. It has been empirically observed that universal adversaries exhibit heightened trans-
ferability across diverse models and datasets compared to instance methods. UAP’s are important as
they are independent from the input - to some extend - they reveal intrinsic chracteristics of models
of interest Chaubey et al. (2020); Ye et al. (2023).

Two primary techniques are employed for crafting UAPs: (1) generation with generative models,
as evidenced by works such as Hayes & Danezis (2018); Mopuri et al. (2018b), and (2) learning a
perturbation designed to disrupt the representations acquired by the models.

UAPs can be further categorized into two classes: data-dependent attacks, which require a com-
prehensive and general dataset that the attacker seeks to compromise (e.g., ImageNet), and data-
independent attacks, which do not rely on any specific dataset.

The first example of UAP, referred to here as UAP-DeepFool (to avoid confusion with the broader
class of UAP attacks), utilizes the DeepFool per-instance adversarial attack method which computes
perturbations by manipulating the geometry of decision boundaries. UAP-DeepFool iteratively de-
termines the worst-case direction for each data point, and aggregating the results into a universal
perturbation - if it is succesfull -, which is then projected onto an l∞ ball Moosavi-Dezfooli et al.
(2017). Following this work, UAPEPGD replaces the DeepFool approach with Projected Gradi-
ent Descent (PGD), an optimization-based adversarial attack method, to craft stronger adversarial
examples Deng & Karam (2020).

ASV - to our best knowledge - is the first UAP that does not require label information, relying solely
on images to generate UAPs. Adversarial Semantic Vectors (ASVs) represent one of the first UAP
methods that do not require label information, relying solely on images to generate UAPs. The study
suggests that since adversarial perturbations typically exhibit small magnitudes, perturbations in the
non-linear maps computed by deep neural networks (DNNs) can be approximated using the Jaco-
bian matrix Khrulkov & Oseledets (2018). Similarly, the STD (Dispersion Reduction) attack seeks
to reduce the ”contrast” of the internal feature map by targeting the lower layers of Convolutional
Neural Networks (CNNs). These lower layers typically detect simple image features such as edges
and textures, which are common across datasets and CNN models. By reducing the contrast (mea-
sured as the standard deviation of feature maps), the resulting images become indistinguishable to
the model Lu et al. (2020).

Self-Supervised Perturbation (SSP) takes a different approach, arguing that adversarial examples
generated through gradients using labels fail to capture intrinsic properties of models. SSP aims
to maximize ”feature distortion,” the changes in the network’s internal representation caused by
adversarial examples compared to the original image, in order to fool subsequent layers in the model
Naseer et al. (2020).

FG-UAP builds upon this by exploiting a phenomenon referred to as ”Neural Collapse,” where, as
noted, different class activations converge to class means, allowing a single common perturbation to
fool the model across a wide range of images. This collapse happens primarily in the final layers of
the model, and FG-UAP targets these regions to generate effective UAPs Ye et al. (2023).

Another label-independent UAP method, L4A, focuses on the success of adversarial perturbations
during cross-finetuning. L4A targets the lower layers of models, which remain more stable during
finetuning (as they detect simple features), and utilizes the Frobenius norm for optimization, with
variants such as L4A-base, L4A-fuse, and L4A-ugs. L4A-base attacks the lowest layer, L4A-fuse
attacks lowest 2 layers and L4A-ugs uses samples from a Gaussian distribution where mean and
standard deviation is in close range of downstream task Ban & Dong (2022).
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Data-independent UAP methods do not utilize any dataset for adversarial perturbation generation,
instead focusing on the intrinsic characteristics of models. Fast Feature Fool (FFF) was the first ad-
versarial attack method that did not use a dataset. It aims to disrupt the features learned at individual
CNN layers, proposing that non-discriminative activations can lead to eventual misclassification.
FFF over-saturates the learned features at multiple layers, misleading subsequent layers in the net-
work Mopuri et al. (2017). Following that work GD-UAP, changes the objective a little bit and add
other variations such as ”mean-std” and ”sampled” versions to improve perturbation performance.
The ”mean-std” variant uses the mean and standard deviation of the test dataset to better align per-
turbations with dataset characteristics to prevent perturbation dataset mismatch, while the ”sampled”
version employs a small sample from the dataset to capture its statistics and semantics Mopuri et al.
(2018a). In our work, we have also integrated ”mean-std” and ”one-sample” versions of GD-UAP
to FFF, since they are highlt similar as GD-UAP is a follow-up work FFF. PD-UAP, another data-
independent method, focuses on predictive uncertainty rather than any specific image data, aligning
perturbations with task-specific objectives Mopuri et al. (2017).

To accommodate both Vision Transformers (ViTs) and ResNets, we have adapted some of these
attacks, originally designed for CNNs, to work with ViTs. For low-level layer attacks, we applied
them to the first few blocks of the ViT model, following methods like SSP and L4A. For FFF, which
typically uses mean of ReLU activations and a logarithmic operation, we modified the procedure
to suit ViTs, which employ GeLU activations (capable of taking values below zero), by applying
an absolute value operator between the mean and logarithmic functions. In conducting these ex-
periments, we strove to maintain fair comparisons and minimized the introduction of tweaks to the
original methodologies.

A.2 FGSM AND PGD VERSIONS

Attack Version Attack Type ε Step Count Norm
FGSM1 FGSM 0.25 - ∞
FGSM2 FGSM 1 - ∞
PGD1 PGD 0.25 20 ∞
PGD2 PGD 1 20 ∞
PGD3 PGD 0.25 40 ∞
PGD4 PGD 1 40 ∞
PGD5 PGD 0.5 40 ∥ · ∥2

Table 2: Hyperparameters of the different FGSM and PGD attacks that we use in ImageNet and
transfer learning.
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B FULL RESULTS

B.1 IMAGENET

Table 3: This table presents the results of various instance and universal adversarial perturbation
(UAP) attacks on the Imagenet-1k dataset, with all UAP attack names in italics. Different configu-
rations of FGSM and PGD are denoted, such as FGSM1 and PGD1. Average results for universal
adversarial perturbations (UAP Avg.), instance adversarial attacks (IAA Avg.), and overall adversar-
ial performance (Adv Avg.) are reported at the bottom, including percentage drops relative to clean
accuracy.

Barlow BYOL DINO MoCoV3 SimCLR Supervised SwAV VICReg

FGSM1 42.41 39.41 24.68 42.67 24.29 38.83 24.71 42.42
FGSM2 18.11 13.47 5.66 15.53 8.84 12.18 6.35 18.11
PGD1 42.38 39.63 25.65 42.39 26.6 35.26 26.48 42.41
PGD2 1.48 0.65 0.18 1.06 0.25 0.37 0.18 1.5
PGD3 42.6 39.82 25.85 42.56 26.79 35.39 26.73 42.6
PGD4 1.19 0.5 0.14 0.82 0.2 0.28 0.14 1.2
PGD5 5.18 3.44 0.67 4.79 0.9 1.9 0.69 5.15
DIFGSM 52 52.71 41.12 54.09 42.57 51.43 45.65 52.49
CW 0.18 0.02 0 0.02 0.02 0.02 0 0.19
Jitter 59.83 61.92 60.26 62.47 56.4 62.75 61.16 59.84
TIFGSM 61.04 62.27 56.98 61.47 55.63 62.16 60.07 59.91
PIFGSM 34.38 29.83 14.54 34.1 13.34 28.64 14.12 34.43
EADEN 0 0 0 0 0 0 0 0
OnePixel 69.34 72.5 72.83 72.64 66.47 73.27 72.73 69.38
Pixle 25.22 28.67 19.41 31.45 21.75 23.21 16.95 25.23
SPSA 66.59 69.59 68.11 69.93 63.01 69.48 68.61 66.63
Square 4.44 2.62 1.3 3.15 4.22 0.87 1.99 4.49
TAP 70.31 74.36 73.78 73.72 68.1 68.98 75.05 70.33
ASV 44.9 60.98 45.08 50.21 62.67 32.83 53.66 44.86
FFF (no-data) 45.14 60.45 43.58 49.63 43.72 31.54 51.88 45.02
FFF (mean-std) 44.64 60.7 43.58 49.01 48.75 32.69 53.4 44.69
FFF (one-sample) 45 60.88 44.5 49.9 34.38 32.15 53.33 44.97
FG-UAP 42.26 56.13 37.41 45.28 3.2 27.53 44.59 42.2
GD-UAP (no-data) 45.04 60.66 43.71 49.41 32.91 32.05 52.19 45.01
GD-UAP (mean-std) 44.69 60.6 43.78 49.33 55.8 32.72 53.11 44.8
GD-UAP (one-sample) 45.1 60.93 44.59 49.98 40.16 32.32 53.4 45.12
L4A-base 44.15 60.63 44.61 49.51 9.87 32.99 49.89 44.11
L4A-fuse 44.21 60.42 44.64 49.48 9.22 32.99 49.69 44.07
L4A-ugs 44.97 61.01 45.25 49.83 56.46 32.51 53.37 44.89
PD-UAP 45.13 61.18 44.14 50.05 61 32.66 53.45 45.1
SSP 43.15 59.734 43.09 47.61 37.42 29.71 51.21 43.07
STD 44.43 60.78 44.16 49.4 51.57 32.49 53.18 44.4
UAP (DeepFool) 45.43 61.14 45.43 50.43 24.35 33.48 53.86 45.44
UAPEPGD 45.79 61.37 45.54 50.67 64.28 33.87 54.26 45.61
Clean Accuracy 71.2 74.57 75.28 74.57 68.90 76.13 75.27 71.26
IAA Avg. 33.14 ↓54% 32.86↓56% 27.28↓64% 34.04↓54% 26.63↓61% 31.39↓59% 27.87↓63% 33.12↓54%
UAP Avg. 44.62 ↓37% 60.47↓19% 43.94↓42% 49.35↓34% 39.73↓42% 32.15↓58% 52.15↓31% 44.59↓37%
Adv Avg. 38.55 ↓46% 45.85↓39% 35.13↓53% 41.26↓45% 32.80↓52% 31.75↓58% 39.29↓48% 38.52↓46%
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B.2 SEGMENTATION

Metric Barlow BYOL DINO MocoV3 SimCLR Supervised SwAV VICReg
Alma

IOU (↑) 0.35 0.33 0.34 0.4 0.31 0.26 0.38 0.39
APSR (↓) 99.02 99.01 99.02 98.91 99 99.01 99.01 98.99

Asma
IOU (↑) 49.4 63.39 61.36 61.57 32.06 77.3 62.12 50.38
APSR (↓) 15.39 10.95 11.38 12.18 22.78 5.29 11.56 14.48

DAG
IOU (↑) 0.02 0.02 0.02 0.02 0.03 0.05 0.02 0.02
APSR (↓) 99.87 99.91 99.89 99.88 99.83 99.74 99.89 99.89

DDN
IOU (↑) 5.62 4.64 5.11 7.16 1.67 1.52 6.91 4.94
APSR (↓) 89.66 92.6 92.75 88.01 97.24 88.56 90.77 87.23

FGSM
IOU (↑) 30.35 29.28 30.41 29.43 32.15 38.31 29.4 29.84
APSR (↓) 35.91 45.62 39.66 41.71 33.55 21.36 42.94 39.31

FMN
IOU (↑) 5.4 5.29 4.86 5.19 5.07 2.74 4.9 6.2
APSR (↓) 91.18 92.25 91.02 91.42 89.88 93.53 91.94 89.99

PGD
IOU (↑) 12.67 13.16 12.75 13.06 12.88 10.92 12.98 13.04
APSR (↓) 70.07 82 77 79.27 71.15 67.4 77.31 72.43

Clean IOU (↑) 72.63 70.37 71.65 71.25 71.96 77.35 70.8 70.33
Clean APSR (↓) 7.18 8.29 7.64 7.83 7.2 5.27 8.21 8.01
Adversarial IOU (↑) 14.83↓80% 16.59↓78% 16.41↓77% 16.69↓77% 12.02↓83% 18.73↓76% 16.67↓77% 14.97↓79%

Adversarial APSR (↓) 71.59↑64% 74.62 ↑66% 72.96 ↑65% 73.05↑65% 73.35↑66% 67.84↑64% 73.35↑65% 71.76↑64%

Table 4: Performance metrics (IOU and APSR) for various self-supervised and supervised models
under different adversarial attacks, using unfrozen backbones. Clean and adversarial scores are
reported, with percentage changes in adversarial performance noted. Higher IOU and lower APSR
indicate better results

Metric Barlow BYOL DINO MocoV3 SimCLR Supervised SwAV VICReg
Alma

IOU (↑) 0.39 0.31 0.37 0.37 0.55 0.28 0.35 0.41
APSR (↓) 99.02 99.02 99.02 99.02 98.45 99.01 99.02 99.02

Asma
IOU (↑) 76.06 72.84 75.32 72.84 70.42 69.84 74.09 76.74
APSR (↓) 6.01 7.23 6.14 7.58 5.98 8.18 6.75 5.98

DAG
IOU (↑) 0.03 0.04 0.02 0.04 0.04 0.02 0.03 0.03
APSR (↓) 99.90 99.87 99.89 99.87 99.82 99.87 99.88 99.89

DDN
IOU (↑) 10.81 9.76 6.91 10.74 6.62 2.95 8.57 11.12
APSR (↓) 79.62 75.93 82.58 78.71 75.20 87.30 83.48 80.41

FGSM
IOU (↑) 35.16 31.90 30.88 35.18 36.25 27.70 32.37 34.99
APSR (↓) 33.29 33.63 36.12 33.63 27.35 36.99 36.10 33.69

FMN
IOU (↑) 6.63 6.23 6.22 6.42 8.92 4.23 6.48 6.56
APSR (↓) 87.73 87.10 87.12 87.70 81.28 91.30 87.23 87.23

PGD
IOU (↑) 14.13 12.12 12.12 13.25 12.23 10.49 12.31 13.51
APSR (↓) 76.16 75.49 75.49 76.60 73.38 78.37 80.82 77.62

Clean IOU (↑) 76.90 76.69 77.01 76.19 75.62 74.20 76.54 77.89
Clean APSR (↓) 5.75 5.74 5.38 6.01 5.98 6.35 5.79 5.48
Adversarial IOU (↑) 20.46↓73% 19.03↓75% 18.83↓76% 19.83↓74% 19.29↓74% 16.50 ↓78% 19.17 ↓75% 20.48↓74%

Adversarial APSR (↓) 68.82↑63% 68.32↑63% 69.48 ↑64% 69.02↑63% 65.92 ↑60% 71.57 ↑65% 70.47↑65% 69.12↑64%

Table 5: Performance metrics (IOU and APSR) for various self-supervised and supervised models
under different adversarial attacks, using frozen backbones. Clean and adversarial scores are re-
ported, with percentage changes in adversarial performance noted. Higher IOU and lower APSR
indicate better results.
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B.3 DETECTION

Table 6: Adversarial Attack Results on Detection using Unfrozen SSL and Supervised Models as
backbones. The table presents performance metrics under clean and adversarial conditions for var-
ious attack types (Optim, BIM, MIM, SGD, PGD, Optim-Adam, Optim-Nesterov). The last two
rows display clean mean Average Precision (mAP) and the average performance under adversarial
attacks, with the percentage decrease in performance highlighted in red

Barlow BYOL DINO MocoV3 SimCLR Supervised SwAV VICReg

Clean 89.14 88.98 89.74 89.74 89.01 86.45 88.60 89.45
Optim 6.18 1.68 1.77 4.87 2.11 1.54 4.27 2.12
BIM 32.78 26.93 31.82 21.63 13.62 1.75 40.84 23.22
MIM 11.89 26.24 5.2 10.7 5.38 1.94 10.69 7.85
SGD 6.13 2.89 7.59 20.15 12.58 2.4 13.71 2.99
PGD 84.58 78.44 80.97 81.96 80.88 57.76 80.54 77.52
Optim-Adam 6.43 1.49 2.07 7.49 2.18 1.32 4.47 1.99
Optim-Nesterov 2.34 1.58 1.31 5.24 1.93 2.55 4.34 1.42
Clean mAP 89.14 88.98 89.74 89.74 89.01 86.45 88.60 89.45
Adv Avg. 21.48↓76% 19.89↓78% 18.68↓79% 21.72↓76% 16.95↓81% 9.89↓89% 22.69↓72% 16.73↓81%

Table 7: Adversarial Attack Results on Detection using frozen SSL and Supervised Models as back-
bones. The table presents performance metrics under clean and adversarial conditions for various
attack types (Optim, BIM, MIM, SGD, PGD, Optim-Adam, Optim-Nesterov). The last two rows
display clean mean Average Precision (mAP) and the average performance under adversarial at-
tacks, with the percentage decrease in performance highlighted in red

Barlow BYOL DINO MocoV3 SimCLR Supervised SwAV VICReg

Optim 3.98 1.05 2 2.6 0.65 0.56 1.51 0.39
BIM 44.87 32.24 54.93 26.72 17.1 42.8 44.47 10.32
MIM 11.37 3.04 10.32 5.72 7.45 4.73 10.87 2.68
SGD 3.21 1.28 2.95 9.44 4.3 1.02 2.85 1.72
PGD 83.08 80.83 79.65 79.83 76.9 75.29 79.14 81.27
Optim-Adam 4.71 0.76 3.5 2.03 0.81 0.87 3.46 0.67
Optim-Nesterov 1.75 0.64 0.97 2.77 0.62 0.72 1.1 0.64
Clean mAP 88.39 87.44 87.63 87.36 88.27 86.08 86.55 88.43
Adv Avg. 21.85↓75% 17.12↓80% 22.05↓75% 18.44↓79% 15.40↓83% 18.00↓79% 20.49↓76% 13.96↓84%
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B.4 RESNET VS VIT

Table 8: This table presents the results of various instance and universal adversarial perturbation
(UAP) attacks on the Imagenet-1k dataset, with all UAP attack names in italics. Different configu-
rations of FGSM and PGD are denoted, such as FGSM1 and PGD1. Average results for universal
adversarial perturbations (UAP Avg.), instance adversarial attacks (IAA Avg.), and overall adversar-
ial performance (Adv Avg.) are reported at the bottom, including percentage drops relative to clean
accuracy

MoCoV3-ResNet MoCo-ViT DINO-ViT DINO-ResNet

FGSM1 42.67 34.63 51.42 24.68
FGSM2 15.53 0.32 0.97 5.66
PGD1 42.39 33.35 50.98 25.65
PGD2 1.06 0.00 0.00 0.18
PGD3 42.56 33.46 50.95 25.85
PGD4 0.82 0.17 3.84 0.14
PGD5 4.79 2.12 13.57 0.67
DIFGSM 54.09 51.91 59.81 41.12
CW 0.02 0 0 0
Jitter 62.47 58.25 66.30 60.26
TIFGSM 61.47 61.84 65.23 56.98
PIFGSM 34.10 25.78 47.64 14.54
EADEN 0 0 0 0
OnePixel 72.64 71.28 75.47 72.83
Pixle 31.45 34.69 44.08 19.41
SPSA 69.93 66.20 72.47 68.11
Square 3.15 1.22 1.67 1.30
TAP 73.72 72.34 75.60 73.78
ASV 50.21 46.28 48.1 45.08
FFF (no-data) 49.63 46.49 50.41 43.58
FFF (mean-std) 49.01 48.46 50.31 43.58
FFF (one-sample) 49.9 48.47 50.02 44.5
FG-UAP 45.28 34.95 41.58 37.41
GD-UAP (no-data) 49.41 46.97 48.86 43.71
GD-UAP (mean-std) 49.33 46.04 48.39 43.78
GD-UAP (one-sample) 49.98 46.62 48.41 44.59
L4A-base 49.51 33.59 44.38 44.61
L4A-fuse 49.48 34.59 44.39 44.64
L4A-ugs 49.83 37.32 45.1 45.25
PD-UAP 50.05 46.81 50.7 44.14
SSP 47.61 32.43 43.59 43.09
STD 49.4 46.8 48.98 44.16
UAP (DeepFool) 50.43 43.81 48.55 45.43
UAPEPGD 50.67 47.98 50.49 45.54
Clean Accuracy 74.57 73.21 76.95 75.28
IAA Avg. 34.05 ↓54% 30.42↓58% 37.78↓51% 28.29↓64%
UAP Avg. 49.36 ↓34% 42.97↓41% 47.64↓38% 43.94↓42%
Adv Avg. 41.26 ↓45% 36.32↓50% 42.42↓45% 35.13↓53%

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

B.5 IMAGENET ACROSS TRAINING EPOCHS

Table 9: This table presents the results of various instance and universal adversarial perturbation
(UAP) attacks on the Imagenet-1k dataset, with all UAP attack names in italics. Different configu-
rations of FGSM and PGD are denoted, such as FGSM1 and PGD1. Average results for universal
adversarial perturbations (UAP Avg.), instance adversarial attacks (IAA Avg.), and overall adversar-
ial performance (Adv Avg.) are reported at the bottom, including percentage drops relative to clean
accuracy.

MoCoV3-100 MoCoV3-300 MoCoV3-1000

FGSM1 38.87 42.6 42.67
FGSM2 7.94 8.38 15.53
PGD1 37.89 41.99 42.39
PGD2 0.49 0.09 1.06
PGD3 38.06 42.14 42.56
PGD4 1.75 1.22 0.82
PGD5 5.4 5.49 4.79
DIFGSM 49.21 52.65 54.09
CW 0.02 0.02 0.02
Jitter 56.45 60.53 62.47
TIFGSM 57.39 61.86 61.47
PIFGSM 31.24 34.41 34.1
EADEN 0 0 0
OnePixel 66.79 70.76 72.64
Pixle 26.27 29.41 31.45
SPSA 64.05 68.02 69.93
Square 2.05 2.01 3.15
TAP 67.85 71.9 73.72
ASV 43.31 48.69 50.21
FFF (no-data) 42.65 47.68 49.63
FFF (mean-std) 42.51 48.13 49.01
FFF (one-sample) 42.9 48.33 49.9
FG-UAP 39.68 44.49 45.28
GD-UAP (no-data) 42.53 47.99 49.41
GD-UAP (mean-std) 42.59 48.09 49.33
GD-UAP (one-sample) 42.93 48.38 49.98
L4A-base 41.95 48.74 49.51
L4A-fuse 41.96 48.82 49.48
L4A-ugs 43.12 48.87 49.83
PD-UAP 43.21 48.46 50.05
SSP 42.53 46.5 47.61
STD 42.34 47.97 49.4
UAP (DeepFool) 43.39 48.95 50.43
UAPEPGD 43.73 49.22 50.67
Clean Accuracy 68.91 72.82 74.57
IAA Avg. 30.65 ↓56% 32.97↓55% 34.05↓54%
UAP Avg. 42.58 ↓38% 48.08↓34% 49.36↓34%
Adv Avg. 36.26 ↓47% 40.08↓45% 41.26↓45%
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Table 10: This table presents the results of various instance and universal adversarial perturbation
(UAP) attacks on the Imagenet-1k dataset, with all UAP attack names in italics. Different configu-
rations of FGSM and PGD are denoted, such as FGSM1 and PGD1. Average results for universal
adversarial perturbations (UAP Avg.), instance adversarial attacks (IAA Avg.), and overall adversar-
ial performance (Adv Avg.) are reported at the bottom, including percentage drops relative to clean
accuracy

SwAV-100 SwAV-200 SwAV-400 SwAV-800

FGSM1 18.08 19.99 21.9 24.71
FGSM2 4.01 4.34 5.2 6.35
PGD1 18.94 21.3 23.7 26.48
PGD2 0.31 0.17 0.17 0.18
PGD3 19.08 21.44 23.88 26.73
PGD4 0.3 0.15 0.14 0.14
PGD5 0.73 0.59 0.52 0.69
DIFGSM 39.31 42.01 42.31 45.65
CW 0.0 0.0 0.0 0.0
Jitter 56.67 59.15 60.43 61.16
TIFGSM 53.11 55.14 56.44 60.07
PIFGSM 10 10.87 11.76 14.12
EADEN 0 0 0 0
OnePixel 68.73 70.83 71.64 72.73
Pixle 13.21 16.03 18.08 16.95
SPSA 63.94 66.25 67.38 68.61
Square 0.35 0.36 0.5 1.99
TAP 71.79 73.56 74.37 75.05
ASV 47.64 50.84 52.32 53.66
FFF (no-data) 45.54 49.34 49.99 51.88
FFF (mean-std) 46.65 50.38 50.26 53.4
FFF (one-sample) 46.42 50.28 51.13 53.33
FG-UAP 36.34 40.47 42.19 44.59
GD-UAP (no-data) 45.56 49.39 50.46 52.19
GD-UAP (mean-std) 46.54 50.26 50.85 53.11
GD-UAP (one-sample) 46.63 50.34 51.32 53.4
L4A-base 44.01 48.94 49.18 49.89
L4A-fuse 43.86 48.88 49 49.69
L4A-ugs 44.25 49.94 50.9 53.37
PD-UAP 45.86 49.68 51.37 53.45
SSP 42.12 48.29 47.25 51.21
STD 46.6 50.3 51.41 53.18
UAP (DeepFool) 46.86 50.77 51.77 53.86
UAPEPGD 47.82 51.32 52.31 54.26
Clean Accuracy 72.02 73.82 74.57 75.27
IAA Avg. 24.36 ↓66% 25.68↓65% 26.58↓64% 27.87↓63%
UAP Avg. 45.17 ↓37% 49.34↓33% 50.11↓33% 52.15↓31%
Adv Avg. 34.15 ↓53% 36.81↓50% 37.65↓49% 39.29↓48%
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B.6 IMAGENET WITH DIFFERENT MOCO VERSIONS

Table 11: This table presents the results of various instance and universal adversarial perturbation
(UAP) attacks on the Imagenet-1k dataset, with all UAP attack names in italics. Different configu-
rations of FGSM and PGD are denoted, such as FGSM1 and PGD1. Average results for universal
adversarial perturbations (UAP Avg.), instance adversarial attacks (IAA Avg.), and overall adversar-
ial performance (Adv Avg.) are reported at the bottom, including percentage drops relative to clean
accuracy

MoCoV1 MoCoV2 MoCoV3

FGSM1 15.91 22.01 42.67
FGSM2 6.25 5.17 15.53
PGD1 17.89 24.00 42.39
PGD2 0.09 0.54 1.06
PGD3 17.96 24.14 42.56
PGD4 0.06 0.52 0.82
PGD5 0.21 1.33 4.79
DIFGSM 34.85 40.39 54.09
CW 0 0 0.02
Jitter 50.04 53.09 62.47
TIFGSM 48.70 49.50 61.47
PIFGSM 8.53 13.20 34.10
EADEN 0 0 0
OnePixel 56.67 64.63 72.64
Pixle 3.10 17.85 31.45
SPSA 50.62 60.57 69.93
Square 0.80 0.42 3.15
TAP 58.55 65.24 73.72
ASV 19.18 40.17 50.21
FFF (no-data) 23.41 39.43 49.63
FFF (mean-std) 23.89 39.35 49.01
FFF (one-sample) 23.49 39.47 49.9
FG-UAP 13.25 35.73 45.28
GD-UAP (no-data) 23.72 39.79 49.41
GD-UAP (mean-std) 24.07 39.47 49.33
GD-UAP (one-sample) 23.64 39.73 49.98
L4A-base 12.25 39.76 49.51
L4A-fuse 12.14 39.6 49.48
L4A-ugs 12.43 39.96 49.83
PD-UAP 23.27 40.24 50.05
SSP 12.49 39.01 47.61
STD 24.32 39.55 49.4
UAP (DeepFool) 18.43 40.42 50.43
UAPEPGD 26.08 40.71 50.67
Clean Accuracy 60.64 67.72 74.57
IAA Avg. 20.56 ↓66% 24.59↓64% 34.05↓54%
UAP Avg. 19.75 ↓67% 39.52↓42% 49.36↓34%
Adv Avg. 20.19 ↓67% 31.61↓53% 41.26↓45%
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B.7 TRANSFER LEARNING

Table 12: This table presents the combined results from each transfer learning dataset. Average
results for universal adversarial perturbations (UAP Avg.), instance adversarial attacks (IAA Avg.),
and overall adversarial performance (Adv Avg.) are reported at the bottom, including percentage
drops relative to clean accuracy

Barlow BYOL DINO MocoV3 SimCLR Supervised SwAV VICReg

Aircraft

Clean Accuracy 56.88 56.34 60.25 58.75 46.77 44.89 54.01 56.43
IAA Avg. 16.29 ↓71% 14.87↓73% 15.27↓75% 17.41↓70% 11.93↓74% 9.82↓78% 13.82↓74% 16.38↓71%

UAP Avg. 24.48 ↓57% 35.94↓36% 20.62↓66% 27.02↓54% 13.4↓72% 10.75↓77% 20.16↓63% 24.42↓57%

Adv Avg. 20.14 ↓65% 24.78↓56% 17.78↓70% 21.93↓63% 12.62↓73% 10.25↓77% 16.80↓69% 20.16↓64%

Caltech 101

Clean Accuracy 90.54 90.99 90.31 92.89 89.1 90.25 90.36 90.57
IAA Avg. 53.60 ↓41% 54.06↓41% 47.42↓47% 58.23↓37% 49.79↓44% 44.10↓51% 45.55↓50% 53.64↓41%

UAP Avg. 71.86 ↓21% 82.04↓10% 61.70↓32% 80.95↓13% 67.06↓25% 58.86↓35% 74.36↓17.7% 71.83↓21%

Adv Avg. 62.19 ↓31% 67.22↓26% 54.14↓40% 68.92↓26% 57.92↓35% 51.05↓43% 59.11↓35% 62.20↓31%

Cars

Clean Accuracy 64.2 57.62 65.62 63.61 43.81 47.1 59.78 64.12
IAA Avg. 19.90 ↓69% 15.84↓73% 17.54↓73% 20.12↓68% 11.14↓75% 9.56↓80% 14.95↓75% 19.66↓69%

UAP Avg. 26.89 ↓58% 36.71↓36% 22.45↓66% 32.82↓48% 18.07↓59% 9.27↓80% 24.43↓59% 26.52↓59%

Adv Avg. 23.19 ↓64% 25.66↓55% 19.85↓70% 26.09↓60% 14.40↓67% 9.42↓80% 19.41↓68% 22.89↓64%

CIFAR 10

Clean Accuracy 92.78 93.05 93.85 94.67 90.98 91.4 93.9 92.79
IAA Avg. 32.34 ↓65% 31.19↓66% 28.07↓70% 32.85↓65% 30.00↓67% 31.74↓65% 27.37↓71% 32.45↓65%

UAP Avg. 43.68 ↓53% 51.76↓44% 32.78↓65% 41.92↓56% 25.28↓72% 29.27↓68% 33.84↓64% 43.91↓53%

Adv Avg. 37.68 ↓59% 40.87↓56% 30.28↓68% 37.12↓61% 27.78↓69% 30.58↓66% 30.41↓68% 37.84↓59%

CIFAR 100

Clean Accuracy 77.86 78.18 76.67 80.19 72.97 73.86 79.41 77.79
IAA Avg. 23.34 ↓70% 22.65↓71% 20.45↓74% 22.77↓72% 18.36↓75% 21.72↓71% 19.59↓75% 24.05↓69%

UAP Avg. 24.86 ↓68% 35.15↓55% 16.52↓79% 21.89↓73% 10.33↓86% 14.56↓80% 21.18↓73% 25.70↓67%

Adv Avg. 24.06 ↓69% 28.53↓63% 18.55↓77% 22.36↓72% 14.58↓80% 18.34↓75% 20.34↓74% 24.82↓68%

DTD

Clean Accuracy 79.97 76.76 77.02 75.43 73.19 72.13 77.45 77.61
IAA Avg. 40.02 ↓50% 37.65↓51% 38.88↓50% 40.14↓50% 33.50↓54% 33.86↓53% 38.96↓50% 41.30↓47%

UAP Avg. 52.85 ↓34% 61.65↓17% 48.88↓37% 56.44↓25% 52.96↓28% 38.44↓47% 57.26↓26% 53.78↓31%

Adv Avg. 46.06 ↓42% 48.94↓34% 43.58↓43% 47.81↓37% 42.66↓42% 36.02↓50% 47.57↓39% 47.17↓39%

Flowers

Clean Accuracy 94.92 93.36 95.23 94.07 90.57 90.59 93.84 94.92
IAA Avg. 47.71 ↓50% 43.94↓53% 43.76↓54% 47.25↓50% 40.25↓56% 34.86↓62% 39.92↓58% 47.94↓50%

UAP Avg. 74.25 ↓22% 81.84↓12% 68.05↓29% 74.97↓20% 56.01↓38% 33.83↓63% 70.01↓25% 74.20↓22%

Adv Avg. 60.19 ↓37% 61.78↓34% 55.19↓42% 60.30↓36% 47.66↓47% 34.37↓62% 54.08↓42% 60.30↓37%

Food

Clean Accuracy 76.09 73.07 78.42 73.83 67.24 69.05 76.51 75.81
IAA Avg. 27.50 ↓64% 24.15↓67% 24.09↓69% 27.69↓62% 21.03↓69% 19.81↓71% 23.39↓69% 26.37↓65%

UAP Avg. 40.04 ↓47% 48.81↓33% 38.41↓51% 43.09↓42% 32.94↓51% 19.36↓72% 43.73↓43% 39.03↓49%

Adv Avg. 33.40 ↓56% 35.75↓51% 30.83↓61% 34.94↓53% 26.63↓60% 19.59↓72% 32.96↓57% 32.33↓57%

Pets

Clean Accuracy 89.13 89.08 89.15 90.77 83.23 92.06 87.47 89.13
IAA Avg. 45.87 ↓49% 44.48↓50% 39.48↓56% 50.74↓44% 37.75↓55% 41.79↓55% 36.73↓58% 45.95↓48.4%

UAP Avg. 63.22 ↓29% 75.21↓16% 62.43↓30% 69.77↓23% 61.16↓27% 49.33↓46% 65.30↓25% 63.22↓29%

Adv Avg. 54.03 ↓39% 58.94↓34% 50.28↓44% 59.69↓34% 48.77↓41% 45.34↓51% 50.18↓426% 54.08↓39%

All

Clean Accuracy 80.26 78.71 80.72 80.47 73.09 74.59 79.19 79.90
IAA Avg. 34.06 ↓58% 32.09↓59% 30.55↓62% 35.24↓56% 28.19↓62% 27.47↓63% 28.92↓63% 34.19↓57%

UAP Avg. 46.90 ↓42% 64.36↓18% 41.31↓49% 49.87↓38% 37.46↓49% 25.53↓66% 45.58↓42% 46.95↓41%

Adv Avg. 40.10 ↓50% 47.27↓40% 35.61↓56% 42.12↓47% 32.55↓55% 26.55↓64% 35.66↓55% 39.86↓50%
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B.7.1 AIRCRAFT

Table 13: This table presents the results of various instance and universal adversarial perturbation
(UAP) attacks on the AirCraft dataset, with all UAP attack names in italics. Different configurations
of FGSM and PGD are denoted, such as FGSM1 and PGD1. Average results for universal ad-
versarial perturbations (UAP Avg.), instance adversarial attacks (IAA Avg.), and overall adversarial
performance (Adv Avg.) are reported at the bottom, including percentage drops relative to clean
accuracy.

Barlow BYOL DINO MoCoV3 SimCLR Supervised SwAV VICReg

FGSM1 8.92 5.94 4.84 11.41 2.7 2.58 3.64 8.86
FGSM2 1.52 0.69 0.45 1.95 0.78 0.81 2.57 1.8
PGD1 10.03 5.72 4.54 10.96 3.44 1.61 4 10.18
PGD2 0.06 0 0 0.12 0.24 0.18 0.64 0.06
PGD3 10.27 6.02 4.63 11.09 3.27 1.61 3.83 10.06
PGD4 0.06 0 0 0.12 0.18 0.12 0.61 0.06
PGD5 0.12 0.03 0 0.24 0.18 0.24 0.79 0.12
DIFGSM 24.56 24.16 20.83 28.01 19.39 19.43 16.74 27.41
CW 0 0 0 0 0 0 0 0
Jitter 45.87 44.28 48.39 45.42 37.43 31.98 43.75 44.73
TIFGSM 32.78 31.08 29.68 35.76 28.31 18.99 29.83 33.04
PIFGSM 3.62 2.1 1.62 4.46 0.9 0.6 1.71 3.44
EADEN 0 0 0 0 0 0 0 0
OnePixel 51.75 49.39 54.93 53.41 41.4 36.01 47.55 51.54
Pixle 3.67 1.9 2.17 6.16 2.8 1.48 2.26 3.8
SPSA 44.36 42.91 44.2 46.6 30.76 28.51 38.42 44.31
Square 0.03 0 0 0.03 0.03 0 0 0.03
TAP 55.53 53.4 58.55 57.72 42.93 32.54 52.48 55.35
ASV 25.95 38.29 24.26 31.96 22.42 10.93 23.25 25.64
FFF (no-data) 23.58 34.84 17.23 26.2 14.04 9.95 17.14 23.64
FFF (mean-std) 23.76 34.28 18.44 23.37 13.89 10.76 21.86 23.59
FFF (one-sample) 26.01 35.97 21.68 28.8 13.57 10.82 20.47 25.52
FG-UAP 14.34 31.84 13.49 17.41 4.07 8.22 11.84 14.58
GD-UAP (no-data) 24.39 35.92 17.62 24.93 17.55 10.22 17.19 23.63
GD-UAP (mean-std) 24.3 32.51 19.34 23.24 13.46 11.81 20.42 24.88
GD-UAP (one-sample) 25.95 36.04 22.07 28.36 14.87 10.79 20.28 26.36
L4A-base 25.89 35.17 21.29 26.91 4.29 11.42 18.2 25.77
L4A-fuse 25.95 35.18 20.65 26.91 4.07 11.42 18.14 25.62
L4A-ugs 26.02 38.54 23.99 29.73 24.55 10.97 22.41 26.26
PD-UAP 24 37.7 18.14 28.96 16.65 10.4 21.16 24.24
SSP 20.25 33.19 18.8 22.7 16.57 9.79 19.87 20.09
STD 26.2 36.67 23.54 28.41 9.08 10.61 21.39 25.68
UAP (DeepFool) 26.78 39.06 24.19 31.26 5.33 11.83 23.27 26.9
UAPEPGD 28.34 39.82 25.21 33.21 19.95 12.13 25.65 28.25

Clean Accuracy 56.88 56.34 60.25 58.75 46.77 44.89 54.01 56.43
IAA Avg. 16.29 ↓71% 14.87↓73% 15.27↓75% 17.41↓70% 11.93↓74% 9.82↓78% 13.82↓74% 16.38↓71%

UAP Avg. 24.48 ↓57% 35.94↓36% 20.62↓66% 27.02↓54% 13.4↓72% 10.75↓77% 20.16↓63% 24.42↓57%

Adv Avg. 20.14 ↓65% 24.78↓56% 17.78↓70% 21.93↓63% 12.62↓73% 10.25↓77% 16.80↓69% 20.16↓64%
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B.7.2 CALTECH 101

Table 14: This table presents the results of various instance and universal adversarial perturbation
(UAP) attacks on the Caltech 101 dataset, with all UAP attack names in italics. Different configu-
rations of FGSM and PGD are denoted, such as FGSM1 and PGD1. Average results for universal
adversarial perturbations (UAP Avg.), instance adversarial attacks (IAA Avg.), and overall adversar-
ial performance (Adv Avg.) are reported at the bottom, including percentage drops relative to clean
accuracy.

Barlow BYOL DINO MoCoV3 SimCLR Supervised SwAV VICReg

FGSM1 75.31 75.58 66.93 79.84 66.06 62.11 63.12 75.3
FGSM2 53.82 52.44 37.84 59.58 47.67 27.38 36.13 53.82
PGD1 74.27 75.19 65.57 79.35 64.94 58.96 61.96 74.34
PGD2 9.61 10.47 2.24 17.17 11.14 1.64 2.05 9.34
PGD3 74.43 75.39 65.7 79.81 65 59.24 62.28 74.68
PGD4 7.62 9 1.81 14.79 10.22 1.19 1.69 7.53
PGD5 17.17 18.64 5.48 25.45 13.11 4.35 3.91 16.86
DIFGSM 80.24 81.09 76.38 83.66 76.16 71.28 75.23 79.97
CW 0.68 0.94 0.3 0.79 0.49 0.22 0.31 0.68
Jitter 83.43 83.41 81.7 86.82 80.89 77.36 79.34 83.85
TIFGSM 85.73 86.72 83.63 88.69 82.73 79.58 81.98 85.98
PIFGSM 68.03 68.03 53.66 74.14 50.54 49 45.82 67.98
EADEN 0 0 0 0 0 0 0 0
OnePixel 89.85 90.57 89.43 92.25 87.67 88.7 89.52 89.88
Pixle 53.89 57.26 40.6 67.39 49.57 39.02 32.73 54.58
SPSA 88.89 88.82 87.45 91.08 86.51 85.73 87.2 89.04
Square 11.43 8.71 4.7 14.98 15.14 1.03 6.53 11.37
TAP 90.48 90.91 90.16 92.36 88.52 87.13 90.12 90.48
ASV 71.34 81.96 62.14 81.76 85.97 59.01 75.6 71.59
FFF (no-data) 72.78 82.35 61.23 81.19 64.38 59.04 74.38 72.22
FFF (mean-std) 72.02 82.09 61.7 80.87 73.87 59.55 75.57 72.16
FFF (one-sample) 72.38 81.76 62.8 81.24 69.45 58.79 75.78 72.31
FG-UAP 69.93 81.14 54.08 77.94 14.44 55.00 66.22 70.01
GD-UAP (no-data) 72.37 82.21 61.26 80.97 74.03 58.81 74.81 72.30
GD-UAP (mean-std) 72.25 81.87 62.04 80.72 80.36 59.04 74.91 71.85
GD-UAP (one-sample) 72.06 82.04 62.31 81.64 73.19 59.00 75.88 72.08
L4A-base 71.62 82.03 63.02 80.93 37.65 59.02 71.93 71.42
L4A-fuse 71.41 81.78 63.07 80.98 37.32 59.11 71.08 71.32
L4A-ugs 72.16 82.48 62.85 81.49 81.71 58.88 75.75 72.16
PD-UAP 72.89 82.08 62.20 81.35 84.24 59.48 75.86 72.70
SSP 70.20 81.98 60.70 79.76 76.76 58.27 73.95 70.45
STD 71.87 82.34 62.47 81.30 81.32 59.20 76.07 72.09
UAP (DeepFool) 72.07 82.22 62.81 81.44 52.16 59.97 75.84 72.28
UAPEPGD 72.47 82.31 62.66 81.66 86.14 59.69 76.23 72.35
Clean Accuracy 90.54 90.99 90.31 92.89 89.1 90.25 90.36 90.57
IAA Avg. 53.60 ↓41% 54.06↓41% 47.42↓47% 58.23↓37% 49.79↓44% 44.10↓51% 45.55↓50% 53.64↓41%

UAP Avg. 71.86 ↓21% 82.04↓10% 61.70↓32% 80.95↓13% 67.06↓25% 58.86↓35% 74.36↓17.7% 71.83↓21%

Adv Avg. 62.19 ↓31% 67.22↓26% 54.14↓40% 68.92↓26% 57.92↓35% 51.05↓43% 59.11↓35% 62.20↓31%
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B.7.3 CARS

Table 15: This table presents the results of various instance and universal adversarial perturbation
(UAP) attacks on the Cars dataset, with all UAP attack names in italics. Different configurations
of FGSM and PGD are denoted, such as FGSM1 and PGD1. Average results for universal ad-
versarial perturbations (UAP Avg.), instance adversarial attacks (IAA Avg.), and overall adversarial
performance (Adv Avg.) are reported at the bottom, including percentage drops relative to clean
accuracy.

Barlow BYOL DINO MoCoV3 SimCLR Supervised SwAV VICReg

FGSM1 14.55 8.27 6.34 16.32 3.18 2.1 3.48 14.48
FGSM2 1.41 0.6 0.51 1.39 0.9 0.16 0.5 1.42
PGD1 14.15 7.76 5.83 15.3 3.42 1.6 3.03 13.94
PGD2 0.02 0 0 0 0.19 0.09 0 0.02
PGD3 14.3 8.05 5.83 15.5 3.52 1.67 3.11 14.33
PGD4 0.01 0 0 0 0.17 0.07 0 0.01
PGD5 0 0.01 0 0 0.19 0 0.02 0
DIFGSM 33.68 24.49 28.83 32.76 17.55 14.05 22.04 30.92
CW 0 0 0 0 0 0 0 0
Jitter 44.21 36.41 45.44 42.21 26.4 23.85 40.67 43.86
TIFGSM 44.26 35.39 39.8 43.84 27.62 22.01 34.77 44
PIFGSM 6.32 3.3 1.54 8.54 0.75 0.6 0.65 6.39
EADEN 0 0 0 0 0 0 0 0
OnePixel 60.73 53.74 61.77 59.99 39.56 39.56 55.33 60.63
Pixle 6.63 5.1 5.02 8.17 4.14 1.92 2.3 6.33
SPSA 54.22 45.44 51.11 54.88 30.33 31.59 44.47 54.05
Square 0.06 0.01 0 0.04 0 0 0.01 0.05
TAP 63.71 56.62 63.75 63.26 42.74 32.92 58.79 63.51
ASV 26.99 36.64 22.96 33.93 30.43 9.08 24.15 26.51
FFF (no-data) 27.53 36.41 22.11 32.81 16.84 9.27 24.65 26.85
FFF (mean-std) 27.43 36.96 23.31 32.79 20.61 9.54 25.06 26.87
FFF (one-sample) 27.45 36.67 22.75 33.16 18.17 9.23 24.71 26.89
FG-UAP 24.44 35.57 17.41 29.54 3.31 7.83 20.54 24.03
GD-UAP (no-data) 27.12 36.82 22.16 32.86 22.32 9.28 24.71 27.00
GD-UAP (mean-std) 27.30 37.18 22.62 33.14 22.30 9.69 25.36 26.97
GD-UAP (one-sample) 27.61 36.84 22.42 33.09 22.11 9.24 24.91 26.87
L4A-base 26.40 36.71 22.98 32.66 5.17 9.43 22.75 26.09
L4A-fuse 26.65 36.69 22.82 32.50 5.35 9.55 22.75 26.30
L4A-ugs 27.42 37.33 23.49 33.19 29.03 9.43 25.67 27.14
PD-UAP 27.21 37.12 22.83 33.09 23.87 9.39 25.51 26.92
SSP 25.18 36.15 22.45 31.94 16.58 8.85 24.03 25.08
STD 26.81 36.34 21.81 33.27 14.05 9.55 24.85 26.58
UAP (DeepFool) 27.52 37.07 23.60 33.44 12.91 9.56 25.56 27.01
UAPEPGD 27.32 37.01 23.54 33.75 26.12 9.50 25.69 27.21
Clean Accuracy 64.2 57.62 65.62 63.61 43.81 47.1 59.78 64.12
IAA Avg. 19.90 ↓69% 15.84↓73% 17.54↓73% 20.12↓68% 11.14↓75% 9.56↓80% 14.95↓75% 19.66↓69%

UAP Avg. 26.89 ↓58% 36.71↓36% 22.45↓66% 32.82↓48% 18.07↓59% 9.27↓80% 24.43↓59% 26.52↓59%

Adv Avg. 23.19 ↓64% 25.66↓55% 19.85↓70% 26.09↓60% 14.40↓67% 9.42↓80% 19.41↓68% 22.89↓64%
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B.7.4 CIFAR 10

Table 16: This table presents the results of various instance and universal adversarial perturbation
(UAP) attacks on the CIFAR 10 dataset, with all UAP attack names in italics. Different configura-
tions of FGSM and PGD are denoted, such as FGSM1 and PGD1. Average results for universal
adversarial perturbations (UAP Avg.), instance adversarial attacks (IAA Avg.), and overall adversar-
ial performance (Adv Avg.) are reported at the bottom, including percentage drops relative to clean
accuracy.

Barlow BYOL DINO MoCoV3 SimCLR Supervised SwAV VICReg

FGSM1 32.95 31.04 27.57 33.04 37.86 42.84 19.38 33.04
FGSM2 53.83 50.24 52.58 52.51 59.88 29.71 47.54 53.94
PGD1 34.76 29.2 22.25 35.16 23.51 36.92 21.04 34.64
PGD2 0.02 0 0 0 0.03 0 0 0.01
PGD3 34.02 28.38 20.85 34.44 22.48 36.51 20.71 34.23
PGD4 0.02 0.02 0 0 0.03 0 0 0
PGD5 0 0 0 0 0.01 0 0 0
DIFGSM 56.24 52.78 42.53 55.48 52.39 55.9 39.2 54.64
CW 0 0 0 0 0.06 0 0 0
Jitter 66.67 62.37 59.8 66.97 55.15 70.7 58.5 67.63
TIFGSM 52.32 48.88 41.23 50.64 56.11 56.88 42.38 54.51
PIFGSM 0.39 0.22 0.04 0.28 0.45 5.18 0 0.41
EADEN 0 0 0 0 0 0 0 0
OnePixel 87.36 86.09 88.42 87.78 82.28 85.59 81.11 87.21
Pixle 5.55 2.15 4.44 3.02 1.82 2.22 1.93 5.41
SPSA 69.6 79.09 55.69 80.73 60.51 71.34 68.81 69.9
Square 0 0 0.05 0 0 0 0 0
TAP 88.51 91.06 89.82 91.4 87.56 77.66 92.14 88.59
ASV 43.79 57.79 38.25 51.44 49.14 33.42 44.43 44.01
FFF (no-data) 44.64 55.64 31.33 42.83 19.94 31.94 41.00 45.20
FFF (mean-std) 47.57 49.83 31.22 43.39 10.22 27.04 31.44 47.28
FFF (one-sample) 47.08 55.60 33.14 45.44 10.41 28.45 36.48 47.15
FG-UAP 25.94 45.95 13.50 12.52 10.19 16.20 11.27 25.72
GD-UAP (no-data) 44.25 50.00 32.89 44.02 19.16 33.33 39.96 44.85
GD-UAP (mean-std) 45.92 53.10 30.33 35.97 10.15 27.96 27.24 44.08
GD-UAP (one-sample) 47.37 56.57 33.32 47.55 14.90 29.48 39.60 47.62
L4A-base 44.50 40.64 37.60 40.09 10.46 27.73 17.49 45.44
L4A-fuse 45.01 41.02 38.03 40.84 10.31 27.71 17.03 44.95
L4A-ugs 48.25 60.94 36.47 47.30 56.77 31.15 41.07 48.86
PD-UAP 48.29 58.88 31.88 51.28 49.43 29.52 39.50 49.65
SSP 24.65 27.38 34.23 17.89 12.86 22.63 28.44 25.18
STD 45.28 59.12 27.10 45.58 52.44 34.53 40.51 45.37
UAP (DeepFool) 48.22 57.93 37.35 51.53 10.34 33.31 40.21 48.83
UAPEPGD 48.16 57.77 37.89 53.14 57.77 34.05 45.79 48.52
Clean Accuracy 92.78 93.05 93.85 94.67 90.98 91.4 93.9 92.79
IAA Avg. 32.34 ↓65% 31.19↓66% 28.07↓70% 32.85↓65% 30.00↓67% 31.74↓65% 27.37↓71% 32.45↓65%

UAP Avg. 43.68 ↓53% 51.76↓44% 32.78↓65% 41.92↓56% 25.28↓72% 29.27↓68% 33.84↓64% 43.91↓53%

Adv Avg. 37.68 ↓59% 40.87↓56% 30.28↓68% 37.12↓61% 27.78↓69% 30.58↓66% 30.41↓68% 37.84↓59%
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B.7.5 CIFAR 100

Table 17: This table presents the results of various instance and universal adversarial perturbation
(UAP) attacks on the CIFAR 100 dataset, with all UAP attack names in italics. Different configura-
tions of FGSM and PGD are denoted, such as FGSM1 and PGD1. Average results for universal
adversarial perturbations (UAP Avg.), instance adversarial attacks (IAA Avg.), and overall adversar-
ial performance (Adv Avg.) are reported at the bottom, including percentage drops relative to clean
accuracy.

Barlow BYOL DINO MoCoV3 SimCLR Supervised SwAV VICReg

FGSM1 20.52 19.01 16.03 19.29 19.49 24.51 11.07 22.34
FGSM2 (e=1) 34.07 31.02 34.08 28.84 30.06 18.20 29.16 35.71
PGD1 19.74 14.42 11.47 18.38 8.92 19.09 10.29 20.98
PGD2 0.04 0 0 0.02 0.12 0 0.01 0.06
PGD3) 19.33 14.18 11.09 17.69 8.24 18.85 9.92 20.67
PGD4 0.06 0.01 0 0.01 0.08 0 0 0.02
PGD5 0 0 0 0 0.18 0.01 0 0
DIFGSM 38.20 35.26 27.54 32.23 32.56 34.97 26.31 39.47
CW 0.01 0 0 0.06 0.02 0.02 0 0.04
Jitter 66.85 62.15 59.33 65.89 42.01 67.10 53.82 66.73
TIFGSM 34.84 36.35 27.80 30.79 35.15 36.82 29.15 37.30
PIFGSM 0.78 0.34 0.17 0.58 0.36 3.29 0.09 1.10
EADEN 0 0 0 0 0 0 0 0
OnePixel 67.73 66.25 69.87 67.64 58.73 64.76 61.41 68.19
Pixle 0.48 0.96 0.56 0.90 0.96 1.40 0.43 0.55
SPSA 47.25 54.96 38.62 53.70 28.82 48.30 44.86 49.46
Square 0.06 0.01 0.04 0 0 0 0.01 0.05
TAP 70.29 72.88 69.76 73.97 65.1 53.57 76.14 70.29
ASV 24.05 37.80 19.72 26.52 24.66 16.70 27.82 25.10
FFF (no-data) 25.38 37.78 16.33 21.70 9.33 15.49 26.25 26.75
FFF (mean-std) 27.59 35.74 13.40 23.23 2.01 12.73 20.63 27.45
FFF (one-sample) 26.64 37.25 17.63 22.56 3.19 14.06 24.63 27.48
FG-UAP 12.51 29.98 3.67 9.89 1.17 8.55 3.61 12.85
GD-UAP (no-data) 25.30 36.37 16.82 21.75 10.45 16.15 24.53 26.23
GD-UAP (mean-std) 26.15 36.98 15.39 20.84 3.64 13.78 19.36 27.09
GD-UAP (one-sample) 26.82 37.82 17.85 23.42 4.32 14.58 25.77 27.56
L4A-base 27.10 28.94 18.05 21.41 1.10 14.72 8.38 28.24
L4A-fuse 27.50 28.92 18.22 21.72 1.25 14.67 8.51 27.67
L4A-ugs 28.78 39.53 19.65 24.87 28.25 15.66 26.49 29.24
PD-UAP 27.85 39.75 15.92 25.05 22.89 14.44 26.49 28.91
SSP 13.18 21.37 19.00 12.58 6.38 10.64 16.14 13.64
STD 25.27 38.29 13.29 21.74 15.43 16.96 25.74 26.31
UAP (DeepFool) 27.04 38.31 19.64 25.68 2.94 16.43 26.17 28.41
UAPEPGD 26.65 37.62 19.84 27.39 28.27 17.44 28.42 28.29
Clean Accuracy 77.86 78.18 76.67 80.19 72.97 73.86 79.41 77.79
IAA Avg. 23.34 ↓70% 22.65↓71% 20.45↓74% 22.77↓72% 18.36↓75% 21.72↓71% 19.59↓75% 24.05↓69%

UAP Avg. 24.86 ↓68% 35.15↓55% 16.52↓79% 21.89↓73% 10.33↓86% 14.56↓80% 21.18↓73% 25.70↓67%

Adv Avg. 24.06 ↓69% 28.53↓63% 18.55↓77% 22.36↓72% 14.58↓80% 18.34↓75% 20.34↓74% 24.82↓68%
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B.7.6 DTD

Table 18: This table presents the results of various instance and universal adversarial perturbation
(UAP) attacks on the DTD dataset, with all UAP attack names in italics. Different configurations
of FGSM and PGD are denoted, such as FGSM1 and PGD1. Average results for universal ad-
versarial perturbations (UAP Avg.), instance adversarial attacks (IAA Avg.), and overall adversarial
performance (Adv Avg.) are reported at the bottom, including percentage drops relative to clean
accuracy.

Barlow BYOL DINO MoCoV3 SimCLR Supervised SwAV VICReg

FGSM1 50.43 46.76 48.88 51.65 38.4 42.02 48.99 52.71
FGSM2 23.24 21.28 23.94 24.63 17.87 17.66 25.80 26.54
PGD1 50.05 46.01 47.93 51.17 39.31 40.05 48.99 51.65
PGD2 6.91 4.57 3.46 6.38 2.13 3.19 3.35 6.91
PGD3 50.11 46.54 48.14 51.17 39.04 40.27 48.62 51.65
PGD4 6.54 3.94 2.82 5.96 1.7 2.93 3.03 6.60
PGD5 14.89 12.23 11.81 16.76 3.99 10.37 10.53 16.22
DIFGSM 59.84 52.87 60.05 59.79 52.02 54.47 60.27 64.20
CW 0.32 0.32 0.74 0.69 0.43 0.64 0.90 0.90
Jitter 67.39 65.90 66.91 66.17 62.02 60.48 68.51 68.30
TIFGSM 67.77 65.32 67.93 66.06 62.07 62.34 67.39 68.88
PIFGSM 42.77 38.83 40.16 45.53 26.76 35.43 38.40 43.94
EADEN 0 0 0 0 0 0 0 0
OnePixel 75.32 75.43 76.17 74.41 71.12 70.69 75.96 76.28
Pixle 49.89 46.28 46.97 49.57 40.48 37.62 41.38 50.90
SPSA 72.87 71.81 73.51 72.39 67.98 66.91 73.78 74.15
Square 8.09 5.96 6.7 7.77 5.74 1.49 8.46 8.67
TAP 74.10 73.78 73.72 72.50 72.07 62.98 76.97 75.05
ASV 53.19 61.97 49.31 56.54 67.39 39.04 58.19 54.04
FFF (no-data) 53.24 61.60 48.24 56.33 54.89 38.24 57.13 54.31
FFF (mean-std) 52.55 61.33 48.51 56.01 56.54 38.35 57.98 53.72
FFF (one-sample) 52.87 61.60 49.26 56.76 52.18 38.35 57.55 54.15
FG-UAP 52.77 61.17 46.12 55.43 21.38 36.76 53.62 53.67
GD-UAP (no-data) 53.24 61.86 48.78 56.38 55.53 38.30 57.93 54.10
GD-UAP (mean-std) 52.77 60.96 48.88 55.59 62.18 38.72 57.29 53.99
GD-UAP (one-sample) 52.87 62.34 49.31 56.38 55.80 38.40 57.87 54.04
L4A-base 51.86 61.44 49.63 57.34 29.52 38.83 55.80 52.71
L4A-fuse 51.91 61.54 49.04 56.76 30.32 38.46 55.32 52.66
L4A-ugs 52.71 61.76 49.47 56.86 59.04 38.83 57.87 53.30
PD-UAP 53.40 61.65 48.94 57.29 65.64 38.78 57.98 54.31
SSP 52.23 61.60 48.46 55.59 53.35 36.81 57.02 52.93
STD 53.14 61.97 49.10 56.12 60.27 39.04 58.35 54.15
UAP (DeepFool) 53.51 61.86 49.47 56.97 54.04 38.99 58.14 54.47
UAPEPGD 53.40 61.76 49.63 56.81 69.31 39.26 58.14 53.94
Clean Accuracy 79.97 76.76 77.02 75.43 73.19 72.13 77.45 77.61
IAA Avg. 40.02 ↓50% 37.65↓51% 38.88↓50% 40.14↓50% 33.50↓54% 33.86↓53% 38.96↓50% 41.30↓47%

UAP Avg. 52.85 ↓34% 61.65↓17% 48.88↓37% 56.44↓25% 52.96↓28% 38.44↓47% 57.26↓26% 53.78↓31%

Adv Avg. 46.06 ↓42% 48.94↓34% 43.58↓43% 47.81↓37% 42.66↓42% 36.02↓50% 47.57↓39% 47.17↓39%
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B.7.7 FLOWERS

Table 19: This table presents the results of various instance and universal adversarial perturbation
(UAP) attacks on the Flowers dataset, with all UAP attack names in italics. Different configurations
of FGSM and PGD are denoted, such as FGSM1 and PGD1. Average results for universal ad-
versarial perturbations (UAP Avg.), instance adversarial attacks (IAA Avg.), and overall adversarial
performance (Adv Avg.) are reported at the bottom, including percentage drops relative to clean
accuracy.

Barlow BYOL DINO MocoV3 SimCLR Supervised SwAV VICReg

FGSM1 66.36 57.69 57.37 64.52 48.50 41.85 46.97 66.36
FGSM2 25.96 17.49 19.44 24.96 19.00 7.68 13.33 25.96
PGD1 66.03 55.99 55.60 63.31 50.45 36.97 46.65 65.81
PGD2 1.51 0.37 0.17 1.10 0.15 0.00 0.06 1.65
PGD3 66.19 56.37 55.95 63.50 51.00 37.31 46.72 66.44
PGD4 1.21 0.38 0.13 0.90 0.13 0.00 0.02 1.29
PGD5 8.03 4.90 2.81 7.17 0.92 0.72 0.89 8.05
DI2FGSM 74.42 72.08 69.73 75.75 62.56 56.94 67.56 78.12
CW 0.00 0.00 0.05 0.00 0.00 0.02 0.00 0.00
Jitter 84.93 80.12 81.87 82.53 79.85 73.62 79.24 84.33
TIFGSM 86.85 84.35 87.48 86.17 81.29 75.36 84.39 87.88
PIFGSM 53.81 43.06 39.04 51.65 29.16 27.46 28.63 53.85
EADEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OnePixel 94.47 92.77 94.79 93.10 89.27 88.38 92.94 94.49
Pixle 35.32 38.34 31.21 45.08 32.07 20.88 24.05 35.09
SPSA 93.03 90.21 92.91 91.84 85.56 84.31 90.60 92.84
Square 6.70 4.17 4.40 5.60 4.90 0.06 3.32 6.70
TAP 94.01 92.77 94.76 93.31 89.76 75.93 93.14 94.01
ASV 74.65 81.96 69.86 75.20 76.95 34.19 71.70 74.54
FFF (no-data) 75.06 81.66 67.49 75.34 54.67 33.26 70.17 74.73
FFF (mean-std) 74.37 82.00 68.08 75.18 56.34 34.44 72.49 74.89
FFF (one-sample) 74.27 81.51 68.22 75.15 57.85 33.41 71.45 74.32
FG-UAP 72.29 80.97 59.92 71.93 24.88 29.85 55.78 72.22
GD-UAP (no-data) 74.57 81.97 67.77 75.37 60.37 33.90 71.27 74.95
GD-UAP (mean-std) 74.66 81.97 68.44 75.31 69.39 34.35 71.95 75.26
GD-UAP (one-sample) 74.47 81.39 67.98 75.21 61.25 33.92 71.56 74.18
L4A-base 73.46 81.92 69.25 75.01 25.70 34.75 67.80 73.14
L4A-fuse 73.43 81.98 69.16 75.27 25.91 34.73 67.23 73.33
L4A-ugs 74.81 81.95 70.51 75.66 76.75 34.42 72.67 74.47
PD-UAP 74.17 82.46 68.98 75.16 74.75 34.08 71.68 73.68
SSP 73.07 81.27 65.60 73.38 56.14 32.28 66.85 73.28
STD 73.81 81.54 66.81 74.11 51.96 33.64 71.12 73.56
UAP (DeepFool) 75.15 82.41 70.32 75.98 41.61 34.81 73.18 75.02
UAPEPGD 75.70 82.54 70.47 76.28 81.67 35.32 73.33 75.76
Clean Accuracy 94.92 93.36 95.23 94.07 90.57 90.59 93.84 94.92
IAA Avg. 47.71 ↓50% 43.94↓53% 43.76↓54% 47.25↓50% 40.25↓56% 34.86↓62% 39.92↓58% 47.94↓50%

UAP Avg. 74.25 ↓22% 81.84↓12% 68.05↓29% 74.97↓20% 56.01↓38% 33.83↓63% 70.01↓25% 74.20↓22%

Adv Avg. 60.19 ↓37% 61.78↓34% 55.19↓42% 60.30↓36% 47.66↓47% 34.37↓62% 54.08↓42% 60.30↓37%
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B.7.8 FOOD

Table 20: This table presents the results of various instance and universal adversarial perturbation
(UAP) attacks on the Food dataset, with all UAP attack names in italics. Different configurations
of FGSM and PGD are denoted, such as FGSM1 and PGD1. Average results for universal ad-
versarial perturbations (UAP Avg.), instance adversarial attacks (IAA Avg.), and overall adversarial
performance (Adv Avg.) are reported at the bottom, including percentage drops relative to clean
accuracy.

Barlow BYOL DINO MocoV3 SimCLR Supervised SwAV VICReg

FGSM1 26.40 19.34 14.13 28.69 12.10 13.18 12.95 23.48
FGSM2 3.24 1.50 1.39 4.02 1.41 1.29 0.95 2.52
PGD1 26.60 19.03 13.87 28.54 13.69 11.30 13.15 23.91
PGD2 0.04 0.01 0.01 0.05 0.00 0.02 0.00 0.04
PGD3 26.72 19.21 14.13 28.76 13.92 11.42 13.48 24.12
PGD4 0.04 0.01 0.00 0.04 0.00 0.01 0.00 0.03
PGD5 0.59 0.19 0.10 0.82 0.04 0.13 0.01 0.47
DI2FGSM 44.15 37.23 37.35 44.94 33.02 32.45 37.32 40.14
CW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Jitter 60.70 56.00 61.34 58.14 55.13 53.14 61.79 59.79
TIFGSM 57.43 51.93 53.38 56.41 48.65 45.76 54.04 56.51
PIFGSM 17.53 11.71 6.67 19.93 5.17 6.80 5.46 14.85
EADEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OnePixel 73.54 69.95 76.00 71.41 63.59 64.63 73.65 73.22
Pixle 14.94 12.97 9.65 17.11 8.34 5.84 4.93 13.66
SPSA 68.75 64.12 69.31 66.70 57.49 56.88 67.11 68.04
Square 0.19 0.05 0.09 0.19 0.16 0.02 0.07 0.16
TAP 74.21 71.43 76.25 72.68 65.96 53.74 76.18 73.75
ASV 40.26 49.36 39.71 43.88 51.44 19.71 45.23 39.17
FFF (no-data) 40.46 48.56 38.05 43.07 33.07 19.15 43.68 39.47
FFF (mean-std) 40.22 49.06 38.14 43.01 35.53 19.43 44.90 39.28
FFF (one-sample) 40.25 49.00 38.50 43.29 31.72 19.37 44.82 39.22
FG-UAP 38.01 46.65 34.36 39.87 3.53 16.70 35.61 36.82
GD-UAP (no-sample) 40.53 49.04 38.40 43.19 36.96 19.35 44.31 39.42
GD-UAP (mean-std) 40.10 48.83 38.04 43.08 45.96 19.62 44.95 39.40
GD-UAP (one-sample) 40.30 48.78 38.70 43.36 35.96 19.42 44.88 39.33
L4A-base 39.47 48.97 39.04 43.27 5.96 19.84 41.26 38.50
L4A-fuse 39.47 48.90 39.01 43.24 6.12 19.98 41.26 38.39
L4A-ugs 40.65 49.21 39.64 43.73 45.19 19.82 45.33 39.47
PD-UAP 39.94 49.32 38.86 43.34 50.08 19.59 44.59 38.98
SSP 39.30 47.60 37.02 41.92 30.96 17.84 42.59 38.31
STD 39.87 48.60 37.86 42.91 36.31 19.48 44.28 38.88
UAP (DeepFool) 40.87 49.29 39.57 44.12 21.17 20.23 45.69 39.81
UAPEPGD 41.07 49.78 39.81 44.27 57.10 20.24 46.32 40.11
Clean Accuracy 76.09 73.07 78.42 73.83 67.24 69.05 76.51 75.81
IAA Avg. 27.50 ↓64% 24.15↓67% 24.09↓69% 27.69↓62% 21.03↓69% 19.81↓71% 23.39↓69% 26.37↓65%
UAP Avg. 40.04 ↓47% 48.81↓33% 38.41↓51% 43.09↓42% 32.94↓51% 19.36↓72% 43.73↓43% 39.03↓49%
Adv Avg. 33.40 ↓56% 35.75↓51% 30.83↓61% 34.94↓53% 26.63↓60% 19.59↓72% 32.96↓57% 32.33↓57%

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

B.7.9 PETS

Table 21: This table presents the results of various instance and universal adversarial perturbation
(UAP) attacks on the Pets dataset, with all UAP attack names in italics. Different configurations of
FGSM and PGD are denoted, such as FGSM1 and PGD1. Average results for universal adversarial
perturbations (UAP Avg.), instance adversarial attacks (IAA Avg.), and overall adversarial perfor-
mance (Adv Avg.) are reported at the bottom, including percentage drops relative to clean accuracy.

Method Barlow BYOL DINO MocoV3 SimCLR Supervised SwAV VICReg

FGSM1 63.58 61.00 48.74 71.38 44.60 55.10 41.59 63.58
FGSM2 25.08 21.62 11.81 34.65 17.20 14.17 8.74 25.08
PGD1 64.38 60.82 48.07 71.07 46.76 52.20 43.00 64.30
PGD2 0.82 0.41 0.08 2.96 0.16 0.00 0.03 0.79
PGD3 64.52 61.21 48.10 71.29 47.25 52.21 43.42 64.52
PGD4 0.63 0.27 0.03 2.39 0.11 0.00 0.03 0.57
PGD5 6.54 5.69 0.89 14.03 0.98 1.38 0.43 6.51
DI2FGSM 73.92 71.18 63.92 78.63 61.06 68.25 59.70 74.18
CW 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00
Jitter 80.75 79.82 75.82 84.06 74.50 78.41 75.60 80.83
TIFGSM 81.43 80.30 78.13 84.89 75.31 80.60 76.11 82.31
PIFGSM 54.24 51.35 34.23 64.67 31.70 41.02 26.11 54.24
EADEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OnePixel 88.28 87.90 87.65 89.82 81.51 90.60 85.85 88.31
Pixle 42.04 41.46 38.47 59.12 31.61 43.01 29.16 42.31
SPSA 87.27 86.87 85.81 88.79 79.93 88.54 83.95 87.46
Square 3.28 1.71 0.49 4.79 3.88 0.05 0.46 3.30
TAP 88.97 89.04 88.41 90.66 83.01 86.83 87.09 88.97
ASV 62.97 75.13 62.88 70.10 78.67 49.80 66.06 63.20
FFF (no-data) 63.42 75.13 62.52 69.77 64.93 48.89 65.52 63.43
FFF (mean-std) 63.24 75.17 62.07 70.03 68.70 49.81 66.13 63.17
FFF (one-sample) 63.60 75.04 62.62 69.56 65.26 49.05 66.29 63.28
FG-UAP 61.72 74.44 59.29 67.41 16.03 46.17 59.18 61.86
GD-UAP (no-data) 63.56 75.42 62.50 69.76 74.12 49.35 65.83 63.56
GD-UAP (mean-std) 63.39 74.85 62.17 69.71 75.55 50.35 65.69 63.61
GD-UAP (one-sample) 63.21 74.97 62.33 69.74 70.04 49.38 66.01 63.54
L4A-base 63.25 75.37 62.80 70.13 21.30 49.76 64.45 63.17
L4A-fuse 63.09 75.67 63.00 70.34 22.42 49.92 64.45 63.14
L4A-ugs 63.57 75.54 63.34 70.17 78.73 48.83 66.13 63.63
PD-UAP 63.29 75.29 62.38 70.37 77.57 49.38 66.02 63.14
SSP 63.11 74.88 61.78 69.45 56.88 46.94 64.56 62.78
STD 62.80 75.38 62.16 69.12 71.44 50.05 65.91 63.02
UAP (DeepFooç) 63.57 75.43 63.37 70.34 56.74 50.37 66.17 63.65
UAPEPGD 63.76 75.64 63.71 70.36 80.23 51.30 66.49 63.48
Clean Accuracy 89.13 89.08 89.15 90.77 83.23 92.06 87.47 89.13
IAA Avg. 45.87 ↓49% 44.48↓50% 39.48↓56% 50.74↓44% 37.75↓55% 41.79↓55% 36.73↓58% 45.95↓48.4%
UAP Avg. 63.22 ↓29% 75.21↓16% 62.43↓30% 69.77↓23% 61.16↓27% 49.33↓46% 65.30↓25% 63.22↓29%
Adv Avg. 54.03 ↓39% 58.94↓34% 50.28↓44% 59.69↓34% 48.77↓41% 45.34↓51% 50.18↓426% 54.08↓39%
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