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Abstract
Retrieval-augmented code completion aims001
to enhance code generation by leveraging re-002
trieved code snippets as references, which003
serves as a core technology to improve develop-004
ment efficiency. However, existing approaches005
face a critical limitation: the misalignment of006
preferences between retrievers and generators.007
To address this issue, we propose Feedback-008
Guided Reranking for Retrieval-augmented009
Code Completion (FGRR), a novel method that010
leverages feedback from the generative model011
to fine-tune the parameters of a reranker. By012
inserting a reranking module between the re-013
triever and generator, FGRR effectively bridges014
the preference gap and enhances the genera-015
tor’s ability to utilize the retrieved snippets.016
Experiments demonstrate that FGRR achieves017
substantial gains in performance across token-018
level, line-level, and body-level code comple-019
tion tasks.020

1 Introduction021

Code completion is a cornerstone feature in022

software Integrated Development Environments023

(IDEs), significantly boosting developer produc-024

tivity. Previous deep neural networks-based ap-025

proaches(Liu et al., 2016; Alon et al., 2020;026

Karampatsis et al., 2020) and pretraining-based027

approaches(Liu et al., 2020; Svyatkovskiy et al.,028

2020; Feng et al., 2020; Wang et al., 2021) primar-029

ily rely on limited training data for fine-tuning and030

typically use previously written code as context in-031

put. This restricts their ability to effectively handle032

domain-specific code completion scenarios.033

Recently, retrieval-augmented generation (RAG)034

has emerged as an effective framework for code035

completion tasks(Lu et al., 2022; Zhang et al., 2023;036

Guo et al., 2024; Chen et al., 2024). These ap-037

proaches retrieve relevant code snippets or code038

structure information(Liu et al., 2024) from a large-039

scale codebase and incorporate them into the gen-040

erative model’s context. This provides the model041
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Figure 1: Comparison of two retrieval-augmented code
completion frameworks. The upper shows the standard
RAG, where the retrieved code is fed to the generator di-
rectly. The lower shows our FGRR, where the retrieved
code is reordered before being fed into the generator.

with additional reference information, improving 042

the accuracy and contextual relevance of the gener- 043

ated code. However, a critical limitation of existing 044

approaches is the misalignment of preferences be- 045

tween retrievers and generators(Ke et al., 2024; 046

Dong et al., 2024). Since retrievers and genera- 047

tors are typically trained in isolation, the retrieved 048

snippets often fail to meet the specific needs of 049

the generative model, leading to suboptimal code 050

completion performance. 051

In this paper, we propose FGRR, a novel method 052

that leverages feedback from the generative model 053

to optimize the retrieval process. As shown in Fig- 054

ure 1, the core idea is to fine-tune a reranker using 055

the generator’s feedback, enabling it to rank code 056

snippets based on their relevance to the genera- 057

tor’s needs. FGRR operates through two stages of 058

fine-tuning: supervised fine-tuning and feedback- 059

guided fine-tuning. In the supervised fine-tuning 060

stage, the reranker is trained to match the seman- 061

tic relevance between query and code snippets. 062

In the feedback-guided fine-tuning stage, we fur- 063

ther refines the reranker using feedback from the 064

generator’s performance. Experimental results 065
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across token-level, line-level, and body-level code066

completion tasks show that the generator can re-067

ceive higher-quality reference code snippets, better068

aligned with its task, ultimately improving code069

completion performance.070

2 Related Work071

Deep Code Completion. Code completion is a072

crucial factor in improving software development073

efficiency.Early research shows that deep neural074

networks(Liu et al., 2016; Alon et al., 2020) and075

pre-training methods(Liu et al., 2020; Svyatkovskiy076

et al., 2020; Feng et al., 2020) have made signif-077

icant advances. While some approaches incorpo-078

rate code-specific structures like Abstract Syntax079

Trees (AST) (Kim et al., 2021; Guo et al., 2022),080

most current research treats source code as token081

sequences(Nijkamp et al., 2022; Li et al., 2023).082

Retrieval-augmented Code Completion. While083

traditional approaches rely on local context, re-084

cent approaches leverage external relevant code085

snippets(Guo et al., 2024; Chen et al., 2024; Liu086

et al., 2024; Wang et al., 2024). The ReACC frame-087

work(Lu et al., 2022) retrieves similar code for088

completion, achieving strong results in Python and089

Java. RepoCoder(Zhang et al., 2023) iterates re-090

trieval and generation to improve completion qual-091

ity at the repository level. ProCC(Tan et al., 2024)092

further boosts performance with multi-retrieval093

and context-based algorithms. These approaches094

demonstrate the potential of retrieval-augmented095

techniques to improve code completion.096

3 Methods097

This section introduces FGRR, a feedback-guided098

reranking method for retrieval-augmented code099

completion. The overall framework of FGRR is100

shown in Figure 2.101

3.1 Supervised Fine-Tuning Stage102

In the first stage of FGRR, the reranker is fine-tuned103

to to capture the semantic associations between104

query and code. It is trained using contrastive learn-105

ing, where a query is paired with a positive code106

snippet and several random negative ones. The con-107

trastive loss encourages the model to increase the108

similarity between positive pairs and decrease it for109

negative pairs. The loss function is:110

Lrerank = − 1

N

N∑
i=1

log
exp(δ(qi, c

+
i ))∑

j exp(δ(qi, cj))
, (1)111

where N is the batch size, qi is the query, c+i is 112

the positive code snippet, cj is the negative code 113

snippet, and δ(·) represents the similarity function. 114

3.2 Feedback-Guided Fine-Tuning Stage 115

In the second stage of FGRR, feedback from the 116

generator is used to fine-tune the reranker. The 117

goal is to align the retriever and generator prefer- 118

ences. The generator is evaluated based on code 119

completion metrics, which serve as feedback for 120

the reranker. The reward for a candidate retrieval 121

is defined as: 122

reward(ri) =


1 if Metrics(ri) ≥ Metrics(rj),

∀rj ∈ R,

0 otherwise.
(2) 123

where R = {r1, r2, . . . , rk} is the set of candidate 124

code snippets, and Metrics refers to the evaluation 125

metric used for code completion. 126

The reranker’s objective is to adjust its ranking 127

probabilities based on the feedback from the gen- 128

erator, prioritizing code snippets that improve the 129

generator’s performance. The optimization loss for 130

the reranker is: 131

L = −
k∑

i=1

(reward(ri)× logP (ri|C,R)), (3) 132

where k is the number of candidate code snippets, 133

and P (ri|C,R) is the probability of selecting a 134

code snippet ri given the context C and retrieved 135

code examples R. 136

3.3 Inference Stage 137

The inference stage of FGRR consists of three com- 138

ponents: candidate retrieval, reranking, and code 139

generation. The retriever uses a fast retrieval en- 140

gine, such as Lucene (Białecki et al., 2012), to 141

retrieve relevant code snippets from a large-scale 142

codebase. The retrieval process is: 143

{r1, r2, . . . , rk} = Retriever(Ccontext, Dcodebase),
(4) 144

where Ccontext is the code context and Dcodebase is 145

the codebase. 146

The reranker reorders the retrieved snippets, re- 147

fining the results based on the fine-grained semantic 148

relationships between the context and the candi- 149

dates. This ensures that the most relevant snippets 150

for the generator are prioritized. The reranking 151

2



Supervised Fine-tuning

Query
Aligned

Pull

Push
... Random

Reranker

Feedback-guided Fine-tuning

Inference

Retrieved code

Reranker + Generator

Context Metrics

ACC.
ES

BLEU
...

Feedback

Retrieved code

Reranker

Reordered code

+ Generator

Context Completed CodeRetriever

Figure 2: The overall framework of FGRR. In the supervised fine-tuning stage, the reranker is trained to match
the semantic relevance between query and code snippets. In the feedback-guided fine-tuning stage, the reranker
is further optimized by using feedback from the generator. In the the inference stage, the reranker is inserted to
improve the ordering of retrieved code.

process is:152

{r∗1, r∗2, . . . , r∗k} = Reranker(r1, r2, . . . , rk),
(5)153

where {r∗1, r∗2, . . . , r∗k} are the reranked top-K can-154

didates.155

Finally, the generator uses the context and the156

reranked reference code snippets to generate a com-157

plete code snippet. The code completion process158

is:159

ŷ = Generator(Ccontext, r
∗
1), (6)160

where ŷ is the generated code snippet, and r∗1 is the161

most relevant reference code example.162

4 Experiments163

4.1 Research Questions164

RQ1: How does FGRR perform in token-level,165

line-level, and body-level code completion tasks?166

This question investigates the framework’s effec-167

tiveness across different granularities of code com-168

pletion tasks.169

RQ2: What is the contribution of each training170

step in FGRR to its overall performance? We171

conduct ablation studies to understand how each in-172

dividual steps contributes to performance enhance-173

ment.174

RQ3: How effective is the FGRR reranker in175

alleviating preference gap between in retrieval-176

augmented code completion framework? This177

question examines the reranking process, focusing178

on its optimization of candidate code selections.179

4.2 Datasets 180

This experiment utilizes the Python code comple- 181

tion dataset from CodeXGLUE (Lu et al., 2021), 182

which is derived from the PY150 dataset (Raychev 183

et al., 2016) collected from GitHub. Additionally, 184

the PyTorrent dataset (Bahrami et al., 2021) is em- 185

ployed as the code retrieval library. The detailed 186

statistics of these datasets are provided in Table 1. 187

Dataset Training Validation Test Avg. code tokens
PY150 82,143 4,169 5,894 92.2
PyTorrent 2,841,300 90.3

Table 1: The statistics of code completion datasets and
retrieval codebase.

4.3 Models and Metrics 188

We evaluate our method using three open- 189

source models and two closed-source mod- 190

els as base model. The open-source mod- 191

els include Transformer Decoder(TFM)(Vaswani, 192

2017), Transformer-XL(Tr-XL)(Dai, 2019), and 193

CodeGPT(Lu et al., 2021), while the closed-source 194

models are gpt-3.5-turbo(OpenAI, 2023) and gpt- 195

4o-mini(OpenAI, 2024). 196

We evaluate the performance of the code com- 197

pletion task using several metrics based on dif- 198

ferent levels of granularity. The metrics used 199

in this experiment are Accuracy, Edit Similar- 200

ity(ES)(Wang et al., 2012), Exact Matching(EM), 201

BLEU(Papineni et al., 2002), and CodeBLEU(Ren 202

et al., 2020). These metrics enable a comprehen- 203

sive assessment of the model’s performance from 204

various perspectives. 205

3



Token-level Code Completion

Model
Identifier Acc.(%) Separator Acc.(%) Keyword Acc.(%) Operator Acc.(%) Overall Acc.(%)

Ori. RAG FGRR Ori. RAG FGRR Ori. RAG FGRR Ori. RAG FGRR Ori. RAG FGRR

TFM 29.3 40.6 43.5 ↑48.5 73.2 76.8 77.4 ↑5.7 52.0 58.9 60.5 ↑16.3 43.7 48.5 48.7 ↑11.4 52.7 59.2 60.4 ↑14.6
Tr-XL 30.9 42.3 45.2 ↑46.3 73.6 77.8 78.5 ↑6.7 52.9 59.0 60.5 ↑14.4 45.5 50.7 51.2 ↑12.5 53.5 60.1 61.5 ↑15.0
CodeGPT 43.3 50.5 52.9 ↑22.2 77.5 80.2 80.3 ↑3.6 57.8 63.2 64.0 ↑10.7 52.2 56.7 57.6 ↑10.3 60.6 65.2 66.4 ↑9.6

Line-level Code Completion

Model
ES(%) EM(%) BLEU-1(%) BLEU-2(%) BLEU-4(%)

Ori. RAG FGRR Ori. RAG FGRR Ori. RAG FGRR Ori. RAG FGRR Ori. RAG FGRR

TFM 40.6 50.2 52.6 ↑29.6 1.3 10.3 12.8 ↑884.6 29.9 38.5 41.7 ↑39.5 21.6 31.5 34.7 ↑60.6 17.3 27.5 30.7 ↑77.5
Tr-XL 45.1 52.5 55.6 ↑23.3 1.4 11.4 14.9 ↑964.3 30.3 39.1 43.0 ↑41.9 23.9 33.3 37.6 ↑57.3 18.4 28.3 32.6 ↑77.2
CodeGPT 43.1 55.0 58.6 ↑36.0 4.1 14.7 19.3 ↑370.7 33.8 42.6 47.2 ↑39.6 27.7 37.0 41.9 ↑51.3 22.0 31.7 36.7 ↑66.8

Body-level Code Completion

Model
ES(%) BLEU-1(%) BLEU-2(%) BLEU-4(%) CodeBLEU(%)

Ori. RAG FGRR Ori. RAG FGRR Ori. RAG FGRR Ori. RAG FGRR Ori. RAG FGRR

gpt-3.5-turbo 40.5 52.9 54.7 ↑35.1 18.8 36.3 38.2 ↑103.2 14.6 30.4 33.3 ↑128.1 10.8 24.6 28.1 ↑160.2 26.8 32.6 33.8 ↑26.1
gpt-4o-mini 41.2 54.1 54.8 ↑33.0 29.2 40.6 40.9 ↑40.1 19.4 32.4 34.4 ↑77.3 11.7 24.8 28.2 ↑141.0 29.1 31.7 34.6 ↑18.9

Table 2: Performance of models on code completion tasks. RAG enhances originals model by incorporating
retrieval-based augmentation, while FGRR further improves RAG by applying a reranking mechanism.

5 Results206

5.1 RQ1: Effectiveness of FGRR207

Table 2 presents the performance of our method208

on the code completion task, comparing different209

models and evaluation metrics. We categorize to-210

ken completion into Identifier, Separator, Keyword,211

and Operator for a detailed analysis. Results show212

that our reranking method outperforms both the213

original model and the retrieval-augmented gener-214

ation approach, with significant improvements in215

overall token-level accuracy and substantial gains216

in line-level and body-level metrics like BLEU and217

CodeBLEU. The reranking mechanism effectively218

bridges the preference gap between the retriever219

and generator, improving code completion results.220

5.2 RQ2: Ablation Study221

In this ablation study, we assess the impact of key222

components: feedback-guided fine-tuning, super-223

vised fine-tuning, and the reranking module.. As224

shown in Table 3, feedback-guided fine-tuning is225

crucial for optimizing retrieval ranking. Removing226

the reranking module reduces the model to a basic227

RAG approach, while removing supervised fine-228

tuning significantly weakens the reranker’s seman-229

tic matching ability, performing worse than direct230

retrieval. The study highlights the importance of231

both fine-tuning stages in enhancing the reranking232

process, leading to more accurate and relevant code233

generation across all completion levels.234

5.3 RQ3: Alleviation of Preference Gap235

As shown in Figure 3, we compare the number of236

optimal code snippets retrieved from the top-12237

candidates by two methods. The results show that238

Token-level Completion Identifier Seperator Keyword Operaotr Overall

CodeGPT+FGRR 52.9 80.3 64.0 57.6 66.4
- Feedback Fine-tuning 51.1 80.2 63.5 56.9 65.5
- Supervised Fine-tuning 45.9 78.1 58.7 52.9 62.3
- Reranking Module 50.5 80.2 63.2 56.7 65.2

Line-level Completion ES EM BLEU-1 BLEU-2 BLEU-4

CodeGPT+FGRR 58.6 19.3 47.2 41.9 36.7
- Feedback Fine-tuning 55.4 15.1 43.2 37.7 32.6
- Supervised Fine-tuning 51.2 7.7 37.5 31.5 25.8
- Reranking Module 55.0 14.7 42.6 37.0 31.7

Body-level Completion ES CodeBLEU BLEU-1 BLEU-2 BLEU-4

gpt-4o-mini+FGRR 54.8 34.6 40.9 34.4 28.2
- Feedback Fine-tuning 54.8 32.5 41.7 33.3 25.6
- Supervised Fine-tuning 48.3 28.6 32.5 24.6 17.6
- Reranking Module 54.1 31.7 40.6 32.4 24.8

Table 3: Ablation study of FGRR.
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2479

(a) Token-level 

RAG

2139

RGRR

2548
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108
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126
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Figure 3: Comparison of retrieving optimal code snip-
pets. Only 500 test samples are used for body-level code
completion.

FGRR outperforms the standard RAG in top-1 re- 239

call, demonstrating the effectiveness of the reranker 240

in alleviating the preference gap. 241

6 Conclusion 242

In this paper, we introduced FGRR, a novel method 243

that improves retrieval-augmented code completion 244

by aligning preference gap of retrievers and gener- 245

ators through feedback-guided reranking. Experi- 246

mental results show significant performance gains 247

across different code completion tasks. 248
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7 Limitations249

FGRR’s performance heavily depends on the qual-250

ity of the feedback provided by the generator. Since251

the reranker is trained using task-specific metrics,252

it may vary in effectiveness when applied to differ-253

ent tasks or code domains, potentially limiting its254

generalization across various code completion sce-255

narios. Additionally, the reranking stage relies on256

dense embeddings for retrieval, which can become257

inefficient when dealing with large-scale codebases,258

as it requires costly computations to reorder a vast259

number of candidate code snippets. These limi-260

tations suggest that future work should focus on261

improving the efficiency of the reranking process262

and developing more robust feedback mechanisms263

for broader task applicability.264
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A Additional Experimental Details 414

A.1 Comparison of Retrieval Strategies 415

Due to the large size of the retrieval corpus, dense 416

retrieval methods proved to be inefficient, so we 417

employed the Lucene search engine for prelimi- 418

nary retrieval, obtaining the top 1000 candidate 419

code snippets. We compared three retrieval strate- 420

gies on code completion tasks. The three retrieval 421

strategies are as follows: 422

• Header2Code: The retriever uses the method 423

header as the query to find matching code 424

snippets. 425

• NL2Code: The retriever uses the comment 426

associated with the code as the query to find 427

relevant code snippets in the codebase. 428

• NL2NL: The retriever searches for semanti- 429

cally similar comments within the codebase 430

and retrieves the corresponding code snippets. 431

Following the experimental setup of Chen et al. 432

(2024), we compared the results of these strategies, 433

as shown in the Table 4. Based on the performance, 434

we selected the NL2NL strategy as the default re- 435

trieval method for the RAG approach, as it yields 436

the best results. 437

Model Strategies
Token-level Line-level

Identifier Overall ES BLEU-4

CodeGPT

Original 43.3 60.6 43.1 22.0
Header2Code 47.8 63.5 51.8 26.6

NL2Code 44.7 61.5 48.8 22.6
NL2NL 50.5 65.2 55.0 31.7

Table 4: Comparison of three retrieval strategies on
token-level and line-level code completion tasks

A.2 Experimental Setup 438

For our experiments, the reranker is initialized us- 439

ing UniXcoder(Guo et al., 2022), a state-of-the-art 440

code representation model. The training is per- 441

formed on an NVIDIA 3090 GPU with 24GB of 442

memory. Our approach involves two stages of 443

fine-tuning: supervised fine-tuning and feedback- 444

guided fine-tuning. 445

6

https://openai.com/index/gpt-3-5-turbo-fine-tuning-and-api-updates/
https://openai.com/index/gpt-3-5-turbo-fine-tuning-and-api-updates/
https://openai.com/index/gpt-3-5-turbo-fine-tuning-and-api-updates/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/


In the supervised fine-tuning stage, the reranker446

is trained to match the semantic relevance be-447

tween code queries and retrieved snippets. We use448

the CodeSearchNet(Husain et al., 2019) Python449

dataset, which contains a large collection of code450

snippets and their associated queries, as the train-451

ing data. The reranker is trained for two epochs,452

with a learning rate of 2e-5 and a batch size of 32.453

The feedback-guided fine-tuning stage refines454

the reranker further by leveraging feedback from455

the generator’s performance in the PY150 code456

completion dataset. The reranker is trained for one457

epoch with the same learning rate and batch size458

settings. We select the top-12 code snippets from459

the retrieved candidates. These snippets are then460

evaluated based on their relevance to the genera-461

tor’s performance in the code completion task. The462

most optimal exemplar, as determined by the gener-463

ator’s completion quality, is chosen. For feedback,464

token-level code completion uses Accuracy, line-465

level code completion uses Edit Similarity, and466

body-level code completion uses BLEU score as467

the evaluation metric. The reranker is then trained468

to prioritize this optimal exemplar to enhance its469

performance in future retrieval tasks.470

B Case Study471

Take "Generate a function to escape HTML special472

characters in a string" as an example.473
474

# Input Context475
def escape_html(s: str) -> str:476

result = ""477
for c in s:478

if c == ’<’:479
result += "&lt;"480

elif c == ’>’:481
result += "&gt;"482483

The completion results of model gpt-4o-mini are484

as follows:485
486

# Zero -shot completion by gpt -4o-mini:487
elif c == ’&’:488

result += "&amp;"489
else:490

result += c491
return result492493

The retrieved top-1 exemplar and completion494

results are as follows:495
496

# Retrieved Exemplar (Top -1):497
def escape_quotes(text: str) -> str:498

return text.replace(’"’, ’&quot;’).499
replace("’", ’&apos;’)500

501
# Generated Code:502
elif c == ’&’:503

result += "&amp;" 504
elif c == ’"’: 505

result += "&quot;" 506
else: 507

result += c 508
return escape_quotes(result) # 509

Undefined function call 510511

The reranked top-1 exemplar and completion 512

results are as follows: 513
514

# Reranked Exemplar (Top -1): 515
def escape_html_full(s: str) -> str: 516

escapes = {’<’:’&lt;’, ’>’:’&gt;’, ’ 517
&’:’&amp;’, ’"’:’&quot;’, "’":’ 518
&#39;’} 519

return ’’.join(escapes.get(c, c) for 520
c in s) 521

522
# Final Completion: 523
elif c == ’&’: 524

result += "&amp;" 525
elif c == ’"’: 526

result += "&quot;" 527
elif c == "’": 528

result += "&#39;" 529
else: 530

result += c 531
return result 532533

This case study demonstrates three critical find- 534

ings through an HTML escaping function genera- 535

tion task. First, the zero-shot completion reveals 536

logical gaps in handling domain-specific require- 537

ments: while correctly escaping < and >, it fails 538

to address quotes (" and ’), creating security vul- 539

nerabilities. Second, naive retrieval augmentation 540

introduces new risks: the model overfits to the 541

retrieved escape_quotes exemplar by generating 542

invalid API calls to undefined external functions. 543

Third, our reranking mechanism resolves both is- 544

sues: the final implementation achieves full cov- 545

erage of HTML special characters (<, >, &, ", ’) 546

through direct pattern transfer from the reranked 547

exemplar’s dictionary mapping strategy, while elim- 548

inating external dependencies. 549

7


	Introduction
	Related Work
	Methods
	Supervised Fine-Tuning Stage
	Feedback-Guided Fine-Tuning Stage
	Inference Stage

	Experiments
	Research Questions
	Datasets
	Models and Metrics

	Results
	RQ1: Effectiveness of FGRR
	RQ2: Ablation Study
	RQ3: Alleviation of Preference Gap

	Conclusion
	Limitations
	Additional Experimental Details
	Comparison of Retrieval Strategies
	Experimental Setup

	Case Study

