
Feedback-Guided Reranking for Retrieval-Augmented Code Completion

Anonymous ACL submission

Abstract
Retrieval-augmented code completion aims001
to enhance code generation by leveraging re-002
trieved code snippets as references, which003
serves as a core technology to improve develop-004
ment efficiency. However, existing approaches005
face a critical limitation: the misalignment of006
preferences between retrievers and generators.007
To address this issue, we propose Feedback-008
Guided Reranking for Retrieval-augmented009
Code Completion (FGRR), a novel method that010
leverages feedback from the generative model011
to fine-tune the parameters of a reranker. By012
inserting a reranking module between the re-013
triever and generator, FGRR effectively bridges014
the preference gap and enhances the genera-015
tor’s ability to utilize the retrieved snippets.016
Experiments demonstrate that FGRR achieves017
substantial gains in performance across token-018
level, line-level, and body-level code comple-019
tion tasks.020

1 Introduction021

Code completion is a cornerstone feature in022

software Integrated Development Environments023

(IDEs), significantly boosting developer produc-024

tivity. Previous deep neural networks-based ap-025

proaches(Liu et al., 2016; Alon et al., 2020;026

Karampatsis et al., 2020) and pretraining-based027

approaches(Liu et al., 2020; Svyatkovskiy et al.,028

2020; Feng et al., 2020; Wang et al., 2021) primar-029

ily rely on limited training data for fine-tuning and030

typically use previously written code as context in-031

put. This restricts their ability to effectively handle032

domain-specific code completion scenarios.033

Recently, retrieval-augmented generation (RAG)034

has emerged as an effective framework for code035

completion tasks(Lu et al., 2022; Zhang et al., 2023;036

Guo et al., 2024; Chen et al., 2024). These ap-037

proaches retrieve relevant code snippets or code038

structure information(Liu et al., 2024) from a large-039

scale codebase and incorporate them into the gen-040

erative model’s context. This provides the model041

Retriever

RAG for Code Completion

Retrieved code

Retriever

Reranking

Our FGRR for Code Completion

Retrieved code Reordered code

Generator

Generator

Figure 1: Comparison of two retrieval-augmented code
completion frameworks. The upper shows the standard
RAG, where the retrieved code is fed to the generator di-
rectly. The lower shows our FGRR, where the retrieved
code is reordered before being fed into the generator.

with additional reference information, improving 042

the accuracy and contextual relevance of the gener- 043

ated code. However, a critical limitation of existing 044

approaches is the misalignment of preferences be- 045

tween retrievers and generators(Ke et al., 2024; 046

Dong et al., 2024). Since retrievers and genera- 047

tors are typically trained in isolation, the retrieved 048

snippets often fail to meet the specific needs of 049

the generative model, leading to suboptimal code 050

completion performance. 051

In this paper, we propose FGRR, a novel method 052

that leverages feedback from the generative model 053

to optimize the retrieval process. As shown in Fig- 054

ure 1, the core idea is to fine-tune a reranker using 055

the generator’s feedback, enabling it to rank code 056

snippets based on their relevance to the genera- 057

tor’s needs. FGRR operates through two stages of 058

fine-tuning: supervised fine-tuning and feedback- 059

guided fine-tuning. In the supervised fine-tuning 060

stage, the reranker is trained to match the seman- 061

tic relevance between query and code snippets. 062

In the feedback-guided fine-tuning stage, we fur- 063

ther refines the reranker using feedback from the 064

generator’s performance. Experimental results 065

1

across token-level, line-level, and body-level code066

completion tasks show that the generator can re-067

ceive higher-quality reference code snippets, better068

aligned with its task, ultimately improving code069

completion performance.070

2 Related Work071

Deep Code Completion. Code completion is a072

crucial factor in improving software development073

efficiency.Early research shows that deep neural074

networks(Liu et al., 2016; Alon et al., 2020) and075

pre-training methods(Liu et al., 2020; Svyatkovskiy076

et al., 2020; Feng et al., 2020) have made signif-077

icant advances. While some approaches incorpo-078

rate code-specific structures like Abstract Syntax079

Trees (AST) (Kim et al., 2021; Guo et al., 2022),080

most current research treats source code as token081

sequences(Nijkamp et al., 2022; Li et al., 2023).082

Retrieval-augmented Code Completion. While083

traditional approaches rely on local context, re-084

cent approaches leverage external relevant code085

snippets(Guo et al., 2024; Chen et al., 2024; Liu086

et al., 2024; Wang et al., 2024). The ReACC frame-087

work(Lu et al., 2022) retrieves similar code for088

completion, achieving strong results in Python and089

Java. RepoCoder(Zhang et al., 2023) iterates re-090

trieval and generation to improve completion qual-091

ity at the repository level. ProCC(Tan et al., 2024)092

further boosts performance with multi-retrieval093

and context-based algorithms. These approaches094

demonstrate the potential of retrieval-augmented095

techniques to improve code completion.096

3 Methods097

This section introduces FGRR, a feedback-guided098

reranking method for retrieval-augmented code099

completion. The overall framework of FGRR is100

shown in Figure 2.101

3.1 Supervised Fine-Tuning Stage102

In the first stage of FGRR, the reranker is fine-tuned103

to to capture the semantic associations between104

query and code. It is trained using contrastive learn-105

ing, where a query is paired with a positive code106

snippet and several random negative ones. The con-107

trastive loss encourages the model to increase the108

similarity between positive pairs and decrease it for109

negative pairs. The loss function is:110

Lrerank = − 1

N

N∑
i=1

log
exp(δ(qi, c

+
i))∑

j exp(δ(qi, cj))
, (1)111

where N is the batch size, qi is the query, c+i is 112

the positive code snippet, cj is the negative code 113

snippet, and δ(·) represents the similarity function. 114

3.2 Feedback-Guided Fine-Tuning Stage 115

In the second stage of FGRR, feedback from the 116

generator is used to fine-tune the reranker. The 117

goal is to align the retriever and generator prefer- 118

ences. The generator is evaluated based on code 119

completion metrics, which serve as feedback for 120

the reranker. The reward for a candidate retrieval 121

is defined as: 122

reward(ri) =


1 if Metrics(ri) ≥ Metrics(rj),

∀rj ∈ R,

0 otherwise.
(2) 123

where R = {r1, r2, . . . , rk} is the set of candidate 124

code snippets, and Metrics refers to the evaluation 125

metric used for code completion. 126

The reranker’s objective is to adjust its ranking 127

probabilities based on the feedback from the gen- 128

erator, prioritizing code snippets that improve the 129

generator’s performance. The optimization loss for 130

the reranker is: 131

L = −
k∑

i=1

(reward(ri)× logP (ri|C,R)), (3) 132

where k is the number of candidate code snippets, 133

and P (ri|C,R) is the probability of selecting a 134

code snippet ri given the context C and retrieved 135

code examples R. 136

3.3 Inference Stage 137

The inference stage of FGRR consists of three com- 138

ponents: candidate retrieval, reranking, and code 139

generation. The retriever uses a fast retrieval en- 140

gine, such as Lucene (Białecki et al., 2012), to 141

retrieve relevant code snippets from a large-scale 142

codebase. The retrieval process is: 143

{r1, r2, . . . , rk} = Retriever(Ccontext, Dcodebase),
(4) 144

where Ccontext is the code context and Dcodebase is 145

the codebase. 146

The reranker reorders the retrieved snippets, re- 147

fining the results based on the fine-grained semantic 148

relationships between the context and the candi- 149

dates. This ensures that the most relevant snippets 150

for the generator are prioritized. The reranking 151

2

Supervised Fine-tuning

Query
Aligned

Pull

Push
... Random

Reranker

Feedback-guided Fine-tuning

Inference

Retrieved code

Reranker + Generator

Context Metrics

ACC.
ES

BLEU
...

Feedback

Retrieved code

Reranker

Reordered code

+ Generator

Context Completed CodeRetriever

Figure 2: The overall framework of FGRR. In the supervised fine-tuning stage, the reranker is trained to match
the semantic relevance between query and code snippets. In the feedback-guided fine-tuning stage, the reranker
is further optimized by using feedback from the generator. In the the inference stage, the reranker is inserted to
improve the ordering of retrieved code.

process is:152

{r∗1, r∗2, . . . , r∗k} = Reranker(r1, r2, . . . , rk),
(5)153

where {r∗1, r∗2, . . . , r∗k} are the reranked top-K can-154

didates.155

Finally, the generator uses the context and the156

reranked reference code snippets to generate a com-157

plete code snippet. The code completion process158

is:159

ŷ = Generator(Ccontext, r
∗
1), (6)160

where ŷ is the generated code snippet, and r∗1 is the161

most relevant reference code example.162

4 Experiments163

4.1 Research Questions164

RQ1: How does FGRR perform in token-level,165

line-level, and body-level code completion tasks?166

This question investigates the framework’s effec-167

tiveness across different granularities of code com-168

pletion tasks.169

RQ2: What is the contribution of each training170

step in FGRR to its overall performance? We171

conduct ablation studies to understand how each in-172

dividual steps contributes to performance enhance-173

ment.174

RQ3: How effective is the FGRR reranker in175

alleviating preference gap between in retrieval-176

augmented code completion framework? This177

question examines the reranking process, focusing178

on its optimization of candidate code selections.179

4.2 Datasets 180

This experiment utilizes the Python code comple- 181

tion dataset from CodeXGLUE (Lu et al., 2021), 182

which is derived from the PY150 dataset (Raychev 183

et al., 2016) collected from GitHub. Additionally, 184

the PyTorrent dataset (Bahrami et al., 2021) is em- 185

ployed as the code retrieval library. The detailed 186

statistics of these datasets are provided in Table 1. 187

Dataset Training Validation Test Avg. code tokens
PY150 82,143 4,169 5,894 92.2
PyTorrent 2,841,300 90.3

Table 1: The statistics of code completion datasets and
retrieval codebase.

4.3 Models and Metrics 188

We evaluate our method using three open- 189

source models and two closed-source mod- 190

els as base model. The open-source mod- 191

els include Transformer Decoder(TFM)(Vaswani, 192

2017), Transformer-XL(Tr-XL)(Dai, 2019), and 193

CodeGPT(Lu et al., 2021), while the closed-source 194

models are gpt-3.5-turbo(OpenAI, 2023) and gpt- 195

4o-mini(OpenAI, 2024). 196

We evaluate the performance of the code com- 197

pletion task using several metrics based on dif- 198

ferent levels of granularity. The metrics used 199

in this experiment are Accuracy, Edit Similar- 200

ity(ES)(Wang et al., 2012), Exact Matching(EM), 201

BLEU(Papineni et al., 2002), and CodeBLEU(Ren 202

et al., 2020). These metrics enable a comprehen- 203

sive assessment of the model’s performance from 204

various perspectives. 205

3

Token-level Code Completion

Model
Identifier Acc.(%) Separator Acc.(%) Keyword Acc.(%) Operator Acc.(%) Overall Acc.(%)

Ori. RAG FGRR Ori. RAG FGRR Ori. RAG FGRR Ori. RAG FGRR Ori. RAG FGRR

TFM 29.3 40.6 43.5 ↑48.5 73.2 76.8 77.4 ↑5.7 52.0 58.9 60.5 ↑16.3 43.7 48.5 48.7 ↑11.4 52.7 59.2 60.4 ↑14.6
Tr-XL 30.9 42.3 45.2 ↑46.3 73.6 77.8 78.5 ↑6.7 52.9 59.0 60.5 ↑14.4 45.5 50.7 51.2 ↑12.5 53.5 60.1 61.5 ↑15.0
CodeGPT 43.3 50.5 52.9 ↑22.2 77.5 80.2 80.3 ↑3.6 57.8 63.2 64.0 ↑10.7 52.2 56.7 57.6 ↑10.3 60.6 65.2 66.4 ↑9.6

Line-level Code Completion

Model
ES(%) EM(%) BLEU-1(%) BLEU-2(%) BLEU-4(%)

Ori. RAG FGRR Ori. RAG FGRR Ori. RAG FGRR Ori. RAG FGRR Ori. RAG FGRR

TFM 40.6 50.2 52.6 ↑29.6 1.3 10.3 12.8 ↑884.6 29.9 38.5 41.7 ↑39.5 21.6 31.5 34.7 ↑60.6 17.3 27.5 30.7 ↑77.5
Tr-XL 45.1 52.5 55.6 ↑23.3 1.4 11.4 14.9 ↑964.3 30.3 39.1 43.0 ↑41.9 23.9 33.3 37.6 ↑57.3 18.4 28.3 32.6 ↑77.2
CodeGPT 43.1 55.0 58.6 ↑36.0 4.1 14.7 19.3 ↑370.7 33.8 42.6 47.2 ↑39.6 27.7 37.0 41.9 ↑51.3 22.0 31.7 36.7 ↑66.8

Body-level Code Completion

Model
ES(%) BLEU-1(%) BLEU-2(%) BLEU-4(%) CodeBLEU(%)

Ori. RAG FGRR Ori. RAG FGRR Ori. RAG FGRR Ori. RAG FGRR Ori. RAG FGRR

gpt-3.5-turbo 40.5 52.9 54.7 ↑35.1 18.8 36.3 38.2 ↑103.2 14.6 30.4 33.3 ↑128.1 10.8 24.6 28.1 ↑160.2 26.8 32.6 33.8 ↑26.1
gpt-4o-mini 41.2 54.1 54.8 ↑33.0 29.2 40.6 40.9 ↑40.1 19.4 32.4 34.4 ↑77.3 11.7 24.8 28.2 ↑141.0 29.1 31.7 34.6 ↑18.9

Table 2: Performance of models on code completion tasks. RAG enhances originals model by incorporating
retrieval-based augmentation, while FGRR further improves RAG by applying a reranking mechanism.

5 Results206

5.1 RQ1: Effectiveness of FGRR207

Table 2 presents the performance of our method208

on the code completion task, comparing different209

models and evaluation metrics. We categorize to-210

ken completion into Identifier, Separator, Keyword,211

and Operator for a detailed analysis. Results show212

that our reranking method outperforms both the213

original model and the retrieval-augmented gener-214

ation approach, with significant improvements in215

overall token-level accuracy and substantial gains216

in line-level and body-level metrics like BLEU and217

CodeBLEU. The reranking mechanism effectively218

bridges the preference gap between the retriever219

and generator, improving code completion results.220

5.2 RQ2: Ablation Study221

In this ablation study, we assess the impact of key222

components: feedback-guided fine-tuning, super-223

vised fine-tuning, and the reranking module.. As224

shown in Table 3, feedback-guided fine-tuning is225

crucial for optimizing retrieval ranking. Removing226

the reranking module reduces the model to a basic227

RAG approach, while removing supervised fine-228

tuning significantly weakens the reranker’s seman-229

tic matching ability, performing worse than direct230

retrieval. The study highlights the importance of231

both fine-tuning stages in enhancing the reranking232

process, leading to more accurate and relevant code233

generation across all completion levels.234

5.3 RQ3: Alleviation of Preference Gap235

As shown in Figure 3, we compare the number of236

optimal code snippets retrieved from the top-12237

candidates by two methods. The results show that238

Token-level Completion Identifier Seperator Keyword Operaotr Overall

CodeGPT+FGRR 52.9 80.3 64.0 57.6 66.4
- Feedback Fine-tuning 51.1 80.2 63.5 56.9 65.5
- Supervised Fine-tuning 45.9 78.1 58.7 52.9 62.3
- Reranking Module 50.5 80.2 63.2 56.7 65.2

Line-level Completion ES EM BLEU-1 BLEU-2 BLEU-4

CodeGPT+FGRR 58.6 19.3 47.2 41.9 36.7
- Feedback Fine-tuning 55.4 15.1 43.2 37.7 32.6
- Supervised Fine-tuning 51.2 7.7 37.5 31.5 25.8
- Reranking Module 55.0 14.7 42.6 37.0 31.7

Body-level Completion ES CodeBLEU BLEU-1 BLEU-2 BLEU-4

gpt-4o-mini+FGRR 54.8 34.6 40.9 34.4 28.2
- Feedback Fine-tuning 54.8 32.5 41.7 33.3 25.6
- Supervised Fine-tuning 48.3 28.6 32.5 24.6 17.6
- Reranking Module 54.1 31.7 40.6 32.4 24.8

Table 3: Ablation study of FGRR.

RAG

1999

RGRR

2479

(a) Token-level

RAG

2139

RGRR

2548

(b) Line-level

RAG

108

RGRR

126

(b) Body-level

Figure 3: Comparison of retrieving optimal code snip-
pets. Only 500 test samples are used for body-level code
completion.

FGRR outperforms the standard RAG in top-1 re- 239

call, demonstrating the effectiveness of the reranker 240

in alleviating the preference gap. 241

6 Conclusion 242

In this paper, we introduced FGRR, a novel method 243

that improves retrieval-augmented code completion 244

by aligning preference gap of retrievers and gener- 245

ators through feedback-guided reranking. Experi- 246

mental results show significant performance gains 247

across different code completion tasks. 248

4

7 Limitations249

FGRR’s performance heavily depends on the qual-250

ity of the feedback provided by the generator. Since251

the reranker is trained using task-specific metrics,252

it may vary in effectiveness when applied to differ-253

ent tasks or code domains, potentially limiting its254

generalization across various code completion sce-255

narios. Additionally, the reranking stage relies on256

dense embeddings for retrieval, which can become257

inefficient when dealing with large-scale codebases,258

as it requires costly computations to reorder a vast259

number of candidate code snippets. These limi-260

tations suggest that future work should focus on261

improving the efficiency of the reranking process262

and developing more robust feedback mechanisms263

for broader task applicability.264

References265

Uri Alon, Roy Sadaka, Omer Levy, and Eran Yahav.266
2020. Structural language models of code. In In-267
ternational conference on machine learning, pages268
245–256. PMLR.269

Mehdi Bahrami, NC Shrikanth, Shade Ruangwan, Lei270
Liu, Yuji Mizobuchi, Masahiro Fukuyori, Wei-Peng271
Chen, Kazuki Munakata, and Tim Menzies. 2021.272
Pytorrent: A python library corpus for large-scale273
language models. arXiv preprint arXiv:2110.01710.274

Andrzej Białecki, Robert Muir, Grant Ingersoll, and Lu-275
cid Imagination. 2012. Apache lucene 4. In Proceed-276
ings of the SIGIR 2012 Workshop on Open Source277
Information Retrieval, page 17.278

Junkai Chen, Xing Hu, Zhenhao Li, Cuiyun Gao, Xin279
Xia, and David Lo. 2024. Code search is all you280
need? improving code suggestions with code search.281
In Proceedings of the IEEE/ACM 46th International282
Conference on Software Engineering, pages 1–13.283

Zihang Dai. 2019. Transformer-xl: Attentive language284
models beyond a fixed-length context. arXiv preprint285
arXiv:1901.02860.286

Guanting Dong, Yutao Zhu, Chenghao Zhang, Zechen287
Wang, Zhicheng Dou, and Ji-Rong Wen. 2024. Un-288
derstand what llm needs: Dual preference alignment289
for retrieval-augmented generation. arXiv preprint290
arXiv:2406.18676.291

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-292
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,293
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A294
pre-trained model for programming and natural lan-295
guages. In Findings of the Association for Computa-296
tional Linguistics: EMNLP 2020, pages 1536–1547.297

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming 298
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross- 299
modal pre-training for code representation. In Pro- 300
ceedings of the 60th Annual Meeting of the Associa- 301
tion for Computational Linguistics (Volume 1: Long 302
Papers), pages 7212–7225. 303

Qi Guo, Xiaohong Li, Xiaofei Xie, Shangqing Liu, 304
Ze Tang, Ruitao Feng, Junjie Wang, Jidong Ge, and 305
Lei Bu. 2024. Ft2ra: A fine-tuning-inspired approach 306
to retrieval-augmented code completion. In Proceed- 307
ings of the 33rd ACM SIGSOFT International Sym- 308
posium on Software Testing and Analysis, pages 313– 309
324. 310

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis 311
Allamanis, and Marc Brockschmidt. 2019. Code- 312
searchnet challenge: Evaluating the state of semantic 313
code search. arXiv preprint arXiv:1909.09436. 314

Rafael-Michael Karampatsis, Hlib Babii, Romain 315
Robbes, Charles Sutton, and Andrea Janes. 2020. 316
Big code!= big vocabulary: Open-vocabulary models 317
for source code. In Proceedings of the ACM/IEEE 318
42nd International Conference on Software Engineer- 319
ing, pages 1073–1085. 320

Zixuan Ke, Weize Kong, Cheng Li, Mingyang Zhang, 321
Qiaozhu Mei, and Michael Bendersky. 2024. Bridg- 322
ing the preference gap between retrievers and llms. 323
arXiv preprint arXiv:2401.06954. 324

Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish 325
Chandra. 2021. Code prediction by feeding trees to 326
transformers. In 2021 IEEE/ACM 43rd International 327
Conference on Software Engineering (ICSE), pages 328
150–162. IEEE. 329

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas 330
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc 331
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. 332
2023. Starcoder: may the source be with you! arXiv 333
preprint arXiv:2305.06161. 334

Chang Liu, Xin Wang, Richard Shin, Joseph E Gonza- 335
lez, and Dawn Song. 2016. Neural code completion. 336

Fang Liu, Ge Li, Yunfei Zhao, and Zhi Jin. 2020. 337
Multi-task learning based pre-trained language model 338
for code completion. In Proceedings of the 35th 339
IEEE/ACM International Conference on Automated 340
Software Engineering, pages 473–485. 341

Wei Liu, Ailun Yu, Daoguang Zan, Bo Shen, Wei Zhang, 342
Haiyan Zhao, Zhi Jin, and Qianxiang Wang. 2024. 343
Graphcoder: Enhancing repository-level code com- 344
pletion via code context graph-based retrieval and 345
language model. arXiv preprint arXiv:2406.07003. 346

Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-won 347
Hwang, and Alexey Svyatkovskiy. 2022. Reacc: A 348
retrieval-augmented code completion framework. In 349
Proceedings of the 60th Annual Meeting of the Asso- 350
ciation for Computational Linguistics, pages 6227– 351
6240. 352

5

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey353
Svyatkovskiy, Ambrosio Blanco, Colin Clement,354
Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.355
Codexglue: A machine learning benchmark dataset356
for code understanding and generation. arXiv357
preprint arXiv:2102.04664.358

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan359
Wang, Yingbo Zhou, Silvio Savarese, and Caiming360
Xiong. 2022. Codegen: An open large language361
model for code with multi-turn program synthesis.362
arXiv preprint arXiv:2203.13474.363

OpenAI. 2023. Gpt-3.5 turbo fine-tuning and api up-364
dates.365

OpenAI. 2024. Gpt-4o mini: advancing cost-efficient366
intelligence.367

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-368
Jing Zhu. 2002. Bleu: a method for automatic evalu-369
ation of machine translation. In Proceedings of the370
40th Annual Meeting of the Association for Compu-371
tational Linguistics, pages 311–318.372

Veselin Raychev, Pavol Bielik, and Martin Vechev. 2016.373
Probabilistic model for code with decision trees.374
ACM SIGPLAN Notices, 51(10):731–747.375

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,376
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio377
Blanco, and Shuai Ma. 2020. Codebleu: a method378
for automatic evaluation of code synthesis. arXiv379
preprint arXiv:2009.10297.380

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu,381
and Neel Sundaresan. 2020. Intellicode compose:382
Code generation using transformer. In Proceedings383
of the 28th ACM joint meeting on European software384
engineering conference and symposium on the foun-385
dations of software engineering, pages 1433–1443.386

Hanzhuo Tan, Qi Luo, Ling Jiang, Zizheng Zhan, Jing387
Li, Haotian Zhang, and Yuqun Zhang. 2024. Prompt-388
based code completion via multi-retrieval augmented389
generation. arXiv preprint arXiv:2405.07530.390

A Vaswani. 2017. Attention is all you need. Advances391
in Neural Information Processing Systems.392

Wei Wang, Jianbin Qin, Chuan Xiao, Xuemin Lin, and393
Heng Tao Shen. 2012. Vchunkjoin: An efficient algo-394
rithm for edit similarity joins. IEEE Transactions on395
Knowledge and Data Engineering, 25(8):1916–1929.396

Yanlin Wang, Yanli Wang, Daya Guo, Jiachi Chen,397
Ruikai Zhang, Yuchi Ma, and Zibin Zheng. 2024.398
Rlcoder: Reinforcement learning for repository-level399
code completion. arXiv preprint arXiv:2407.19487.400

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH401
Hoi. 2021. Codet5: Identifier-aware unified pre-402
trained encoder-decoder models for code understand-403
ing and generation. In Proceedings of the 2021 Con-404
ference on Empirical Methods in Natural Language405
Processing, pages 8696–8708.406

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin 407
Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and 408
Weizhu Chen. 2023. Repocoder: Repository-level 409
code completion through iterative retrieval and gen- 410
eration. In Proceedings of the 2023 Conference on 411
Empirical Methods in Natural Language Processing, 412
pages 2471–2484. 413

A Additional Experimental Details 414

A.1 Comparison of Retrieval Strategies 415

Due to the large size of the retrieval corpus, dense 416

retrieval methods proved to be inefficient, so we 417

employed the Lucene search engine for prelimi- 418

nary retrieval, obtaining the top 1000 candidate 419

code snippets. We compared three retrieval strate- 420

gies on code completion tasks. The three retrieval 421

strategies are as follows: 422

• Header2Code: The retriever uses the method 423

header as the query to find matching code 424

snippets. 425

• NL2Code: The retriever uses the comment 426

associated with the code as the query to find 427

relevant code snippets in the codebase. 428

• NL2NL: The retriever searches for semanti- 429

cally similar comments within the codebase 430

and retrieves the corresponding code snippets. 431

Following the experimental setup of Chen et al. 432

(2024), we compared the results of these strategies, 433

as shown in the Table 4. Based on the performance, 434

we selected the NL2NL strategy as the default re- 435

trieval method for the RAG approach, as it yields 436

the best results. 437

Model Strategies
Token-level Line-level

Identifier Overall ES BLEU-4

CodeGPT

Original 43.3 60.6 43.1 22.0
Header2Code 47.8 63.5 51.8 26.6

NL2Code 44.7 61.5 48.8 22.6
NL2NL 50.5 65.2 55.0 31.7

Table 4: Comparison of three retrieval strategies on
token-level and line-level code completion tasks

A.2 Experimental Setup 438

For our experiments, the reranker is initialized us- 439

ing UniXcoder(Guo et al., 2022), a state-of-the-art 440

code representation model. The training is per- 441

formed on an NVIDIA 3090 GPU with 24GB of 442

memory. Our approach involves two stages of 443

fine-tuning: supervised fine-tuning and feedback- 444

guided fine-tuning. 445

6

https://openai.com/index/gpt-3-5-turbo-fine-tuning-and-api-updates/
https://openai.com/index/gpt-3-5-turbo-fine-tuning-and-api-updates/
https://openai.com/index/gpt-3-5-turbo-fine-tuning-and-api-updates/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/

In the supervised fine-tuning stage, the reranker446

is trained to match the semantic relevance be-447

tween code queries and retrieved snippets. We use448

the CodeSearchNet(Husain et al., 2019) Python449

dataset, which contains a large collection of code450

snippets and their associated queries, as the train-451

ing data. The reranker is trained for two epochs,452

with a learning rate of 2e-5 and a batch size of 32.453

The feedback-guided fine-tuning stage refines454

the reranker further by leveraging feedback from455

the generator’s performance in the PY150 code456

completion dataset. The reranker is trained for one457

epoch with the same learning rate and batch size458

settings. We select the top-12 code snippets from459

the retrieved candidates. These snippets are then460

evaluated based on their relevance to the genera-461

tor’s performance in the code completion task. The462

most optimal exemplar, as determined by the gener-463

ator’s completion quality, is chosen. For feedback,464

token-level code completion uses Accuracy, line-465

level code completion uses Edit Similarity, and466

body-level code completion uses BLEU score as467

the evaluation metric. The reranker is then trained468

to prioritize this optimal exemplar to enhance its469

performance in future retrieval tasks.470

B Case Study471

Take "Generate a function to escape HTML special472

characters in a string" as an example.473
474

Input Context475
def escape_html(s: str) -> str:476

result = ""477
for c in s:478

if c == ’<’:479
result += "<"480

elif c == ’>’:481
result += ">"482483

The completion results of model gpt-4o-mini are484

as follows:485
486

Zero -shot completion by gpt -4o-mini:487
elif c == ’&’:488

result += "&"489
else:490

result += c491
return result492493

The retrieved top-1 exemplar and completion494

results are as follows:495
496

Retrieved Exemplar (Top -1):497
def escape_quotes(text: str) -> str:498

return text.replace(’"’, ’"’).499
replace("’", ’'’)500

501
Generated Code:502
elif c == ’&’:503

result += "&" 504
elif c == ’"’: 505

result += """ 506
else: 507

result += c 508
return escape_quotes(result) # 509

Undefined function call 510511

The reranked top-1 exemplar and completion 512

results are as follows: 513
514

Reranked Exemplar (Top -1): 515
def escape_html_full(s: str) -> str: 516

escapes = {’<’:’<’, ’>’:’>’, ’ 517
&’:’&’, ’"’:’"’, "’":’ 518
'’} 519

return ’’.join(escapes.get(c, c) for 520
c in s) 521

522
Final Completion: 523
elif c == ’&’: 524

result += "&" 525
elif c == ’"’: 526

result += """ 527
elif c == "’": 528

result += "'" 529
else: 530

result += c 531
return result 532533

This case study demonstrates three critical find- 534

ings through an HTML escaping function genera- 535

tion task. First, the zero-shot completion reveals 536

logical gaps in handling domain-specific require- 537

ments: while correctly escaping < and >, it fails 538

to address quotes (" and ’), creating security vul- 539

nerabilities. Second, naive retrieval augmentation 540

introduces new risks: the model overfits to the 541

retrieved escape_quotes exemplar by generating 542

invalid API calls to undefined external functions. 543

Third, our reranking mechanism resolves both is- 544

sues: the final implementation achieves full cov- 545

erage of HTML special characters (<, >, &, ", ’) 546

through direct pattern transfer from the reranked 547

exemplar’s dictionary mapping strategy, while elim- 548

inating external dependencies. 549

7

	Introduction
	Related Work
	Methods
	Supervised Fine-Tuning Stage
	Feedback-Guided Fine-Tuning Stage
	Inference Stage

	Experiments
	Research Questions
	Datasets
	Models and Metrics

	Results
	RQ1: Effectiveness of FGRR
	RQ2: Ablation Study
	RQ3: Alleviation of Preference Gap

	Conclusion
	Limitations
	Additional Experimental Details
	Comparison of Retrieval Strategies
	Experimental Setup

	Case Study

