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Abstract

Retrieval-augmented code completion aims
to enhance code generation by leveraging re-
trieved code snippets as references, which
serves as a core technology to improve develop-
ment efficiency. However, existing approaches
face a critical limitation: the misalignment of
preferences between retrievers and generators.
To address this issue, we propose Feedback-
Guided Reranking for Retrieval-augmented
Code Completion (FGRR), a novel method that
leverages feedback from the generative model
to fine-tune the parameters of a reranker. By
inserting a reranking module between the re-
triever and generator, FGRR effectively bridges
the preference gap and enhances the genera-
tor’s ability to utilize the retrieved snippets.
Experiments demonstrate that FGRR achieves
substantial gains in performance across token-
level, line-level, and body-level code comple-
tion tasks.

1 Introduction

Code completion is a cornerstone feature in
software Integrated Development Environments
(IDEs), significantly boosting developer produc-
tivity. Previous deep neural networks-based ap-
proaches(Liu et al., 2016; Alon et al., 2020;
Karampatsis et al., 2020) and pretraining-based
approaches(Liu et al., 2020; Svyatkovskiy et al.,
2020; Feng et al., 2020; Wang et al., 2021) primar-
ily rely on limited training data for fine-tuning and
typically use previously written code as context in-
put. This restricts their ability to effectively handle
domain-specific code completion scenarios.
Recently, retrieval-augmented generation (RAG)
has emerged as an effective framework for code
completion tasks(Lu et al., 2022; Zhang et al., 2023;
Guo et al., 2024; Chen et al., 2024). These ap-
proaches retrieve relevant code snippets or code
structure information(Liu et al., 2024) from a large-
scale codebase and incorporate them into the gen-
erative model’s context. This provides the model
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Figure 1: Comparison of two retrieval-augmented code
completion frameworks. The upper shows the standard
RAG, where the retrieved code is fed to the generator di-
rectly. The lower shows our FGRR, where the retrieved
code is reordered before being fed into the generator.

with additional reference information, improving
the accuracy and contextual relevance of the gener-
ated code. However, a critical limitation of existing
approaches is the misalignment of preferences be-
tween retrievers and generators(Ke et al., 2024;
Dong et al., 2024). Since retrievers and genera-
tors are typically trained in isolation, the retrieved
snippets often fail to meet the specific needs of
the generative model, leading to suboptimal code
completion performance.

In this paper, we propose FGRR, a novel method
that leverages feedback from the generative model
to optimize the retrieval process. As shown in Fig-
ure 1, the core idea is to fine-tune a reranker using
the generator’s feedback, enabling it to rank code
snippets based on their relevance to the genera-
tor’s needs. FGRR operates through two stages of
fine-tuning: supervised fine-tuning and feedback-
guided fine-tuning. In the supervised fine-tuning
stage, the reranker is trained to match the seman-
tic relevance between query and code snippets.
In the feedback-guided fine-tuning stage, we fur-
ther refines the reranker using feedback from the
generator’s performance. Experimental results



across token-level, line-level, and body-level code
completion tasks show that the generator can re-
ceive higher-quality reference code snippets, better
aligned with its task, ultimately improving code
completion performance.

2 Related Work

Deep Code Completion. Code completion is a
crucial factor in improving software development
efficiency.Early research shows that deep neural
networks(Liu et al., 2016; Alon et al., 2020) and
pre-training methods(Liu et al., 2020; Svyatkovskiy
et al., 2020; Feng et al., 2020) have made signif-
icant advances. While some approaches incorpo-
rate code-specific structures like Abstract Syntax
Trees (AST) (Kim et al., 2021; Guo et al., 2022),
most current research treats source code as token
sequences(Nijkamp et al., 2022; Li et al., 2023).
Retrieval-augmented Code Completion. While
traditional approaches rely on local context, re-
cent approaches leverage external relevant code
snippets(Guo et al., 2024; Chen et al., 2024; Liu
et al., 2024; Wang et al., 2024). The ReACC frame-
work(Lu et al., 2022) retrieves similar code for
completion, achieving strong results in Python and
Java. RepoCoder(Zhang et al., 2023) iterates re-
trieval and generation to improve completion qual-
ity at the repository level. ProCC(Tan et al., 2024)
further boosts performance with multi-retrieval
and context-based algorithms. These approaches
demonstrate the potential of retrieval-augmented
techniques to improve code completion.

3 Methods

This section introduces FGRR, a feedback-guided
reranking method for retrieval-augmented code
completion. The overall framework of FGRR is
shown in Figure 2.

3.1 Supervised Fine-Tuning Stage

In the first stage of FGRR, the reranker is fine-tuned
to to capture the semantic associations between
query and code. It is trained using contrastive learn-
ing, where a query is paired with a positive code
snippet and several random negative ones. The con-
trastive loss encourages the model to increase the
similarity between positive pairs and decrease it for
negative pairs. The loss function is:

N
1 exp(d(qi, Cﬂ)
Lrerank = —— ) log S : ’
reran N ; j eXp((S(Qi,Cj))
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where N is the batch size, ¢; is the query, c;r is
the positive code snippet, c; is the negative code
snippet, and J(-) represents the similarity function.

3.2 Feedback-Guided Fine-Tuning Stage

In the second stage of FGRR, feedback from the
generator is used to fine-tune the reranker. The
goal is to align the retriever and generator prefer-
ences. The generator is evaluated based on code
completion metrics, which serve as feedback for
the reranker. The reward for a candidate retrieval
is defined as:

1 if Metrics(r;) > Metrics(rj),
\V/Tj S R,
0 otherwise.

reward(r;) =

2
where R = {ry,ra,...,r;} is the set of candidate
code snippets, and M etrics refers to the evaluation
metric used for code completion.

The reranker’s objective is to adjust its ranking
probabilities based on the feedback from the gen-
erator, prioritizing code snippets that improve the
generator’s performance. The optimization loss for
the reranker is:

k
L=- Z(reward(ri) x log P(r;|C, R)), (3)
=1

where k is the number of candidate code snippets,
and P(r;|C, R) is the probability of selecting a
code snippet 7; given the context C' and retrieved
code examples R.

3.3 Inference Stage

The inference stage of FGRR consists of three com-
ponents: candidate retrieval, reranking, and code
generation. The retriever uses a fast retrieval en-
gine, such as Lucene (Biatecki et al., 2012), to
retrieve relevant code snippets from a large-scale
codebase. The retrieval process is:

< 7”k:} = Retriever(ccontexh Dcodebase)7

“)
where Contest 1S the code context and Dogebase 1S
the codebase.

The reranker reorders the retrieved snippets, re-
fining the results based on the fine-grained semantic
relationships between the context and the candi-
dates. This ensures that the most relevant snippets
for the generator are prioritized. The reranking

{7“1,7’2, ..
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Figure 2: The overall framework of FGRR. In the supervised fine-tuning stage, the reranker is trained to match
the semantic relevance between query and code snippets. In the feedback-guided fine-tuning stage, the reranker
is further optimized by using feedback from the generator. In the the inference stage, the reranker is inserted to

improve the ordering of retrieved code.

process is:

,T'k),
(5)

., 7} } are the reranked top-K can-

{rl,r3,...,1} = Reranker(ry,ra,...
where {rj, 73, ..
didates.

Finally, the generator uses the context and the
reranked reference code snippets to generate a com-
plete code snippet. The code completion process
is:

y = Generator(Ceontext, 1) (6)

where g is the generated code snippet, and r7 is the
most relevant reference code example.

4 Experiments

4.1 Research Questions

RQ1: How does FGRR perform in token-level,
line-level, and body-level code completion tasks?
This question investigates the framework’s effec-
tiveness across different granularities of code com-
pletion tasks.

RQ2: What is the contribution of each training
step in FGRR to its overall performance? We
conduct ablation studies to understand how each in-
dividual steps contributes to performance enhance-
ment.

RQ3: How effective is the FGRR reranker in
alleviating preference gap between in retrieval-
augmented code completion framework? This
question examines the reranking process, focusing
on its optimization of candidate code selections.

4.2 Datasets

This experiment utilizes the Python code comple-
tion dataset from CodeXGLUE (Lu et al., 2021),
which is derived from the PY150 dataset (Raychev
et al., 2016) collected from GitHub. Additionally,
the PyTorrent dataset (Bahrami et al., 2021) is em-
ployed as the code retrieval library. The detailed
statistics of these datasets are provided in Table 1.

Dataset Training Validation Test | Avg. code tokens
PY150 82,143 4,169 5,894 922
PyTorrent 2,841,300 90.3

Table 1: The statistics of code completion datasets and
retrieval codebase.

4.3 Models and Metrics

We evaluate our method using three open-
source models and two closed-source mod-
els as base model. The open-source mod-
els include Transformer Decoder(TFM)(Vaswani,
2017), Transformer-XL(Tr-XL)(Dai, 2019), and
CodeGPT(Lu et al., 2021), while the closed-source
models are gpt-3.5-turbo(OpenAl, 2023) and gpt-
40-mini(OpenAl, 2024).

We evaluate the performance of the code com-
pletion task using several metrics based on dif-
ferent levels of granularity. The metrics used
in this experiment are Accuracy, Edit Similar-
ity(ES)(Wang et al., 2012), Exact Matching(EM),
BLEU((Papineni et al., 2002), and CodeBLEU(Ren
et al., 2020). These metrics enable a comprehen-
sive assessment of the model’s performance from
various perspectives.



‘ Token-level Code Completion

Model Identifier Acc.(%) Separator Acc.(%) Keyword Acc.(%) Operator Acc.(%) Overall Acc.(%)
Ori. RAG FGRR Ori. RAG FGRR Ori. RAG FGRR Ori. RAG FGRR Ori. RAG FGRR
TFM 293 406 43571485 |732 768 774157 |52.0 589 6051163 | 437 485 4871114 | 527 592 60.4 114.6
Tr-XL 309 423 4521463 | 73.6 77.8 78516.7 |529 59.0 60.51144 | 455 507 51.2112.5 | 535 60.1 61.5115.0
CodeGPT 433 505 5291222 |775 802 80313.6 |578 632 64.0110.7 | 522 56.7 57.67103 | 60.6 652 66.419.6
‘ Line-level Code Completion
Model ES(%) EM(%) BLEU-1(%) BLEU-2(%) BLEU-4(%)
ode Or. RAG FGRR |Ori. RAG FGRR |Or. RAG FGRR | Or. RAG FGRR | Or. RAG FGRR
TFM 40.6 502 52.6129.6 | 1.3 103 12.81884.6 | 299 385 41.7139.5 | 21.6 315 347160.6 | 173 27.5 30.7177.5
Tr-XL 45.1 525 5561233 | 14 114 1491964.3 | 303 39.1 43.0141.9 | 239 333 37.61573 | 184 283 32.6177.2
CodeGPT 43.1 550 58.6136.0 | 4.1 147 19.31370.7 | 33.8 426 47.2139.6 | 27.7 37.0 4191513 |22.0 31.7 36.7166.8
‘ Body-level Code Completion
Model ES(%) BLEU-1(%) BLEU-2(%) BLEU-4(%) CodeBLEU(%)
ode Ori. RAG FGRR Ori. RAG FGRR Ori. RAG FGRR Ori. RAG FGRR Ori. RAG FGRR
gpt-3.5-turbo | 40.5 529 54.7135.1 | 18.8 36.3 38.21103.2 | 14.6 304 33.31128.1 | 10.8 24.6 28.17160.2 | 26.8 32.6 33.8126.1
gpt-do-mini | 41.2  54.1 54.8733.0 | 29.2 40.6 409140.1 | 194 324 3441773 | 11.7 24.8 28.21141.0 | 29.1 31.7 34.6118.9

Table 2: Performance of models on code completion tasks. RAG enhances originals model by incorporating
retrieval-based augmentation, while FGRR further improves RAG by applying a reranking mechanism.

5 Results
5.1 RQ1: Effectiveness of FGRR

Table 2 presents the performance of our method
on the code completion task, comparing different
models and evaluation metrics. We categorize to-
ken completion into Identifier, Separator, Keyword,
and Operator for a detailed analysis. Results show
that our reranking method outperforms both the
original model and the retrieval-augmented gener-
ation approach, with significant improvements in
overall token-level accuracy and substantial gains
in line-level and body-level metrics like BLEU and
CodeBLEU. The reranking mechanism effectively
bridges the preference gap between the retriever
and generator, improving code completion results.

5.2 RQ2: Ablation Study

In this ablation study, we assess the impact of key
components: feedback-guided fine-tuning, super-
vised fine-tuning, and the reranking module.. As
shown in Table 3, feedback-guided fine-tuning is
crucial for optimizing retrieval ranking. Removing
the reranking module reduces the model to a basic
RAG approach, while removing supervised fine-
tuning significantly weakens the reranker’s seman-
tic matching ability, performing worse than direct
retrieval. The study highlights the importance of
both fine-tuning stages in enhancing the reranking
process, leading to more accurate and relevant code
generation across all completion levels.

5.3 RQ3: Alleviation of Preference Gap

As shown in Figure 3, we compare the number of
optimal code snippets retrieved from the top-12
candidates by two methods. The results show that

Token-level Completion ‘ Identifier ‘ Seperator ‘ Keyword ‘ Operaotr ‘ Overall

CodeGPT+FGRR 529 80.3 64.0 57.6 66.4
- Feedback Fine-tuning 51.1 80.2 63.5 56.9 65.5
- Supervised Fine-tuning 45.9 78.1 58.7 529 62.3
- Reranking Module 50.5 80.2 63.2 56.7 65.2
Line-level Completion ES EM BLEU-1 | BLEU-2 | BLEU-4
CodeGPT+FGRR 58.6 19.3 47.2 41.9 36.7
- Feedback Fine-tuning 554 15.1 43.2 37.7 32.6
- Supervised Fine-tuning 51.2 7.7 37.5 31.5 258
- Reranking Module 55.0 14.7 42.6 37.0 317
Body-level Completion ES CodeBLEU | BLEU-1 | BLEU-2 | BLEU-4
gpt-40-mini+FGRR 54.8 34.6 40.9 34.4 28.2
- Feedback Fine-tuning 54.8 325 41.7 333 25.6
- Supervised Fine-tuning 483 28.6 325 24.6 17.6
- Reranking Module 54.1 31.7 40.6 324 24.8
Table 3: Ablation study of FGRR.
2479 2548
2139
1999
126
108
RAG RGRR RAG RGRR RAG RGRR
(a) Token-level (b) Line-level (b) Body-level

Figure 3: Comparison of retrieving optimal code snip-
pets. Only 500 test samples are used for body-level code
completion.

FGRR outperforms the standard RAG in top-1 re-
call, demonstrating the effectiveness of the reranker
in alleviating the preference gap.

6 Conclusion

In this paper, we introduced FGRR, a novel method
that improves retrieval-augmented code completion
by aligning preference gap of retrievers and gener-
ators through feedback-guided reranking. Experi-
mental results show significant performance gains
across different code completion tasks.



7 Limitations

FGRR’s performance heavily depends on the qual-
ity of the feedback provided by the generator. Since
the reranker is trained using task-specific metrics,
it may vary in effectiveness when applied to differ-
ent tasks or code domains, potentially limiting its
generalization across various code completion sce-
narios. Additionally, the reranking stage relies on
dense embeddings for retrieval, which can become
inefficient when dealing with large-scale codebases,
as it requires costly computations to reorder a vast
number of candidate code snippets. These limi-
tations suggest that future work should focus on
improving the efficiency of the reranking process
and developing more robust feedback mechanisms
for broader task applicability.
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A Additional Experimental Details

A.1 Comparison of Retrieval Strategies

Due to the large size of the retrieval corpus, dense
retrieval methods proved to be inefficient, so we
employed the Lucene search engine for prelimi-
nary retrieval, obtaining the top 1000 candidate
code snippets. We compared three retrieval strate-
gies on code completion tasks. The three retrieval
strategies are as follows:

* Header2Code: The retriever uses the method
header as the query to find matching code
snippets.

* NL2Code: The retriever uses the comment
associated with the code as the query to find
relevant code snippets in the codebase.

* NL2NL: The retriever searches for semanti-
cally similar comments within the codebase
and retrieves the corresponding code snippets.

Following the experimental setup of Chen et al.
(2024), we compared the results of these strategies,
as shown in the Table 4. Based on the performance,
we selected the NL2NL strategy as the default re-
trieval method for the RAG approach, as it yields
the best results.

Model Strategies Token-level Line-level
€ Identifier Overall | ES BLEU-4
Original 43.3 60.6 | 43.1 22.0
Header2Code 47.8 63.5 51.8 26.6
CodeGPT | N1 2Code 447 615 | 488 226
NL2NL 50.5 65.2 | 55.0 31.7

Table 4: Comparison of three retrieval strategies on
token-level and line-level code completion tasks

A.2 Experimental Setup

For our experiments, the reranker is initialized us-
ing UniXcoder(Guo et al., 2022), a state-of-the-art
code representation model. The training is per-
formed on an NVIDIA 3090 GPU with 24GB of
memory. Our approach involves two stages of
fine-tuning: supervised fine-tuning and feedback-
guided fine-tuning.
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In the supervised fine-tuning stage, the reranker
is trained to match the semantic relevance be-
tween code queries and retrieved snippets. We use
the CodeSearchNet(Husain et al., 2019) Python
dataset, which contains a large collection of code
snippets and their associated queries, as the train-
ing data. The reranker is trained for two epochs,
with a learning rate of 2e-5 and a batch size of 32.

The feedback-guided fine-tuning stage refines
the reranker further by leveraging feedback from
the generator’s performance in the PY150 code
completion dataset. The reranker is trained for one
epoch with the same learning rate and batch size
settings. We select the top-12 code snippets from
the retrieved candidates. These snippets are then
evaluated based on their relevance to the genera-
tor’s performance in the code completion task. The
most optimal exemplar, as determined by the gener-
ator’s completion quality, is chosen. For feedback,
token-level code completion uses Accuracy, line-
level code completion uses Edit Similarity, and
body-level code completion uses BLEU score as
the evaluation metric. The reranker is then trained
to prioritize this optimal exemplar to enhance its
performance in future retrieval tasks.

B Case Study

Take "Generate a function to escape HTML special
characters in a string" as an example.

result +=
c == rmo.

result +=

elif

“&amp;”

"&quot ;"

else:
result += ¢

return escape_quotes(result) #
Undefined function call

The reranked top-1 exemplar and completion
results are as follows:

# Reranked Exemplar (Top-1):

def escape_html_full(s: str) -> str:
escapes = {’<’:’&1t;’, '>’:’&gt;’, ’
&’ :’&amp;’, ’"’:’&quot;’, "’":’
&#39; %
return ’’.join(escapes.get(c, c) for
c in s)

# Final Completion:

elif ¢ == ’&’:

result += "&amp;"”
elif ¢ == """

result += "&quot;"
elif ¢ == "7":

result += "&#39;"
else:

result += ¢
return result

# Input Context

def escape_html(s: str) -> str:
result = ""
for ¢ in s:
if ¢ == ’<’:
result += "&1t;"
elif ¢ == ’>"’:
result += "&gt;"

The completion results of model gpt-40-mini are
as follows:

# Zero-shot completion by gpt-4o-mini:
elif ¢ == ’&’:
result +=
else:
result += ¢
return result

”&amp;”

The retrieved top-1 exemplar and completion
results are as follows:

# Retrieved Exemplar (Top-1):
def escape_quotes(text: str) -> str:
return text.replace(’"’, ’&quot;’).
replace("’", ’&apos;’)

# Generated Code:
elif ¢ == ’&’:

This case study demonstrates three critical find-
ings through an HTML escaping function genera-
tion task. First, the zero-shot completion reveals
logical gaps in handling domain-specific require-
ments: while correctly escaping < and >, it fails
to address quotes (" and ’), creating security vul-
nerabilities. Second, naive retrieval augmentation
introduces new risks: the model overfits to the
retrieved escape_quotes exemplar by generating
invalid API calls to undefined external functions.
Third, our reranking mechanism resolves both is-
sues: the final implementation achieves full cov-
erage of HTML special characters (<, >, &, ", 7)
through direct pattern transfer from the reranked
exemplar’s dictionary mapping strategy, while elim-
inating external dependencies.
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