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Abstract

Spike camera with high temporal resolution offers a new perspective on high-
speed dynamic scene rendering. Most existing rendering methods rely on Neural
Radiance Fields (NeRF) or 3D Gaussian Splatting (3DGS) for static scenes using a
monocular spike camera. However, these methods struggle with dynamic motion,
while a single camera suffers from limited spatial coverage, making it challenging
to reconstruct fine details in high-speed scenes. To address these problems, we
propose Spike4DGS, the first high-speed dynamic scene rendering framework with
4D Gaussian Splatting using spike camera arrays. Technically, we first build a
multi-view spike camera array to validate our solution, then establish both synthetic
and real-world multi-view spike-based reconstruction datasets. Then, we design a
multi-view spike-based dense initialization module that obtains dense point clouds
and camera poses from continuous spike streams. Finally, we propose a spike-
pixel synergy constraint supervision to optimize Spike4DGS, incorporating both
rendered image quality loss and dynamic spatiotemporal spike loss. The results
show that our Spike4DGS outperforms state-of-the-art methods in terms of novel
view rendering quality on both synthetic and real-world datasets. More details are
available at the project page.

1 Introduction

Novel view synthesis [[L6] is a cornerstone of many cutting-edge applications, enabling the creation
of precise novel views from ideal image sequences. However, conventional cameras struggle in
high-speed motion scenarios, where rapid movement causes motion blur and significantly degrades
reconstruction quality [39]. While some approaches [30} 44] attempt to improve reconstruction from
motion-blurred images, they remain fundamentally limited by the sampling rates of RGB cameras.
As a result, the use of new vision sensors for high-quality rendering in high-speed scenes has garnered
increasing attention.

Spike cameras [9, 20, 48] with high temporal resolution offer a new perspective on high-speed scene
rendering. Unlike conventional cameras, they asynchronously encode absolute light intensity into
continuous spike streams at rates of up to 20k Hz. This unique property makes them particularly
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effective for preserving high-speed scene textures with greater detail. Existing studies [64, 65! 24,67,
66! 162,160, 158,157, 146 159, 47| have demonstrated their capability for fine-grained 2D reconstruction.
The advantages of spike cameras also indicate their immense potential for advancing 3D scene
reconstruction and novel view synthesis.

Extensive works [[15} 61] have explored neuromorphic cameras for rendering in high-speed scenarios.
Some studies [[19} 38 21} [28, 13} 311152} 136] utilize Radiance Fields (NeRF) and 3D Gaussian Splatting
(3DGS) for scene representation and novel view synthesis using event cameras. However, event
cameras capture only light changes rather than absolute brightness, making them challenging for
fine-grained 3D reconstruction. Other efforts [69} 27, [18} 51, 154] have explored 3DGS and NeRF with
alternative spike cameras to overcome these limitations and enhance rendering quality. For example,
pioneering works with SpikeNeRF [69] and Spike-NeRF [18]] have demonstrated the feasibility
of using spike streams to reconstruct 3D scenes. Nevertheless, NeRF-based methods suffer from
time-consuming training and inference processes, and their implicit representations limit scene editing
capabilities. In contrast, Gaussian Splatting offers a compelling alternative, providing high accuracy
and fast inference speeds. For instance, SpikeGS [51} 154]], SpikeNVS [7]], and USP-Gaussian [5]]
achieve impressive results in photorealistic 3D reconstruction using spike cameras. However, these
3DGS-based methods may face difficulties in handling high-speed dynamic scenes. Additionally,
relying solely on monocular cameras may present 3D reconstruction challenges in areas with weak
textures or when using static cameras. In fact, camera arrays could enhance texture information
through multi-view perspectives, enabling dynamic scene rendering even without camera motion.

To address the aforementioned challenges, we propose Spike4DGS, the first high-speed dynamic
scene rendering framework utilizing 4D Gaussian Splatting with spike camera arrays. We aim at
overcoming the following challenges: (i) Camera setup and dataset — How could we establish
a multi-view spike camera array and build high-quality spike-based reconstruction datasets? (ii)
Effective model — How could we design an efficient dynamic scene rendering model that directly
processes multi-view spike streams with 4D Gaussian splatting(4DGS)?

To be specific, we first build a multi-view spike camera array and then establish both synthetic and
real-world spike-based reconstruction datasets. Then, we design a novel multi-view spike-based
dense initialization module to generate dense point clouds and camera poses from continuous spike
streams. Finally, we propose a pixel-spike synergy supervision strategy to optimize Spike4DGS,
which incorporates both reconstructed image quality loss and dynamic spatiotemporal spike loss.
Experimental results show that our Spike4DGS outperforms state-of-the-art methods in terms of ren-
dering quality on both synthetic and real-world datasets. We further verify that spike cameras achieve
higher rendering quality than event cameras and RGB cameras in high-speed scenes. Meanwhile,
rendering quality improves as the number of spike cameras increases.

The main contributions of this work are summarized as:

* We introduce Spike4DGS, the first framework that combines spike camera arrays with 4DGS,
enabling novel view synthesis in high-speed dynamic scenarios.

* We present a Spike-Pixel Synergy Supervision strategy to optimize the parameters of our
Spike4DGS for enhanced rendering quality.

* We build a spike camera array, along with a highly realistic synthetic and real-world datasets that
contain multi-view spike streams. We believe two standardized datasets open up opportunities for
research in this novel problem.

2 Related Work

2.1 NVS for Dynamic Scenes

Novel View Synthesis (NVS) tasks aim to generate unknown views of an object or scene from a set of
images of known views. Representative papers include Neural Radiance Fields (NeRF) [32] and 3D
Gaussian Splatting (3DGS) [23]. Recently, a large number of static 3DGS-based techniques [4} 122} [53]]
have been proposed due to their high quality and real-time rendering without using neural networks
like NeRF. However, the assumption of static scenes prevents application to real-world scenarios
with moving objects. Therefore, several works extend the 3DGS to dynamic scenes[45},150, 29, 26, 2].
These methods are usually divided into two main lines. For instance, De3DGS [50] and 4DGS [45]]



model spatial-temporal deformation with an implicit deformation field as the first line. On the other
hand, the second line is based on the idea that scenes’ motion could be encoded into the 3D Gaussian
representation straightly, such as STG [26] and D3DGS [29]], which represents changes in 3D
Gaussian over time through a temporal opacity and a polynomial function for each Gaussian. The
above approaches could perform well on synthetic datasets and simple real-world datasets. However,
when there are some high-speed objects in the scene, traditional dynamic reconstruction methods
using RGB image data may suffer motion blur since most standard RGB cameras have limited frame
rates. This motivates us to use the neuromorphic cameras to avoid this problem.

2.2 Neuromorphic Cameras on 3DGS

There are two types of bio-inspired sensors: event cameras [15] and spike cameras [9]. Event
cameras are based on the temporal contrast sampling method and generate events asynchronously
when pixel brightness changes exceed a threshold. Early event-based reconstruction approaches [28
3113141381 211 42]] have been proposed to derive neural radiance fields directly from event streams.
E2nerf [36] and evagaussian [52] achieved sharp reconstruction from blurry images. E-4DGS [13]
achieved high-fidelity dynamic reconstruction from the multi-view event cameras. GS2E [25] has
introduced an effective event stream generator by gaussian splatting. Another type of neuromorphic
camera is called the spike camera. Spike cameras record the absolute light intensity at a fairly
high frame rate and provide a more explicit input format for detailed reconstruction. Some nerf-
based methods [69, 27, [18]] have verified the feasibility of reconstruction with spike, but they suffer
suboptimal training and rendering speeds due to the complex spike simulation network. Some
3DGS-based spike reconstruction methods have emerged to optimize this defect. Yu’s SpikeGS[51]]
reconstructed view synthesis results from a continuous spike stream captured by a moving spike
camera. In a harder setting, Zhang’s SpikeGS[54] reconstructed scenes via a single spike stream
with monocular high-speed camera motion. However, there is no established spike-based method for
addressing the challenge of rendering high-speed dynamic scenes using multi-view spike streams.
On this basis, our work aims to overcome the limitations and construct a spike-based 3D Gaussian
Splatting model for high-speed dynamic scenes via a spike camera array.

3 Methodology

3.1 Preliminaries

Spike Camera. Spike camera is a bio-inspired sensor which records and converts the absolute light
intensity at a fairly high frame rate (up to 20kHz) into accumulated voltage through photoreceptors [64}
8] If the accumulated voltage V reaches the scheduling threshold ©, a spike will be triggered and V'
is reset to zero, mathematically formulated as follows:

t
V)= / o - L(t)dt mod®©, e
ts
where L(t) represents the instant light intensity at time ¢, ¢, is the moment when the previous spike
was emitted, and o is the constant photoelectric conversion coefficient.

DUSt3R Initialization. DUSt3R [41]] is a dense initialization method used for 3D reconstruction.
Compared with COLMAP Initialization [40], DUSt3R provides more accurate point clouds under
low-quality image input with less time, which is more suitable for high-speed scenes. Specifically,
given a pair of images (I, I5), DUSt3R utilizes a ViT for the encoder and decoder [11] and a DPT
head [37] for estimating point clouds PC:

PC = DPT(ViT(I4, I»)). )

Although dUST3r and its improved versions [49, 55] could generate dense point clouds based on
multi-view images, however, the quality of point clouds depends on the quality of input images.

4D Gaussian Splatting. 4D Gaussian Splatting (4DGS) [43] is used for rendering dynamic scenes.
It proposes a network that learns the Gaussian deformation field to predict the deformation of each
3D Gaussian. For input 3D Gaussian G and time ¢, a spatial-temporal structure encoder H and a
multi-head Gaussian deformation decoder D are used for calculating the deformations AG:

AG = D(H(G,1)). 3
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Figure 1: The Framework of our Spike4DGS, we establish the connection between the real-world
spike streams and the dynamic scene rendering images. The input multi-view spike streams are sent
to a Multi-view Spike-based Dense Initialization to estimate point cloud and camera poses. Based
on the initialization, a 4DGS with Spike-Pixel Synergy Supervision consisting of a Pixel Loss and a
Spike Variation Loss is utilized for rendering. Our Spike4DGS could reconstruct high-speed dynamic
scenes with delicate motion and texture details.

3.2 Problem Fomulation

We aim to reconstruct high-speed dynamic scenes with delicate motion and texture details. To reach
this goal, we build a multi-view spike camera array to capture the high-speed motion and propose
a novel method called Spike4DGS for rendering based on continuous spike streams. The problem
could be denoted as:

Spike4DGS : {(S1, 5%, ..., Sn—_1), Vi, t} — I 4)

where S, .52, ..., Sy_1 are the spike streams captured from N-1 views of spike cameras for training,
I, is the rendering image of novel view V) (the view of N-th spike camera) at time .

To solve this problem, Spike4DGS first builds an end-to-end Multi-view Spike-based Dense Initial-
ization (MSDI) method to estimate the dense point cloud and camera poses from input spike streams,
as detailed in Sec.[3.3] Then, the initial point cloud and camera poses are sent to a 4D Gaussian
Splatting to generate novel view rendering results. To get more delicate motion and texture details,
Spike-Pixel Synergy Supervision (SPSS) is proposed for the constraint of 4D Gaussian Splatting in
Sec.[3:4] The total framework of Spike4DGS is shown in Fig.[T]

3.3 Multi-view Spike-based Dense Initialization

Previous rendering tasks based on spike cameras, such as SpikeNeRF [69], employ a two-step
initialization method. They first use spike-to-image methods such as TFI [64], TFP [64] and
spk2img [6] to get images, and then utilize COLMAP [40] or DUSt3R on these images for
the scene initialization. However, this two-step method is complex and requires high-quality spike-
to-image results. When dealing with high-speed dynamic scenes, the lack of texture details in
converted images may influence the final point cloud estimation. In contrast, we propose an end-
to-end framework, called Multi-view Spike-based Dense Initialization (MSDI), which consists of a
spike feature extractor, a point cloud and pose estimator, and an image generator. Given a series of
spike streams from NN spike cameras, MSDI aims to estimate 3D point clouds, camera poses, and
their corresponding images:

MSDI : (Si, ..., Sx) — {PC, ([R|T)1, ... [RIT]x), (I, ... In)}- (5)

where PC is the estimated point cloud, [R|T]i, ..., [R|T]n are the camera rotation and translation
parameters of N spike cameras, [1, ..., [y are the images generated from input spike streams. As



an end-to-end network, MSDI is fine-tuned together with pre-trained weights on multi-view spike
streams captured from the Carla [10] simulator.

Spike Feature Extractor. Firstly, we build a feature extractor for the multi-view spike streams.
Assuming I'; is a time interval around frame time ¢. For an input spike stream S;(I") which lasts for a
time interval I'; and is captured from the ¢-th camera view, MSDI rotates Sr, four times to obtain a
complete receptive field in four directions and concentrate them together:

R(S:(T;)) = CAT{Rot(S;(T;),0)}|0 € {0°,90°,180°, 270°}, 6)

where CAT and Rot mean concatenation and rotation operations respectively. Then, we utilize a
shift-based 3 x 3 convolution layer from [54] to extract features:

fi(Ty) = M(R(S;(Iy))), (7

where M is the shift-based convolution layer, fpt is the extracted spike features for input spike
streams S;(I";). Replacing the input S;(T';) to N views of spike streams, we can get a series of

extracted features (f1(T'¢), ..., fn(T)).

Point Cloud and Pose Estimator. To estimate the point cloud and camera poses, the problem could
be formulated as:

Estimator : (f1(T), ..., fx (L)) = PC, ([R|T)1, ..., [R|T)n)- (8)

To solve the problem, MSDI builds an estimator consisting of N ViT encoders [[L1] (equals to the
number of views) and a fusion transformer. For N ViT encoders, each encoder ViT; handles a
camera view with shared weights:

Ey(Ty) = ViTi(f;(Ty)),i € (1,...,N). )

For the fusion transformer FusionTF, it is a 24-layer transformer which is the same as [49]:
G1(Ty), G2(T'y), ..., Gy (T'y) = FusionTF (E(Ft), Fy(Ty), ...,FN(m) : (10)

where G;(T';) is the temporal feature of i-th camera view. This operation generates temporal features
with global contextual understanding from all views.

Then, a DPT [37] decoding head is utilized for decoding the temporal features into a point cloud PC
and its corresponding confidence map Xp¢:

(7)67 ZPC) = DPT(GI(Ft)7 G2(Ft)7 ey GN(Ft)) (1)

Finally, we utilize the global point cloud PC to estimate camera rotations and translations
([R|T), ..., [R|T)N) via RANSAC-PnP [14][1].

Image Generator. In addition, MSDI also generates discrete images from continuous spike streams.
For the time interval I'; around frame time ¢, the image at time ¢ in ¢-th camera view could be
generated from:

Li(t) = BCONV(fi(T)),i € (1,..., N), (12)
where I;(t) is the generated image, BCONV is a network consisting of three 1 x 1 convolutions
followed from BSN [6]].

Compared with the previous two-step initialization methods like TFI [64]+COLMAP [40], our end-
to-end MSDI method could avoid the errors of the final estimations which occur from the low-quality
images generated in the intermediate steps.

3.4 4DGS with Spike-Pixel Synergy Supervision

After MSDI, we could get the initial point cloud and camera poses. Then the initial 3D Gaussian G
could be obtained from them. Thus, we could generate the deformed Gaussians from 4DGS [45]] and

render an image 1(t) at i-th view p;:

I;(t) = Render(4DGS(G, t), p;). (13)



According to 4DGS, the rendered image loss could be formulated as follows to offer our Spike4DGS
pixel supervision:

th)ixel — ||f1(t> — I_l(t)Hl? (14)

where 1;(t) is the rendered image at the time ¢, I;(¢) is the generated images from the above MSDI.
However, this pixel loss concentrates only on image similarity but ignores the texture and motion
details, which are contained in spike streams. To take advantage of the spike characteristics, we
propose a spike variation loss which first translates the rendered images into spike streams and then
compares the variation between generated and real spike streams.

Translate from Rendered Image to Spike Stream. Let us denote the intensity values of the pixel
(z,y) in rendered images at time ¢ as I;(x, y, t). After getting the real light of the scene, we convert
the scene light intensity into spike streams using an Integrate-and-Fire (IF) [17, [12] mechanism.
Following intensity translation method [[68], we could establish the following relationship:

where n(x, y) is the deviation matrix corresponding to the response nonuniformity noise which could
be obtained by capturing a uniform light scene and recording the intensity. IF(-) is a IF neuron, and

Si (x,y,t) is the predicted spike values of the pixel (x,y) at time ¢.

Spike Variation Supervision. Different from static scenes, objects in high-speed moving scenes are
constantly changing, thus the segment of spikes .5; (I';) in a time interval I'; around ¢ is a continuously
changing sequence. For high-speed moving objects, naive L1 or L2 loss treats each frame separately,
without considering how these objects move over time. In contrast, we propose spike variation
supervision,in order to concentrate on the dynamic changes of objects. Since high-speed motions
are continuous, spike streams in a short time interval around time ¢ could be generated from a single
spike at time ¢. Thus, we simply design a one-layer MLP network ¢, to map a single spike S; (t)toa
spike sequence Si(Ft) in a time interval I'; around ¢:

Si(Ty) = 6s(S; (1)), (16)

where the shape of S; (t) is (H, W, 1) and the shape of S;(I';) is (H, W, T). H and W are the height
and width of the spikes. Then, we calculate the average value and the standard deviation of this spike
sequence S; (T';) and compare them with ground truth. Therefore, the Spike Variation Loss could be
presented as:

LY = ||avg(Si(T)) — ave(SE (To)) Il + [lstd(Si(Te)) — std(SE (D))l 1. A7)

Combining this regularization with the original Pixel Loss, we get the final synergy training loss for
our Spike4DGS:

Ettolal _ Eipikev _’_ﬁgixel. (18)

4 Experiment

4.1 Datasets

To verify the validity of our proposed Spike4dDGS, we create two datasets. The first dataset is a
real-world object dataset collected by the aforementioned spike camera array. The second dataset is a
high-speed synthetic outdoor dataset generated by the CARLA simulator [10]. All our experiments
are conducted on these two self-made datasets. We achieve the best results on both two datasets,
which demonstrates the superiority of our Spike4DGS.

Real-world Object Dataset. As shown in F—
Fig.2] the spike array consists of 9 spike cam-
eras that are capable of capturing spike streams
with a spatial resolution of 250 x 400 and a tem-
poral resolution of 20k Hz. During the data col-
lection process, synchronized recordings were
made from all 9 cameras, ensuring that motion
was consistently represented across different

Figure 2: Our spike camera array.



Table 1: Quantitative evaluation on synthetic outdoor dataset.Unit: PSNR-dB 1, SSIM 1, LPIPS |.

Jaywalk Bicycle Motor Car Van
Method PSNR SSIM LPIPS |[PSNR SSIM LPIPS|PSNR SSIM LPIPS |[PSNR SSIM LPIPS |PSNR SSIM LPIPS
TFI[64]+D3DGS[29] 20.65 757 0.384|21.73 77.7 0385]19.98 76.2 0.377|20.09 762 0.387|19.24 753 0.402

TFP [67]+D3DGS|[29] 20.88 76.5 0.357|21.78 789 0.346|19.85 76.0 0.372|20.07 76.6 0.361|19.20 76.4 0.389
Spk2img[57]+D3DGS[29] | 20.94 76.6 0.304 |21.68 77.5 0.379|20.12 76.5 0.380|20.15 76.3 0.389|18.93 759 0.392

TF1[64]+STG[26] 2448 842 0224|2452 84.1 0221|2447 843 0.227 2350 84.0 0.223|26.55 88.7 0.201
TFP [67]+STGI26] 2445 84.0 0220|2450 842 0225|2453 84.1 0.222|24.60 843 0.226|2648 89.0 0.205
Spk2img[571+STG(26] 2472 84.6 0221|2475 845 0.220|24.70 84.7 0.223 |23.73 84.8 0.219|2594 88.4 0.202
TF1[64]+4DGS[43] 26.88 87.7 0213 [27.02 89.7 0.202 |25.52 90.5 0.198 |25.38 86.6 0.219|25.21 86.1 0.214
TFP [67]+4DGS[45] 2796 912 0.192 |27.15 904 0.196 |26.57 883 0.206 |25.01 86.5 0.213 2527 87.0 0.220

Spk2img[57]+4DGS[45] |27.04 90.9 0.208 [26.17 88.6 0.219 [26.35 88.9 0.218 [24.75 87.8 0.229 [24.87 87.9 0.227

Dy-SpikeGS[51] 23.04 0.852 0.243 [22.17 0.846 0.249 | 23.35 0.857 0.238 |22.75 0.849 0.244 | 22.87 0.851 0.242
Dy-SpikeNeRF[69] 17.04 0.784 0.372|16.17 0.773 0.384 | 16.35 0.776 0.379 | 14.75 0.759 0.395 | 15.87 0.768 0.388

Our Spike4dDGS [28.29 93.1 0.189 |27.69 91.3 0.185|27.92 91.6 0.193 |27.74 91.2 0.199 |27.13 90.1 0.197

Spike TFI+D3DGS TFI+STG TFI+4DGS Ours Ground Truth

R'

Car

Van

Jaywalk

Figure 3: Quantitative comparison with other methods on the dataset on our synthetic outdoor dataset.
We mainly compare our method with some SOTA approaches. In contrast, our method delivers both
superior outlines and clear details.

views. When capturing spike streams, we fix the position of our spike camera array and place
the high-speed dynamic objects in front of the cameras.Then we record 9 spike streams of approxi-
mately 0.5 seconds for each real-world scene with high-speed objects. Firstly, we choose high-speed
dynamic objects such as “the collapse of bricks" (Bricks) and “the spin of a turntable"(Turntable)
and put them before our spike camera array.Secondly, we minimize noise by providing the spike
camera with ideal light intensity and obtaining multiple ideal spike streams. These spike streams
could be converted to images by our MSDI module in the training process, and we use them as image
supervision.

Synthetic Outdoor Dataset. To quantitatively analyze our superiority, we create a synthetic outdoor
dataset using the Carla [10] simulator, which includes scenarios like Jaywalk, Bicycle, Van, Car, and
Motor. These scenarios feature objects of varying sizes and speeds, with objects appearing from the
left side of the image and moving to the right. An array of 9 camera sets with an overhead view was
set up to capture different views of the objects. Each view setting consists of a spike camera at 20k
FPS for training and an RGB camera at 1k FPS for evaluation.

4.2 Experimental Setup

Competitors. Due to the relative lack of methods for dynamic novel view synthesis based on spike
cameras, we completed the comparison using some two-stage rendering approaches. First, we choose
some direct spike-to-image approaches: TFI[64], TFP[64]], and spk2img[57], and then combine them
with previous multiview dynamic NVS methods[43), .For a more comprehensive experiment,
we also manually integrated a deformation network from 4DGS into SpikeGS and SpikeNeRF
(denoted as Dy-SpikeGS and Dy-SpikeNeRF) as comparison. Those comparisons are initialized by



Table 2: Quantitative evaluation on real-world object dataset. Unit: Brisque |, NIQE |, MetalQA 1.

Bricks Chips Turntable Bird

Method Brisque NIQE MetalQA |Brisque NIQE MetalQA |Brisque NIQE MetalQA |Brisque NIQE MetalQA
TFI[64]+D3DGS[29] 5735 1671 0.114 61.32 1643 0.124 | 56.53 1534 0.117 57.87 14.87 0.112
TFP [67]+D3DGS[29] 56.87 15.37 0.127 60.15 15.01 0.131 55.57 1493 0.123 56.37 14.53  0.126
Spk2img[57]+D3DGS[29] | 58.78 15.98  0.133 59.27 15.04 0.135 56.94 1587 0.129 57.14 14.65 0.137
TFI[64]+STG 4533 13.88 0.143 43.77 1393  0.149 36.45 10.53  0.150 3332 12.64 0.143
TFP [67]+STG 44.83 1321 0.148 4446 11.08 0.150 37.94 10.87 0.161 34.09 998  0.155
Spk2img[571+STG (26] 45.61 13.63 0.147 44.67 12.08 0.152 38.01 1092 0.157 34.02 927  0.149
TFI[64]+4DGS [45] 39.56 10.23  0.165 45.15 10.01 0.162 37.57 993  0.170 3337 953  0.163
TFP [67]+4DGS 40.58 1042 0.164 | 4446 11.08 0.150 37.94 10.87 0.161 34.09 998  0.155
Spk2img[57]+4DGS [43] | 40.53 10.55 0.167 | 44.67 12.08 0.152 38.01 1092 0.157 34.02 927 0.149
Dy-SpikeGS|[51] 48.73 1423  0.136 | 49.15 13.84 0.139 4792 13.57 0.133 46.88 13.22  0.137
Dy-SpikeNeRF([69] 61.84 17.25 0.116 62.17 1693 0.113 60.58 16.71 0.118 59.74 1635 0.115
Our Spike4dDGS \ 3429 995 0.176 \ 3352 8.03 0.183 \ 26.86 9.86 0.179 \ 23.86 836 0.180

Spike TFI+D3DGS TFI+STG TFI+4DGS Ours Real Scene

Bricks

Chips

Turntable

Figure 4: Qualitative comparison on real-world object datasets with SOTA rendering methods. We
present the RGB photos of real scenes in the last column due to the lack of ground truth.

DUSI3R [41]] to obtain point clouds. In our framework, the training data are multiple spike streams
for both synthetic and real datasets.

Implementation Details. Firstly, we use the MSDI in Sec. [3.3] to estimate initialize point clouds,
camera poses, and generate images. We fine-tune this end-to-end framework together with pre-trained
weights using multi-view spike streams captured from dynamic scenes in the Carla simulator. The
fine-tuning adopts L1 loss supervised by Carla images and confidence-aware pointmap regression loss
in DUSt3R [41]. We utilize Adam optimizer with a learning rate of 0.0001 to effectively minimize
both losses and ensure stable convergence during training. Secondly, for 4DGS with Spike-Pixel
Synergy supervision in Sec. [3.4] the learning rate is the same as 4DGS [43]. At each optimization
iteration, we randomly sample a batch of views from the same time t. The total experiments are
conducted on a single NVIDIA GTX 4090 with PyTorch and the optimization for a single scene
typically takes about 20 minutes to converge and 40 FPS when rendering. For the metrics of the
synthetic outdoor dataset, we employ three widely-used image quality assessment metrics, PSNR [45]],
SSIM and LPIPS [56]]. For the real dataset, which lacks corresponding ground truth images, we
employ NIQE [35], BRISQUE [33}34] and MetaIQA [63] as no-reference image quality evaluation
metrics, the same as state-of-the-art works [69] 51]].

4.3 Performance Comparison

4.3.1 Synthetic Outdoor Data Experiments

Quantitative Performance. We present a detailed comparison of our method against some two-stage
rendering approaches, such as TFI [64]+STG [26], TFI[64]+D3DGS[29], TFI[64]+4DGS [45]], on
our synthetic outdoor dataset. As demonstrated in Table [T} our method outperforms the SOTA
two-stage rendering methods across all five distinct scenes. Note that our Spike4DGS improves more
on the higher-speed scenes like “Car", which proves the effect in high-speed scenarios.



Qualitative Performance. We also present the qualitative results in Fig. 3] where: (I)
TFI [64]+D3DGS [29] almost failed to reconstruct the outlines and details of each scene. (II)
TFI [64]+4DGS [43] could only reconstruct the outlines with texture details missing. (iii) In contrast,
our method demonstrates superior performance, generating clearer and more detailed novel views,
especially in challenging high-speed scenes like “Van".

4.3.2 Real-world Object Data Experiments

Quantitative Performance. As shown in Table 2] our method achieves superior performance
compared to those SOTA rendering approaches. Our method achieves an average improvement
in BRISQUE (33| 34]], NIQE [33] and MetalQA [63] by 15.4%, 4.6% and 6.7 % respectively,
indicating higher-quality novel view rendering.

Qualitative Performance. In qualitative experiments, we focus on the generated texture details.
Fig. @] presents that our method could generate high-quality texture details. For example, in the third
line of Fig.[4] our rendering could generate clear alphabets ""A, B, C..."" on the Turntable dataset
while others could not.

4.3.3 Analysis

Performance Analysis. The quantitative and qualitative results above show that our Spike4DGS
could significantly surpass the SOTA approaches. Moreover, on the synthetic outdoor dataset, our
method proves the ability to render the outdoor high-speed scenes. While on the real-world object
dataset, our method could also reconstruct indoor high-speed objects. This highlights the robustness
and comprehensive improvements of our Spike4DGS on different high-speed dynamic scenes.

4.4 Ablation Study

Contrlbutlop of Each Component. We con- Table 3: The contribution of each component.
duct an ablation study to assess the contribu-

tion of each component in our Spike4DGS. Methods | PSNRT SSIM? LPIPS
As shown in Table[3] we combine 4DGS with TFI [62]+COLMAP 2108 849 0253

TFI [64]+DUSt3R [41] 25.66 89.3 0.205

some initialization frameworks.. The 'I'eSl.lltS MSDI 2666 903 0198
demonstrate that our MSDI initialization

. TFI [64+COLMAP [40]+SPSS | 22.76 852  0.233
achieves the best performance, and the SPSS TFI [621+DUSGR [@1+SPSS | 2634 902 0201
module consistently improves reconstruction MSDI+SPSS(Full model) 2774 912 0.190

quality under different initialization frame-
works. Results in the last row demonstrate

that the full model (4DGS+MSDI+SPSS) Table 4: Ablation on supervision strategy.
achieves the best performance, validating the Supervision Strategy | PSNRT SSIMt LPIPS|
effectiveness of our design for spike-based PixelLoss 2122 850 0251
3D reconstruction. SpikeLoss 1379 763 0408
PixelLoss [43]+SpikeLoss 26.69  89.5 0.203
Ablation on Supervision. To evaluate the ef- SPSS (Ours) 2774 912 0.190

fect of our supervision strategy, we compare
our SPSS in Sec. [3.4]with pixel loss in vanilla
4DGS [43]], spike loss in SpikeNerf [69], and
the combination of the above. The quantita-
tive results of novel view synthesis are listed
in Table[d Our SPSS, consisting of pixel loss
and spike variation loss, obtains the highest
PSNR performance.

Ablation on View Numbers. In this part, :

we investigate the relationship between view |
numbers and performance. As shown in
Fig. 5] we present both quantitative and qual- ﬂ ;

itative comparisons. For the quantitative [ .

experiments, we use Brisque [33] and 5 views 7 views 9 views
NIQE [33]] as the evaluation metric. Our

Spike4DGS achieves the best performance

Figure 5: Quantitative and qualitative ablation of view
numbers on real-world object datasets.
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Table 5: Comparison of different methods under varying numbers of views. (Brisque/NIQE)

Methods 3 Views 4 Views 5 Views 6 Views 7 Views 8 Views

TFI+D3DGS [29] 83.4/23.87 73.6/21.67 65.2/20.81 62.9/18.60 59.8/16.20 56.53/15.34
TFI+STG [26] 71.0/22.80 61.2/17.50 57.0/16.70 52.1/14.60 42.0/13.10 36.45/10.53
TFI+4DGS [45]  70.3/22.70 60.8/18.40 56.4/16.50 51.8/14.40 43.6/13.90 37.57/9.93
Ours 63.43/18.54 53.62/15.67 45.23/13.81 32.91/11.67 29.84/10.20 26.86/9.86

in both visual quality and quantitative score. The quantitative comparisons across different methods
are summarized in Table[5] It proves that more view numbers will lead to higher rendering quality.
This means that our method could be extended to more views in the future.

The effect of MSDI’s Generator. To validate the effectiveness of our MSDI module for spike2image
initialization, we conducted quantitative comparisons with representative spike-to-image methods,
including TFI, TFP, and spk2img. On the synthetic dataset where ground truth images are available,
we evaluated the spike-to-img quality using average PSNR and SSIM. The results are summarized in
Tab[6] Note the reconstruction images in test have the same view with the training images, hence the
improvements are more clearly than NVS.

Table 6: Quantitative comparison on average quality.

Metric TFI[3] TFP[3] TVS[4] Spike2img[5] MSDI’s images
Avg PSNRT  24.51 25.37 22.43 30.76 34.90
Avg SSIMT 0.850 0.852 0.821 0.904 0.961

The effect of Whole MSDI. This part provides a more detailed evaluation of the module MSDI.
Specifically, we feed the MSDI outputs (i.e., reconstructed images, point clouds, and poses) into
the standard 4DGS procedure, respectively, to validate the contribution of MSDI. In addition, the
traditional spike-to-image methods (e.g., TFI) and MSDI+SPSS are also listed for comparison. The
experiments are conducted on the synthetic dataset, and the average performances are reported in the
following Tab.[/] It indicates MSDI’s contribution positively.

Table 7: Focus Comparison of MSDI without SPSS.

Method Avg PSNRT Avg SSIM?  Avg LPIPS]
TFI + COLMAP + 4DGS 21.08 0.849 0.253
TFI + DUST3R + 4DGS 25.66 0.893 0.205
MSDI IMAGE + COLMAP + 4DGS 22.43 0.854 0.233
MSDI IMAGE + DUST3R + 4DGS 25.76 0.898 0.203
MSDI + 4DGS 26.66 0.903 0.198
MSDI + SPSS (Ours) 27.74 0.912 0.190

5 Conclusions

This paper introduces Spike4dDGS, a novel framework that seamlessly integrates multiple spike
streams captured by a spike array into 4DGS training, effectively addressing the challenges of
reconstructing high-speed dynamic scenes. Spike4DGS designs a novel Multi-view Spike-based
Dense Initialization module to obtain dense point clouds from continuous spike streams and a Spike-
Pixel Synergy Supervision strategy to optimize the parameters for enhanced rendering quality. We
contribute two novel datasets and conduct comprehensive evaluations. The results on the datasets
demonstrate that our Spike4DGS surpasses previous SOTA dynamic reconstruction approaches in
high-speed dynamic scenes, with almost no sacrifice in training cost and rendering FPS.

Limitation. While our spike camera array is functional, the approach has limitations which we will
solve in our future works. The images rendered by our Spike4DGS are grayscale due to the lack
of RGB information. Additionally, the spike array is not portable, which limits its use in mobile or
field-based applications.
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paper’s contributions and scope?

Answer: [Yes]

Justification: We claim the contributions of this work at the end of the Introduction, and
elaborate on how we achieve them in the Methodology.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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a complete (and correct) proof?

Answer: [Yes]
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with clear statements and proper references.
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* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide detailed model designs and experimental settings in the main text.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The dataset and code used in this work will be released shortly after simple
organization.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The detailed experimental settings are presented in Section 4.2 and the supple-
mentary materials.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We use statistical significance in the evaluation metrics.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The computational resources are described in Section 4.2.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: There are no ethical concerns involved in this work.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See supplementary materials.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets (e.g., code, data, and models) used in
the paper are properly credited, and the license and terms of use are explicitly mentioned
and properly respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets

has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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