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Figure 1. Examples of open-vocabulary semantic segmentation results obtained with our method CLIP-DINOiser on ‘in-the-wild’
images vs. those of MaskCLIP [75]. Our method improves MaskCLIP features with a smart pooling strategy which does not alter the
original open-vocabulary properties. We use self-supervised DINO [5] as a guide to teach CLIP [25] to produce DINO-like localization
features through two light convolutional layers. Our method, which achieves state-of-the-art results, only requires a single forward pass
through CLIP model and our two layers. In addition to the correct prompts (light grey row) we list the irrelevant prompts predicted (in
yellow) that we query in all images shown here.

Abstract

The popular CLIP model displays impressive zero-shot
capabilities thanks to its seamless interaction with arbi-
trary text prompts. However, its lack of spatial awareness
makes it unsuitable for dense computer vision tasks, e.g.,
semantic segmentation, without an additional fine-tuning
step that often uses annotations and can potentially sup-
press its original open-vocabulary properties. Meanwhile,
self-supervised representation methods have demonstrated
good localization properties without human-made annota-
tions nor explicit supervision. In this work, we take the best
of both worlds and propose an open-vocabulary semantic
segmentation method, which does not require any annota-
tions. We propose to locally improve dense MaskCLIP fea-
tures, which are computed with a simple modification of
CLIP’s last pooling layer, by integrating localization pri-

*Corresponding author: monika.wysoczanska.dokt@pw.edu.pl
†Work done outside of Meta and Meta was not involved in the research

discussed here.

ors extracted from self-supervised features. By doing so,
we greatly improve the performance of MaskCLIP and pro-
duce smooth outputs. Moreover, we show that the used
self-supervised feature properties can directly be learnt
from CLIP features. Our method CLIP-DINOiser needs
only a single forward pass of CLIP and two light convo-
lutional layers at inference, no extra supervision nor ex-
tra memory and reaches state-of-the-art results on chal-
lenging and fine-grained benchmarks such as COCO, Pas-
cal Context, Cityscapes and ADE20k. The code to repro-
duce our results is available at https://github.com/
wysoczanska/clip_dinoiser.

1. Introduction
Semantic segmentation is a key visual perception task for
many real-world systems, e.g., self-driving cars, and indus-
trial robots. Typically tackled in a dataset-oriented manner,
best methods require a training dataset which is manually
annotated for a specific and finite set of classes. The advent
of powerful Vision-Language Models (VLM) [27, 47, 71] is
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stimulating a shift from a closed-vocabulary paradigm to an
open-world one. Such models are trained with a simple but
scalable objective: to align pairs of image and coarse text
captions that can be obtained in large amounts with lim-
ited manual supervision. VLMs excel at associating global
image content with arbitrary text inputs with remarkable
generalization capabilities [20, 38], but struggle to provide
dense open-vocabulary features [21, 75]. Obtaining such
an alignment between pixels and language can lead to open-
vocabulary extensions for multiple other modalities, such as
point clouds [9, 26, 42, 45], 3D scenes [60], 3D shapes [1],
radiance fields [30], inter-modality alignment [22, 26], with
multiple potential applications for which the construction of
training datasets is even more challenging and where CLIP-
derived models are showing promising results.

Different strategies have been recently proposed towards
improving CLIP’s patch-level feature extraction abilities by
modifying the original CLIP architecture for dense pooling
and retraining [6, 41, 48, 68, 69] or finetuning on an anno-
tated segmentation dataset with pre-defined classes [36, 75].
The former requires long training and/or large collections of
annotated data, while the latter leads to an alteration of the
vision-language associations of the CLIP features. An al-
ternative line of approaches freezes the CLIP encoder and
directly densifies its features with different heuristics, of-
ten with multiple forward passes [1, 26, 30, 55, 56, 66],
but are less practical due to the extensive computational
overhead. MaskCLIP [75] arises as a computationally ef-
ficient dense CLIP extractor. It converts CLIP’s global self-
attention layer into a convolutional one to produce patch
features with original vision-language qualities. If such fea-
tures are local, they appear to be too noisy for high-quality
segmentation mask extraction (see Fig. 3 middle column).

Meanwhile, recent self-supervised learning (SSL) ap-
proaches [4, 5, 10, 76] produce strong visual representations
displaying object localization properties, and such without
requiring any manual annotation. DINO [5] stands out with
its semantically meaningful features which have been ex-
ploited for unsupervised object discovery [57, 58, 63, 64].
DINO features prove useful also for zero-shot semantic seg-
mentation [28, 30, 66], but require expensive sliding win-
dow sampling [30, 66] or building concept-specific proto-
types and ensemble strategies [28].

In this work, we aim for unaltered patch-level CLIP fea-
tures with minimal runtime overhead. To this end, we re-
examine the localization properties of MaskCLIP features
and observe that it is possible to easily refine them with
guidance from SSL models. In detail, we train a simple
convolutional layer on unlabeled data to produce pooling
weights to perform correlation-guided dense feature pool-
ing from CLIP without distorting the vision-language align-
ment. This layer is optimized to mimic the patch corre-
lations of DINO [5] that indicate likely layouts of visual

concepts in the images. Furthermore, we show that the un-
supervised objectness information given by FOUND [58]
from DINO features can be also directly learned from
CLIP features again in a fully-unsupervised fashion with
a single convolutional layer and helps improve the seg-
mentation of the ill-defined ‘background’ prompt. With
CLIP-DINOiser, we obtain high-quality masks in a sin-
gle forward pass on CLIP (see Fig. 1). CLIP-DINOiser
is amenable to producing dense semantic maps.

To summarize, our contributions are: (1) We propose a
light pooling mechanism to refine MaskCLIP features by
leveraging guidance from SSL features without degrading
its original open-vocabulary properties. CLIP-DINOiser
does not require any annotations, nor retraining CLIP from
scratch, but only a single CLIP forward pass. (2) We show
that CLIP already contains good localization properties
which can be exploited. We leverage simple convolutional
layers to emphasize visual concept layouts from dense CLIP
features. We train them without any annotation on only 1k
of raw images randomly sampled in ImageNet [14]. We be-
lieve that this finding could be further exploited in different
contexts. (3) Our method achieves state-of-the-art results on
complex semantic segmentation datasets such as COCO [3],
Pascal Context [19], Cityscapes [12] and ADE20K [74].

2. Related Work

Zero-shot semantic segmentation. This task has been
typically approached by methods which aim at generaliz-
ing from seen classes to unseen ones [2, 23, 24, 29, 33,
44, 67, 72]. Such strategies train models with full super-
vision on the set of seen classes and propose different solu-
tions to extend them to unseen ones without new images
(labeled or unlabeled), e.g., by exploiting class informa-
tion and relationships encapsulated in popular word embed-
dings [39, 46]. While they produce fine segmentations with-
out computational overhead, these methods require pixel-
level annotations for the seen classes.

From CLIP to open-vocabulary segmentation. The
surge of VLMs with aligned image-language representa-
tions [25, 27, 47] brought back into the spotlight the zero-
shot classification task. However, the extension to zero-
shot segmentation is not obvious as the CLIP architec-
ture is not equipped to yield dense vision-language fea-
tures [21, 75]. To produce dense CLIP features, several ap-
proaches fine-tune or train from scratch pixel-aligned CLIP-
like models with additional modules, mechanisms or super-
vision objectives [6, 41, 48, 68, 69] on datasets with an-
notations of varying granularity and quality: dense anno-
tations [32, 34], class-agnostic object masks [16, 21, 49],
coarse captions [6, 21, 34, 36, 37, 41, 48, 68, 69, 73] or
pseudo-labels [75]. Recent works leverage image-level cap-
tions to align text to regions (obtained without supervision):
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PACL [41] trains an embedder module to learn patch-to-
text affinity, TCL [6] proposes a local constrative objective
to align well-selected patches to the text and ViewCO [50]
leverages multi-view consistency. On the downside, such
models require long training on millions of images or spe-
cific types of very costly annotations. Also, fine-tuning
CLIP with a defined vocabulary is more computationally
appealing [32, 34, 75], but alters the open-vocabulary prop-
erties of the features [26].

Most related to us is a line of works that investigate how
to directly densify CLIP features [1, 26, 30, 66, 75] to ob-
tain per-patch CLIP features. Such densification can be per-
formed by aggregating features from multiple views [1, 30]
or from sliding windows [26, 66] at the extra-cost of multi-
ple forward passes. MaskCLIP [75] drops the global pool-
ing layer of CLIP and matches the projected features di-
rectly to text via a 1×1 convolution layer. By doing so they
achieve dense predictions, however noisy.

With a concept-driven perspective, some methods [28,
55, 56] build codebooks of visual prototypes per concept,
including negative prototypes [28], and then perform co-
segmentation [55]. While such an approach yields good
results, it is however at the cost of building expensive
class-specific prototypes, therefore diverging from open-
vocabulary scenarios. Instead, we aim to remain open to
avoid retraining a model or building new expensive proto-
types whenever a new concept is considered. To that end,
we devise a dense CLIP-feature extraction method that pre-
serves the open-vocabulary quality.
Leveraging self-supervised models & CLIP. Recent self-
supervised ViTs [4, 5, 10, 13, 76] have demonstrated
features with good localization properties [57, 58, 63,
64]. Such features have also been exploited in the con-
text of open-vocabulary segmentation methods, e.g. for
pre-training for the visual backbone [8, 48, 69], co-
segmentation [55], clustering patches into masks [51], rep-
resenting object prototypes [28]. Related to us is the re-
cent CLIP-DIY [66] which computes patch-level represen-
tations from CLIP features from different image crops with
guidance from an unsupervised saliency segmenter [58]
FOUND. While we also leverage the latter, in contrast with
CLIP-DIY which runs multiple forward passes to build their
dense CLIP features, our method requires only a single for-
ward pass of CLIP. Furthermore, our method mitigates the
limits of FOUND in cluttered scenarios by integrating an
uncertainty constraint. Finally, we leverage the informative
patch correlation properties of DINO [5] and show that it
is possible to teach CLIP to produce DINO-like features
through light convolutional layers.

3. Method
We present in this section CLIP-DINOiser, a simple
and efficient strategy to improve MaskCLIP using localiza-

tion information extracted from CLIP—with a lightweight
model trained to mimic some of DINO’s properties. We
first set the goal in Sec. 3.1 and present MaskCLIP [75] in
Sec. 3.2. We then introduce our strategy which leverages
self-supervised features localization information to consol-
idate MaskCLIP features in Sec. 3.3 and discuss how such
localization information can directly be learnt from CLIP in
Sec. 3.4 (we visualize both steps in Fig. 5). We also propose
a way to improve the ‘background’ filtering in Sec. 3.5.

3.1. Problem statement

In this work, we aim to produce open-vocabulary1 seman-
tic segmentation of an image. We consider an image X ∈
RH×W×3 which we split into a sequence of N patches of
dimensions P × P × 3 with P × P the patch size and
N = ⌈H

P ⌉ · ⌈W
P ⌉. A class token, noted CLS, is added to

the input sequence and we feed the N + 1 patches to a
ViT [17] model. We aim at producing dense visual features
F ∈ RN×d, with d the feature dimension, that can later
be matched to any set of text inputs embedded in the same
space. In particular, the goal is to produce a segmentation
map per textual query.

3.2. Preliminaries on MaskCLIP

Extracting dense open-vocabulary features. The pop-
ular CLIP [25] model pre-trained on image/caption pairs
produces good global image features, but was not trained
to generate high-quality 2D feature maps. In order to ex-
tract such dense feature maps relevant to semantic segmen-
tation, Zhou et al. [75] revisit the global attention pool-
ing layer of the last attention layer of the model. The au-
thors discard the query and key embeddings of the layer
and transform both the value projection and the last linear
layer into a conv 1 × 1 layer. With this new model, named
MaskCLIP and denoted ϕ(·), we extract d-dimensional fea-
tures ϕL(X) ∈ RN×d from the last layer L which retains
most of the open-vocabulary properties of CLIP [75].

Semantic segmentation given textual queries. We also
extract CLIP textual features ϕT (tj) for each text query
tj ∈ T with j ∈ {1, . . . , |T |}. Segmentation maps are then
generated by computing the cosine similarity between each
of the visual patch features and of the textual prompts, after
L2-normalization. The most similar prompt is assigned to
each patch. Note that a query ‘background’ can be added
in order to obtain negative patches. Using MaskCLIP al-
lows us to produce dense segmentation maps with a single
forward pass of the classic CLIP model, but its outputs are
noisy, as visible in Fig. 3 (middle column).

1We adopt the taxonomy defined in the recent survey [65] and define
our method as ‘open-vocabulary’, with capabilities to generalize to unseen
datasets.
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3.3. DINOising open-vocabulary features

In this work, we aim to improve MaskCLIP’s open-
vocabulary features described above. To do so, we propose
to leverage the known good localization properties of self-
supervised features [5, 43, 57–59, 64] .

Extracting self-supervised correlation information.
Recent works [57, 64] have shown that the patch correla-
tion information of the embeddings from the last attention
layer of the self-supervised model, DINO [5] can help
highlight objects in images. We use here the value embed-
dings which we observe have finer correlation than those
of key and query (more discussion in Sec. A.2). We extract
such self-supervised features ξ(X) ∈ RN×dξ and discard
the CLS token. We then compute the per-patch cosine-
similarity and produce the affinity map Aξ ∈ [−1, 1]N×N .
We compare in Fig. 4 the patch-similarities obtained for a
patch seed with MaskCLIP and DINO features and observe
that the self-supervised features are more densely and
accurately correlated than those of CLIP.

Strengthening features with guided pooling. In order to
locally consolidate MaskCLIP features ϕL(X), now noted
F , we propose to perform a concept-aware linear combina-
tion of the features per patch with guidance from the patch
affinity Aξ. The feature combination strategy can be seen as
a form of voting mechanism that enforces similar patches to
have similar CLIP features (and prediction) while attenuat-
ing noisy features. Specifically, we compute the new fea-
tures F+ ∈ RN×d as an average of MaskCLIP features F
weighted by Aξ, presented in Fig. 2. We zero-out Aξ cor-
relations below a threshold γ, following [57, 64], and com-
pute the new features for patch p ∈ {1, . . . , N}:

F+
p =

1∑N
q=1 A

ξ
p,q

N∑
q=1

Aξ
p,q · Fp. (1)

Dense CLIP
features 

DINOised
features  

Affinity map

guided-
pooling

Figure 2. Guided pooling strategy defined in Eq. (1). The N ×
N affinity matrix is computed from patch features and is used to
refine MaskCLIP features (bottom left).

GT using F using F+

C
on

te
xt

A
D

E
20

k

Figure 3. Impact of the pooling. We compare our results with F+

(right) versus those obtained with MaskCLIP features (middle).

We then produce the segmentation maps S ∈
[−1, 1]N×|T |, by comparing the new features F+ to each
textual queries in T . As shown in Fig. 3, when using such
consolidated features, we obtain more accurate outputs and
the high-frequency predictions observed in MaskCLIP are
smoothed out, showing the benefit of the pooling.

3.4. Teaching CLIP a first DINO trick: object cor-
relations

We have shown in the previous section that self-supervised
correlation information can successfully be used to improve
the dense quality of open-vocabulary features. If the diffi-
culty of densifying CLIP is well-known, we show here that
CLIP features already contain good localization informa-
tion which can be extracted with a light model. We indeed
predict DINO correlations Aξ from CLIP with a single con-
volutional layer.

image MaskCLIP corr. DINO Aξ ours Aϕ

Figure 4. Comparison of the affinity maps between a seed (on
a ‘pillow’) and the other patch features when using features of
MaskCLIP, DINO and ours after training.

In order to predict the DINO affinity map Aξ from CLIP
features, we train a single 3 × 3 convolutional layer g(·) :
Rd → Rdg which projects intermediate features ϕl(X)–
extracted from layer l–into a smaller space of dimension
dg < d. We enforce the patch correlations of the generated
features Aϕ ∈ [−1, 1]N×N :

Aϕ =
g(ϕl(X))

∥g(ϕl(X))∥
⊗
(

g(ϕl(X))

∥g(ϕl(X))∥

)⊤

, (2)

with ⊗ denoting the outer product, to be close to the bina-
rized correlations D = Aξ > γ (we use here the same γ as
defined above), using the binary cross-entropy loss Lc:

Lc =

N∑
p=1

[
Dp logA

ϕ
p + (1−Dp) log(1−Aϕ

p )
]
. (3)
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Figure 5. Overview of CLIP-DINOiser which leverages the quality of self-supervised features to improve the notoriously noisy
MaskCLIP feature maps. We use DINO as a teacher which ‘teaches’ CLIP how to extract localization information. We train (left) a
conv3 × 3 layer to reproduce the patch correlations obtained with DINO. At inference (right), an input image is forwarded through the
frozen CLIP image backbone and MaskCLIP projection. The produced features are then improved with our pooling strategy which is
guided by correlations predicted with the trained convolutional layer applied on CLIP. With this light ‘DINOising’ process, we obtain
‘DINOised’ features which are matched against the prompts features to produce CLIP-DINOiser outputs.

We present our layer training in Fig. 5 (left part) and ob-
serve the quality of CLIP-predicted affinity matrix Aϕ. We
also show in Fig. 4 another example of obtained Aϕ and
observe their similarity to DINO-based correlations. We
use the CLIP-produced correlations Aϕ to replace Aξ in
Eq. (1) to weight the pooling and observe a similar boost
over MaskCLIP, thus showing that good patch correlations
can indeed be extracted directly from CLIP. We can now
discard DINO and we name CLIP-DINOiser the guided-
pooling strategy which uses CLIP-based correlation. As
shown in Fig. 5 (inference step), our method runs with a
single forward pass of CLIP model and a small extra layer.

3.5. Teaching CLIP a second DINO trick: back-
ground filtering

Moreover, as discussed earlier, a ‘background’ query may
be added to the set of textual queries T in order to help
filter out patches falling in the background and not cor-
responding to any objects. We do not assume here any
prior knowledge about classes of interest and focus rather
on the foreground/background paradigm [58]. We argue
that relying solely on the textual prompt ‘background’ to
catch all non-salient patches is underperforming and, sim-
ilarly to [66], we propose to use a very light-weight un-
supervised foreground/background segmentation method,
namely FOUND [58] which also relies on DINO self-
supervised features. We run FOUND on the entire image
and extract a prediction mask M ∈ {0, 1}N in which a
patch is assigned the value 1 if falling into the foreground

and 0 otherwise. We also observe that saliencies produced
by FOUND can be too restrictive and discard objects which
are partially visible or in a clutter. In order to mitigate
this behaviour, we propose to relax the background selec-
tion by integrating an additional uncertainty constraint. To
this end, we fuse the background information from both
modalities by assigning the ‘background’ prompt to patches
p which are both uncertain, e.g. have low confidence score
σ(S)p < δ, with σ(·) the softmax operation, and which fall
in the background in M .

FOUND [58] CLIP-DINOiser

Figure 6. Comparison of objectness mask generated by
FOUND [58] (left) and with our layer using CLIP features (right).

Learning FOUND objectness. Moreover, we are also
able to learn the predictions of FOUND [58] directly from
CLIP features. To do so, we train a single 1 × 1 convolu-
tional layer h(·) : Rd → R which predicts from the features
ϕl(X) an objectness map Mϕ = h(ϕl(X)) ∈ RN . We train
the model to predict the FOUND binary mask M with the
binary cross-entropy loss Lm:

Lm =

N∑
p=1

[
Mp log(M

ϕ
p ) + (1−Mp) log(1−Mϕ

p )
]
.

We show examples of predicted CLIP-based objectness in
Fig. 6 and observe their very high similarity to those pro-
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CLIPText

prompts: 
{‘banana’,‘ball’
‘apple’,‘oven’
‘background’}

Background
filtering

DINOising

DINOised
features

conv1x1

CLIPImg

Objectness
map

fusion

Figure 7. Overview of our background filtering applied when a
‘background’ prompt is provided to help reduce hallucinations.

duced with DINO. Moreover, we can now replace M de-
fined above with the binarized CLIP-based scores ζ(Mϕ) >
0.5, with ζ(·) the sigmoid operation, and observe a minimal
drop in performances. We provide an example of the back-
ground filtering with trained objectness in Fig. 7.

4. Experiments

We detail in Sec. 4.1 the experimental setup used in our
evaluation. We produce state-of-the-art results on the task
of open-vocabulary semantic segmentation in Sec. 4.2 and
ablation studies in Sec. 4.3.

4.1. Experimental setup

Technical details. We use in all experiments a frozen
CLIP ViT-B/16 pre-trained following OpenCLIP [25]. Our
method CLIP-DINOiser uses two convolutional layers
to extract DINO-like information from CLIP layer l = 10
(the 3rd before the last which was shown to provide the best
results [61]). The first layer g(·) has a kernel 3× 3 and out-
put dimension dg = 256 and h(·) a kernel 1×1 with dh = 1.
The first is trained to match the correlation information ex-
tracted from the value embeddings of the last layer of a ViT-
B/16 model trained following DINO [5]. The second layer
is trained to replicate the unsupervised object localization
predictions of FOUND [58]–which also uses DINO model.
We train both layers with a binary cross-entropy loss on
only 1k raw images randomly sampled from ImageNet [14]
dataset without any annotation. We report average scores
over 3 runs with different sampling seeds and provide stan-
dard deviations in appendix (Sec. A.1). We follow [64] and
binarize the correlations with γ = 0.2. In the background
filtering step, we use a high confidence score, i.e., δ = 0.99.
We train our model for 6k iterations with a batch size of 16
images using Adam optimizer [31], which takes approxi-

mately 3 hours on a single NVIDIA RTX A5000 GPU. We
decrease the learning rate for both heads by a factor of 0.1
after 5k iterations. We apply data augmentations during
training (random scale and cropping, flipping and photo-
metric distortions).
Datasets and metric. We evaluate our method on eight
benchmarks typically used for zero-shot semantic segmen-
tation [6]. Following [6], we split them into two groups.
The first consists in datasets with a ‘background’ query:
PASCAL VOC [19] (noted ‘VOC’), PASCAL Context [40]
(noted ‘Context’), and COCO Object [3] (noted ‘Object’)
and the second without: PASCAL VOC20 [19] (noted
‘VOC20’), PASCAL Context59 [40] (noted ‘C59’), COCO-
Stuff [3] (noted ‘Stuff’), Cityscapes [12] (noted ‘City’), and
ADE20K [74] (noted ‘ADE’). We evaluate results with the
standard mIoU metric. We also follow the evaluation pro-
tocol of [6], use the implementations provided by MMSeg-
mentation [11], employ a sliding window strategy, resize
the input image to have a shorter side of 448. We also do
not perform text expansions of the class names and use only
the standard ImageNet prompts following [25, 68, 75].
Baselines. We compare our method against state-of-the-
art methods on open-vocabulary zero-shot semantic seg-
mentation. For a fair comparison between methods, we re-
port results without any post-processing step. In our evalu-
ations, we follow the taxonomy presented in [65] and com-
pare our model with the methods relying on language-image
pretraining, also called open-vocabulary. We split the com-
pared baselines into four categories: (1) dataset specific
which employ pseudo-labeling and supervised training of
a segmentation model on target dataset: NamedMask [56],
MaskCLIP+ [75]); (2) construct prototypes: ReCO [55],
OVDiff [28]; (3) train with text supervision including
GroupViT [68], ZeroSeg [51], SegCLIP [37], TCL [6],
CLIPpy [48], OVSegmentor [69], which all require access
to additional datasets of millions of image/caption pairs
(we note in the table the exact datasets used for the train-
ing); and finally use frozen CLIP i.e. CLIP-DIY [66] and
MaskCLIP [75], which use pre-trained CLIP. Our method
falls into the last category as we do not modify CLIP, and
do not need access to additional caption annotations as we
use only 1k unannotated images.

4.2. Open vocabulary semantic segmentation

We discuss in this section state-of-the-art results on the task
of open-vocabulary semantic segmentation.

Evaluation with no ‘background’ class. We first com-
pare in Tab. 1 (‘No background prompt’ column) the results
on datasets which aim at the segmentation of most of the
pixels in an image and do not consider a ‘background’ class.
We observe that our method CLIP-DINOiser achieves
the best results on four datasets yielding +2.2, +5.0, +6.7
and +5.1 mIoU over the second best performing method.
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Concept Frozen Extra Backbone No background prompt W/ bkg prompt
Methods spec. backbone data at inference VOC20 C59 Stuff City ADE Context Object VOC

aaaaaaa Dataset specific
MaskCLIP+ [75] ✓ ✗ Target dataset DeepLabv2 - - 18.0 - - 31.1 - -
NamedMask [56] ✓ ✗ IN(1.2M)+Target DeepLabv3+ - - - - - - 27.7 59.2

aaaaaaa Build prototypes per visual concept
ReCo [55] ✓ ✓ IN(1.2M) CLIP 57.8 22.3 14.8 21.1 11.2 19.9 15.7 25.1
OVDiff [28] ✓ ✓ ✗ CLIP+DINO+SD 81.7 33.7 - - 14.9 30.1 34.8 67.1

aaaaaaa Text/image alignment training with captions
GroupViT [68] ✗ ✗ CC12M [7]+RedCaps [15] CLIP 79.7 23.4 15.3 11.1 9.2 18.7 27.5 50.4
ZeroSeg [8] ✗ ✗ IN(1.2M)+CC12M [7] CLIP - - - - - 21.8 22.1 42.9
SegCLIP [37] ✗ ✗ CC3M [53]+COCO(400k) CLIP - - - 11.0 8.7 24.7 26.5 52.6
TCL [6] ✗ ✗ CC12M [7]+CC3M [53] CLIP 77.5 30.3 19.6 23.1 14.9 24.3 30.4 51.2
CLIPpy [48] ✗ ✗ HQITP-134M [48] CLIP - - - - 13.5 - 32.0 52.2
OVSegmentor [69] ✗ ✗ CC4M [69] CLIP - - - - 5.6 20.4 25.1 53.8

aaaaaaa Frozen CLIP
CLIP-DIY [66]∗ ✗ ✓ ✗ CLIP+DINO 79.7 19.8 13.3 11.6 9.9 19.7 31.0 59.9
MaskCLIP [75] [6] ✗ ✓ ✗ CLIP 53.7 23.3 14.7 21.6 10.8 21.1 15.5 29.3
MaskCLIP∗ ✗ ✓ ✗ CLIP 61.8 25.6 17.6 25.0 14.3 22.9 16.4 32.9
MaskCLIP∗ † ✗ ✓ ✗ CLIP 71.9 27.4 18.6 23.0 14.9 24.0 21.6 41.3
CLIP-DINOiser ✗ ✓ IN (random 1k im.) CLIP 80.9 35.9 24.6 31.7 20.0 32.4 34.8 62.1

Table 1. Open-vocabulary semantic segmentation quantitative comparison using the mIoU metric. We separate the datasets used for
evaluation into two columns: those without a ‘background’ prompt and those with (noted ‘W/ bkg prompt’), as discussed in Sec. 4.1. We
report all methods without post-processing. We note with ∗ methods for which we computed scores; we obtained MaskCLIP∗ scores with
OpenCLIP [25] and mark with † the use of MaskCLIP refinement. The first and second best methods are respectively bold and underlined.
We specify if a method assumes prior access to names of concepts (‘Concept spec.’) and what additional data is used at training (‘Extra
data’). ‘IN’ stands for ImageNet [14] and ‘SD’ for Stable Diffusion [52]. We refer to Sec. 4.1 for more details on baselines.

Interestingly, we outperform methods which build expen-
sive prototypes per visual concept on fine-grained datasets,
showing the benefit of our lightweight and generalizable
method. The only drop (-0.8 mIoU) is seen on VOC20 with
respect to OVDiff; we believe it is due to the benefit of gen-
erating per-concept negative prototypes which likely bene-
fits this object-centric dataset. An adaptive granularity of
feature correlation could help mitigate this drop, which we
leave for future work.
Evaluation with ‘background’ class. We now com-
pare our method on datasets which include a ‘background’
query in Tab. 1 (‘W/ bkg prompt’ column). In this setup,
we also apply our background detection mechanism (de-
tailed in Sec. 3.5) on VOC and Object in order to im-
prove the stuff-like background detection. We observe that
CLIP-DINOiser significantly outperforms all methods
which do not construct prototypes. Moreover, we surpass
OVDiff (which uses an ensemble of three models) on Con-
text dataset by +2.3 mIoU and are on par on Object. It
is to be noted that with a single feature extractor, the per-
formance of OVDiff drops by -10 mIoU and the method
requires the construction of a ‘background’ prototype per
concept, otherwise losing another -10 mIoU on VOC. On
the other hand, CLIP-DINOiser produces segmentation
masks in a single pass of CLIP with the light addition of two

convolutional layers while remaining fully open-vocabulary
as it does not require any concept-specific constructs.
Qualitative results. We qualitatively compare in Fig. 8
CLIP-DINOiser with high-performing TCL [6], CLIP-
DIY [66] (two recent methods which provide code) and
our baseline method MaskCLIP [75] on images taken from
the datasets considered in the evaluation. We observe that
our method generates predictions accurate both in terms
of localization and assignment. Indeed we obtain fined-
grained results on the challenging datasets, e.g. in the
Cityscapes example the text query ‘car’ and in the ADE20k
example ‘fountain’ are accurately located when CLIP-DIY
and TCL produce coarser results. Versus MaskCLIP, we
can see the denoising capabilities of CLIP-DINOiser
as MaskCLIP hallucinations grow with the number of text
queries prompted at evaluation. Finally, in Fig. 1 we present
’in the wild’ examples, beyond the evaluation benchmarks,
and show that CLIP-DINOiser produces accurate seg-
mentation masks for arbitrary and very specific prompts,
such as ‘wooden table’ or ‘leather bag’.

4.3. Ablation study

We now conduct an ablation study of the different compo-
nents of CLIP-DINOiser and investigate the impact of
both our feature pooling strategy and background detection.
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Figure 8. Qualitative open-vocabulary segmentation results. We compare ours against CLIP-DIY [66], TCL [6] and MaskCLIP [75].
For a fair comparison, we do not apply post-processing. All pixels annotated in black are from the background class.

The impact of the pooling mechanism. We propose with
CLIP-DINOiser to combine MaskCLIP features with a
well-defined linear combination and compare different so-
lutions in Tab. 2a. In [75], the authors proposed to refine
the predictions with a combination weighted by CLIP key
embeddings (noted ‘CLIP keys (preds.)’ in the table) and
boost MaskCLIP results by more than +8 mIoU on VOC
and VOC20, +1.8 and +1.0 and +0.6 mIoU on the other
datasets. However, we show that working directly at the
feature level allows us to achieve better results; we obtain
consistent improvements ranging from +6 to +19 mIoU on
all datasets when using DINO-based weight Aξ and further
improve when using trained CLIP-based weights Aϕ.

Pooling strategy VOC VOC20 C59 Stuff ADE
MaskCLIP [75] - baseline 32.9 61.8 25.6 17.6 14.3
CLIP keys (preds.) [75] 41.3 71.9 27.4 18.6 14.9
ours w. CLIP keys 39.2 73.2 23.0 12.6 7.7
ours w. DINO Aξ 53.7 79.1 35.5 24.7 20.4
ours w. trained Aϕ 54.0 80.9 35.9 24.6 20.0

(a) Pooling strategy

Pooling Bkg det. Object VOC
MaskCLIP [75] - baseline 16.4 32.9
ours w. DINO Aξ 29.9 53.7
ours w. DINO Aξ FOUND 32.1 60.1
ours w. DINO Aξ ours w. M 34.1 62.1
ours w. DINO Aξ ours w. Mϕ 34.2 61.9
ours w. trained Aϕ ours w. Mϕ 34.8 62.1

(b) Background detection

Table 2. Impact of the pooling strategy (a) and background de-
tection (b) on diverse datasets reported with the mIoU metric.

The impact of the background detection. We now dis-
cuss the improvement provided by our background refine-
ment strategy, which is applied when stuff -like background
patches need to be detected. We report such results in
Tab. 2b when employing our pooling strategy (either us-
ing DINO features, noted ‘w. DINO Aξ’ or those extracted
from CLIP, noted ‘w. trained Aϕ’). When using solely
‘FOUND’ for background detection, as in [66], we improve
by +6.4 mIoU on VOC (achieving 60.1 mIoU), but when
relaxing FOUND (see Sec. 3.5) with an uncertainty con-
dition, we boost scores up to 62.1 on VOC, showing the
limitation of using FOUND alone. We also achieve similar
results when using CLIP-based predictions Mϕ both with
DINO-based Aξ and trained CLIP-based Aϕ correlations,
although we observe that best results are overall obtained
with trained Aϕ. We visualize CLIP-based mask Mϕ in
Fig. 6 and see high similarity to DINO-based predictions,
therefore showing the localization quality of CLIP.

5. Conclusions
In this work, we propose to make the most out of CLIP
features and show that the features already contain use-
ful localization information. Indeed with light convo-
lutional layers, we are able to learn both good patch-
correlation and objectness information by using DINO
self-supervised model as a guide. With such informa-
tion, our method CLIP-DINOiser performs zero-shot
open-vocabulary semantic segmentation in a single pass of
CLIP model and with two light extra convolutional layers.
CLIP-DINOiser reaches state-of-the-art results on com-
plex semantic segmentation datasets.

8



Limitations. Despite yielding strong results on open-
vocabulary semantic segmentation, CLIP-DINOiser is
still bounded by the capability of the CLIP model to sepa-
rate classes, as it inherits its granularity. We believe that bet-
ter prompt engineering paired with better image-text models
could further boost the performance of CLIP-DINOiser.
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Pérez. Zero-shot semantic segmentation. In NeurIPS, 2019.
2

[3] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-
stuff: Thing and stuff classes in context. In CVPR, 2018. 2,
6

[4] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learn-
ing of visual features by contrasting cluster assignments. In
NeurIPS, 2020. 2, 3

[5] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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A. More experimental results
A.1. The impact of the training dataset

Training stability. We report in the main paper the fi-
nal results averaged over three different randomly sampled
subsets of ImageNet used for the training. In the first row
of Tab. 3 we report the corresponding standard deviation.
We observe that in all cases the standard deviation equals
0.1 mIoU or lower, therefore showing the stability of our
training.

Training with different datasets. Our method
CLIP-DINOiser does not require any labels to be
trained. We investigate here the impact of training on
the datasets used to train self-supervised DINO [5] and
FOUND [58], namely Imagenet and DUTS-TR [62]. We
report scores in Tab. 3. We also provide results when in-
creasing the dataset size to 10k on ImageNet. In all cases,
we observe no significant difference when using one dataset
or another, and the size of the dataset does not seem to im-
pact results positively.

Train. dataset C59 V20 Stuff City ADE
IN-1k 35.9±0.1 80.9±0.0 24.6±0.1 31.7±0.1 20.0±0.0
IN-10k 35.9±0.0 80.3±0.1 24.7±0.0 31.9±0.1 20.1±0.0
DUTS-TR [62] 35.9 80.5 24.6 31.3 19.9

(a) Benchmark without ‘background’ prompt

Train. dataset VOC Con. Obj
IN-1k 62.1±0.0 32.4±0.1 34.8±0.1
IN-10k 61.9±0.0 32.4±0.0 34.6±0.1
DUTS-TR [62] 62.0 32.4 34.8

(b) Benchmark with ‘background’ prompt

Table 3. Performance with different training datasets. When
using random splits extracted from ImageNet (noted ‘IN’), we re-
port the average score and standard deviation computed over train-
ing with three random splits (of 1k or 10k) extracted in ImageNet.
In (a) we report the scores on the datasets without ’background’
class and in (b) with.

A.2. Self-supervised features discussion

We present in Fig. 8 visualizations of correlation obtained
using different DINO embeddings extracted from DINO’s
last attention layer, namely ‘query’, ‘key’ and ‘value’. Most
unsupervised localization methods [57, 58, 63, 64] use the
‘key’ embeddings which allow the easy separation of fore-
ground from background. However, we observed in this
work that using instead the value features allows us to sep-
arate better elements in the background, as visible in the
figure. Patches in the background correlate to fewer back-
ground patches and regions are therefore better separated.

(a) Input image
query key value

(b) Correlation maps for different seeds (in red)
query key value

sky tree train ground fence grass

(c) Resulting segmentation maps

Figure 8. Visualization of correlation and segmentation ob-
tained with different embeddings of DINO: query, key and value.

Single obj. discovery Unsup. saliency detection
Method VOC7 VOC12 C20k DUT-O. DUTS-T. ECSSD
FOUND [58] 72.5 76.1 62.9 60.8 65.4 80.5
ours 73.1 75.9 64.4 60.6 66.6 81.3

Table 4. Results of single object discovery and unsupervised
saliency detection obtained when following FOUND [58] pro-
tocol. We compute the single object discovery scores on classic
VOC benchmarks [19] and 20k images of COCO (noted ‘C20k’)
following [58] and use the CorLoc metric. We report the mIoU
metric for unsupervised saliency detection and provide all results
with the post-processing bilateral solver. We note ‘DUT-O.’ DUT-
OMRON [70] and ‘DUTS-T.’ stands for DUTS-TEST [62].

We also depict the final segmentation when using each
type of feature, and observe the best result with ‘value’.
We observe that more objects in the background are well-
segmented and labeled, e.g., ‘tree’ and ‘sky’.

A.3. Background evaluation with FOUND

We now evaluate the quality of our background filtering us-
ing the class-agnostic foreground/background protocol de-
fined in [58]. We report in Tab. 4 the scores on the
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Figure 9. Visual ablations of the impact of our pooling method.
Examples from ADE20K (left), PASCAL Context (middle), and
Cityscapes (right) datasets.

RGB

GT

Ours
with
bkg

Ours
w/o
bkg

Class. sheep
snowboard

donut
couch

tv/monitor
dining table

chair

Figure 10. Visual ablations of the impact of background de-
tection. We show examples from COCO Object (left, middle)
and PASCAL VOC (right). We note ‘bkg’ our background refine-
ment Sec. 3.5).

task of unsupervised object discovery (on VOC07 [18],
VOC12 [19] and COCO20k [35] datasets with CorLoc met-
ric) and unsupervised saliency detection in the ‘multi’ setup
of [58] (all results are provided when using post-processing
bilateral solver on the classic DUT-OMRON [70], DUTS-
TEST [62] and ECSSD [54] datasets, with the mIoU met-
ric). For more details on the evaluation setup, we refer
to [58]. On both tasks, we observe on par or even better
results than [58], therefore showing the quality of our fore-
ground predictions learnt from CLIP.

B. More qualitative results
In this section, we illustrate the benefits of our method
through additional comparative qualitative results.

B.1. Visual ablations

Our spatial pooling. We show more examples of the ap-
plication of our method CLIP-DINOiser and compare it
to MaskCLIP results in Fig. 9. We observe that in all cases,
our pooling reduces the noise in the predictions and helps
produce good-quality segmentation.
Our background filtering. By visualizing more results
with and without the background refinement step in Fig. 10,
we observe that the background refinement step helps re-
move uncertain segmentation such as the snow area (which
was classified as ‘snowboard’) in the left image, or on the
cabinet, which is not annotated in VOC (right image).

B.2. In-the-wild examples

We show more in-the-wild examples in Fig. 11, where
we compare CLIP-DINOiser against MaskCLIP.
MaskCLIP produces very noisy masks, especially when
multiple false positive text queries are considered (we
define such false positive queries as prompt queries that
appear in the final segmentation but are not depicted in the
image). Instead, CLIP-DINOiser eliminates such false
positive predictions and produces less noisy segmentation.

B.3. Limitations

We discuss here the known failure modes of our method
CLIP-DINOiser and visualize some in Fig. 12.

We first observe some of the biases of CLIP, which
for instance produces similar features for ‘train’ and
‘train tracks’ (left image), likely due to their frequent co-
occurrence across images. We have observed other in-
stances of this bias, e.g., for ‘boat’ and ‘sea’ queries. Sec-
ond, although CLIP-DINOiser can produce rather fine-
grained segmentation (in terms of object sizes and classes),
it can miss small or far-away objects as in Cityscapes (mid-
dle image). Finally, as with other open-vocabulary seman-
tic segmentation methods, CLIP-DINOiser is not robust
to the ambiguities of the text queries. The example from
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dancer
theatre

stage driver
black suit

impressionism

small dog
big dog

theatre driver
cabinet

food white plate

building
Santa Claus
sky snow
reindeer
road

Ada Lovelace
Princess Leia
Luke Skywalker
Alan Turing

Figure 11. In the wild comparative examples between MaskCLIP (top) and CLIP-DINOiser (bottom). While MaskCLIP generates
noisy masks when prompted with false positive classes our method is robust and produces cleaner masks.

Object City ADE20K

train traffic sign
road vegetation
car sidewalk
person bicycle

house building
tree sidewalk
person canopy
traffic light

Figure 12. Failure cases of our method. From top to bottom:
input RGB image, ground truth (GT) masks, masks predicted by
CLIP-DINOiser, text prompts. We discuss these failure cases
in Sec. B.3.

ADE20K (right image) is such a case, where ‘house’ is
mistaken for ‘building’. In our experiments, we observed
multiple segmentation ambiguities and we believe that the
redefinition of evaluation metrics could help address the is-
sue. We stress that the current evaluation setup, which is
taken directly from fully supervised settings, might be lim-
iting in an open-vocabulary paradigm.
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