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ABSTRACT

Symbolic techniques based on Satisfiability Modulo Theory (SMT) solvers have
been proposed for analyzing and verifying neural network properties, but their
usage has been fairly limited owing to their poor scalability with larger networks.
In this work, we propose a technique for combining gradient-based methods with
symbolic techniques to scale such analyses and demonstrate its application for
model explanation. In particular, we apply this technique to identify minimal
regions in an input that are most relevant for a neural network’s prediction. Our
approach uses gradient information (based on Integrated Gradients) to focus on a
subset of neurons in the first layer, which allows our technique to scale to large
networks. The corresponding SMT constraints encode the minimal input mask
discovery problem such that after masking the input, the activations of the selected
neurons are still above a threshold. After solving for the minimal masks, our ap-
proach scores the mask regions to generate a relative ordering of the features within
the mask. This produces a saliency map which explains “where a model is looking”
when making a prediction. We evaluate our technique on three datasets - MNIST,
ImageNet, and Beer Reviews, and demonstrate both quantitatively and qualitatively
that the regions generated by our approach are sparser and achieve higher saliency
scores compared to the gradient-based methods alone. Code and examples are at -
https://github.com/google-research/google-research/tree/master/smug_saliency

1 INTRODUCTION

Satisfiability Modulo Theory (SMT) solvers (Barrett & Tinelli, 2018) are routinely used for symbolic
modeling and verifying correctness of software programs (Srivastava et al., 2009), and more recently
they have also been used for verifying properties of deep neural networks (Katz et al., 2017). SMT
Solvers in their current form are difficult to scale to large networks. Model explanation is one
such domain where SMT solvers have been used but they are limited to very small sized networks
(Gopinath et al., 2019; Ignatiev et al., 2019). The goal of our work is to address the issue of scalability
of SMT solvers by using gradient information, thus enabling their use for different applications. In
this work, we present a new application of SMT solvers for explaining neural network decisions.

Model explanation can be viewed as identifying a minimal set of features in a given input that
is critical to a model’s prediction (Carter et al., 2018; Macdonald et al., 2019). Such a problem
formulation for identifying a minimal set lends itself to the use of SMT solvers for this task. We can
encode a neural network using real arithmetic (Katz et al., 2017) and use an SMT solver to optimize
over the constraints to identify a minimal set of inputs that can explain the prediction. However, there
are two key challenges in this approach. First, we cannot generate reliable explanations based on
final model prediction as the minimal input is typically out of distribution. Second, solving such a
formulation is challenging for SMT solvers as the decision procedures for solving these constraints
have exponential complexity, and is further exacerbated by the large number of parameters in typical
neural network models. Thus, previous approaches for SMT-based analysis of neural networks have
been quite limited, and have only been able to scale to networks with few thousands of parameters.

To solve these challenges, instead of doing minimization by encoding the entire network, our approach
takes advantage of the gradient information, specifically Integrated Gradients (IG) (Sundararajan
et al., 2017), in lieu of encoding the deeper layers, and encodes a much simpler set of linear constraints
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pertaining to the layer closest to the input. We encode the mathematical equations of a neural network
as SMT constraints using the theory of Linear Real Arithmetic (LRA), and use z3 solver (Bjørner
et al., 2015) as it additionally supports optimization constraints such as minimization. The SMT
solver then finds a minimal subset (of input features) by performing minimization on these equations.
Thus, our approach, which we refer to as SMUG, is able to scale Symbolic Methods Using Gradient
information while still providing a faithful explanation of the neural network’s decision.

SMUG is built on two properties. First, based on the target prediction, SMUG uses gradient
information propagated from the deeper layers to identify neurons that are important in the first layer,
and only encodes those. For this, we use IG (Sundararajan et al., 2017) instead of relying on gradients
alone. Second, for the optimization, a set of input pixels are determined to be relevant for prediction
if they are able to activate the neurons deemed important, and maintain a fraction of their activation
as the original (full) input image. Empirically, we observe good performance on visual and text
classification tasks.

We evaluate SMUG on three datasets: MNIST (LeCun et al., 2010), ImageNet (Deng et al., 2009),
and Beer Reviews (McAuley et al., 2012). We show that we can fully encode the minimal feature
identification problem for a small feedforward network (without gradient-based neuron selection)
for MNIST, but this full SMT encoding scales poorly for even intermediate sized networks. On
ImageNet, we observe that our method performs better than Integrated Gradients (Sundararajan et al.,
2017) and several strong baselines. Additionally, we observe that our approach finds significantly
sparser masks (on average 17% of the original image size). Finally, we also show that our technique is
applicable to text models where it performs competitively with other methods including SIS (Carter
et al., 2018) and Integrated Gradients (Sundararajan et al., 2017).

This paper makes the following key contributions:

• We present a technique (SMUG) to encode the minimal input feature discovery problem for
neural model explanation using SMT solvers. Our approach, which does masking on linear
equations also overcomes the issue of handling out-of-distribution samples.

• Our approach uses gradient information to scale SMT-based analysis of neural networks to
larger models and input features. Further, it also overcomes the issue of choosing a “baseline”
parameter for Integrated Gradients (Kapishnikov et al., 2019; Sturmfels et al., 2020).

• We empirically evaluate SMUG on image and text datasets, and show that the minimal
features identified by it are both quantitatively and qualitatively better than several baselines.

• To improve our understanding on saliency map evaluation, we show how the popular and
widely used LSC metric (Dabkowski & Gal, 2017) can be gamed heuristically to generate
explanations that are not necessarily faithful to the model (Sec. 5.2)

2 RELATED WORK

SMT based symbolic techniques have been used for verifying neural network properties (Huang
et al., 2017; Katz et al., 2017). Reluplex (Katz et al., 2017) extends the simplex method to handle
ReLU functions by leveraging its piecewise linear property and presents an iterative procedure
for gradual satisfaction of the constraints. (Huang et al., 2017) proposes a layer-wise analysis
using a refinement-based approach with SMT solvers for verifying the absence of adversarial input
perturbations. (Zhang et al., 2018) present a linear programming (LP) formulation again using
the piecewise linear property of ReLU to find minimal changes to an input to change a network’s
classification decisions. (Gopinath et al., 2019) uses Reluplex to learn input properties in the form
of convex predicates over neuron activations, which in turn capture different behaviors of a neural
network. While SMT based techniques from (Gopinath et al., 2019), (Ignatiev et al., 2019) have
shown promising results, they only scale to Neural Network with 5000 nodes. Thus, scaling these
approaches for larger neural networks and performing richer analysis based on global input features
still remains a challenge. We present and demonstrate an approach that works for larger and more
complex image and text models.

While most of the above SMT based techniques focus on verifying properties of deep networks, our
work focuses on applying symbolic techniques to the related task of model explanation, i.e. to say
where a model is “looking”, by solving for the input features responsible for a model’s prediction.
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Some explanation techniques are model agnostic (i.e., black-box) while others are back-propagation
based. Model agnostic (black-box) explanation techniques such as SIS, LIME (Alvarez-Melis &
Jaakkola, 2018; Carter et al., 2018) have a similar formulation of the problem as ours in the sense that
they perturb the input pixels by masking them and optimize to identify minimal regions affecting the
performance of the model. This formulation can lead to evaluating the model on out of distribution
samples (Hooker et al., 2019) with potential for adversarial attacks (Slack et al., 2020). In contrast,
back-propagation based methods (Bach et al., 2015; Sundararajan et al., 2017; Selvaraju et al., 2016)
examine the gradients of the model with respect to an input instance to determine pixel attribution.
Our work builds on the IG method (Sundararajan et al., 2017). IG integrates gradients along the
“intensity” path where the input (image or text embedding) is scaled from an information-less baseline
(all zeros input, e.g., all black or random noise image) to a specific instance. This helps the model
determine attribution at the pixel level. In our work, we use IG to determine important nodes in the
first layer (closest to the input). The key improvement of our technique over IG is that, by using IG
only on the first layer and then using SMT solver based solution to determine saliency on the input,
we not only preserve faithfulness, but also overcome the issue of choosing an appropriate baseline
image for IG (Kapishnikov et al., 2019; Sturmfels et al., 2020; Xu et al., 2020).

3 METHOD: SCALING SYMBOLIC METHODS USING GRADIENTS (SMUG)

We describe our approach SMUG, which combines attribution based on gradient information with
an SMT-based encoding of the minimal input feature identification problem. We then show how to
generate saliency maps from the predicted boolean mask for image and text applications.

3.1 CHALLENGES WITH ENCODING NEURAL NETWORKS FOR EXPLANATION

Previous works (Katz et al., 2017) have shown it’s possible to use SMT solvers to encode the
semantics of neural networks with specific activation functions, while others (Carter et al., 2018;
Macdonald et al., 2019) have used the idea of minimality to identify importance of inputs in the
context of model explanation. In particular, given a neural network Nθ (θ denotes the parameters), let
X ∈ Rm×n denote an input image with m× n pixels, M ∈ {0, 1}m×n an unknown binary mask,
and Li(·) the output (i.e., activations) of the ith layer. Also, let L|L|−1(Nθ(X)) denote the logits of
the final layer. Previous works (Carter et al., 2018; Macdonald et al., 2019) have used the following
formulation for explanation.

min(
∑
ij

Mij) : argmaxL|L|−1(Nθ(X)) = argmaxL|L|−1(Nθ(M �X))

However, there are two key problems with this formulation. First, the masked inputs found by solving
this formulation are typically out of training distribution, so explanation techniques based on model
confidence over a forward pass of the masked inputs (such as the above formulation) no longer
produce reliable explanations. Second, using such a formulation directly with SMT solvers is not
tractable as the number of constraints in the encoding grows linearly with increasing network size
and SMT decision procedure for Non-linear Real Arithmetic is doubly exponential. Thus, when we
apply such an encoding even for a small feed-forward network on MNIST dataset, the SMT solver
does not scale well (Section 4, Appendix A).

3.2 OUR SOLUTION: COMBINING GRADIENTS WITH SYMBOLIC ENCODING

Our proposal is to use gradient based attributions to overcome both these issues: 1) as a proxy for
the deeper layers (for scalability), and 2) to identify a subset of neurons in the first layer capturing
information crucial for the model’s prediction, and encode them using SMT which avoids performing
a forward pass on out-of-distribution inputs.

Specifically, we use Integrated Gradients (IG) (Sundararajan et al., 2017) to score the neurons in
order of relevance by treating the first layer activations (L1) as an input to the subsequent network.
This assigns an attribution score to each hidden node where a node with a positive score means that
the information captured by that neuron is relevant to the prediction and a node with a negative /
zero score is considered irrelevant. More specifically, suppose F : Ra×b×c → [0, 1]d represents a
deep network and x represents the input. F often refers to the full network (from the input to the
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final softmax) but in our case, it refers to the nodes in the network second through the final layer.
a, b, and c refer to the dimensions of the tensor input to the network (analogous to width, height,
and channels) and d is the number of output nodes in the final softmax layer (number of classes).
Integrated gradients are obtained by accumulating the gradients at all points along the straight line
path from an “information-less” baseline x′ to the input x. The information-less baseline in this case
is an all zeros tensor. The path can be parameterized as g(α) = x′ + α · (x− x′). IG is then given by
Eq. 1.

IG(x) = (x− x′)
∫ 1

α=0

∂F (g(α))

∂g(α)
dα (1)

Top-k Neurons. The second key idea of our approach is that we only consider activations with the
highest positive attributions. Empirically, we still observe scaling issues with SMT when considering
all first layer neurons (L1) with +ve attributions, so a method for picking a subset of neurons (top-k
attributions) is important for practical application.

With these two ideas, we can now formulate our problem as follows. Let, Dk represent the set of k
important nodes with the highest attributions in IG(Nθ(X)), and γ be a parameter which regulates
how “active” the neurons remain after masking1.The goal now is to learn a mask M such that:

min(
∑
ij

Mij) : L1(Nθ(M �X))t > γ · L1(Nθ(X))t ∀t ∈ Dk (2)

Inducing Sparsity. IG ensures that the information captured by the neurons in Dk are relevant
for the model’s prediction. Thus, the set of features corresponding to these neurons contributes
towards the relevant information. Let’s denote this set as S. To filter less relevant features from S we
introduce a notion of minimization. By inducing sparsity we wish to remove any false positives from
S. Thus, we define "relevant features" as a minimal subset of features in S that causes the nodes in
Dk to remain active. The notion being - if for a masked input the "important nodes" (w.r.t the original
input) are active then the information relevant for the prediction of the original image is contained in
the mask. Thus, the mask highlights features relevant for the model’s prediction.

Thus, this formalism allows us to come up with constraints which don’t involve a full forward pass of
the masked image while at the same time keeping things scalable for the SMT solver.

3.3 SMT FORMULATION OF MINIMAL INPUT MASK DISCOVERY PROBLEM

Given Dk, a set of k neurons with highest positive attributions in IG(Nθ(X)), our goal is to find a
minimal mask such that the activations of these neurons are above some threshold (γ) times their
original activation values. Eq. 3 shows the constraints for a minimal mask. The first set of constraint
specifies that the unknown mask variable M can only have 0 and 1 as possible entries in the matrix.
The second and third set of constraints encode the activation values of the first layer of network with
corresponding masked and original inputs respectively. The fourth set of constraint states that the
activations of these k neurons should be at least γ times the original activation values, and the final
constraint adds the optimization constraint to minimize the sum of all the mask bits. Note that here
we show the formulation for a feedforward network and a input X with 2 channels, but it can be
extended to convolutional networks and an input with 3rd channel as well in a straightforward manner
where the mask variables across the same channel share the same mask variable.

∃M :
∧

1≤i≤m,1≤j≤n

(Mij == 0) ∨ (Mij == 1)
∧
∀i∈Dk

omi = (W1(X �M) + b1)i∧
∀i∈Dk

oi = (W1X + b1)i
∧
∀i∈Dk

omi > γ · oi
∧

minimize(ΣijMij)
(3)

3.4 CONSTRUCTING SALIENCY MAP FROM BINARY MASK

The SMT solver generates a minimal binary input mask by solving the constraints shown in Eq. 3.
We further use the IG attribution scores for the hidden nodes in the first layer to assign importance

1This formulation is valid for networks with ReLU activations and would need to be modified for a different
choice of activation such as tanh.

4



Published as a conference paper at ICLR 2021

scores to mask pixels associated with that hidden node. A mask variable Mij that is assigned a value
of 1 by SMT is assigned a score sij computed as:

sij =
∑

1≤p≤k

α(op)1receptive(op)(xij) ∀i, j : Mij = 1 (4)

where α(op) denotes the attribution score assigned by IG for neuron op and the indicator function
denotes that pixel xij is present in the receptive field of op, i.e. it is present in the linear SMT
equation used to compute on. These scores are then used to compute a continuous saliency map for
an input (Appendix Fig. 9). Finally, to amplify the pixel differences for visualization purposes in
gray scale, we scale the non-zero score values between 0.5 and 1.

3.5 HANDLING OUT-OF-DISTRIBUTION MASKED INPUTS

Several methods - (Alvarez-Melis & Jaakkola, 2018), (Petsiuk et al., 2018), (Fong & Vedaldi,
2017) optimize their masks by doing a forward pass on perturbed images that are potentially out-of-
distribution. However, SMUG performs forward pass of the masked image only till the first layer
(instead of the final layer) to generate linear equations as described in Sec. 3.3. Since, the constraints
are linear 6, minimization can be thought of as analogous to examining coefficients for a linear
regression model (in linear regression important attributes are the ones with the largest coefficients).
So, in our case we do indeed mitigate the out-of-distribution issue as the full forward pass of the
masked input isn’t present.

4 EXPERIMENTAL SETUP

Datasets. We empirically evaluate SMUG on two image datasets, MNIST (LeCun et al., 2010),
and ImageNet (Deng et al., 2009), as well as a text dataset of Beer Reviews from (McAuley et al.,
2012).

MNIST: We use the MNIST dataset to show the scalability of the full network encoding in SMT
(presented in Section 3.1). We use a feedforward model consisting of one hidden layer with 32 nodes
(ReLU activation) and 10 output nodes with sigmoid, one each for 10 digits (0 - 9). For 100 images
chosen randomly from the validation set, the SMT solver could solve the constraint shown in Eq. 6
(returns SAT) for only 41 of the images. For the remaining 59 images, the solver returns UNKNOWN,
which means the given set of constraints was too difficult for the solver to solve.

ImageNet: We use 3304 images (224× 224) with ground truth bounding boxes from the validation
set of ImageNet. The images for which the model classification was correct and a ground truth
bounding box annotation for the object class was available were chosen. We use the Inception-v1
model from (Szegedy et al., 2015) which classifies images into one of the 1000 ImageNet classes.

Beer Reviews: To evaluate SMUG on a textual task we consider the review rating prediction task
on the Beer Reviews dataset2 consisting of 70k training examples, 3k validation and 7k test examples.
Additionally, the dataset comes with ground truth annotations where humans provide the rationale
(select words) that correspond to the rating and review. We train a 1D CNN model to predict the
rating for the aroma of the beer on a scale from 0 to 1. This model is identical to the model used in
(Carter et al., 2018) and consists of a convolution layer with 128 kernels followed by a ReLU, a fully
connected layer, and a sigmoid. It achieves a validation mean square error of 0.032.

Metrics. Assessing the quality of the saliency maps, especially binary masks, is challenging. The
change in confidence of the classifier (between the original and masked) image alone may not be
a reliable measure since the masked input could fall out of the training distribution (Hooker et al.,
2019). Instead, we use the metric proposed in (Dabkowski & Gal, 2017) shown in Eq. 5. This metric,
which we term Log Sparsity Confidence difference (LSC) score, first finds the tightest bounding box
that captures the entire mask, then computes confidence on the cropped box resized to the original
image size (we use bilinear interpolation). This not only helps keep images closer to the training
distribution, but also helps evaluate explanations without the need for groundtruth annotations. The
LSC score is computed as:

LSC(a, c) = log(ã)− log(c), ã = max(0.05, a) (5)
2http://people.csail.mit.edu/taolei/beer/
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where a is the fractional area of the rectangular cropped image and c is the confidence of the classifier
for the true label on the cropped image. A saliency map that is compact and allows the model to
still recognize the object would result in a lower LSC score. LSC captures model confidence as
well as compactness of the identified salient regions, both of which are desirable when evaluating an
explanation. The compactness in particular also makes it suitable for evaluating SMT based methods
for the effect of minimization. We adapt LSC to also assess continuous valued saliency maps by,
1) setting a threshold on the continuous valued saliency map to convert them to a binary mask and
2) iterating over multiple thresholds (in steps) to identify the one that results in the best LSC score.
We also report the fraction of images for which the mask generated by a given method is better (i.e.
produces an equal or lower LSC score) than other methods, which we refer to as Win%.

Comparison methods. The final saliency mask for SMUG comes from Eq. 4 (Sec. 3.4). We
compare this to the saliency maps, and bounding boxes from several baselines described below.
SMUGbase is a variant of SMUG that does not perform SMT-based minimization. Here, in Eq. 2,
we simply set Mij = 1 for each pixel xij that is in the receptive fields of the top-k neurons in
the first layer (L1) selected by IG. We note here that in case of both SMUG and SMUGbase in the
formulations in Eq. 2 and 3, we set k = 3000, γ = 0 for ImageNet, and k = 100, γ = 0 for text
experiments (this choice is explored more in the supplementary material).
IG corresponds to Integrated Gradients (Sundararajan et al., 2017) with the black image as a baseline.
GRADCAM (Selvaraju et al., 2017) uses a weighted average of the CNN filters for saliency, with
weights informed by the gradients.
SIS refers to Sufficient Input Subset (Carter et al., 2018), which finds multiple disjoint subsets of
input features (in decreasing order of relevance) which individually allow a confident classification.
SIS did not scale for ImageNet and we only compare against it on the text dataset.
GROUNDTRUTH corresponds to the baseline that uses human annotated bounding box, which
capture the object corresponding to the image label.
MAXBOX denotes maximal mask spanning the entire image.
CENTERBOX uses a bounding box placed at the center of the image covering half of the image area.
OPTBOX refers to a bounding box that approximately optimizes for LSC. The saliency metric in
Eq. 5 relies on finding a single bounding box for an image. To find a box that directly maximizes the
metric, we first discretize the image into subgrids of 10× 10 pixels; and then perform a brute force
search by selecting 2 points on the grid (to represent opposite corners of a rectangle) and identify a
subgrid with the best score.

5 RESULTS

5.1 IMAGENET

As mentioned previously, when computing masks using SMUG, for ImageNet we set k = 3000 in
Eq. 2 and 3. Further, each masking variable Mij is used to represent a 4× 4 grid of pixels instead of
a single pixel (to reduce running time). Table 1 presents quantitative results reporting the median
LSC score and Win% values. Fig. 1 present qualitative examples

Table 1: ImageNet. We report the median LSC score (↓ lower is better) along with the 75th (top) and
25th percentile (bottom) values, and the mean Win% score in percentage (↑ higher is better) with
binomial proportion confidence interval (normal approximation) on 3304 images in the validation
set. The Win% values don’t sum to 100 due to overlap when methods achieve identical scores.
SMUG and SMUGbase receive similar LSC scores which suggests that the SMT based minimization
retained the relevant regions while successfully removing about 66% pixels from SMUGbase. We
also report the average size of the masks as a fraction of the total image area (sparsity) with normal
confidence interval for 3304 images. Sparsity scores for IG and Gradcam are omitted because they
aren’t masking methods.

Method SMUG SMUGbase GROUNDTRUTH IG GRADCAM CENTERBOX MAXBOX OPTBOX

LSC ↓ −1.26−0.75
−1.80 −1.23−0.71

−1.76 −0.340.04−0.81 −0.29−0.05
−0.62 −1.10−0.50

−1.67 −0.64−0.29
−0.69 0.040.230.00 −2.27−1.79

−2.71

Win% ↑ 40.9 ± 1.68 33.5 ± 1.61 3.6 ± 0.64 1.7 ± 0.44 37.8 ± 1.65 2.6 ± 0.54 0.2 ± 0.16 -

Sparsity% ↓ 17.7 ± 0.10 43.3 ± 0.32 50.7 ± 0.98 - - 50.0±0.99 100.0±0.0 8.9±0.0
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(a) Examples where SMUG outperforms other compared methods.

GroundTruth            SMUG                SMUG                           IGbase

GroundTruth            SMUG                SMUG                           IGbase GroundTruth            SMUG                SMUG                           IGbase

(b)    Examples where SMUG performs less favorably.

GroundTruth            SMUG                SMUG                           IGbase

Figure 1: Examples where SMUG outperforms other compared methods (top 4 rows), and where SMUG
performs less favorably (last 2 rows) based on LSC. The green box on the original image highlights the
groundtruth box; for the saliency methods it represents the bounding box with the best LSC score. Numbers
on top denote the LSC score, the fractional area of the bounding box (a), and the confidence of the classifier
(c) on the cropped region. Red and blue colors denote regions of high and low importance respectively. More
qualitative examples can be found in Appendix D

IG vs SMUG and SMUGbase. From Table 1, we observe that SMUG and SMUGbase achieve a
significantly better score (−1.26 and −1.23 resp.) compared to IG (−0.34). As observed in some
qualitative examples (Fig. 1, Appendix D), SMUG tends to assign high scores to a much more
localized set of pixels whereas IG distributes high scores more widely (spatially). As LSC metric
favors compactness, which is desirable for human interpretability, it results in better scores for
SMUG and SMUGbase.

Choice of baseline for IG. Another reason why SMUGbase and SMUG outperform IG is that, they
apply IG to the first layer of the network (as opposed to the input/image layer). IG attribution in the
pixel space is known to be noisy (Smilkov et al., 2017), further attributions produced by IG depend
on the choice of the baseline (Kapishnikov et al., 2019; Xu et al., 2020; Sturmfels et al., 2020). The
reason for this can be observed from Eq. 1. In Eq. 1, x′ represents the baseline “information-less”
image. Based on this, the input dimensions close to the baseline receive very low attributions even
though they might be important. i.e., if i, j denote pixel locations, when xi,j−x′i,j ≈ 0, the attribution
IGi,j(x) ≈ 0 irrespective of how important the pixels are. For instance, black pixels (RGB value
of (0, 0, 0)) will receive an exact 0 attribution for a black baseline. In fact, for any baseline, IG will
be insensitive to the dimensions close to the baseline value. When IG is applied to the first layer
activations however, the nodes with near 0 activations will by default receive less attribution. Thus,
we believe that 0 activations in the first layer is a more natural baseline for IG for ReLU networks,
which is quantitatively observable in better LSC scores.
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SMUG vs SMUGbase.

Based on the LSC scores in Table 1, SMUG narrowly outperforms SMUGbase. Recall however, that
SMUG is a sparser version of SMUGbase obtained from the minimization constraints of the SMT
solver (Eqns. 2 and 3). LSC scores use the sparsity of the bounding boxes as a proxy for the sparsity
of the saliency map. As we can see in Fig. 1(a) and 1(b) that the bounding boxes for SMUG and
SMUGbase have similar sizes even though the former produces much sparser saliency maps. This
causes both SMUG and SMUGbase to receive similar LSC scores. Thus, the LSC scores alone don’t
reveal the full picture and we need to consider the sparsity as well. This is defined as the fraction
of the pixels with non-zero attributions to the total number of pixels in the image. We find that the
average SMUGbase mask has a sparsity of 43% while the average SMUG mask has a sparsity of
just 17%. This is also evident from the examples in Fig. 1. SMUG and SMUGbase receive similar
LSC scores which suggests that the symbolic encoding successfully retains pixels relevant to the
prediction while removing about 66% pixels from SMUGbase.

GROUNDTRUTH, CENTERBOX. Based on qualitative examples Figs. 1, we can observe that in
almost all cases the object is at the center of the image. Hence, CENTERBOX is likely to capture
some part of the image. Further, a fair number of objects are large covering much of the image e.g.,
Fig. 1 Macaque, Collie, Robin, Dalmation. In these cases, the groundtruth bounding boxes are also
large to fully cover all pixels corresponding to the object. In contrast, SMUG saliency maps are more
compact for both large and small objects, and hence achieve a better LSC score.

5.2 DISCUSSION: ANALYZING THE LSC METRIC AND OPTBOX

(b)  SMUG is better than OPTBOX(a)   OPTBOX is better than SMUG

Figure 2: OPTBOX vs SMUG. 6 columns on the left correspond to the images for which OPTBOX gets a
better score than SMUG. 2 columns on the right correspond to the images for which SMUG got a better LSC
score than OPTBOX. Numbers at the top denote the LSC score, fractional area of the bounding box a and the
confidence of the classifier c on the cropped region.

(a) catbig (b) catsmall
(c) 2-cats (d) 2-cats SMUG (e) 2-cats IG (f) 2-cats OPTBOX

Figure 3: (a) shows an image of a cat (catbig) placed on a white background that is classified with a confidence
of 0.83. (b) shows an image of the same cat (catsmall), scaled to a quarter of its original size, that is classified
with a confidence of 0.15. (c) By placing catbig next to catsmall we observe a significant jump in the classifier’s
confidence from 0.15 with catsmall alone to 0.84 on 2-cats. While (d) SMUG and (e) IG correctly attribute the
model confidence to catbig, (f) OPTBOX exploits the object rescaling in LSC, favoring the more compact object.

The LSC metric makes a trade-off when optimizing for both compactness and confidence. To analyze
this we look at several qualitative examples (Fig. 2) of the bounding boxes identified by the OPTBOX
brute-force approach to optimize the LSC metric. We observe that OPTBOX often finds bounding
boxes that are very small, typically a sufficiently discriminative region or pattern in the image (e.g.,
typewriter keyboard, paddlewheel, vine snake in Fig. 2), or the full object if the object is itself small
(e.g., basketball, plunger). In all these cases we find that SMUG highlights several other aspects of
the object as well (typewriter’s tape; the dog’s eyes, nose and ears, etc.)
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OPTBOX can game the LSC metric (Dabkowski & Gal, 2017) to favor compact regions con-
taining redundant features. We design an experiment where we introduce redundant features and
compare the explanations generated by various methods. Fig. 3(c) contains 2 cats - catbig and catsmall
where catsmall is catbig scaled to quarter its size. This image is classified correctly with a confidence
of 0.84. If catsmall is removed from Fig. 3(c) we get Fig. 3(a) which is classified with a confidence of
0.83 (a marginal drop of 0.01 in the confidence score) and if we remove catbig we get Fig. 3(b) which
is classified with a confidence of 0.15 (the confidence drops by 0.68). Thus, catsmall is redundant
in Fig. 3(c) as its contribution to the prediction is nominal. Hence, the expectation is that a good
saliency method would assign greater attribution to catbig than catsmall. In this respect, both SMUG
and IG capture the model’s behavior correctly. Additionally, SMUG’s attributions lie on the catbig’s
face while IG’s lie on the edges (possibly due to a sharp change in contrast). OPTBOX, however,
attributes the model’s prediction to catsmall. This behavior can be explained using Eq. 5. Essentially,
OPTBOX employs a brute force search to look for a region as small as possible and classified with a
good enough confidence by the model so as to maximize Eq. 5. And by doing so it highlights regions
with tightly packed redundant features (catsmall in this case). As argued in (Dabkowski & Gal, 2017)
LSC does capture certain desirable attributes of saliency maps which makes it a popular choice to
evaluate these explanation methods, but in this work we show that saliency methods can be designed
to fool this metric.

5.3 TEXT DATASET: BEER REVIEWS

We present randomly selected qualitative examples from the test set comparing with other methods
including SIS, IG, and GROUNDTRUTH in Fig. 4 and Appendix C. The solution of SIS consists of
multiple disjoint set of words of varying relevance. A saliency map is constructed by scoring the
words in the sets between (0,1] on the basis of relevance of the set. However, evaluation is harder.
Unlike images where the masked image can be cropped and resized as input to compute the LSC
metric, the same strategy cannot be followed on the text model. Specifically, ImageNet models are
trained with extensive data-augmentation including random crops and resizing, and the modified
image is less likely to be out-of-distribution. Whereas in the case of text, this model doesn’t employ
any form of meaningful augmentation, and the masked text is much more likely to come from a
distribution that has not been seen during training. Hence, LSC is not applicable here.

11.2 oz bottle split and poured into a new 
belgium globe . 4.3 % abv , 4°c - 6°c , 40199 
on label . a - faintly cloudy pink in color with 
a dense white head . frilly lace drapes 
across the glass delicately . s - fresh bushels 
of raspberries just rinsed gives the aroma 
an inviting nose . soft wheat and lemonade 
pull through and 'fake-up ' the aroma . it 
almost begins smelling like a berry 
weiss-sunset wheat combo . initially good 
though ... t - fruity raspberry is far too 
syrupy with a lingering corn syrup finish . 
light wheat in the background balanced just 
a bit but it 's overly fake in it 's flavor profile . 
it almost seems as if lemonade is blended in 
. m - sugary sweet and slight with a highly 
carbonated finish and light body . o - overly 
sweet and fake , it 's got a good aroma 
initially but definitely lacking elsewhere . too 
syrupy but not awful .

SIS

11.2 oz bottle split and poured into a new 
belgium globe . 4.3 % abv , 4°c - 6°c , 40199 
on label . a - faintly cloudy pink in color with 
a dense white head . frilly lace drapes 
across the glass delicately . s - fresh bushels 
of raspberries just rinsed gives the aroma 
an inviting nose . soft wheat and lemonade 
pull through and 'fake-up ' the aroma . it 
almost begins smelling like a berry 
weiss-sunset wheat combo . initially good 
though ... t - fruity raspberry is far too 
syrupy with a lingering corn syrup finish . 
light wheat in the background balanced just 
a bit but it 's overly fake in it 's flavor profile . 
it almost seems as if lemonade is blended in 
. m - sugary sweet and slight with a highly 
carbonated finish and light body . o - overly 
sweet and fake , it 's got a good aroma 
initially but definitely lacking elsewhere . too 
syrupy but not awful .

SMUG

11.2 oz bottle split and poured into a new 
belgium globe . 4.3 % abv , 4°c - 6°c , 40199 
on label . a - faintly cloudy pink in color with 
a dense white head . frilly lace drapes 
across the glass delicately . s - fresh bushels 
of raspberries just rinsed gives the aroma 
an inviting nose . soft wheat and lemonade 
pull through and 'fake-up ' the aroma . it 
almost begins smelling like a berry 
weiss-sunset wheat combo . initially good 
though ... t - fruity raspberry is far too 
syrupy with a lingering corn syrup finish . 
light wheat in the background balanced just 
a bit but it 's overly fake in it 's flavor profile . 
it almost seems as if lemonade is blended in 
. m - sugary sweet and slight with a highly 
carbonated finish and light body . o - overly 
sweet and fake , it 's got a good aroma 
initially but definitely lacking elsewhere . too 
syrupy but not awful .

SMUGbase

11.2 oz bottle split and poured into a new 
belgium globe . 4.3 % abv , 4°c - 6°c , 40199 
on label . a - faintly cloudy pink in color with 
a dense white head . frilly lace drapes 
across the glass delicately . s - fresh bushels 
of raspberries just rinsed gives the aroma 
an inviting nose . soft wheat and lemonade 
pull through and 'fake-up ' the aroma . it 
almost begins smelling like a berry 
weiss-sunset wheat combo . initially good 
though ... t - fruity raspberry is far too 
syrupy with a lingering corn syrup finish . 
light wheat in the background balanced just 
a bit but it 's overly fake in it 's flavor profile . 
it almost seems as if lemonade is blended in 
. m - sugary sweet and slight with a highly 
carbonated finish and light body . o - overly 
sweet and fake , it 's got a good aroma 
initially but definitely lacking elsewhere . too 
syrupy but not awful .

IG

0

1

-1

Figure 4: Example comparing our method (SMUG, SMUGbase) with SIS and IG on a test sample from the
Beer Reviews dataset. Green color signifies a positive relevance, red color signifies negative relevance. The
underlined words are human annotations. More examples can be found in Appendix C.

6 CONCLUSION

We present an approach that uses SMT solvers for computing minimal input features that are relevant
for a neural network prediction. In particular, it uses attribution scores from Integrated Gradients to
find a subset of important neurons in the first layer of the network, which allows the SMT encoding
of constraints to scale to larger networks for finding minimal input masks. We evaluate our technique
to analyze models trained on image and text datasets and show that the saliency maps generated by
our approach are competitive or better than existing approaches and produce sparser masks.
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APPENDIX

Here, we present additional quantitative and qualitative examples supporting the results in Sec. 5. In
particular Sec. A shows qualitative examples on MNIST, Sec. B presents quantitative and qualitative
comparisons with regard to the choice of key parameters of our proposed SMUG explanation
technique. Sec. C presents additional qualitative examples comparing the output of SMUG with
other methods on text samples from the Beer Reviews dataset. Sec. D presents several more qualitative
examples from ImageNet comparing the saliency masks produced by SMUG with those produced by
other methods. In Sec. D.1 we also discuss an example where an explanation technique can be used
to identify potential biases of the trained model. Finally, Sec. E presents some examples of concrete
constraints that the solver optimizes.

A MNIST

In this section, we present some more details about our experiments with MNIST using the full SMT
encoding from Eq. 1 in Sec 3.1.

SMT solvers can be used to encode the semantics of a neural network (Katz et al., 2017). In particular,
given a fully connected neural network with n hidden layers, weightsW = {W1,W2 . . . ,Wn}, biases
B = {b1, b2 . . . , bn}, activation function φ, and final layer softmax σ, we can use the SMT theory
of nonlinear real arithmetic to obtain a symbolic encoding of the network. Let X ∈ Rm×n denote
an input image with m × n pixels, M ∈ {0, 1}m×n an unknown binary mask, Li the output (i.e.,
activations) of the ith layer (L0 = X is the input) and α(pj) the output of jth logit in the final layer:

Li ≡ φ(WiLi−1 + bi) α(pj ,W,B,X) ≡ σj(WnLn−1 + bn)

Given this symbolic encoding, we can encode the minimal input mask generation problem as:

∃M : minimize(ΣijMij)∧α(plabel,W,B,M�X) > α(pl,W,B,M�X) ∀l 6= label (6)

where plabel and pl refer to the logits corresponding to the true label and the other labels respectively.
The number of constraints grow with increasing network size and SMT decision procedure for Non-
linear Real Arithmetic is doubly exponential. Even for piecewise ReLU networks, SMT decision
procedures for Linear Real Arithmetic combine simplex-based methods (exponential complexity)
with other decision procedures such as Boolean logic (NP-complete complexity), which causes the
solving times to grow dramatically with network size. When we apply this encoding even for a small
feed-forward network on MNIST dataset, the SMT solver does not scale well (Section 4). This
motivates our proposed approach for using gradient information to simplify the SMT constraints.

Table 2 shows the SMT solver runtimes and whether the constraints were solved (SAT). We observe
that with a timeout of 60 minutes, the SMT solver could solve the full constraints for only 34 of
the 100 images. Another interesting point to observe is that the solver could not solve any of the
instances for digits 0 and 3. We also show some of the minimal masks generated by the SMT solver
for few MNIST images in Figure 5.

Table 2: Solver Runtime and SAT instances. We report the average solver runtime and instances
solved per digit with a timeout set at 60 mins.

Digit 0 1 2 3 4 5 6 7 8 9 ALL

Runtime (mins) N.A. 31.19 45.26 N.A. 33.09 35.68 42.80 53.11 36.05 19.62 35.59

SAT Instances 0/8 8/14 4/8 0/11 8/14 4/7 4/10 2/15 1/2 3/11 34/100
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      Image                Mask       Image                Mask       Image                Mask       Image                Mask

Figure 5: MNIST images and the corresponding masks corresponding to Sec. 3.1.

B HYPERPARAMETER CHOICES

In our proposed approach, the choice of top-k, and γ (Eqns. 3, 4, 5) have an effect on the final quality
of the explanations, and the time it takes for the solver to identify the mask. This section presents
quantitative and qualitative comparisons for different choices of top-k and γ.

B.1 QUANTITATIVE COMPARISON FOR DIFFERENT CHOICES OF TOP-k AND γ

Fig. 6 presents quantitative comparisons for different choices of top-k and γ.

Figure 6: Hyperparameter Comparision

top-k We analyze images with top-k ∈ {500, 1000, 3000, 5000}. Increasing the k value increases the
receptive field and the discovered input masks also grow in size with increasing values of k. Figure 6
shows how the solver runtime and the mask size vary with k. As expected, larger k values results in
larger number of constraints and therefore larger solving times as well as larger mask sizes.

Gamma We analyze the effect of γ ∈ {0.0, 0.5, 0.9}, also shown in in Fig. 6. We observe that by
decreasing gamma values, the masks become sparser. The key reason behind this is that with smaller
gamma values, the SMTsolver is less constrained to maintain the original neural activations for the
selected neurons, and hence can ignore additional input pixels that do not have a large effect. It is
also noteworthy to notice that the solver run-time increases with decreasing value of γ.
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B.2 TOP-K VS γ ON IMAGENET - QUALITATIVE EXAMPLES

Fig. 7 presents qualitative examples of the saliency maps on Imagenet examples for different choices
of top-k and γ.

Figure 7: Qualitative examples of the masks generated by SMUG on examples from Imagenet for
different choices of top-k (columns) and γ (rows). γ = 0 is the most minimal mask. Even at low
values of top-k and γ SMUG highlights pixels relevant for the object class.
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C QUALITATIVE TEXT EXAMPLES

Fig. 8 presents additional examples comparing the output of SMUG with SIS, SMUGbase, and IG on
the Beer Reviews dataset.

very dark beer . pours a nice finger and a 
half of creamy foam and stays throughout 
the beer . smells of coffee and roasted malt 
. has a major coffee-like taste with hints of 
chocolate . if you like black coffee , you will 
love this porter . creamy smooth mouthfeel 
and definitely gets smoother on the palate 
once it warms . it 's an ok porter but i feel 
there are much better one 's out there .

SIS

very dark beer . pours a nice finger and a 
half of creamy foam and stays throughout 
the beer . smells of coffee and roasted malt 
. has a major coffee-like taste with hints of 
chocolate . if you like black coffee , you will 
love this porter . creamy smooth mouthfeel 
and definitely gets smoother on the palate 
once it warms . it 's an ok porter but i feel 
there are much better one 's out there .

SMUG

very dark beer . pours a nice finger and a 
half of creamy foam and stays throughout 
the beer . smells of coffee and roasted malt 
. has a major coffee-like taste with hints of 
chocolate . if you like black coffee , you will 
love this porter . creamy smooth mouthfeel 
and definitely gets smoother on the palate 
once it warms . it 's an ok porter but i feel 
there are much better one 's out there .

SMUGbase

very dark beer . pours a nice finger and a 
half of creamy foam and stays throughout 
the beer . smells of coffee and roasted malt 
. has a major coffee-like taste with hints of 
chocolate . if you like black coffee , you will 
love this porter . creamy smooth mouthfeel 
and definitely gets smoother on the palate 
once it warms . it 's an ok porter but i feel 
there are much better one 's out there .

IG

0

1

-1

poured into a snifter . produces a small 
coffee head that reduces quickly . black as 
night . pretty typical imp . roasted malts hit 
on the nose . a little sweet chocolate follows 
. big roasty character on the taste . in 
between i 'm getting plenty of dark 
chocolate and some bitter espresso . it 
finishes with hop bitterness . nice smooth 
mouthfeel with perfect carbonation for the 
style . overall a nice stout i would love to 
have again , maybe with some age on it .

SIS

poured into a snifter . produces a small 
coffee head that reduces quickly . black as 
night . pretty typical imp . roasted malts hit 
on the nose . a little sweet chocolate follows 
. big roasty character on the taste . in 
between i 'm getting plenty of dark 
chocolate and some bitter espresso . it 
finishes with hop bitterness . nice smooth 
mouthfeel with perfect carbonation for the 
style . overall a nice stout i would love to 
have again , maybe with some age on it .

SMUG

poured into a snifter . produces a small 
coffee head that reduces quickly . black as 
night . pretty typical imp . roasted malts hit 
on the nose . a little sweet chocolate follows 
. big roasty character on the taste . in 
between i 'm getting plenty of dark 
chocolate and some bitter espresso . it 
finishes with hop bitterness . nice smooth 
mouthfeel with perfect carbonation for the 
style . overall a nice stout i would love to 
have again , maybe with some age on it .

SMUGbase

poured into a snifter . produces a small 
coffee head that reduces quickly . black as 
night . pretty typical imp . roasted malts hit 
on the nose . a little sweet chocolate follows 
. big roasty character on the taste . in 
between i 'm getting plenty of dark 
chocolate and some bitter espresso . it 
finishes with hop bitterness . nice smooth 
mouthfeel with perfect carbonation for the 
style . overall a nice stout i would love to 
have again , maybe with some age on it .

IG

0

1

-1

a very underrated ipa pours a 
coppery/burnt orange color with a big head 
that lasts quite some time . taste is hoppy , 
with loads of pine-y bitterness , but also 
citrus flavors including grapefruit and ... is 
that a hint of tropical flavor ? maybe some 
pineapple . you see some nice malt/hop 
balance in quite a few of the better dipas , 
but this is one of the few ipas that 's both 
quite hoppy and well balanced superb 
mouthfeel and drinkability . ballast point 
continues to rise in my estimation with 
every offering i consume .

SIS

a very underrated ipa pours a 
coppery/burnt orange color with a big head 
that lasts quite some time . taste is hoppy , 
with loads of pine-y bitterness , but also 
citrus flavors including grapefruit and ... is 
that a hint of tropical flavor ? maybe some 
pineapple . you see some nice malt/hop 
balance in quite a few of the better dipas , 
but this is one of the few ipas that 's both 
quite hoppy and well balanced superb 
mouthfeel and drinkability . ballast point 
continues to rise in my estimation with 
every offering i consume .

SMUG

a very underrated ipa pours a 
coppery/burnt orange color with a big head 
that lasts quite some time . taste is hoppy , 
with loads of pine-y bitterness , but also 
citrus flavors including grapefruit and ... is 
that a hint of tropical flavor ? maybe some 
pineapple . you see some nice malt/hop 
balance in quite a few of the better dipas , 
but this is one of the few ipas that 's both 
quite hoppy and well balanced superb 
mouthfeel and drinkability . ballast point 
continues to rise in my estimation with 
every offering i consume .

SMUGbase

a very underrated ipa pours a 
coppery/burnt orange color with a big head 
that lasts quite some time . taste is hoppy , 
with loads of pine-y bitterness , but also 
citrus flavors including grapefruit and ... is 
that a hint of tropical flavor ? maybe some 
pineapple . you see some nice malt/hop 
balance in quite a few of the better dipas , 
but this is one of the few ipas that 's both 
quite hoppy and well balanced superb 
mouthfeel and drinkability . ballast point 
continues to rise in my estimation with 
every offering i consume .

IG

0

1

-1

poured from a 24oz bottle into a large 
sniffter appearance : this pours a deep 
bronze amber in color . this beer has some 
of the best head formation and retention 
that i have ever seen along with lots and lots 
of sticky lacing smell : tons of piney resinous 
evergreen aroms abound in this ale . cant 
get enough of this beer its the best smelling 
harvest ale i 've ever had the pleasure of 
enjoying taste : huge flavor profile with lots 
of bitterness and only a little malt sweetness 
. as this beer warms up the bitterness really 
dominates the flavor . i 'm tasting lot of 
subtle orange aromas mouthfeel : full body 
beer with alot of carbonation overall : i love 
this beer in my opinion its serria nevada 's 
best beer overall . the price is unbeatable i 
bought my bombed for $ 3.99 . so much 
flavor and biting bitterness this harvest ale 
has no equal .

SIS

poured from a 24oz bottle into a large 
sniffter appearance : this pours a deep 
bronze amber in color . this beer has some 
of the best head formation and retention 
that i have ever seen along with lots and lots 
of sticky lacing smell : tons of piney resinous 
evergreen aroms abound in this ale . cant 
get enough of this beer its the best smelling 
harvest ale i 've ever had the pleasure of 
enjoying taste : huge flavor profile with lots 
of bitterness and only a little malt sweetness 
. as this beer warms up the bitterness really 
dominates the flavor . i 'm tasting lot of 
subtle orange aromas mouthfeel : full body 
beer with alot of carbonation overall : i love 
this beer in my opinion its serria nevada 's 
best beer overall . the price is unbeatable i 
bought my bombed for $ 3.99 . so much 
flavor and biting bitterness this harvest ale 
has no equal .

SMUG

poured from a 24oz bottle into a large 
sniffter appearance : this pours a deep 
bronze amber in color . this beer has some 
of the best head formation and retention 
that i have ever seen along with lots and lots 
of sticky lacing smell : tons of piney resinous 
evergreen aroms abound in this ale . cant 
get enough of this beer its the best smelling 
harvest ale i 've ever had the pleasure of 
enjoying taste : huge flavor profile with lots 
of bitterness and only a little malt sweetness 
. as this beer warms up the bitterness really 
dominates the flavor . i 'm tasting lot of 
subtle orange aromas mouthfeel : full body 
beer with alot of carbonation overall : i love 
this beer in my opinion its serria nevada 's 
best beer overall . the price is unbeatable i 
bought my bombed for $ 3.99 . so much 
flavor and biting bitterness this harvest ale 
has no equal .

SMUGbase

poured from a 24oz bottle into a large 
sniffter appearance : this pours a deep 
bronze amber in color . this beer has some 
of the best head formation and retention 
that i have ever seen along with lots and lots 
of sticky lacing smell : tons of piney resinous 
evergreen aroms abound in this ale . cant 
get enough of this beer its the best smelling 
harvest ale i 've ever had the pleasure of 
enjoying taste : huge flavor profile with lots 
of bitterness and only a little malt sweetness 
. as this beer warms up the bitterness really 
dominates the flavor . i 'm tasting lot of 
subtle orange aromas mouthfeel : full body 
beer with alot of carbonation overall : i love 
this beer in my opinion its serria nevada 's 
best beer overall . the price is unbeatable i 
bought my bombed for $ 3.99 . so much 
flavor and biting bitterness this harvest ale 
has no equal .

IG

0

1

-1

poured from a 12oz bottle into a delirium 
tremens glass . this is so hard to find in 
columbus for some reason , but i was able 
to get it in toledo ... murky yellow 
appearance with a very thin white head . the 
aroma is bready and a little sour . the flavor 
is really complex , with at least the following 
tastes : wheat , spicy hops , bread , bananas 
, and a toasty after-taste . it was really 
outstanding . i 'd recommend this to anyone 
, go out and try it . i think it 's the best so far 
from this brewery .

SIS

poured from a 12oz bottle into a delirium 
tremens glass . this is so hard to find in 
columbus for some reason , but i was able 
to get it in toledo ... murky yellow 
appearance with a very thin white head . the 
aroma is bready and a little sour . the flavor 
is really complex , with at least the following 
tastes : wheat , spicy hops , bread , bananas 
, and a toasty after-taste . it was really 
outstanding . i 'd recommend this to anyone 
, go out and try it . i think it 's the best so far 
from this brewery .

SMUG

poured from a 12oz bottle into a delirium 
tremens glass . this is so hard to find in 
columbus for some reason , but i was able 
to get it in toledo ... murky yellow 
appearance with a very thin white head . the 
aroma is bready and a little sour . the flavor 
is really complex , with at least the following 
tastes : wheat , spicy hops , bread , bananas 
, and a toasty after-taste . it was really 
outstanding . i 'd recommend this to anyone 
, go out and try it . i think it 's the best so far 
from this brewery .

SMUGbase

poured from a 12oz bottle into a delirium 
tremens glass . this is so hard to find in 
columbus for some reason , but i was able 
to get it in toledo ... murky yellow 
appearance with a very thin white head . the 
aroma is bready and a little sour . the flavor 
is really complex , with at least the following 
tastes : wheat , spicy hops , bread , bananas 
, and a toasty after-taste . it was really 
outstanding . i 'd recommend this to anyone 
, go out and try it . i think it 's the best so far 
from this brewery .

IG

0

1

-1

Figure 8: Examples comparing our method (SMUG, SMUGbase) with SIS and IG on test samples
from the Beer Reviews dataset. Green color signifies a positive relevance, red color signifies negative
relevance. The underlined words are human annotations.

D ADDITIONAL QUALITATIVE IMAGE EXAMPLES: SMUG

Fig. 9 presents boolean masks and the saliency maps produced by SMUG on several ImageNet
examples. Fig. 10 and 11 present additional examples comparing the saliency masks and bounding
box (for LSC) produced by SMUG, SMUGbase, and IG.
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Image                             Mask                   Saliency Map Image                             Mask                   Saliency Map

Figure 9: Examples showing the boolean masks and the saliency maps produced by SMUG on
several ImageNet examples.
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GroundTruth                 SMUG                  SMUG                              IGbase GroundTruth                 SMUG                  SMUG                              IGbase

Figure 10: Examples comparing saliency maps where SMUG outperforms SMUGbase, and IG. The green box
on the original image highlights the groundtruth box; for the saliency methods it represents the bounding box
with the best LSC score. Numbers on top denote the LSC score, the fractional area of the bounding box (a), and
the confidence of the classifier (c) on the cropped region.

GroundTruth                 SMUG                  SMUG                              IGbase GroundTruth                 SMUG                  SMUG                              IGbase

Figure 11: Examples comparing saliency maps where SMUGbase, or IG outperforms SMUG. The green box
on the original image highlights the groundtruth box; for the saliency methods it represents the bounding box
with the best LSC score. Numbers on top denote the LSC score, the fractional area of the bounding box (a), and
the confidence of the classifier (c) on the cropped region.
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D.1 BIASES

Model explanation techniques can also be particularly useful in studying model biases. Fig. 12
shows some examples where the model correctly predicts the class as “parallel bars” but it appears to
actually focus more on the person leaping over the bar to make the prediction as opposed to looking
at the bar itself. These can help us understand and identify cases where the model has developed a
bias (in this case, based on training data).

GroundTruth              SMUG                   SMUG                        IGbase

Figure 12: [Model bias] Examples where the model correctly predicts the class as “parallel bars” and
“horizontal bars” for the corresponding inputs but the model’s focus is on the person leaping over the
bar as opposed to the bar (i.e., the predicted object class) itself.

E SMT CONSTRAINTS

In this section, we present an example set of SMT constraints obtained by our technique for an
example image from ImageNet. For brevity, we show the set of constraints for k = 5 and γ = 0. As
mentioned in Sec 5.1, each masking variable Mij corresponds to a 4× 4 grid of pixels, where the
grid is denoted by Xi:i+3,j:j+3. For example, the mask variable M132,135 corresponds to the pixel
grid X132:135,132:135. Following Eq. 3, the SMT constraints corresponding for top k = 5 IG positive
attributions in the first layer are given by:

99.53X132,132 − 58.37X132,136 + 4.88X132,140 − 141.25X136,132 + 639.97X136,136 +
10.29X136,140 − 9.66X140,132 + 20.30X140,136 − 25.19X140,140 − 0.58 > 0

−270.67M120,150 + 101.23M142,144 + 10.38M113,124 + 207.98M122,121 + 640.64M121,121 −
100.72M121,126 + 25.06M121,165 − 75.49M121,156 + 75.47M112,154 − 0.36 > 0

2925.38X144,132 − 395.09X144,136 + 81.61X148,132 − 999.88X148,136 − 82.70X152,132 +
17.08X152,136 + 0.21 > 0

−20.87X76,80+8.40X76,84−122.72X80,80+929.71X80,84+85.52X84,80+138.99X84,84−0.01 >
0

231.34X168,148+722.71X168,152+80.18X172,148+663.96X172,152+5.37X176,148+4.63X176,152+
0.12 > 0
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