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Abstract

It is by now a well known fact in the graph learning community that the presence of1

bottlenecks severely limits the ability of graph neural networks to propagate infor-2

mation over long distances. What so far has not been appreciated is that, counter-3

intuitively, also the presence of strongly connected sub-graphs may severely restrict4

information flow in common architectures. Motivated by this observation, we5

introduce the concept of multi-scale consistency. At the node level this concept6

refers to the retention of a connected propagation graph even if connectivity varies7

over a given graph. At the graph-level, multi-scale consistency refers to the fact8

that distinct graphs describing the same object at different resolutions should be9

assigned similar feature vectors. As we show, both properties are not satisfied by10

poular graph neural network architectures. To remedy these shortcomings, we11

introduce ResolvNet, a flexible graph neural network based on the mathematical12

concept of resolvents. We rigorously establish its multi-scale consistency theoret-13

ically and verify it in extensive experiments on real world data: Here networks14

based on this ResolvNet architecture prove expressive; out-performing baselines15

significantly on many tasks; in- and outside the multi-scale setting.16

1 Introduction17

Learning on graphs has developed into a rich and complex field, providing spectacular results on18

problems as varied as protein design [28], traffic forecasting [23], particle physics [38], recommender19

systems [10] and traditional tasks such as node- and graph classification [43, 44].20

Despite their successes, graph neural networks (GNNs) are still plagued by fundamental issues:21

Perhaps best known is the phenomenon of oversmoothing, capturing the fact that node-features22

generated by common GNN architectures become less informative as network depth increases23

[22, 27]. From the perspective of information flow however deeper networks would be preferable, as24

a K layer message passing network [13], may only facilitate information exchange between nodes25

that are at most K-edges apart – a phenomenon commonly referred to as under-reaching [1, 41].26

However, even if information is reachable within K edges, the structure of the graph might not be27

conducive to communicating it between distant nodes: If bottlenecks are present in the graph at28

hand, information from an exponentially growing receptive field needs to be squashed into fixed-size29

vectors to pass through the bottleneck. This oversquashing-phenomenon [1, 41] prevents common30

architectures from propagating messages between distant nodes without information loss in the31

presence of bottlenecks.32

What has so far not been appreciated within the graph learning community is that – somewhat counter-33

intuitively – also the presence of strongly connected subgraphs severly restricts the information34

flow within popular graph neural network architectures; as we establish in this work. Motivated by35
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this observation, we consider the setting of multi-scale graphs and introduce, define and study the36

corresponding problem of multi-scale consistency for graph neural networks:37

Multi-scale graphs are graphs whose edges are distributed on (at least) two scales: One large scale38

indicating strong connections within certain (connected) clusters, and one regular scale indicating a39

weaker, regular connectivity outside these subgraphs. The lack of multi-scale consistency of common40

architectures then arises as two sides of the same coin: At the node level, prominent GNNs are unable41

to consistently integrate multiple connectivity scales into their propagation schemes: They essentially42

only propagate information along edges corresponding to the largest scale. At the graph level, current43

methods are not stable to variations in resolution scale: Two graphs describing the same underlying44

object at different resolutions are assigned vastly different feature vectors.45

Contributions: We introduce the concept of multi-scale consistency for GNNs and study its two46

defining characteristics at the node- and graph levels. We establish that common GNN architectures47

suffer from a lack of multi-scale consistency and – to remedy this shortcoming – propose the48

ResolvNet architecture. This method is able to consistently integrate multiple connectivity scales49

occurring within graphs. At the node level, this manifests as ResolvNet – in contrast to common50

architectures – not being limited to propagating information via a severely disconnected effective51

propagation scheme, when multiple scales are present within a given graph. At the graph-level, this52

leads to ResolvNet provably and numerically verifiably assigning similar feature vectors to graphs53

describing the same underlying object at varying resolution scales; a property which – to the best of54

our knowledge – no other graph neural network has demonstrated.55

2 Multi-Scale Graphs and Multi-Scale Consistency56

2.1 Multi-Scale Graphs57

We are interested in graphs with edges distributed on (at least) two scales: A large scale indicating58

strong connections within certain clusters, and a regular scale indicating a weaker, regular connectivity59

outside these subgraphs. Before giving a precise definition, we consider two instructive examples:60

Example I. Large Weights: A two-scale geometry as outlined above, might e.g. arise within61

weighted graphs discretizing underlying continuous spaces: Here, edge weights are typically deter-62

mined by the inverse discretization length (wij „ 1{dij), which might vary over the graph [30, 31].63

Strongly connected sub-graphs would then correspond to clusters of nodes that are spatially closely64

co-located. Alternatively, such different scales can occur in social networks; e.g. if edge-weights65

are set to number of exchanged messages. Nodes representing (groups of) close friends would then66

typically be connected by stronger edges than nodes encoding mere acquaintances, which would67

typically have exchanged fewer messages.68

Given such a weighted graph, we partitions its weighted adjacency matrix W “Wreg. `Whigh into a69

disjoint sum over a part Wreg. containing only regular edge-weights and part Whigh containing only70

large edge-weights. This decomposition induces two graph structures on the common node set G: We71

set Greg. :“ pG,Wreg.q and Ghigh :“ pG,Whighq (c.f. also Fig. 1).72

(a) (b) (c) (d)

Figure 1: (a) Graph G with Ereg. (blue) & Ehigh (red); (b) Greg.; (c) Ghigh; (d) Gexcl.-reg.

In preparation for our discussion in Section 2.2, we also define the graph Gexcl.-reg. whose edges73

consists of those elements pi, jq P G ˆ G that do not have a neighbouring edge in Ghigh; i.e. those74

edges pi, jq P E Ĺ G ˆ G so that for any k P G we have pWhighqik, pWhighqkj “ 0 (c.f. Fig. 1 (d)).75

Example 2. Many Connections: Beyond weighted edges, disparate connectivities may also arise in76

unweightd graphs with binary adjacency matrices: In a social network where edge weights encode a77

binary friendship status for example, there might still exist closely knit communities within which78

every user is friends with every other, while connections between such friend-groups may be sparser.79
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Here we may again split the adjacency matrix W “ Wreg. `Whigh into a disjoint sum over a part80

Wreg. encoding regular connectivity outside of tight friend groups and a summand Whigh encoding81

closely knit communities into dense matrix blocks. Fig. 2 depicts the corresponding graph structures.82

(a) (b) (c) (d)

Figure 2: (a) Graph G; (b) Greg.; (c) Ghigh; (d) Gexcl.-reg.

Exact Definition: To unify both examples above into a common framework, we make use of tools83

from spectral graph theory; namely the spectral properties of the Graph Laplacian: Given a graph84

G on N nodes, with weighted adjacency matrix W , diagonal degree matrix D and node weights85

tµiu
N
i“1 collected into the (diagonal) node-weight matrix M “ diag ptµiuq, the (un-normalized)86

graph Laplacian ∆ associated to the graph G is defined as ∆ “M´1pD ´W q.87

It is a well known fact in spectral graph theory, that much information about the connectivity of the88

graph G is encoded into the first (i.e. smallest) non-zero eigenvalue λ1p∆q of this graph Laplacian ∆89

[6, 7]. For an unweighted graph G on N nodes, this eigenvalue λ1p∆q is for example maximised if90

every node is connected to all other nodes (i.e. G is an N -clique); in which case we have λ1p∆q “ N .91

For weighted graphs, it is clear that scaling all weights by a (large) constant c exactly also scales this92

eigenvalue as λ1p∆q ÞÑ c ¨ λ1p∆q. Thus the eigenvalue λ1p∆q is indeed a good proxy for measuring93

the strength of communities within a given graph G.94

In order to formalize the concept of multi-scale graphs containing strongly connected subgraphs, we95

thus make the following definition:96

Definition 2.1. A Graph is called multi-scale if its weight-matrix W admits a disjoint decomposition97

W “Wreg. `Whigh with λ1p∆highq ą λmaxp∆reg.q.

Note that this decomposition ofW also implies ∆ “ ∆reg.`∆high for the respective Laplacians. Note98

also that the graph-structure determined by Ghigh need not be completely connected for λ1p∆highq to99

be large (c.f. Fig.s 1 and 2 (c)): If there are multiple disconnected communities, λ1p∆highq is given as100

the minimal non-zero eigenvalue of ∆high restricted to these individual components of Ghigh. The101

largest eigenvalue λmaxp∆reg.q of ∆reg. can be interpreted as measuring the "maximal connectivity"102

within the graph structure Greg.: By means of Gershgorin’s circle theorem [2], we may bound it103

as λmaxp∆reg.q ď 2 ¨ dreg.,max, with dreg.,max the maximal node-degree occuring in the graph Greg..104

Hence λmaxp∆reg.q is small, if the connectivity within Greg. is sparse.105

2.2 Multi-Scale consistency106

We are now especially interested in the setting where the scales occuring in a given graph G are well107

separated (i.e. λ1p∆highq " λmaxp∆reg.q). Below, we describe how graph neural networks should108

ideally consistently incorporate such differing scales and detail how current architectures fail to do109

so. As the influence of multiple scales within graphs manifests differently depending on whether110

node-level- or graph-level tasks are considered, we will discuss these settings separately.111

2.2.1 Node Level Consistency: Retention of connected propagation Graphs112

The fundamental purpose of graph neural networks is that of generating node embeddings not only113

dependent on local node-features, but also those of surrounding nodes. Even in the presence of114

multiple scales in a graph G, it is thus very much desirable that information is propagated between115

all nodes connected via the edges of G – and not, say, only along the dominant scale (i.e. via Ghigh).116

This is however not the case for popular graph neural network architectures: Consider for example117

the graph convolutional network GCN [19]: Here, feature matrices X are updated via the update rule118

X ÞÑ Â ¨X , with the off-diagonal elements of Â given as Âij “Wij{

b

d̂i ¨ d̂j . Hence the relative119

importance Âij of a message between a node i of large (renormalised) degree d̂i " 1 and a node j120

that is less strongly connected (e.g. d̂j “ Op1q) is severely discounted.121
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In the presence of multiple scales as in Section 2.1, this thus leads to messages essentially only122

being propagated over a disconnected effective propagation graph that is determined by the ef-123

fective behaviour of Â in the presence of multiple scales. As we show in Appendix A using124

the decompositions W “ Wreg. `Whigh, the matrix
Â can in this setting effectively be approximated as:

Â «
´

D
´ 1

2

highWhighD
´ 1

2

high `D
´ 1

2
reg. W̃excl.-reg.D

´ 1
2

reg.

¯

Thus information is essentially only propagated
within the connected components of Ghigh and via
edges in Gexcl.-reg. (detached from edges in Ghigh).

(a) (b)

Figure 3: Effective propagation graphs for
original graphs in Fig. 2 (a) and Fig. 1 (a)

125

Appendix A further details that this reduction to propagating information only along a disconnected126

effective graph in the presence of multiple scales generically persists for popular methods (such as127

e.g. attention based methods [42] or spectral methods [8]).128

Propagating only over severely disconnected effective graphs as in Fig. 3 is clearly detrimental:129

(a) (b)

Figure 4: Individual nodes (a) replaced by 6-cliques (b)
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Figure 5: Classification Accuracy

130

As is evident from GCN’s performance in Fig.5, duplicating individual nodes of a popular graph131

dataset into fully connected k-cliques as in Fig. 4 leads to a significant decrease in node-classification132

accuracy, as propagation between cliques becomes increasingly difficult with growing clique-size k.133

Details are provided in the Experimental-Section 5. In principle however, duplicating nodes does not134

increase the complexity of the classification task at hand: Nodes and corresponding labels are only135

duplicated in the train-, val.- and test-sets. What is changing however, is the geometry underlying the136

problem; turning from a one-scale- into a two-scale setting with increasingly separated scales.137

In Section 3 below, we introduce ResolvNet, which is able to consistently integrate multiple scales138

within a given graph into its propagation scheme. As a result (c.f. Fig. 5) its classification accuracy is139

not affected by an increasing clique-size k (i.e. an increasing imbalance in the underlying geometry).140

2.2.2 Graph Level Consistency: Transferability between different Resolutions141

At the graph level, we desire that graph-level feature vectors ΨpGq generated by a network Ψ for142

graphs G are stable to changes in resolution scales: More precisely, if two graphs G and G describe143

the same underlying object, space or phenomenon at different resolution scales, the generated feature144

vectors should be close, as they encode the same object in the latent space. Ideally, we would145

have a Lipschitz continuity relation that allows to bound the difference in generated feature vectors146

}ΦpGq ´ ΦpGq} in terms of a judiciously chosen distance dpG,Gq between the graphs as147

}ΨpGq ´ΨpGq} À dpG,Gq. (1)

Note that a relation such as (1) also allows to make statements about different graphs G, rG describing148

an underlying object at the same resolution scale: If both such graphs are close to the same coarse149

grained description G, the triangle inequality yields }ΨpGq ´Ψp rGq} À pdpG,Gq ` dp rG,Gqq ! 1.150

To make precise what we mean by the coarse grained description G, we revisit the example of151

graphs discretising an underlying continuous space, with edge weights corresponding to inverse152

discretization length (wij „ 1{dij). Coarse-graining – or equivalently lowering the resolution scale –153

then corresponds to merging multiple spatially co-located nodes in the original graph G into single154

aggregate nodes in G. As distance scales inversely with edge-weight, this means that we are precisely155

collapsing the strongly connected clusters within Ghigh into single nodes. Mathematically, we then156

make this definition of the (lower resolution) coarse-grained graph G exact as follows:157
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Definition 2.2. Denote by G the set of connected
components in Ghigh. We give this set a graph
structure G as follows: Let R and P be ele-
ments of G (i.e. connected components in Ghigh).
We define the real number WRP as WRP “
ř

rPR

ř

pPP Wrp, with r and p nodes in the orig-
inal graph G. We define the set of edges E on G
as E “ tpR,P q P G ˆ G : WRP ą 0u and assign
WRP as weight to such edges. Node weights of
nodes in G are defined similarly by aggregating
weights of all nodes r contained in the connected
component R of Ghigh as µ

R
“
ř

rPR µr.

(a) (b)

(c) (d)

Figure 6: Original G (a,c) and coarsified G (b,d)

158

This definition is of course also applicable to Example 2 of Section 2.1. Collapsing corresponding159

strongly connected component in a social network might then e.g. be interpreted as moving from160

interactions between individual users to considering interactions between (tightly-knit) communities.161

While there have been theoretical investigations into this issue of transferability of graph neural162

networks between distinct graphs describing the same system [21, 34, 24, 20], the construction of an163

actual network with such properties – especially outside the asymptotic realm of very large graphs –164

has – to the best of our knowledge – so far not been successful. In Theorem 4.2 and Section 5 below,165

we show however that the ResolvNet architecture introduced in Section 3 below indeed provably and166

numerically verifiably satisfies (1), and is thus robust to variations in fine-print articulations of graphs167

describing the same object.168

3 ResolvNet169

We now design a network – termed ResolvNet – that can consistently incorporate multiple scales170

within a given graph into its propagation scheme. At the node level, we clearly want to avoid171

disconnected effective propagation schemes as discussed in Section 2.2.1 in settings with well-172

separated connectivity scales. At the graph level – following the discussion of Section 2.2.2 – we173

want to ensure that graphsG containing strongly connected clusters and graphsGwhere these clusters174

are collapsed into single nodes are assigned similar feature vectors.175

We can ensure both properties at the same time, if we manage to design a network whose propagation176

scheme when deployed on a multi-scale graph G is effectively described by propagating over a coarse177

grained version G if the connectivity within the strongly connected clusters Ghigh of G is very large:178

• At the node level, this avoids effectively propagating over disconnected limit graphs as in179

Section 2.2.1. Instead, information within strongly connected clusters is approximately180

homogenized and message passing is then performed on a (much better connected) coarse-181

grained version G of the original graph G (c.f. Fig. 6).182

• At the graph level, this means that the stronger the connectivity within the strongly connected183

clusters is, the more the employed propagation on G is like that on its coarse grained version184

G. As we will see below, this can then be used to ensure the continuity property (1).185

3.1 The Resovent Operator186

As we have seen in Section 2.2.1 (and as is further discussed in Appendix A), standard message pass-187

ing schemes are unable to generate networks having our desired multi-scale consistency properties.188

A convenient multi-scale description of graphs is instead provided by the graph Laplacian ∆ (c.f.189

Section 2.1), as this operator encodes information about coarse geometry of a graph G into small190

eigenvalues, while fine-print articulations of graphs correspond to large eigenvalues. [6, 7]. We are191

thus motivated to make use of this operator in our propagation scheme for ResolvNet.192

In the setting of Example I of Section 2.1, letting the weights withinGhigh go to infinity (i.e. increasing193

the connectivity within the strongly connected clusters) however implies }∆} Ñ 8 for the norm of194

the Laplacian on G. Hence we can not implement propagation simply as X ÞÑ ∆ ¨X: This would195

not reproduce the corresponding propagation scheme on G as we increase the connectivity within196
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Ghigh: The Laplacian on G does not converge to the Laplacian on G in the usual sense (it instead197

diverges }∆} Ñ 8).198

In order to capture convergence between operators with such (potentially) diverging norms, math-199

ematicians have developed other – more refined – concepts: Instead of distances between original200

operators, one considers distances between resolvents of such operators [40] :201

Definition 3.1. The resolvent of an operator ∆ is defined as Rzp∆q :“ p∆´ z ¨ Idq
´1, with Id the202

identity mapping. Such resolvents are defined whenever z is not an eigenvalue of ∆.203

For Laplacians, taking z ă 0 hence ensures Rzp∆q is defined. Using this concept, we now rigorously204

establish convergence (in the resolvent sense) of the Laplacian ∆ on G to the (coarse grained)205

Laplacian ∆ on G as the connectivity within Ghigh is increased. To rigorously do so, we need to be206

able to translate signals between the original graph G and its coarse-grained version G:207

Definition 3.2. Let x be a scalar graph signal. Denote by 1R the vector that has 1 as entries on208

nodes r belonging to the connected (in Ghigh) component R and has entry zero for all nodes not in209

R. We define the down-projection operator JÓ component-wise via evaluating at node R in G as210

pJÓxqR “ x1R, xy{µR. This is then extended to feature matrices tXu via linearity. The interpolation211

operator JÒ is defined as JÒu “
ř

R uR ¨ 1R; where uR is a scalar value (the component entry of u212

at R P G) and the sum is taken over all connected components of Ghigh.213

With these preparations, we can rigorously establish that the resolvent of ∆ approaches that of ∆:214

Theorem 3.3. We have Rzp∆q Ñ JÒRzp∆qJ
Ó as connectivity within Ghigh increases. Explicitly:215

›

›Rzp∆q ´ J
ÒRzp∆qJ

Ó
›

› “ O
ˆ

λmaxp∆reg.q

λ1p∆highq

˙

The fairly involved proof of Theorem 3.3 is contained in Appendix B and builds on previous work:216

We extend preliminary results in [20] by establishing omni-directional transferability (c.f. Theorem217

4.1 below) and go beyond the toy-example of expanding a single node into a fixed and connected218

sub-graph with pre-defined edge-weights.219

The basic idea behind ResolvNet is then to (essentially) implement message passing as X ÞÑ220

Rzp∆q¨X . Building on Theorem 3.3, Section 4 below then makes precise how this rigorously enforces221

multiscale-consistency as introuced in Section 2.2 in the corresponding ResolvNet architecture.222

3.2 The ResolvNet Architecture223

Building on Section 3.1, we now design filters for which feature propagation essentially proceeds224

along the coarsified graph of Definition 2.2 as opposed to the disconnected effective graphs of Section225

2.2.1, if multiple – well separated – edge-weight scales are present.226

To this end, we note that Theorem 3.3 states for λ1p∆highq " λmaxp∆reg.q (i.e. well separated scales),227

that applying Rzp∆q to a signal x is essentially the same as first projecting x to G via JÓ, then228

applying Rzp∆q there and finally lifting back to G with JÒ. Theorem B.4 In Appendix B establishes229

that this behaviour also persists for powers of resolvents; i.e. we also have Rkz p∆q « JÒRkz p∆qJ
Ó.230

Resolvent filters: This motivates us to choose our learnable filters as polynomials in resolvents231

fz,θp∆q :“
K
ÿ

k“a

θi
“

p∆´ zIdq´1
‰k

(2)

with learnable parameters tθkuKk“a. Thus our method can be interpreted as a spectral method [8],232

with learned functions fz,θpλq “
řK
k“a θkpλ ´ zq´k applied to the operator ∆ determining our233

convolutional filters. The parameter a, which determines the starting index of the sum in (2), may234

either be set to a “ 0 (Type-0) or a “ 1 (Type-I). As we show in Theorem 4.1 below, this choice will235

determine transferability properties of our models based on such filters.236

Irrespectively, both Type-0 and Type-I filters are able to learn a wide array of functions, as the237

following theorem (proved in Appendix C) shows:238
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Theorem 3.4. Fix ε ą 0 and z ă 0. For arbitrary functions g, h : r0,8s Ñ R with limλÑ8 gpλq “239

const. and limλÑ8 hpλq “ 0, there are filters f0
z,θ, f

I
z,θ of Type-0 and Type-I respectively such that240

}f0
z,θ ´ g}8, }f

I
z,θ ´ h}8 ă ε.241

The ResolvNet Layer: Collecting resolvent filters into a convolutional architecture, the layer242

wise update rule is then given as follows: Given a feature matrix X` P RNˆF` in layer `, with243

column vectors tX`
ju
F`
j“1, the feature vector X``1

i in layer ` ` 1 is then calculated as X``1
i “244

ReLu
´

řF`

j“1 fz,θ``1
ij
p∆q ¨X`

j ` b
``1
i

¯

with a learnable bias vector b``1
i . Collecting biases into a245

matrix B``1 P RNˆF``1 , we can efficiently implement this using matrix-multiplications as246

X``1 “ ReLu

˜

K
ÿ

k“a

pT ´ ωIdq´k ¨X` ¨W ``1
k `B``1

¸

with weight matrices tW ``1
k u in RF`ˆF``1 . Biases are implemented as bi “ βi ¨ 1G, with 1G the247

vector of all ones on G and βi P R learnable. This is done to ensure that the effective propagation on248

G (if well seperated scales are present in G) is not disturbed by non-transferable bias terms on the249

level of entire networks. This can be traced back to the fact that JÓ1G “ 1G and JÒ1G “ 1G. A250

precise discussion of this matter is contained in Appendix D.251

Graph level feature aggregation: As we will also consider the prediction of graph-level properties252

in our experimental Section 5 below, we need to sensibly aggregate node-level features into graph-253

level features on node-weighted graphs: As opposed to standard aggregation schemes (c.f. e.g. [45]),254

we define an aggregation scheme Ψ that takes into account node weights and maps a feature matrix255

X P RNˆF to a graph-level feature vector ΨpXq P RF via ΨpXqj “
řN
i“1 |Xij | ¨ µi.256

4 Multi-Scale consistency and Stability Guarantees257

Node Level: We now establish rigorously that instead of propagating along disconnected effective258

graphs (c.f. Fig. 3), ResolvNet instead propagates node features along the coarse-grained graphs of259

Fig. 6 if multiple separated scales are present:260

Theorem 4.1. Let Φ and Φ be the maps associated to ResolvNets with the same learned weight261

matrices and biases but deployed on graphs G and G as defined in Section 3. We have262

}ΦpJÒXq ´ JÒΦpXq}2 ď pC1pW q ¨ }X}2 ` C2pW ,Bqq ¨
›

›Rzp∆q ´ J
ÒRzp∆qJ

Ó
›

›

if the network is based on Type-0 resolvent filters (c.f. Section 3). Additionally, we have263

}ΦpXq ´ JÒΦpJÓXq}2 ď pC1pW q ¨ }X}2 ` C2pW ,Bqq ¨
›

›Rzp∆q ´ J
ÒRzp∆qJ

Ó
›

›

if only Type-I filters are used in the network. Here C1pW q and C2pW ,Bq are constants that depend264

polynomially on singular values of learned weight matrices W and biases B.265

The proof – as well as additional results – may be found in Appendix E. Note that Theorem 3.3266

implies that both equations tends to zero for increasing scale separation λ1p∆highq " λmaxp∆reg.q.267

The difference between utilizing Type-0 and Type-I resolvent filters, already alluded to in the268

preceding Section 3, now can be understood as follows: Networks based on Type-0 filters effec-269

tively propagate signals lifted from the coarse grained graph G to the original graph G along G if270

λ1p∆highq " λmaxp∆reg.q. In contrast – in the same setting – networks based on Type-I resolvent271

filters effectively first project any input signal on G to G, propagate there and then lift back to G.272

Graph Level: Beyond a single graph, we also establish graph-level multi-scale consistency: As273

discussed in Section 2.2.2, if two graphs describe the same underlying object (at different resolution274

scales) corresponding feature vectors should be similar. This is captured by our next result:275

Theorem 4.2. Denote by Ψ the aggregation method introduced in Section 3. With µpGq “
řN
i“1 µi276

the total weight of the graph G, we have in the setting of Theorem 4.1 with Type-I filters, that277

}Ψ pΦpXqq ´Ψ
`

ΦpJÓXq
˘

}2 ď
a

µpGq pC1pW q}X}2 ` C2pW ,Bqq
›

›Rzp∆q ´ J
ÒRzp∆qJ

Ó
›

› .

This result thus indeed establishes the desired continuity relation (1), with the distance metric dpG,Gq278

provided by the similarity
›

›Rzp∆q ´ J
ÒRzp∆qJ

Ó
›

› of the resolvents of the two graphs.279
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5 Experiments280

Node Classification: To establish that the proposed ResolvNet architecture not only performs281

well in multi-scale settings, we conduct node classification experiments on multiple un-weighted282

real world datasets, ranging in edge-homophily h from h “ 0.11 (very heterophilic), to h “ 0.81283

(very homophilic). Baselines constitute an ample set of established and recent methods: Spectral284

approaches, are represented by ChebNet [8], GCN [19], BernNet [15], ARMA [3] and MagNet [47].285

Spatial methods are given by GAT [42], SAGE [14] and GIN [45]. We also consider PPNP [11] and286

NSD [5]. Details on datasets, experimental setup and hyperparameters are provided in Appendix F.287

Table 1: Average Accuracies [%] with uncertainties encoding the 95 % confidence Level. Top three
models are coloured-coded as First, Second, Third.

MS. Acad. Cora Pubmed Citeseer Cornell Actor Squirrel Texas
h 0.81 0.81 0.80 0.74 0.30 0.22 0.22 0.11

SAGE 91.75˘0.09 80.68˘0.30 74.42˘0.42 72.68˘0.32 86.01˘0.72 28.88˘0.32 25.99˘0.28 88.92˘0.73

GIN 72.93˘1.94 74.12˘1.21 74.59˘0.45 68.11˘0.69 65.58˘1.23 23.69˘0.28 24.91˘0.58 72.64˘1.19

GAT 89.49˘0.15 80.12˘0.33 77.12˘0.41 73.20˘0.37 74.39˘0.93 24.55˘0.28 27.22˘0.31 75.31˘1.09

NSD 90.78˘0.13 70.34˘0.47 69.74˘0.50 64.39˘0.50 87.78˘0.65 27.62˘0.39 24.96˘0.27 91.64˘0.62

PPNP 91.22˘0.13 83.77˘0.27 78.42˘0.31 73.25˘0.37 71.93˘0.84 25.93˘0.35 23.69˘0.43 70.73˘1.27

ChebNet 91.62˘0.10 78.70˘0.37 73.63˘0.43 72.10˘0.43 85.99˘0.10 29.51˘0.31 25.68˘0.28 91.01˘0.59

GCN 90.81˘0.10 81.49˘0.36 76.60˘0.44 71.34˘0.45 73.35˘0.88 24.60˘0.28 30.40˘0.40 76.16˘1.12

MagNet 87.23˘0.16 76.50˘0.42 68.23˘0.44 70.92˘0.49 87.15˘0.66 30.50˘0.32 23.54˘0.32 90.84˘0.54

ARMA 88.97˘0.18 81.24˘0.24 76.28˘0.35 70.64˘0.45 83.68˘0.80 24.40˘0.45 22.72˘0.42 87.41˘0.73

BernNet 91.37˘0.14 83.26˘0.24 77.24˘0.37 73.11˘0.34 87.14˘0.57 28.90˘0.45 22.86˘0.32 89.81 ˘0.68

ResolvNet 92.73˘0.08 84.16˘0.26 79.29˘0.36 75.03˘0.29 84.92˘1.43 29.06˘0.32 26.51˘0.23 87.73˘0.89

As is evident from Table 1, ResolvNet out-performs all baselines in the homophilic setting. This288

can be traced back to the inductive bias ResolvNet is equipped with by design: It might be summarized289

as "Nodes that are strongly connected should be assigned similar feature vectors" (c.f. Theorem 4.1) .290

This inductive bias – necessary to achieve a consistent incorporation of multiple scales – is of course291

counterproductive in the presence of heterophily; here nodes that are connected by edges generically292

have differing labels and should thus be assigned different feature vectors. However the ResolvNet293

architecture also performs well on most heterophilic graphs: It e.g. out-performs NSD – a recent294

state of the art method spefically developed for heterophily – on two such graphs.295

Node Classification for increasingly separated scales: To test ResolvNet’s ability to consistently296

incorporate multiple scales in the unweighted setting against a representative baseline, we duplicated297

individual nodes on the Citeseer dataset [36] k-times to form (fully connected) k-cliques; keeping298

the train-val-test partition constant. GCN and ResolvNet were then trained on the same (k-fold299

expanded) train-set and asked to classify nodes on the (k-fold expanded) test-partition. As discussed300

in Section 1 (c.f. Fig.5) GCN’s performance decreased significantly, while ResolvNet’s accuracy301

stayed essentially constant; showcasing its ability to consistently incorporate multiple scales.302

Regression on real-world multi-scale graphs: In order to showcase the properties of our newly303

developed method on real world data admitting a two-scale behaviour, we evaluate on the task of304

molecular property prediction. While ResolvNet is not designed for this setting, this task still allows305

to fairly compare its expressivity and stability properties against other non-specialized graph neural306

networks [17]. Our dataset (QM7; [35]) contains descriptions of 7165 organic molecules; each307

containing hydrogen and up to seven types of heavy atoms. A molecule is represented by its Coulomb308

matrix, whose off-diagonal elements Cij “ ZiZj{|~xi ´ ~xj | correspond to the Coulomb repulsion309

between atoms i and j. We treat C as a weighted adjacency matrix. Prediction target is the molecular310

atomization energy, which – crucially – depends on long range interaction within molecules [46].311

However, with edge-weights Cij scaling as inverse distance, long range propagation of information is312

scale-suppressed in the graph determined by C, when compared to the much larger weights between313

closer atoms. We choose Type-I filters in ResolvNet, set node weights as atomic charge (µi “ Zi)314

and use one-hot encodings of atomic charges Zi as node-wise input features.315
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As is evident from Table 2, our method produces significantly lower
mean-absolute-errors (MAEs) than baselines of Table 1 deployable on
weighted graphs. We attribute this to the fact that our model allows
for long range information propagation within each molecule, as
propagation along corresponding edges is suppressed for baselines but
not for our model (c.f. Section 2.2.1). Appendix contains additional
experiments on QM9 [32]; finding similar performance for (long-
range dependent) energy targets.

Table 2: QM7-MAE

QM7 MAE rkcal{mols

BernNet 113.57˘62.90

GCN 61.32˘1.62

ChebNet 59.57˘1.58

ARMA 59.39˘1.79

ResolvNet 16.52˘0.67

316

Stability to varying the resolution-scale: To numerically verify the Stability-Theorem 4.2 –317

which guarantees similar graph-level feature vectors for graphs describing the same underlying object318

at different resolution scales – we conduct additional experiments: We modify (all) molecular graphs319

of QM7 by deflecting hydrogen atoms (H) out of their equilibrium positions towards the respective320

nearest heavy atom. This introduces a two-scale setting precisely as discussed in section 2: Edge321

weights between heavy atoms remain the same, while Coulomb repulsions between H-atoms and322

respective nearest heavy atom increasingly diverge. Given an original molecular graph G with node323

weights µi “ Zi, the corresponding coarse-grained graph G corresponds to a description where324

heavy atoms and surrounding H-atoms are aggregated into single super-nodes. Node-features of325

aggregated nodes are now no longer one-hot encoded charges, but normalized bag-of-word vectors326

whose individual entries encode how much of the total charge of a given super-node is contributed by327

individual atom-types. Appendix F provides additional details and examples.328

In this setting, we now compare features generated for coarsified graphs tGu, with feature329

generated for graphs tGu where hydrogen atoms have
been deflected but have not yet completely arrived at the
positions of nearest heavy atoms. Feature vectors are
generated with the previously trained networks of Table
2. A corresponding plot is presented in Figure 7. Fea-
tures generated by ResolvNet converge as the larger scale
increases (i.e. the distance between hydrogen and heavy
atoms decreases). This result numerically verifies the
scale-invariance Theorem 4.2. As reference, we also plot
the norm differences corresponding to baselines, which
do not decay. We might thus conclude that these models
– as opposed to ResolvNet – are scale- and resolution sen-
sitive when generating graph level features. For BernNet
we observe a divergence behaviour, which we attribute
to numerical instabilities.

Figure 7: Feature-vector-difference for
collapsed (F ) and deformed (F ) graphs.

330

As a final experiment, we treat the coarse-grained molecular graphs tGu as a model for data ob-331

tained from a resolution-limited observation process, that is unable to resolve positions of hydrogen332

and only provides information about how many H-atoms are bound to
a given heavy atom. Given models trained on higher resolution data,
atomization energies for such observed molecules are now to be pre-
dicted. Table 3 contains corresponding results. While the performance
of baselines decreases significantly if the resolution scale is varied
during inference, the prediction accuracy of ResolvNet remains high;
even slightly increasing. While ResolvNet out-performed baselines by
a factor of three on same-resolution-scale data (c.f.Table 2), its lead
increases to a factor of 10 and higher in the multi-scale setting.

Table 3: QM7coarse-MAE

QM7 MAE rkcal{mols

BernNet 580.67˘99.27

GCN 124.53˘34.58

ChebNet 645.14˘34.59

ARMA 248.96˘15.56

ResolvNet 16.23˘2.74

333

6 Conclusion334

This work introduced the concept of multi-scale consistency: At the node level this refers to the335

retention of a propagation scheme not solely determined by the largest given connectivity scale. At the336

graph-level it mandates that distinct graphs describing the same object at different resolutions should337

be assigned similar feature vectors. Common GNN architectures were shown to not be multi-scale338

consistent, while the newly introduced ResolvNet architecture was theoretically and experimentally339

established to have this property. Deployed on real world data, ResolvNet proved expressive and340

stable; out-performing baselines significantly on many tasks in- and outside the multi-scale setting.341
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A Effective Propagation Schemes477

For definiteness, we here discuss limit-propagation schemes in the setting where edge-weights are478

large. The discussion for high-connectivity in the Sense of Example II of Section 2.1 proceeds in479

complete analogy.480

481

482

In this section, we then take up again the setting of Section 2. We reformulate this setting here in483

a slightly modified language, that is more adapted to discussing effective propagation schemes of484

standard architectures:485

486

We partition edges on a weighted graph G, into two disjoint sets E “ Ereg. 9YEhigh, where the set of487

edges with large weights is given by:488

Ehigh :“ tpi, jq P E : wij ě Shighu

and the set with small weights is given by:489

Ereg. :“ tpi, jq P E : wij ď Sreg.u

for weight scales Shigh ą Sreg. ą 0. Without loss of generality, assume Sreg. to be as low as possible490

(i.e. Sreg. “ maxpi,jqPEreg. wij) and Shigh to be as high as possible (i.e. Slarge “ minpi,jqPEhigh ) and no491

weights in between the scales.492

(a) (b) (c) (d)

Figure 8: (a) Graph G with Ereg. (blue) & Ehigh (red); (b) Greg.; (c) Ghigh; (d) Greg., exclusive

This decomposition induces two graph structures corresponding to the disjoint edge sets on the node493

set G: We set Greg. :“ pG, Ereg.q and Ghigh :“ pG, Ehighq c.f. Fig. 8).494

We also introduce the set of edges Ereg., exclusive :“ tpi, jq P Ereg.| @k P G : pi, kq R Ehigh & pk, jq R495

Ehighu connecting nodes that do not have an incident edge in Ehigh. A corresponding example-graph496

Greg., exclusive is depicted in Fig. 8 (d).497

498

We are now interested in the behaviour of graph convolution schemes if the scales are well499

separated:500

Shigh " Sreg.

A.1 Spectral Convolutional Filters501

We first discuss resulting limit-propagation schemes for spectral convolutional networks. Such502

networks implement convolutional filters as a mapping503

x ÞÝÑ gθpT qx

for a node feature x, a learnable function gθ and a graph shift operator T .504

A.1.1 Need for Normalization505

The graph shift operator T facilitating the graph convolutions needs to be normalized for established506

spectral graph convolutional architectures:507

For [3], this e.g. arises as a necessity for convergence of the proposed implementation scheme for the508

rational filters introduced there (c.f. eq. (10) in [3]).509
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The work [8] needs its graph shift operator to be normalized, as it approximates generic filters510

via a Chebyshev expansion. As argued in [8], such Chebyshev polynomials form an orthogonal511

basis for the space L2pr´1, 1s, dx{
?

1´ x2q. Hence, the spectrum of the operator T to which the512

(approximated and learned) function gθ is applied needs to be contained in the interval r´1, 1s.513

In [19], it has been noted that for the architecture proposed there, choosing T to have eigenvalues in514

the range r0, 2s (as opposed to the normalized ranges r0, 1s or r´1, 1s) has the potential to lead to515

vanishing- or exploding gradients as well as numerical instabilities. To alleviate this, [19] introduces516

a "renormalization trick" (c.f. Section 2.2. of [19] to produce a normalized graph shift operator on517

which the network is then based.518

We can understand the relationship between normalization of graph shift operator T and the stability519

of corresponding convolutional filters explicitly: Assume that we have520

}T } " 1.

This might e.g. happen when basing networks on the un-normalized graph Laplacian ∆ or the521

weight-matrix W if edge weights are potentially large (such as in the setting Shigh " Sreg. that we are522

considering).523

By the spectral mapping theorem (see e.g. [40]), we have524

σ pgθpT qq “ tgθpλq : λ P σpT qu , (3)

with σpT q denoting the spectrum (i.e. the set of eigenvalues) of T . For the largest (in absolute value)525

eigenvalue λmax of T , we have526

|λmax| “ }T }. (4)
Since learned functions are either implemented directly as a polynomial (as e.g. in [8, 15]) or527

approximated as a Neumann type power iteration (as e.g. in [3, 12]) which can be thought of as a528

polynomial, we have529

lim
λÑ˘8

|gθpλq| “ 8.

Thus in view of (3) and (4) we have for }T } sufficiently large, that530

}gθpT q} “ |gθp˘}T }q|

with the sign ˘ determined by λmax ż 0. Since non-constant polynomials behave at least linearly531

for large inputs, there is a constant C ą 0 such that532

C ¨ }T } ď }gθpT q}

for all sufficiently large }T }. We thus have the estimate533

}x} ¨ C ¨ }T } ď }gθpT qx}

for at least one input signal x (more precisely all x in the eigen-space corresponding to the largest (in534

absolute value) eigenvalue λmax). Thus if T is not normalized (i.e. }T } is not sufficiently bounded),535

the norm of (hidden) features might increase drastically when moving from one (hidden) layer to the536

next. This behaviour persists for all input signals x have components in eigenspaces corresponding to537

large (in absolute value) eigenvalues of T .538

A.1.2 Spectral Normalizations539

As discussed in the previous Section A.1.1, instabilities aris-
ing from non-normalized graph shift operators can be traced
back to the problem of such operators having large eigenval-
ues. It was thus – among other considerations – suggested in
[8] to base convolutional filters on the spectrally normalized
graph shift operator

T “
1

λmaxp∆q
∆, Figure 9: Limit graph corresponding

to Fig 8 for spectral normalization

540

with ∆ the un-normalized graph Laplacian. In the setting Shigh " Sreg. we are considering, this leads to541

an effective feature propagation alongGhigh (c.f. also Fig. 9) only, as Theorem A.1 below establishes:542

543
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Theorem A.1. With544

T “
1

λmaxp∆q
∆,

and the scale decomposition as introduced in Section 2, we have that545

›

›

›

›

T ´
1

λmaxp∆highq
∆high

›

›

›

›

“ O
ˆ

Sreg.

Shigh

˙

(5)

for Shigh " Sreg..546

Proof. For convenience in notation, let us write547

Thigh “
1

λmaxp∆highq
∆high

and similarly548

Treg. “
1

λmaxp∆reg.q
∆reg..

In section 2, we already noted that549

∆ “ ∆high `∆reg.,

which we may rewrite as550

∆ “ λmaxp∆highq ¨

ˆ

Thigh `
λmaxp∆reg.q

λmaxp∆highq
¨ Treg.

˙

. (6)

Let us consider the equivalent expression551

1

λmaxp∆highq
¨∆ “ Thigh `

λmaxp∆reg.q

λmaxp∆highq
¨ Treg.. (7)

We next note that552

λmax

ˆ

1

λmaxp∆highq
¨∆

˙

“
λmaxp∆q

λmaxp∆highq
. (8)

and553

λmax pThighq “ 1

since the operation of taking eigenvalues of operators is multiplicative in the sense of554

λmaxp|a| ¨ T q “ |a| ¨ λmaxpT q

for non-negative |a| ě 0.555

Since the right-hand-side of (7) constitutes an analytic perturbation of Thigh, we may apply analytic556

perturbation theory (c.f. e.g. [18] for an extensive discussion) to this problem. With this (together557

with }Thigh} “ 1) we find558

λmax

ˆ

1

λmaxp∆highq
¨∆

˙

“ 1`O
ˆ

λmaxp∆reg.q

λmaxp∆highq

˙

. (9)

Using (8) and the fact that559

λmaxp∆reg.q

λmaxp∆highq
9
Sreg.

Shigh
, (10)

we thus have560
λmax p∆q

λmaxp∆highq
“ 1`O

ˆ

Sreg.

Shigh

˙

.

Since for small ε, we also have561
1

1` ε
“ 1`Opεq,

the relation (10) also implies562

λmaxp∆highq

λmax p∆q
“ 1`O

ˆ

Sreg.

Shigh

˙

.
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Multiplying (6) with 1{λmaxp∆q yields563

T “
λmaxp∆highq

λmaxp∆q
¨

ˆ

Thigh `
λmaxp∆reg.q

λmaxp∆highq
¨ Treg.

˙

. (11)

Since }Thigh}, }Treg.} “ 1 and564

λmaxp∆reg.q

λmaxp∆highq
9
Sreg.

Shigh
ă 1

for sufficiently large Shigh, relation (11) implies565

›

›

›

›

T ´
1

λmaxp∆highq
∆high

›

›

›

›

“ O
ˆ

Sreg.

Shigh

˙

as desired.566

Note that we might in principle also make use of Lemma A.2 below, to provide quantitative bounds:567

Lemma A.2 states that568

|λkpAq ´ λkpBq| ď }A´B}

for self-adjoint operators A and B and their respective kth eigenvalues ordered by magnitude. On a569

graph withN nodes, we clearly have λmax “ λN for eigenvalues of (rescaled) graph Laplacians, since570

all such eigenvalues are non-negative. This implies for the difference |1´ λmaxp∆q{λmaxp∆highq|571

arising in (9) that explicitly572

ˇ

ˇ

ˇ

ˇ

1´
λmaxp∆q

λmaxp∆highq

ˇ

ˇ

ˇ

ˇ

ď
λmaxp∆reg.q

λmaxp∆highq
.

This in turn can then be used to provide a quantitative bound in (5). Since we are only interested in573

the qualitative behaviour for Shigh " Sreg., we shall however not pursue this further.574

575

It remains to state and establish Lemma A.2 referenced at the end of the proof of Theorem A.1:576

577

Lemma A.2. Let A and B be two hermitian nˆ n dimensional matrices. Denote by tλkpMqunk“1578

the eigenvalues of a hermitian matrix in increasing order.579

With this we have:580

|λkpAq ´ λkpBq| ď ||A´B||.

Proof. After the redefinition B ÞÑ p´Bq, what we need to prove is581

|λipA`Bq ´ λipAq| ď ||B||

for Hermitian A,B. Since we have582

λipAq ´ λipA`Bq “ λippA`Bq ` p´Bqq ´ λipA`Bq

and || ´B|| “ ||B|| it follows that it suffices to prove583

λipA`Bq ´ λipAq ď ||B||

for arbitrary hermitian A,B.584

We note that the Courant-Fischer min´max theorem tells us that if A is an nˆ n Hermitian matrix,585

we have586

λipMq “ sup
dimpV q“i

inf
vPV,||v||“1

v˚Mv.
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With this we find587

λipA`Bq ´ λipAq “ sup
dimpV q“i

inf
vPV,||v||“1

v˚pA`Bqv ´ sup
dimpV q“i

inf
vPV,||v||“1

v˚Av

ď sup
dimpV q“i

inf
vPV,||v||“1

v˚Av ` sup
dimpV q“i

inf
vPV,||v||“1

v˚Bv

´ sup
dimpV q“i

inf
vPV,||v||“1

v˚Av

“ sup
dimpV q“i

inf
vPV,||v||“1

v˚Bv

“ sup
dimpV q“i

inf
vPV,||v||“1

v˚Bv

ď max
1ďkďn

t|λkpBq|u

“ ||B||.

588

A.1.3 Symmetric Normalizations589

Most common spectral graph convolutional networks (such
as e.g. [15, 3, 8]) base the learnable filters that they propose
on the symmetrically normalized graph Laplacian

L “ Id´D´
1
2WD´

1
2 .

In the setting Shigh " Sreg. we are considering, this leads
to an effective feature propagation along edges in Ehigh and
Elow, exclusive (c.f. also Fig. 10) only, as Theorem A.3 below
establishes:

Figure 10: Limit graph correspond-
ing to Fig 8 for symmetric normal-
ization

590

Theorem A.3. With591

T “ Id´D´
1
2WD´

1
2 ,

and the scale decomposition as introduced in Section 2, we have that592

›

›

›
T ´

´

Id´D
´ 1

2

highWhighD
´ 1

2

high ´D
´ 1

2
reg. Wlow, exclusiveD

´ 1
2

reg.

¯
›

›

›
“ O

˜
d

Sreg.

Shigh

¸

(12)

for Shigh " Sreg..593

Proof. We first note that instead of (12), we may equivalently establish594

›

›

›
D´

1
2WD´

1
2 ´

´

D
´ 1

2

highWhighD
´ 1

2

high `D
´ 1

2
reg. Wlow, exclusiveD

´ 1
2

reg.

¯
›

›

›
“ O

˜
d

Sreg.

Shigh

¸

.

In Section 2, we already noted that595

W “Whigh `Wreg..

With this, we may write596

D´
1
2WD´

1
2 “ D´

1
2WhighD

´ 1
2 `D´

1
2Wreg.D

´ 1
2 . (13)

Let us first examine the term D´
1
2WhighD

´ 1
2 . We note for the corresponding matrix entries that597

´

D´
1
2WhighD

´ 1
2

¯

ij
“

1
?
di
¨ pWhighqij ¨

1
a

dj

Let us use the notation598

dhigh
i “

N
ÿ

j“1

pWhighqij , dreg.
i “

N
ÿ

j“1

pWreg.qij and dlow,exclusive
i “

N
ÿ

j“1

pWlow,exclusiveqij .
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We then find599
1
?
di
“

1
b

dhigh
i

¨
1

c

1`
dreg.
i

dhigh
i

Using the Taylor expansion600

1
?

1` ε
“ 1´

1

2
ε`Opε2q,

we thus have601

´

D´
1
2WhighD

´ 1
2

¯

ij
“

1
b

dhigh
i

¨ pWhighqij ¨
1

b

dhigh
j

`O

˜

dreg.
i

dhigh
i

¸

.

Since we have602
dreg.
i

dhigh
i

9
Sreg.

Shigh
,

this yields603

D´
1
2WhighD

´ 1
2 “ D

´ 1
2

highWhighD
´ 1

2

high `O
ˆ

Sreg.

Shigh

˙

.

Thus let us turn towards the second summand on the right-hand-side of (13). We have604

´

D´
1
2Wreg.D

´ 1
2

¯

ij
“

1
?
di
¨ pWreg.qij .

1
a

dj
.

Suppose that either i or j is not in Glow, exclusive. Without loss of generality (since the matrix under605

consideration is symmetric), assume i R Glow, exclusive, but pWreg.qij ‰ 0. We may again write606

1
a

dj
“

1
b

dhigh
j

¨
1

c

1`
dreg.
i

dhigh
i

.

Since607
1

c

1`
dreg.
i

dhigh
i

ď 1,

we have608
ˇ

ˇ

ˇ

ˇ

´

D´
1
2Wreg.D

´ 1
2

¯

ij

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

1
?
di
¨ pWreg.qij

ˇ

ˇ

ˇ

ˇ

¨
1

b

dhigh
j

“ O

˜
d

Sreg.

Shigh

¸

.

If instead we have i, j P Glow, exclusive, then clearly609
´

D´
1
2Wreg.D

´ 1
2

¯

ij
“

´

D
´ 1

2
reg. Wlow,exclusiveD

´ 1
2

reg.

¯

ij
.

Thus in total we have established610

D´
1
2WD´

1
2 “

´

D
´ 1

2

highWhighD
´ 1

2

high `D
´ 1

2
reg. Wlow, exclusiveD

´ 1
2

reg.

¯

`O
ˆ

Sreg.

Shigh

˙

which was to be established.611

612

Apart from networks that make use of the symmetrically normalized graph Laplacian L , some613

methods, such as most notably [19], instead base their filters on the operator614

T “ D̃´
1
2 W̃ D̃´

1
2 ,

with615

W̃ “ pW ` Idq

and616

D̃ “ D ` Id.

In analogy to Theorem A.3, we here establish the limit propagation scheme determined by such617

operators:618
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Theorem A.4. With619

T “ D̃´
1
2 W̃ D̃´

1
2 ,

where W̃ “ pW ` Idq and D̃ “ D` Id as well as the scale decompositionof Section 2, we have that620

›

›

›
T ´

´

D
´ 1

2

highWhighD
´ 1

2

high `D
´ 1

2
reg. W̃low, exclusiveD

´ 1
2

reg.

¯
›

›

›
“ O

˜
d

Sreg. ` 1

Shigh

¸

for Shigh " Sreg.. Here W̃low, exclusive is given as621

W̃low, exclusive :“Wlow, exclusive ` diag
`

1Glow, exclusive

˘

and 1Glow, exclusive denotes the vector whose entries are one for nodes in Glow, exclusive and zero for all622

other nodes.623

The difference to the result of Theorem A.3 is thus that applicability of the limit propagation scheme624

of Fig. 10 for the GCN [19] is not only contingent upon Shigh " Sreg. but also Shigh " 1.625

Proof. To establish this – as in the proof of Theorem A.3 – we first decompose T :626

D̃´
1
2 W̃ D̃´

1
2 “ D̃´

1
2WhighD̃

´ 1
2 ` D̃´

1
2Wreg.D̃

´ 1
2 ` D̃´

1
2 IdD̃´

1
2 (14)

“ D̃´
1
2WhighD̃

´ 1
2 ` D̃´

1
2Wreg.D̃

´ 1
2 ` D̃´1

For the first term, we note627

´

D̃´
1
2WhighD̃

´ 1
2

¯

ij
“

1
?
di ` 1

¨ pWhighqij ¨
1

a

dj ` 1
.

We then find628
1

?
di ` 1

“
1

b

dhigh
i

¨
1

c

1`
dreg.
i `1

dhigh
i

.

Analogously to the proof of Theorem A.3, this yields629

´

D̃´
1
2WhighD̃

´ 1
2

¯

ij
“

1
b

dhigh
i

¨ pWhighqij ¨
1

b

dhigh
j

`O

˜

1` dreg.
i

dhigh
i

¸

.

This implies630

D̃´
1
2WhighD̃

´ 1
2 “ D

´ 1
2

highWhighD
´ 1

2

high `O
ˆ

Sreg. ` 1

Shigh

˙

.

Next we turn to the second summand in (14):631

´

D̃´
1
2Wreg.D̃

´ 1
2

¯

ij
“

1
?
di ` 1

¨ pWreg.qij .
1

a

dj ` 1
.

Suppose that either i or j is not in Glow, exclusive. Without loss of generality (since the matrix under632

consideration is symmetric), assume i R Glow, exclusive, but pWreg.qij ‰ 0. We may again write633

1
a

dj ` 1
“

1
b

dhigh
j

¨
1

c

1`
dreg.
i `1

dhigh
i

.

Since634
1

c

1`
dreg.
i `1

dhigh
i

ď 1,
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we have635

ˇ

ˇ

ˇ

ˇ

´

D´
1
2Wreg.D

´ 1
2

¯

ij

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

1
?

1` di
¨ pWreg.qij

ˇ

ˇ

ˇ

ˇ

¨
1

b

dhigh
j

ď

ˇ

ˇ

ˇ

ˇ

ˇ

1
a

dreg.
i

¨ pWreg.qij

ˇ

ˇ

ˇ

ˇ

ˇ

¨
1

b

dhigh
j

“ O

˜
d

Sreg.

Shigh

¸

.

If instead we have i, j P Glow, exclusive, then clearly636

´

D̃´
1
2Wreg.D̃

´ 1
2

¯

ij
“

´

D̃
´ 1

2
reg. Wlow,exclusiveD̃

´ 1
2

reg.

¯

ij
.

Finally we note for the third term on the right-hand-side of (14) that637

1

di
ď

1

dhigh
i

“ O
ˆ

1

Shigh

˙

if i R Glow, exclusive.638

In total we thus have found639

D̃´
1
2 W̃ D̃´

1
2 “

´

D
´ 1

2

highWhighD
´ 1

2

high `D
´ 1

2
reg. W̃low, exclusiveD

´ 1
2

reg.

¯

`O

˜
d

Sreg. ` 1

Shigh

¸

;

which was to be proved.640

A.2 Spatial Convolutional Filters641

Apart from spectral methods, there of course also exist methods that purely operate in the spatial642

domain of the graph. Such methods most often fall into the paradigm of message passing neural643

networks (MPNNs) [13, 9]: WithX`
i P R

F denoting the features of node i in layer ` andwij denoting644

edge features, a message passing neural network may be described by the update rule (c.f. [13])645

X``1
i “ γ

¨

˝X`
i ,

ž

jPN piq

φ
`

X`
i , X

`
j , wij

˘

˛

‚. (15)

Here N piq denotes the neighbourhood of node i,
š

denotes a differentiable and permutation invariant646

function (typically "sum", "mean" or "max") while γ and φ denote differentiable functions such as647

multi-layer-perceptrons (MLPs) which might not be the same in each layer. [9].648

Before we discuss corresponding limit-propagation schemes, we first establish that MPNNs are not649

able to reproduce the limit propagation scheme of Section 3 and are thus not stable to scale transitions650

and topological perturbations as discussed in Theorem 4.2 and Section 2.2.2.651

A.2.1 Scale-Sensitivity of Message Passing Neural Networks652

As we established in Theorem 4.1 and Theorem 4.2 (c.f. also the corresponding proofs in Appendix D653

and Appendix E respectively), the stability to scale-variations (such as coarse-graining) of ResolvNets654

arises from the reliance on resolvents and the limit propagation scheme that they establish if separated655

weight-scales are present (c.f. Appendix B below).656

Here we establish that message passing networks (as defined in (15) above) are unable to emulate this657

limit propagation scheme. Hence such architectures are also not stable to scale-changing topological658

perturbations such as coarse-graining procedures.659

20



To this end, we consider a simple, fully connected graph G
on three nodes labeled 1, 2 and 3 (c.f. Fig. 11). We assume
all node-weights to be equal to one (µi “ 1 for i “ 1, 2, 3)
and edge weights

w13, w23 ď Sreg.

as well as
w12 “ Shigh.

We now assume Shigh " Sreg..

1 2

3

Figure 11: Three node GraphGwith
on large weight w12 " 1.

660

Given states tX`
1, X

`
2, X

`
3u in layer `, the limit propagation scheme introduced in Section 3 would661

require the updated feature vector of node 3 to be given by662

X``1
3,desired :“ γ

ˆ

X`
3, φ

ˆ

X`
3,
X`

1 `X
`
2

2
, pw31 ` w32q

˙˙

However, the actual updated feature at node 3 is given as (c.f. (15)):663

X``1
3,actual :“ γ

´

X`
3, φ

`

X`
3, X

`
1, w31

˘

ž

φ
`

X`
3, X

`
2, w32

˘

¯

(16)

Since there is no dependence on Shigh in equation (16) – which defines X``1
3,actual – the desired664

propagation scheme can not arise, unless it is paradoxically already present at all scales Shigh. If it is665

present at all scales, there is however only propagation along edges in G, even if Shigh « Sreg., which666

would imply that the message passing network would not respect the graph structure of G. Hence667

X``1
3,actual Û X``1

3,desired does not converge as Shigh increases.668

A.2.2 Limit Propagation Schemes669

The number of possible choices of message functions φ, aggregation functions
š

and update functions670

γ is clearly endless. Here we shall exemplarily discuss limit propagation schemes for two popular671

architectures: We first discuss the most general case where the message function φ is given as a672

learnable perceptron. Subsequently we assume that node features are updated with an attention-type673

mechanism.674

Generic message functions: We first consider the possibility that the message function φ in (16)675

is implemented via an MLP using ReLU-activations: Assuming (for simplicity in notation) a one-676

hidden-layer MLP mapping features X`
i P R

F` to features X``1
i P RF``1 we have677

φpX`
i , X

`
j , wijq “ ReLU

`

W `
1 ¨X

`
i `W

`
2 ¨X

`
2 `W

`
3 ¨ wij `B

`
˘

with bias term B``1 P RF``1 and weight matrices W ``1
1 ,W ``1

2 P RF``1ˆF` and W `
3 P R

F``1 .678

We will assume that the weight-vecor W ``1
3 has no-nonzero entries. This is not a severe limitation679

experimentally and in fact generically justified: The complementary event of at-least one entry of W3680

being assigned precisely zero during training has probability weight zero (assuming an absolutely681

continuous probability distribtuion according to which weights are learned).682

Let us now assume that the edge pijq belongs to Ehigh and the corresponding weight wij is large683

(wij " 1). The behaviour of entries φpX`
i , X

`
j , wijqa of the message φpX`

i , X
`
j , wijq P R

F``1 is684

then determined by the sign of the corresponding entry
`

W `
3

˘

a
of the weight vector W `

3 P R
F``1 :685

If we have
`

W `
3

˘

a
ă 0, then φpX`

i , X
`
j , wijqa approaches zero for larger edge-weights wij :686

lim
wijÑ8

φpX`
i , X

`
j , wijqa “ 0 (17)

If we have
`

W `
3

˘

a
ą 0, then φpX`

i , X
`
j , wijqa increasingly diverges for larger edge-weights wij :687

lim
wijÑ8

φpX`
i , X

`
j , wijqa “ 8 (18)

For either choice of aggregation function
š

in (15) among "max", "sum" or "mean" the behaviour688

in (18) leads to unstable networks if the update function γ is also given as an MLP with ReLU689
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activations. Apart from instabilities, we also make the following observation: If Shigh " Sreg., then by690

(18) and continuity of φ we can conclude that components φpX`
i , X

`
j , wijqa of messages propagated691

along Ehigh for which
`

W `
3

˘

a
ą 0 dominate over messages propagated along edges in Ereg.. By (17),692

the former clearly also dominate over components φpX`
i , X

`
j , wijqa of messages propagated along693

Ehigh for which
`

W `
3

˘

a
ă 0. This behaviour is irrespective of whether "max", "sum" or "mean"694

aggregations are employed. Hence the limit propagation scheme essentially only takes into account695

message channels φpX`
i , X

`
j , wijqa for which pijq P Ehigh and

`

W `
3

˘

a
ą 0.696

Similar considerations apply, if non-linearities are chosen as leaky ReLU. If instead of ReLU697

activations a sigmoid-nonlinearity σ like tanh is employed, messages propagated along Elarge become698

increasingly uninformative, since they are progressively more independent of featuresX`
i and weights699

wij . Indeed, for sigmoid activations, the limits (17) and (18) are given as follows:700

If we have
`

W `
3

˘

a
ă 0, then we have for larger edge-weights wij that701

lim
wijÑ8

φpX`
i , X

`
j , wijqa “ lim

yÑ´8
σpyq.

If we have
`

W `
3

˘

a
ą 0, then702

lim
wijÑ8

φpX`
i , X

`
j , wijqa “ lim

yÑ8
σpyq.

In both cases, the messages φpX`
i , X

`
j , wijq propagated along Elarge become increasingly constant as703

the scale Shigh increases.704

Attention based messages: Apart from general learnable message functions as above, we here705

also discuss an approach where edge weights are re-learned in an attention based manner. For this we706

modify the method [42] to include edge weights. The resulting propagation scheme – with a single707

attention head for simplicity and a non-linearity ρ – is given as708

X``1
i “ ρ

¨

˝

ÿ

jPN piq

αijpWX``1
j q

˛

‚.

Here we have W P RF``1ˆF` and709

αij “
exp

`

LeakyRelu
`

~aJ
“

WX`
i }WX`

j } wij
‰˘˘

ř

kPN piq
exp

`

LeakyRelu
`

~aJ
“

WX`
i }WX`

k } wik
‰˘˘ , (19)

with } denoting concatenation. The weight vector ~a P R2F``1`1 is assumed to have a non zero entry710

in its last component. Otherwise, this attention mechanism would correspond to the one proposed711

in [42], which does not take into account edge weights. Let us denote this entry of ~a ()determining712

attention on the weight wij) by aw.713

If aw ă 0, we have for pi, jq P Ehigh that714

exp
`

LeakyRelu
`

~aJ
“

WX`
i }WX`

j } wij
‰˘˘

ÝÑ 0

as the weight wij increases. Thus propagation along edges in Ehigh is essentially suppressed in this715

case.716

If aw ą 0, we have for pi, jq P Ehigh that717

exp
`

LeakyRelu
`

~aJ
“

WX`
i }WX`

j } wij
‰˘˘

ÝÑ 8

as the weight wij increases. Thus for edges pi, jq P Ereg. (i.e. those that are not in Ehigh), we have718

αij Ñ 0,

since the denominator in (19) diverges. Hence in this case, propagation along Ereg. is essentially719

suppressed and features are effectively only propagated along Ehigh.720
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B Proof of Theorem 3.3721

In this section, we prove Theorem 3.3. For convenience, we first restate the result – together with the722

definitions leading up to it – again:723

Definition B.1. Denote by G the set of connected components in Ghigh. We give this set a graph724

structure as follows: Let R and P be elements of G (i.e. connected components in Ghigh). We define725

the real number726

WRP “
ÿ

rPR

ÿ

pPP

Wrp,

with r and p nodes in the original graph G. We define the set of edges E on G as727

E “ tpR,P q P G ˆ G : WRP ą 0u

and assign WRP as weight to such edges. Node weights of limit nodes are defined similarly as728

aggregated weights of all nodes r (in G) contained in the component R as729

µ
R
“

ÿ

rPR

µr.

In order to translate signals between the original graph G and the limit description G, we need730

translation operators mapping signals from one graph to the other:731

Definition B.2. Denote by 1R the vector that has 1 as entries on nodes r belonging to the connected732

(in Ghign) component R and has entry zero for all nodes not in R. We define the down-projection733

operator JÓ component-wise via evaluating at node R in G as734

pJÓxqR “ x1R, xy{µR.

The upsampling operator JÒ is defined as735

JÒu “
ÿ

R

uR ¨ 1R; (20)

where uR is a scalar value (the component entry of u atR P G) and the sum is taken over all connected736

components in Ghigh.737

The result we then have to prove is the following:738

Theorem B.3. We have739

›

›Rzp∆q ´ J
ÒRzp∆qJ

Ó
›

› “ O
ˆ

}∆reg.}

λ1p∆highq

˙

holds; with λ1p∆highq denoting the first non-zero eigenvalue of ∆high.740

Note that this then indeed proves Theorem 3.3, since we have741

λmaxp∆reg.q “ }∆reg.}.

Proof. We will split the proof of this result into multiple steps. For z ă 0 Let us denote by742

Rzp∆q “ p∆´ zIdq´1,

Rzp∆highq “ p∆high ´ zIdq
´1

Rzp∆reg.q “ p∆reg. ´ zIdq
´1

the resolvents correspodning to ∆, ∆high and ∆reg. respectively.743

Our first goal is establishing that we may write744

Rzp∆q “ rId`Rzp∆highq∆reg.s
´1
¨Rzp∆highq

This will follow as a consequence of what is called the second resolvent formula [40]:745

"Given self-adjoint operators A,B, we may write746

RzpA`Bq ´RzpAq “ ´RzpAqBRzpA`Bq.”
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In our case, this translates to747

Rzp∆q ´Rzp∆highq “ ´Rzp∆highq∆reg.Rzp∆q

or equivalently748

rId`Rzp∆highq∆reg.sRzp∆q “ Rzp∆highq.

Multiplying with rId`Rzp∆highq∆reg.s
´1 from the left then yields749

Rzp∆q “ rId`Rzp∆highq∆reg.s
´1
¨Rzp∆highq

as desired.750

Hence we need to establish that rId`Rzp∆highq∆reg.s is invertible for z ă 0.751

752

To establish a contradiction, assume it is not invertible. Then there is a signal x such that753

rId`Rzp∆highq∆reg.sx “ 0.

Multiplying with p∆high ´ zIdq from the left yields754

p∆high `∆reg. ´ zIdqx “ 0

which is precisely to say that755

p∆´ zIdqx “ 0

But since ∆ is a graph Laplacian, it only has non-negative eigenvalues. Hence we have reached our756

contradiction and established757

Rzp∆q “ rId`Rzp∆highq∆reg.s
´1
Rzp∆highq.

758

Our next step is to establish that759

Rzp∆highq Ñ
P high

0

´z
,

where P high
0 is the spectral projection onto the eigenspace corresponding to the lowest lying eigenvalue760

λ0p∆highq “ 0 of ∆high. Indeed, by the spectral theorem for finite dimensional operators (c.f. e.g.761

[40]), we may write762

Rzp∆highq ” p∆high ´ zIdq
´1 “

ÿ

λPσp∆highq

1

λ´ z
¨ P high

λ .

Here σp∆highq denotes the spectrum (i.e. the collection of eigenvalues) of ∆high and the763

tP high
λ uλPσp∆highq are the corresponding (orthogonal) eigenprojections onto the eigenspaces of the764

respective eigenvalues. Thus we find765

›

›

›

›

›

Rzp∆highq ´
P high

0

´z

›

›

›

›

›

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

0ăλPσp∆highq

1

λ´ z
¨ P high

λ

›

›

›

›

›

›

;

where the sum on the right hand side now excludes the eigenvalue λ “ 0.766

Using orthonormality of the spectral projections, the fact that z ă 0 and monotonicity of 1{p¨ ` |z|q767

we find768
›

›

›

›

›

Rzp∆highq ´
P high

0

´z

›

›

›

›

›

“
1

λ1p∆highq ` |z|
.

Here λ1p∆highq is the firt non-zero eigenvalue of p∆highq.769

Non-zero eigenvalues scale linearly with the weight scale since we have770

λpS ¨∆q “ S ¨ λp∆q

for any graph Laplacian (in fact any matrix) ∆ with eigenvalue λ. Thus we have771

›

›

›

›

›

Rzp∆highq ´
P high

0

´z

›

›

›

›

›

“
1

λ1p∆highq ` |z|
ď

1

λ1p∆highq
ÝÑ 0
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as λ1p∆highq Ñ 8.772

773

Our next task is to use this result in order to bound the difference774

I :“

›

›

›

›

›

›

«

Id`
P high

0

´z
∆reg.

ff´1
P high

0

´z
´ rId`Rzp∆highq∆reg.s

´1
Rzp∆highq

›

›

›

›

›

›

.

To this end we first note that the relation775

rA`B ´ zIds´1 “ rId`RzpAqBs
´1RzpAq

provided to us by the second resolvent formula, implies776

rId`RzpAqBs
´1 “ Id´BrA`B ´ zIds´1.

Thus we have777
›

›

›
rId`Rzp∆highq∆reg.s

´1
›

›

›
ď 1` }∆reg.} ¨ }Rzp∆q}

ď 1`
}∆reg.}

|z|
.

With this, we have778

›

›

›

›

›

›

«

Id`
P high

0

´z
∆reg.

ff´1

¨
P high

0

´z
´Rzp∆q

›

›

›

›

›

›

“

›

›

›

›

›

›

«

Id`
P high

0

´z
∆reg.

ff´1

¨
P high

0

´z
´ rId`Rzp∆highq∆reg.s

´1
¨Rzp∆highq

›

›

›

›

›

›

ď

›

›

›

›

›

P high
0

´z

›

›

›

›

›

¨

›

›

›

›

›

›

«

Id`
P high

0

´z
∆reg.

ff´1

´ rId`Rzp∆highq∆reg.s
´1

›

›

›

›

›

›

`

›

›

›

›

›

P high
0

´z
´Rzp∆highq

›

›

›

›

›

¨

›

›

›
rId`Rzp∆highq∆reg.s

´1
›

›

›

ď
1

|z|

›

›

›

›

›

›

«

Id`
P high

0

´z
∆reg.

ff´1

´ rId`Rzp∆highq∆reg.s
´1

›

›

›

›

›

›

`

ˆ

1`
}∆reg.}

|z|

˙

¨
1

λ1p∆highq
.

Hence it remains to bound the left hand summand. For this we use the following fact (c.f. [16],779

Section 5.8. "Condition numbers: inverses and linear systems"):780

781

Given square matrices A,B,C with C “ B ´A and }A´1C} ă 1, we have782

}A´1 ´B´1} ď
}A´1} ¨ }A´1C}

1´ }A´1C}
.

In our case, this yields (together with }P high
0 } “ 1) that783

›

›

›

›

”

Id` P high
0 {p´zq ¨∆reg.

ı´1

´ rId`Rzp∆highq∆reg.s
´1

›

›

›

›

ď
p1` }∆reg.}{|z|q

2
¨ }∆reg.} ¨ }

P high
0

´z ´Rzp∆highq}

1´ p1` }∆reg.}{|z|q ¨ }∆reg.} ¨ }
P high

0

´z ´Rzp∆highq}

For Shigh sufficiently large, we have784

} ´ P high
0 {z ´Rzp∆highq} ď

1

2 p1` }∆reg.}{|z|q

so that we may estimate785
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›

›

›

›

›

›

«

Id`∆reg.
P high

0

´z

ff´1

´ rId`∆reg.Rzp∆highqs
´1

›

›

›

›

›

›

ď2 ¨ p1` }∆reg.}q ¨ }
P high

0

´z
´Rzp∆highq}

“2
1` }∆reg.}{|z|

λ1p∆highq

Thus we have now established786
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

«

Id`
P high

0

´z
∆reg.

ff´1

¨
P high

0

´z
´Rzp∆q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ O
ˆ

}∆reg.}

λ1p∆highq

˙

.

787

Hence we are done with the proof, as soon as we can establish788

”

´zId` P high
0 ∆reg.

ı´1

P high
0 “ JÒRzp∆qJ

Ó,

with JÒ,∆, JÓ as defined above. To this end, we first note that789

JÒ ¨ JÓ “ P high
0 (21)

and790

JÓ ¨ JÒ “ IdG. (22)
Indeed,the relation (21) follows from the fact that the eigenspace corresponding to the eignvalue791

zero is spanned by the vectors t1RuR, with tRu the connected components of Ghigh. Equation (22)792

follows from the fact that793

x1R,1Ry “ µ
R
.

With this we have794
”

Id` P high
0 ∆reg.

ı´1

P high
0 “

“

Id` JÒJÓ∆reg.
‰´1

JÒJÓ.

To proceed, set795

x :“ F Óx

and796

X “

”

P high
0 ∆reg. ´ zId

ı´1

P high
0 x.

Then797
”

P high
0 ∆reg. ´ zId

ı

X “ P high
0 x

and hence X P RanpP high
0 q. Thus we have798

JÒJÓp∆reg. ´ zIdqJ
ÒJÓX “ JÒJÓx.

Multiplying with JÓ from the left yields799

JÓp∆reg. ´ zIdqJ
ÒJÓX “ JÓx.

Thus we have800

pJÓ∆reg.J
Ò ´ zIdqJÒJÓX “ JÓx.

This – in turn – implies801

JÒJÓX “
“

JÓ∆reg.J
Ò ´ zId

‰´1
JÓx.

Using802

P high
0 X “ X ,

we then have803

X “ JÒ
“

JÓ∆reg.J
Ò ´ zId

‰´1
JÓx.

We have thus concluded the proof if we can prove that JÓ∆reg.J
Ò is the Laplacian corresponding to804

the graph G defined in Definition B.1. But this is a straightforward calculation.805
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As a corollary, we find806

Corollary B.4. We have807

Rzp∆q
k Ñ JÒRkp∆qJÓ

Proof. This follows directly from the fact that808

JÓJÒ “ IdG.

809

C Proof of Theorem 3.4810

Here we prove Theorem 3.4, which we restate for convenience:811

Theorem C.1. Fix ε ą 0 and z ă 0. For arbitrary functions g, h : r0,8s Ñ R with limλÑ8 gpλq “812

const. and limλÑ8 hpλq “ 0, there are filters f0
z,θ, f

I
z,θ of Type-0 and Type-I respectively such that813

}f0
z,θ ´ g}8, }f

I
z,θ ´ h}8 ă ε.814

Proof. The Stone-Weierstrass theorem (see e.g. [40]) states that any sub-algebra of continuous815

functions that are constant at infinity is already dense (in the topoloogy of uniform convergence) if816

this sub-algebra separates points.817

Thus – using the Stone-Weierstrass Theorem – all we have to prove to establish the claim is that for818

every pair of points x, y ě 0 there is a function fθ with819

fθpxq ‰ fθpyq.

But this is clear since (for z ă 0) the function820

1

¨ ´ z
: r0,8q ÝÑ R

(which generates the algebra of functions we consider) is already everywhere defined and injective.821

822

D Stability Theory823

Here we provide stability results to input- and edge-weight- perturbations for our architecture. For824

convenience, we restate our layer-wise update rule here again:825

Given a feature matrix X` P RNˆF` in layer `, with column vectors tX`
ju
F`
j“1, the feature vector826

X``1
i in layer ``1 is calculated asX``1

i “ ReLU
´

řF``1

j“1 fz,θ``1
ij
p∆q ¨X`

j ` b
``1
i

¯

with a learnable827

bias vector b``1
i . Collecting biases into a matrix B``1 P RF``1ˆN , we efficiently implement this828

using matrix-multiplications as829

X``1 “ ReLU

˜

K
ÿ

k“a

pT ´ ωIdq´k ¨X` ¨W ``1
k `B``1

¸

with weight matrices tW ``1
k u in RF`ˆF``1 . Biases are implemented as bi “ βi ¨ 1G, with 1G the830

vector of all ones on G and βi P R learnable.831

Our first result main-body of the paper then concerns stability to perturbations of input signals:832

Theorem D.1. Let ΦL be the map associated to an L-layer deep ResolvNet. Denote the collection of833

weight matrices in layer ` by W ` :“ tWku
K`

K“a. We have834

}ΦLpXq ´ ΦLpY q}2 ď }X ´ Y }2 ¨
L
ź

`“1

}W `}z, (23)

with835

}W `}z :“
K
ÿ

k“a

1

|z|k
}W `

k}

aggregating singular values of weight matrices.836
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Proof. Let us denote (hidden) feature matrices in layer ` by X` (resp. Y `).837

We note the following:838

}XL ´ Y L} “

›

›

›

›

›

ReLU

˜

K
ÿ

k“a

Rkz p∆qX
L´1WL

k `B
L

¸

´ ReLU

˜

K
ÿ

k“a

Rkz p∆qY
L´1WL

k `B
L

¸
›

›

›

›

›

ď

›

›

›

›

›

˜

K
ÿ

k“a

Rkz p∆qX
L´1WL

k `B
L

¸

´

˜

K
ÿ

k“a

Rkz p∆qY
L´1WL

k `B
L

¸
›

›

›

›

›

ď

›

›

›

›

›

K
ÿ

k“a

Rkz p∆qX
L´1Wk ´

K
ÿ

k“a

Rkz p∆qY
L´1WL

k

›

›

›

›

›

ď

K
ÿ

k“a

›

›Rkz p∆q
ˇ

ˇ ¨
›

›XL´1 ´ Y L´1
›

› ¨
›

›WL
k

›

›

“

K
ÿ

k“a

1

|z|k
¨
›

›XL´1 ´ Y L´1
›

› ¨
›

›WL
k

›

›

ď }W L}z ¨
›

›XL´1 ´ Y L´1
›

› .

Iterating through the layers yields the desired inequality (23).839

In preparation for our next result – Theorem D.5 below – we note the following:840

Lemma D.2. Let ΦL be the map associated to an L-layer deep ResolvNet. With weights and biases841

denoted as above, we have842

}ΦLpXq} ď }B
L} `

L
ÿ

m“0

˜

m
ź

j“0

}W L´1´j}z

¸

}BL´1´j} `

˜

L
ź

`“1

}W `}z

¸

¨ }X}2 (24)

Proof. We have843

}X}L ď

›

›

›

›

›

ReLU

˜

K
ÿ

k“a

Rkz p∆qX
L´1Wk `B

L

¸
›

›

›

›

›

ď

›

›

›

›

›

K
ÿ

k“a

Rkz p∆qX
L´1WL

k `B
L

›

›

›

›

›

ď

›

›

›

›

›

K
ÿ

k“a

Rkz p∆qX
L´1WL

k

›

›

›

›

›

`
›

›BL
›

›

ď

K
ÿ

k“a

}Rkz p∆q} ¨ }X
L´1} ¨ }WL

k } `
›

›BL
›

›

ď

˜

K
ÿ

k“a

}WL
k }

|z|k

¸

¨ }XL´1} ` }BL}.

Iterating this through all layers, we obtain (24).844

Before we can establish Theorem D.5 below, we need two additional (related) preliminary results:845

Lemma D.3. Let us use the notation rRz :“ pr∆´ zIdq´1 and Rz :“ p∆´ zIdq´1 for resulvents846

corresponding to two different Laplacians ∆ and r∆. We have847

}Rz ´ rRz} ď
1

|z|3
}∆´ r∆}
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Proof. Let T and rT be (finite dimensional) operators. Choose z so that it is neither an eigenvalue of848

T nor rT .849

To showcase the principles underlying the proof, let us use the notation850

RzpT q ”
1

T ´ z
.

We note the following851

1

rT ´ z
p rT ´ T q

1

T ´ z

“
1

rT ´ z
rT

1

T ´ z
´

1

rT ´ z
T

1

T ´ z

“

„

1

rT ´ z
p rT ´ zq `

z

rT ´ z



1

T ´ z
´

1

rT ´ z

„

1

T ´ z
pT ´ zq `

z

T ´ z



“z

ˆ

1

T ´ z
´

1

rT ´ z

˙

.

Rearranging and using852

}Rzp∆q} “ }Rzprp∆qq} “
1

|z|

together with the sub-multiplicativity of the operator-norm } ¨ } yields the claim.853

We also note the following estimate on differences of powers of resolvents:854

Lemma D.4. Let rRz :“ pr∆´ zIdq´1 and Rz :“ p∆´ zIdq´1. For any natural number k, we have855

} rRkz ´R
k
z} ď

k

|z|k´1
} rRz ´Rz}

Proof. We note that for arbitrary matrices T, rT , we have856

rT k ´ T k “ rT k´1p rT ´ T q ` p rT k´1 ´ T k´1qT

“ rT k´1p rT ´ T q ` rT k´2p rT ´ T qT ` p rT k´2 ´ T k´2qT 2.

Iterating this and using857

}Rzp∆q} “ }Rzpr∆q} “
1

|z|

for z ă 0 then yields the claim.858

Having established the preceding lemmata, we can now establish stability to perturbations of the edge859

weights:860

Theorem D.5. Let ΦL and rΦL be the maps associated to ResolvNets with the same network archi-861

tecture, but based on Laplacians ∆ and r∆ respectively. We have862

}ΦLpXq ´ rΦLpXq}2 ď pC1pW q ¨ }X}2 ` C2pW ,Bqq ¨ }∆´ r∆}. (25)

Here, the stability constants C1pW q and C2pW ,Bq are polynomials in (the largest) singular values863

of weight matrices and weight matrices as well as bias matrices, respectively.864

Proof. Denote by X` and rX` the (hidden) feature matrices generated in layer ` for networks based865

on Laplacians ∆ and r∆ respectively: I.e. we have866

X` “ ReLU

˜

K
ÿ

k“a

Rkz p∆qX
`´1Wk `B

`

¸
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and867

rX` “ ReLU

˜

K
ÿ

k“a

Rkz p
r∆q rX`´1Wk `B

`

¸

.

Using the fact that ReLUp¨q is Lipschitz continuous with Lipschitz constant D “ 1, we have868

}XL ´ rXL}

“

›

›

›

›

›

ReLU

˜

K
ÿ

k“a

Rkz p∆qX
L´1WL

k `B
L

¸

´ ReLU

˜

K
ÿ

k“a

Rkz p
r∆q rXL´1WL

k `B
L

¸
›

›

›

›

›

ď

›

›

›

›

›

˜

K
ÿ

k“a

Rkz p∆qX
L´1WL

k `B
L

¸

´

˜

K
ÿ

k“a

Rkz p
r∆q rXL´1WL

k `B
L

¸
›

›

›

›

›

ď

›

›

›

›

›

K
ÿ

k“a

Rkz p∆qX
L´1WL

k ´

K
ÿ

k“a

Rkz p
r∆q rXL´1WL

k

›

›

›

›

›

ď

›

›

›

›

›

K
ÿ

k“a

pRkz p∆q ´R
k
z p
r∆qqXL´1WL

k

›

›

›

›

›

`

K
ÿ

k“a

}Rzpr∆q} ¨ } rX
L´1 ´XL´1} ¨ }WL

k }

ď

›

›

›

›

›

K
ÿ

k“a

pRkz p∆q ´R
k
z p
r∆qqXL´1WL

k

›

›

›

›

›

` }W L}z ¨ } rX
L´1 ´XL´1}

ď

K
ÿ

k“a

›

›

›
Rkz p∆q ´R

k
z p
r∆q

›

›

›
¨
›

›XL´1
›

› ¨
›

›WL
k

›

›` }W L}z ¨ } rX
L´1 ´XL´1}

Applying Lemma D.4 yields869

}XL ´ rXL}

ď

˜

K
ÿ

k“a

k

|z|k´1

›

›WL
k

›

›

¸

¨
›

›XL´1
›

› ¨

›

›

›
Rzp∆q ´Rzpr∆q

›

›

›
` }W L}z ¨ } rX

L´1 ´XL´1}.

Using Lemma D.3, we then have870

}XL ´ rXL}

ď

˜

K
ÿ

k“a

k

|z|k`2

›

›WL
k

›

›

¸

¨
›

›XL´1
›

› ¨

›

›

›
∆´ r∆

›

›

›
` }W L}z ¨ } rX

L´1 ´XL´1}.

Lemma D.2 then yields871

}XL ´ rXL}

ď

˜

K
ÿ

k“a

k

|z|k`2

›

›WL
k

›

›

¸

¨

¨

«

}BL} `
L
ÿ

m“0

˜

m
ź

j“0

}W L´1´k}z

¸

}BL´1´k} `

˜

L
ź

`“1

}W `}z

¸

¨ }X}2

ff

¨ }r∆´∆}

`}W L}z ¨ } rX
L´1 ´XL´1}.

Iterating this through the layers and collecting summands yields the desired relation (25).872
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E Stability under Scale Variations873

Here we provide details on the scale-invariance results discussed in Section 4.874

In preparation, we will first need to prove a lemma relating powers of resolvents on the original graph875

G and its limit-description G:876

Lemma E.1. Let Rz :“ p∆´ zIdq´1 and Rz :“ p∆´ zIdq´1. For any natural number k, we have877

}JÒRkzJ
Ó ´Rkz} ď

k

|z|k´1
}JÒRzJ

Ó ´Rz}

The proof proceeds in analogy to that of Lemma D.4:878

Proof. We note that for arbitrary matrices T, rT , we have879

rT k ´ T k “ rT k´1p rT ´ T q ` p rT k´1 ´ T k´1qT

“ rT k´1p rT ´ T q ` rT k´2p rT ´ T qT ` p rT k´2 ´ T k´2qT 2.

Iterating this, using880

}Rzp∆q} “ }J
ÒRzp∆qJ

Ó} “
1

|z|

for z ă 0 together with }JÒ}, }JÓ} ď 1 and881

JÒRkzJ
Ó “

`

JÒRzJ
Ó
˘k

(which holds since JÓJÒ “ IdG) then yields the claim.882

Note that the equation883

}JÒRzp∆qJ
Ó} “

1

|z|

holds, because we may write884

}JÒRzp∆qJ
Ó} “ } lim

λ1p∆highqÑ8
Rzp∆q} “ lim

λ1p∆highqÑ8
}Rzp∆q} “ lim

λ1p∆highqÑ8

1

|z|
“

1

|z|
.

885

Hence let us now prove Stability-Theorem 4.1, which we restate here for convenience:886

Theorem E.2. Let ΦL and ΦL be the maps associated to ResolvNets with the same learned weight887

matrices and biases but deployed on graphs G and G as defined in Section 2.2.2 . We have888

}ΦLpJ
ÒXq ´ JÒΦLpXq}2 ď pC1pW q ¨ }X}2 ` C2pW ,Bqq ¨

›

›Rzp∆q ´ J
ÒRzp∆qJ

Ó
›

› (26)

if the network is based on Type-0 resolvent filters (c.f. Section 3). Additionally, we have889

}ΦLpXq ´ J
ÒΦLpJ

ÓXq}2 ď pC1pW q ¨ }X}2 ` C2pW ,Bqq ¨
›

›Rzp∆q ´ J
ÒRzp∆qJ

Ó
›

› (27)

if only Type-I filters are used in the network. Here C1pW q and C2pW ,Bq are constants that depend890

polynomially on singular values of learned weight matrices W and biases B.891

Proof. Let us first prove (27). To this end, let us define892

X :“ JÓX.

Let us further use the notation Rz :“ p∆´ zIdq´1 and Rz :“ p∆´ zIdq´1.893

Denote by X` and rX` the (hidden) feature matrices generated in layer ` for networks based on894

resolvents Rz and Rz respectively: I.e. we have895

X` “ ReLU

˜

K
ÿ

k“a

RkzX
`´1Wk `B

`

¸
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and896

rX` “ ReLU

˜

K
ÿ

k“a

Rkz
rX`´1Wk `B

`

¸

.

Here, since bias terms are proportional to constant vectors on the graphs, as detailed in Section 3, we897

have898

JÓB “ B

and899

JÒB “ B (28)
for bias matrices B and B in networks deployed on G and G respectively.900

We then have901

}ΦLpXq ´ J
ÒΦLpJ

ÓXq}

“}XL ´ JÒ rXL}

“

›

›

›

›

›

ReLU

˜

K
ÿ

k“a

RkzX
L´1WL

k `B
L

¸

´ JÒReLU

˜

K
ÿ

k“a

Rkz
rXL´1WL

k `B
L

¸
›

›

›

›

›

“

›

›

›

›

›

ReLU

˜

K
ÿ

k“a

RkzX
L´1WL

k `B
L

¸

´ ReLU

˜

K
ÿ

k“a

JÒRkz
rXL´1WL

k `B
L

¸
›

›

›

›

›

.

Here we used the fact that since ReLUp¨q maps positive entries to positive entries and acts pointwise,902

it commutes with JÒ. We also made use of (28).903

Using the fact that ReLUp¨q is Lipschitz-continuous with Lipschitz constant D “ 1, we can establish904

}ΦLpXq ´ J
ÒΦLpJ

ÓXq} ď

›

›

›

›

›

K
ÿ

k“a

RkzX
L´1WL

k ´

K
ÿ

k“a

JÒRkz
rXL´1WL

k

›

›

›

›

›

.

Using the fact that JÓJÒ “ IdG, we have905

}ΦLpXq ´ J
ÒΦLpJ

ÓXq} ď

›

›

›

›

›

K
ÿ

k“1

RkzX
L´1WL

k ´

K
ÿ

k“1

pJÒRkzJ
ÓqJÒ rXL´1WL

k

›

›

›

›

›

.

From this, we find (using }JÒ}, }JÓ} ď 1 ), that906

}XL ´ JÒ rXL}

ď

›

›

›

›

›

K
ÿ

k“0

RkzX
L´1WL

k ´

K
ÿ

k“1

pJÒRkzJ
ÓqJÒ rXL´1WL

k

›

›

›

›

›

ď

›

›

›

›

›

K
ÿ

k“1

pRkz ´ pJ
ÒRkzJ

ÓqqXL´1WL
k

›

›

›

›

›

`

K
ÿ

k“1

}JÒRzJ
Ó} ¨ }JÒ rXL´1 ´XL´1} ¨ }WL

k }

ď

›

›

›

›

›

K
ÿ

k“1

pRkz ´ pJ
ÒRkzJ

ÓqqXL´1WL
k

›

›

›

›

›

` }W L}z ¨ }J
Ò
rXL´1 ´XL´1}

ď

K
ÿ

k“1

›

›

›
Rkz ´ pJ

ÒRkzJ
Óq

›

›

›
¨
›

›XL´1
›

› ¨
›

›WL
k

›

›` }W L}z ¨ }J
Ò
rXL´1 ´XL´1}

Applying Lemma E.1 yields907

}XL ´ JÒ rXL}

ď

˜

K
ÿ

k“1

k

|z|k´1

›

›WL
k

›

›

¸

¨
›

›Rz ´ pJ
ÒRzJ

Óq
›

› ¨
›

›XL´1
›

›` }W L}z ¨ }J
Ò
rXL´1 ´XL´1}.
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Lemma then D.2 in Appendix D established that we have908

}XL} ď }BL} `
L
ÿ

m“0

˜

m
ź

j“0

}W L´1´k}z

¸

}BL´1´k} `

˜

L
ź

`“1

}W `}z

¸

¨ }X}. (29)

Hence the summand on the left-hand-side can be bounded in terms of a polynomial in singular values909

of bias- and weight matrices, as well as }X} and most importantly the factor }Rz ´ pJÒRzJ
Óq}910

which tends to zero.911

For the summand on the right-hand-side, we can iterate the above procedure (aggregating terms like912

(29) multiplied by }Rz ´ pJÒRzJ
Óq}) until reaching the last layer L “ 1. There we observe913

}X1 ´ JÒ rX1}

“

›

›

›

›

›

ReLU

˜

K
ÿ

k“1

RkzXW
1
k `B

1

¸

´ JÒReLU

˜

K
ÿ

k“1

RkzJ
ÓXW 1

k `B
1

¸
›

›

›

›

›

ď

›

›

›

›

›

K
ÿ

k“1

RkzXW
1
k ´

K
ÿ

k“1

JÒRkzJ
ÓXW 1

k

›

›

›

›

›

ď

›

›

›

›

›

K
ÿ

k“1

pRkz ´ J
ÒRkzJ

ÓqXW 1
k

›

›

›

›

›

ď

˜

K
ÿ

k“1

k

|z|k´1

›

›W 1
k

›

›

¸

¨
›

›Rz ´ pJ
ÒRzJ

Óq
›

› ¨ }X}

The last step is only possible because we let the sums over powers of resolvents start at a “ 1 as914

opposed to a “ 0. In the latter case, there would have remained a term }X ´ JÒJÓX}, which would915

not decay as λ1p∆highq Ñ 8.916

Aggregating terms, we build up the polynomial stability constants of (27) layer by layer, and917

complete the proof.918

919

920

The proof of (26) proceeds in complete analogy upon defining921

X :“ JÒX.

Note that starting with X on G, implies that we have922

JÒJÓX ” JÒJÓpJÒXq “ JÒX ” X.

This avoids any complications arising from employing Type-0 filters in this setting.923

924

Next we transfer the previous result to the graph level setting:925

Theorem E.3. Denote by Ψ the aggregation method introduced in Section 3. With µpGq “
řN
i“1 µi926

the total weight of the graph G, we have in the setting of Theorem 4.1 with Type-I filters, that927

}Ψ pΦLpXqq´Ψ
`

ΦLpJ
ÓXq

˘

}2 ď
a

µpGq¨pC1pW q ¨ }X}2 ` C2pW ,Bqq¨
›

›Rzp∆q ´ J
ÒRzp∆qJ

Ó
›

› .

Proof. Let us first recall that our aggregation scheme Ψ mapped a feature matrix X P RNˆF to a928

graph-level feature vector ΨpXq P RF defined component-wise as929

ΨpXqj “
N
ÿ

i“1

|Xij | ¨ µi.

In light of Theorem E.2, we are done with the proof, once we have established that930

}Ψ pΦLpXqq ´Ψ
`

ΦLpJ
ÓXq

˘

}2 ď
a

µpGq ¨ }ΦLpXq ´ J
ÒΦLpJ

ÓXq}2.

To this end, we first note that931

ΨpJÒXq “ ΨpXq.
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Indeed, this follows from the fact that given a connected component R in Ghigh, the map JÒ assigns932

the same feature vector to each node r P R Ď G (c.f. (20)), together with the fact that933

µ
R
“

ÿ

rPR

µr.

Thus we have934

}Ψ pΦLpXqq ´Ψ
`

ΦLpJ
ÓXq

˘

}2 “ }Ψ pΦLpXqq ´Ψ
`

JÒΦLpJ
ÓXq

˘

}2.

Next let us simplify notation and write935

A “ ΦLpXq

and936

B “ JÒΦLpJ
ÓXq

with A,B P RNˆF . We note:937

}Ψ pΦLpXqq ´Ψ
`

JÒΦLpJ
ÓXq

˘

}22 “

F
ÿ

j“1

˜

N
ÿ

i“1

p|Aij | ´ |Bij |q ¨ µi

¸2

.

By means of the Cauchy-Schwarz inequality together with the inverse triangle-inequality, we have938

F
ÿ

j“1

˜

N
ÿ

i“1

p|Aij | ´ |Bij |q ¨ µi

¸2

ď

F
ÿ

j“1

«˜

N
ÿ

i“1

|Aij ´Bij |
2 ¨ µi

¸

¨

˜

N
ÿ

i“1

µi

¸ff

“

F
ÿ

j“1

˜

N
ÿ

i“1

|Aij ´Bij |
2 ¨ µi

¸

¨ µpGq.

Since we have939

}ΦLpXq ´ J
ÒΦLpJ

ÓXq}22 “
F
ÿ

j“1

˜

N
ÿ

i“1

|Aij ´Bij |
2 ¨ µi

¸

,

the claim is established.940

F Additional Details on Experiments:941

All experiments were performed on a single NVIDIA Quadro RTX 8000 graphics card.942

F.1 Node Classification943

Datasets: We test our approach for the task of node-classification on eight different standard944

datasets across the entire homophily-spectrum. Among these, CITESEER [36], CORA-ML [25]945

and PUBMED [26] are citation graphs. Here each node represents a paper and edges correspond946

to citations. We also test on the MICROSOFT ACADEMIC graph [37] where an edge that is present947

corresponds to co-authorship. Bag-of-word representations act as node features. The WEBKB948

datasets CORNELL and TEXAS are datasets modeling links between websites at computer science949

departments of various universities[29]. Node features are bag-of-words representation of the950

respective web pages. We also consider the actor co-occurence dataset ACTOR [39] as well as the951

Wikipedia based dataset SQUIRREL [33].952

Experimental setup We closely follow the experimental setup of [11] on which our codebase953

builds: All models are trained for a fixed maximum (and unreachably high) number of n “ 10000954

epochs. Early stopping is performed when the validation performance has not improved for 100955

epochs. Test-results for the parameter set achieving the highest validation-accuracy are then reported.956

Ties are broken by selecting the lowest loss (c.f. [42, 12]). Confidence intervals are calculated over957

multiple splits and random seeds at the 95% confidence level via bootstrapping.958
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Additional details on training and models: We train all models on a fixed learning rate of959

lr “ 0.1.

Global dropout probability p of all models is optimized individually over960

p P t0.3, 0.35, 0.4, 0.45, 0.5u.

We use `2 weight decay and optimize the weight decay parameter λ for all models over961

λ P t0.0001, 0.0005u.

Where applicable (i.e. not for [12, 15]) we choose a two-layer deep convolutional architecture with962

the dimensions of hidden features optimized over963

K` P t32, 64, 128u. (30)

In addition to the hyperparemeters specified above, some baselines have additional hyperparameters,964

which we detail here: BernNet uses an additional in-layer dropout rate of dp_rate “ 0.5 and for its965

filters a polynomial order of K “ 10 as suggested in [15]. As suggested in [12], the hyperparameter966

α of PPNP is set to α “ 0.2 on the MS_ACADEMIC dataset and to α “ 0.1 on other datasets.967

Hyperparameters depth T and number of stacks K of the ARMA convolutional layer [3] are set to968

T “ 1 and K “ 2. ChebNet also uses K “ 2 to avoid the known over-fitting issue [19] for higher969

polynomial orders. For MagNet we use K “ 1 as suggested in [47] and choose the parameter q as970

given in Table 1 of [47] for the respective datasets. The graph attention network [42] uses 8 attention971

heads, as suggested in [42].972

For our ResolvNet model, we choose a depth of L “ 1 with hidden feature dimension optimized over973

the values in (30) as for baselines. We empirically observed in the setting of unweighted graphs, that974

rescaling the Laplacian as975

∆nf :“
1

cnf
∆

with a normalizing factor cnf before calculating the resolvent976

Rzp∆nf q :“ p∆nf ´ z ¨ Idq
´1 (31)

on which we base our ResolvNet architectures improved performance.977

For our ResolvNet architecture, we express this normalizing factor in terms of the largest singular978

value }∆} of the (non-normalized) graph Laplacian. It is then selected among979

cnf {}∆} P t0.001, 0.01, 0.1, 2u.

The value z in (31) is selected among980

p´zq P t0.14, 0.15, 0.2, 0.25u.

We base our ResolvNet architecture on Type-0 filters and choose the maximum resolvent-exponent981

K as K “ 1.982

F.2 Graph Regression983

Datasets: The first dataset we consider is the QM7 dataset, introduced in [4, 35]. This dataset984

contains descriptions of 7165 organic molecules, each with up to seven heavy atoms, with all non-985

hydrogen atoms being considered heavy. A molecule is represented by its Coulomb matrix CClmb,986

whose off-diagonal elements987

CClmb
ij “

ZiZj
|Ri ´Rj |

correspond to the Coulomb-repulsion between atoms i and j. We discard diagonal entries of Coulomb988

matrices; which would encode a polynomial fit of atomic energies to nuclear charge [35].989

For each atom in any given molecular graph, the individual Cartesian coordinates Ri and the atomic990

charge Zi are also accessible individually. To each molecule an atomization energy - calculated via991

density functional theory - is associated. The objective is to predict this quantity. The performance992
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Table 4: Targets of QM9

Symbol Property Unit

U0 Internal energy at 0K eV
U Internal energy at 298.15K eV
H Enthalpy at 298.15K eV
G Free energy at 298.15K eV
UATOM

0 Atomization energy at 0K eV
UATOM Atomization energy at 298.15K eV
HATOM Atomization enthalpy at 298.15K eV
GATOM Atomization free energy at 298.15K eV
cv Heat capacity at 298.15K cal

mol¨K
µ Dipole moment D
α Isotropic polarizability α3

0
εHOMO Highest occupied molecular orbital energy eV
εLUMO Lowest unoccupied molecular orbital energy eV
∆ε Gap between εHOMO and εLUMO eV
xR2y Electronic spatial extent α2

0
ZPVE Zero point vibrational energy eV
A Rotational constant GHz
B Rotational constant GHz
C Rotational constant GHz

metric is mean absolute error. Numerically, atomization energies are negative numbers in the range993

´600 to ´2200. The associated unit is rkcal/mols.994

The second dataset we consider is the QM9 dataset [32], which consists of roughly 130 000 molecules995

in equilibrium. Beyond atomization energy, there are in total 19 targets available on QM9. We996

provide a complete list of targets together with abbreviations in Table 4 below:997

Molecules in QM9 are not directly encoded via their Coulomb-matrices, as in QM7. However, posi-998

tions and charges of individual molecules are available, from which the Coulomb matrix description999

is calculated for each molecule.1000

Experimental Setup: On both datasets, we randomly select 1500 molecules for testing and train1001

on the remaining graphs. On QM7 we run experiments for 23 different random random seeds and1002

report mean and standard deviation. Due to computational limitations we run experiments for 31003

different random seeds on the larger QM9 dataset, and report mean and standard deviation.1004

Additional details on training and models: All considered convolutional layers are incorporated1005

into a two layer deep and fully connected graph convolutional architecture. In each hidden layer, we1006

set the width (i.e. the hidden feature dimension) to1007

F1 “ F2 “ 64.

For BernNet, we set the polynomial order to K “ 3 to combat appearing numerical instabilities.1008

ARMA is set to K “ 2 and T “ 1. ChebNet uses K “ 2. For all baselines, the standard mean-1009

aggregation scheme is employed after the graph-convolutional layers to generate graph level features.1010

Finally, predictions are generated via an MLP.1011

For our model, we choose a two-layer deep instantiation of our ResolvNet architecture introduced in1012

Section 3. We choose Type-I filters and set z “ ´1. Laplacians are not rescaled and resolvents are1013

thus given as1014

R´1p∆q “ p∆` Idq´1.

As aggregation, we employ the graph level feature aggregation scheme introduced at the end of1015

Section 3 with node weights set to atomic charges of individual atoms. Predictions are then generated1016

via a final MLP with the same specifications as the one used for baselines.1017

All models are trained independently on each respective target.1018
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Results: Beyond the results already showcased in the main body of the paper, we here provide1019

results for ResolvNet as well as baselines on all targets of Table 4. These results are collected in1020

Table 5, Table 6 and Table 7 below.1021

As is evident from the tables, the ResolvNet architecture produces mean-absolute-errors comparable1022

to those of baselines on 1{4 of targets, while it performs significantly better on 3{4 of targets.1023

The difference in performance is especially significant on the (extensive) energy targets of Table 5. In1024

this Table, baselines are out-performed by factors varying between 4 and 15.1025

Table 6 contains three additional targets where MAEs produced by ResolvNet are lower by factors1026

varying between roughly two and four, when compared to baselines.1027

Table 7 finally contains MAEs corresponding to predictions of rotational constants. Here our model1028

yields a comparable error on one target and provides better results than baselines on two out of three1029

targets.1030

Table 5: Energy prediction MAEs reV s. Our Model is marked R.N. for ResolvNet.

Property U0 U H G UATOM
0 UATOM HATOM GATOM

BernNet 370.42˘38.91 382.64˘36.52 398.32˘46.00 362.69˘24.84 3.112˘0.285 3.096˘0.249 3.046˘0.277 2.919 ˘0.375

GCN 381.41˘0.42 376.41˘7.10 368.01˘16.77 380.65˘6.67 2.766˘0.081 2.828˘0.091 2.803˘0.077 2.575˘0.084

ChebNet 345.74˘12.30 346.39˘19.11 398.32˘22.48 350.22˘12.32 2.665˘0.040 2.672˘0.056 2.745˘0.104 2.477˘0.036

ARMA 327.62˘19.83 316.09˘18.06 322.74˘16.32 320.72˘11.98 2.588˘0.117 2.570˘0.088 2.600˘0.096 2.326˘0.101

R.N. 21.72˘5.79 19.14˘7.19 31.18˘8.622 53.50˘4.58 0.605˘0.015 0.588˘0.024 0.593˘0.025 0.607˘0.041

Table 6: Various target prediction MAEs. Our Model is marked R.N. for ResolvNet.

Property cv
“

cal
mol¨K

‰

µ rDs α rα3
0s εHOMO reV s εLUMO reV s ∆ε reV s xR2

y rα2
0s ZPVE reV s

BernNet 2.610˘0.986 0.948˘0.042 3.519˘0.288 0.376˘0.028 0.649˘0.092 0.841˘0.085 157.982 ˘34.804 0.237 ˘0.032

GCN 1.521˘0.038 0.936˘0.003 3.114˘0.112 0.301˘0.009 0.523˘0.018 0.566˘0.016 130.461˘5.445 0.185˘0.004

ChebNet 1.455˘0.053 0.881˘0.007 3.049˘0.092 0.234˘0.005 0.433˘0.018 0.515˘0.010 132.695˘2.218 0.180˘0.005

ARMA 1.327˘0.034 0.806˘0.031 2.676˘0.087 0.228˘0.010 0.333˘0.009 0.380˘0.007 93.760˘4.122 0.152˘0.006

R.N. 0.747˘0.015 0.776˘0.018 1.308˘0.034 0.313˘0.002 0.423˘0.011 0.531˘0.016 97.614˘2.308 0.041˘0.008

Table 7: Rotational constants prediction MAEs. Our Model is marked R.N. for ResolvNet.

Property A rGHzs B rGHzs C rGHzs

BernNet 0.888˘0.034 0.342˘0.002 0.243˘0.002

GCN 0.848˘0.027 0.281˘0.004 0.183˘0.002

ChebNet 0.797˘0.034 0.262˘0.003 0.171˘0.003

ARMA 0.715˘0.017 0.259˘0.004 0.168˘0.004

R.N. 0.783˘0.802 0.249˘0.002 0.158˘0.001

F.3 Scale Invariance1031

Dataset: Again, we make use of the QM7 dataset [35] and its Coulomb matrix description1032

CClmb
ij “

ZiZj
|Ri ´Rj |

(32)

of molecules.1033

Details on collapsing procedure: We modify (all) molecular graphs in QM7 by deflecting hydro-1034

gen atoms (H) out of their equilibrium positions towards the respective nearest heavy atom. This is1035

possible since the QM7 dataset also contains the Cartesian coordinates of individual atoms.1036

This introduces a two-scale setting precisely as discussed in section 2: Edge weights between heavy1037

atoms remain the same, while Coulomb repulsions between H-atoms and respective nearest heavy1038

atom increasingly diverge; as is evident from (32).1039

Given an original molecular graph G with node weights µi “ Zi, the corresponding limit graph1040

G corresponds to a coarse grained description, where heavy atoms and surrounding H-atoms are1041

aggregated into single super-nodes in the sense of Section 2.2.2 .1042
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Mathematically, G is obtained by removing all nodes corresponding to H-atoms fromG, while adding1043

the corresponding charges ZH “ 1 to the node-weights of the respective nearest heavy atom. Charges1044

in (32) are modified similarly to generate the weight matrix W .1045

On original molecular graphs, atomic charges are provided via one-hot encodings. For the graph of1046

methane – consisting of one carbon atom with charge ZC “ 6 and four hydrogen atoms of charges1047

ZH “ 1 – the corresponding node-feature-matrix is e.g. given as1048

X “

¨

˚

˚

˚

˝

0 0 ¨ ¨ ¨ 0 1 0 ¨ ¨ ¨
1 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨
1 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨
1 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨
1 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨

˛

‹

‹

‹

‚

with the non-zero entry in the first row being in the 6th column, in order to encode the charge ZC “ 61049

for carbon.1050

The feature vector of an aggregated node represents charges of the heavy atom and its neighbouring1051

H-atoms jointly.1052

As discussed in Definition 3.2, node feature matrices are translated as X “ JÓX . Applying JÓ1053

to one-hot encoded atomic charges yields (normalized) bag-of-word embeddings on G: Individual1054

entries of feature vectors encode how much of the total charge of the super-node is contributed by1055

individual atom-types. In the example of methane, the limit graph G consists of a single node with1056

node-weight1057

µ “ 6` 1` 1` 1` 1 “ 10.

The feature matrix1058

X “ JÓX

is a single row-vector given as1059

X “

ˆ

4

10
, 0, ¨ ¨ ¨ , 0,

6

10
, 0, ¨ ¨ ¨

˙

.

Results:1060

For convenience, we repeat here in Table 8 and Figure
12 the results corresponding to the use of resolution-
limited data in the form of coarse-grained molecular
graphs during inference, that were already presented in
the main body of the paper.

Table 8: MAE on QM7 via coarsified molecular graphs.

QM7 MAE rkcal{mols

BernNet 580.67˘99.27

GCN 124.53˘34.58

ChebNet 645.14˘34.59

ARMA 248.96˘15.56

ResolvNet 16.23˘2.74 Figure 12: Feature-vector-difference for
collapsed (F ) and deformed (F ) graphs.

1061

G Analysis of Computational Overhead1062

Here we provide an analysis of the overhead of our ResolvNet method. As is evident from Tables 9,1063

10, 11 below, on most datasets our method is not the most memory intensive to train when compared1064

to representative (spatial and spectral) baselines. For training times (total and per-epoch), we note1065

that on most small to medium sized graphs, our model is not the slowest to train. On larger graphs it1066

does take longer to train. Regarding complexity, the node update for our model is essentially OpN2q1067

(dense-dense matrix multiplication), while message passing baselines scale linearly in the number of1068

edges.1069
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Table 9: Maximal Memory Consumption [GB] while training a single model of depth 2 and width 32
for learning rate lr “ 0.1, dropout p “ 0.5, weight decay λ “ 10´4 and early stopping patience t “
100. All measurements performed on the same GPU via torch.cuda.max_memory_allocated().

MS_Acad. Cora Pubmed Citeseer Cornell Actor Squirrel Texas
ResolvNet 3.47 0.1266 2.9915 0.0996 0.0070 0.4936 0.2915 0.0175

GAT 1.49 0.1559 0.6486 0.1105 0.0228 0.3666 2.1107 0.0219
ChebNet 10.19 0.4741 0.4848 0.3389 0.0249 0.4830 6.3569 0.0241

1070

1071

1072

Table 10: Training Time [s] for training a single model of depth 2 and width 32 for learning rate
lr “ 0.1, dropout p “ 0.5, weight decay λ “ 10´4 and early stopping patience t “ 100. All
measurements performed on the same GPU.

MS_Acad. Cora Pubmed Citeseer Cornell Actor Squirrel Texas
ResolvNet 474.409 3.671 34.140 1.387 1.745 9.623 4.874 0.875

GAT 34.388 2.194 5.741 0.891 2.123 1.610 23.060 1.375
ChebNet 87.567 6.818 3.221 2.833 2.713 1.488 14.383 4.511

1073

1074

1075

Table 11: Average Training Time per Epoch [ms] for training a single model of depth 2 and width
32 for learning rate lr “ 0.1, dropout p “ 0.5, weight decay λ “ 10´4 and early stopping patience
t “ 100. All measurements performed on the same GPU.

MS_Acad. Cora Pubmed Citeseer Cornell Actor Squirrel Texas
ResolvNet 1359.34 13.16 161.80 11.01 2.58 32.51 41.30 2.54

GAT 60.01 8.22 29.59 7.24 3.93 15.05 62.49 4.07
ChebNet 202.23 12.11 14.31 10.61 3.89 13.28 126.17 3.83
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