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ABSTRACT

Entropic optimal transport (OT) and the Sinkhorn algorithm have made it practi-
cal for machine learning practitioners to perform the fundamental task of calcu-
lating transport distance between statistical distributions. In this work, we focus
on a general class of OT problems under a combination of equality and inequality
constraints. We derive the corresponding entropy regularization formulation and
introduce a Sinkhorn-type algorithm for such constrained OT problems supported
by theoretical guarantees. We first bound the approximation error when solving
the problem through entropic regularization, which reduces exponentially with
the increase of the regularization parameter. Furthermore, we prove a sublinear
first-order convergence rate of the proposed Sinkhorn-type algorithm in the dual
space by characterizing the optimization procedure with a Lyapunov function.
To achieve fast and higher-order convergence under weak entropy regularization,
we augment the Sinkhorn-type algorithm with dynamic regularization schedul-
ing and second-order acceleration. Overall, this work systematically combines
recent theoretical and numerical advances in entropic optimal transport with the
constrained case, allowing practitioners to derive approximate transport plans in
complex scenarios. In addition, we extend the formulation of this work to partial
optimal transport and propose a fast algorithm with practical super-exponential
convergence.

1 INTRODUCTION

Obtaining the optimal transport (OT) (Villani et al., 2009; Linial et al., 1998; Peyré et al., 2019)
plan between statistical distributions is an important subroutine in machine learning (Sandler and
Lindenbaum, 2011; Jitkrittum et al., 2016; Arjovsky et al., 2017; Salimans et al., 2018; Genevay
et al., 2018; Chen et al., 2020; Fatras et al., 2021). In this work, we focus on an optimal transportation
problem with a combination of inequality and equality constraints. A typical example is an OT
problem with one inequality constraint:

min
P :P1=r,P⊤1=c,P≥0

C · P, such that D · P ≥ t, (1)

where · stand for entry-wise inner product, C ∈ Rn×n is the cost matrix, t ∈ R, D ∈ Rn×n

encode the inequality constraint, and c, r ∈ Rn are respectively the source and target density. As
an illustration, in Figure 1, we plot the optimal transport plan between 1D distributions when the
main cost is the transport cost induced by the l1 Manhattan distance, but an inequality constraint
is placed on the transport cost induced by Euclidean distance. One can see that solving inequality-
constrained OT problems in equation 1 allows one to obtain transport maps under more complex
geometric structures.

For the unconstrained OT problem, the most important recent breakthrough is the introduction of
entropic regularization and the resultant Sinkhorn algorithm (Yule, 1912; Sinkhorn, 1964; Cuturi,
2013). With simple matrix scaling steps, the Sinkhorn algorithm gives an approximate OT solution
in near-linear time (Altschuler et al., 2017), which fuels the wide adoption in the machine learning
community. This prompts the following natural question:

Is there an extension of the Sinkhorn algorithm to constrained optimal transport problems?

1
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Figure 1: Illustration of 1D optimal transport under different inequality constraints, obtained with
Algorithm 1. By tuning the inequality threshold, the transport plan evolves from minimizing the
Euclidean distance transport cost to minimizing the Manhattan distance (l1) transport cost.

This paper answers the above question in the affirmative. The key insight underlying the develop-
ment in this work is that the entropic optimal transport problem is an instance of entropic linear
programming (Fang, 1992), from which it is natural to extend entropy regularization to the con-
strained case. For an illustration, the example in equation 1 has the following relaxation:

min
P,s:P1=r,P⊤1=c,P≥0,s≥0

C · P +
1

η
H(P, s),

subject to D · P − s = t,
(2)

where s is the slack variable, η > 0 is the entropy regularization parameter, and H(P, s) :=∑
ij pij log pij + s log(s) is the entropy regularization term. The primal-dual form of equation 2

leads to a direct generalization of the Sinkhorn algorithm to the constrained case, which we develop
in Section 2 and Section 3.

1.1 CONTRIBUTIONS

In addition to the introduction of a novel Sinkhorn-type algorithm for constrained OT, this paper
systematically generalizes existing theoretical results as well as practical acceleration techniques
from the existing entropic OT literature. In particular,

• Following the analysis in Weed (2018), we show that entropic optimal transport in the con-
strained case is exponentially close to the optimal solution.

• By extending the result in Altschuler et al. (2017), we show that a Sinkhorn-type algorithm
reaches approximate first-order stationarity in polynomial time.

• For settings with weak entropic regularization, we further improve practical performance by
introducing dynamic regularization scheduling in Chen et al. (2023) to the Sinkhorn-type algo-
rithm, which features an adaptive entropy regularization term.

• We extend the approximate sparsity analysis in Tang et al. (2024) to the constrained OT case and
introduce an accelerated second-order algorithm through sparse Newton iterations. We exhibit
strong numerical evidence this technique outperforms conventional quasi-Newton methods.

• We introduce a variational formulation of the task, which naturally enables the use of first-order
methods such as in Dvurechensky et al. (2018); Lin et al. (2019).

• We propose a novel numerical algorithm for partial optimal transport (Chapel et al., 2020)
which exhibits practical super-exponential convergence.

1.2 RELATED LITERATURE

Constrained optimal transport The numerical treatment for constrained OT focuses on special
cases such as capacity constraints (Korman and McCann, 2013; 2015), multi-marginal transport
(Gangbo and Swiech, 1998; Buttazzo et al., 2012; Benamou et al., 2015; Pass, 2015; Khoo et al.,
2020), martingale optimal transport (Tan and Touzi, 2013; Beiglböck et al., 2013; Galichon et al.,
2014; Dolinsky and Soner, 2014; Guo and Obłój, 2019), and partial optimal transport (Chapel et al.,
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2020; Le et al., 2022; Nguyen et al., 2022; 2024). In terms of numerical methods for constrained
OT, Benamou et al. (2015) defines an iterative Bregman projection approach for equality constraints
and a Bregman–Dykstra iteration for general constraints. We show in Appendix I that the iterative
Bregman projection is equivalent to our proposed update step in the equality case. Our contribution
in relation to Benamou et al. (2015) is threefold. First, for equality constraints, we propose a gener-
alized Sinkhorn-type algorithm that implements the iterative Bregman projection, whereas previous
work only defines the projection step in special cases. Second, for inequality constraint, our ap-
proach is novel and enjoys theoretical guarantee as seen in our Theorem 1 and Theorem 2. Finally,
the Bregman–Dykstra iteration in (Benamou et al., 2015) requires a simple closed-form solution for
each projection step, whereas our proposed method applies to general cases.

OT in machine learning A substantial amount of research literature exists on the use of optimal
transport in different areas of machine learning. Notable applications include statistical learning
(Kolouri et al., 2017; Vayer et al., 2018; Genevay et al., 2019; Luise et al., 2018; Oneto et al., 2020;
Huynh et al., 2020), domain adaptation (Fernando et al., 2013; Redko et al., 2017; Courty et al.,
2017; Alvarez-Melis et al., 2018; Nguyen et al., 2022; 2021; Xu et al., 2022; Turrisi et al., 2022),
and using optimal transport distance in designing training targets (Genevay et al., 2017; Bousquet
et al., 2017; Sanjabi et al., 2018; Deshpande et al., 2019; Lei et al., 2019; Patrini et al., 2020; Onken
et al., 2021). The usage of entropic optimal transport in the constrained case allows practitioners to
query transport plans which satisfy more complex structure than in the unconstrained case, which
are beneficial across all the applications above.

Acceleration for Sinkhorn There is a considerable body of work in speeding up the runtime of the
Sinkhorn algorithm, and a significant portion of our numerical treatment is devoted to the extension
of these algorithms to the constrained case. In addition to (Chen et al., 2023; Tang et al., 2024) to
be discussed in Section 3, we mention a few noteworthy methods for acceleration. Randomized or
greedy row/column scaling (Genevay et al., 2016; Altschuler et al., 2017) can be directly extended
to the constrained case by the inclusion of the dual variables for the linear constraints. Likewise,
methods based on the variational form of entropic OT, such as Nesterov acceleration (Dvurechensky
et al., 2018) and mirror descent (Lin et al., 2019; Kemertas et al., 2023), can be used in the con-
strained case by considering the Lyapunov function introduced in Section 2. While the majority of
existing techniques can be directly extended to the constrained case, one notable exception is the
class of methods based on approximation to the kernel K = exp(−Cη) (Deriche, 1993; Solomon
et al., 2015; Bonneel et al., 2016; Altschuler et al., 2019; Scetbon and Cuturi, 2020; Lakshmanan
et al., 2022; Huguet et al., 2023; Li et al., 2023). The main obstruction from performing kernel
approximation in the constrained case is that the kernel is changing throughout the optimization
process due to update in the constraint associated dual variables. As the kernel compression step is
costly and often done in the offline stage, it poses a significant challenge if one has to update the
kernel approximation with each dual variable update dynamically.

2 THEORETICAL FOUNDATIONS OF CONSTRAINED ENTROPIC OPTIMAL
TRANSPORT

This section summarizes the entropic optimal transport in the constrained case.

Notations The symbol n is reserved for the system size of constrained OT problems, with the
cost matrix satisfying C ∈ Rn×n. We use M ·M ′ :=

∑
ij mijm

′
ij to denote the entry-wise inner

product. For a matrix M , the notation logM stands for entry-wise logarithm, and similarly exp(M)
denotes entry-wise exponential. We use the symbol ∥M∥1 to denote the entry-wise l1 norm, i.e.
∥M∥1 := ∥vec(M)∥ =

∑
ij |mij |. The ∥M∥∞ and ∥M∥2 norms are defined likewise as the entry-

wise l∞ and l2 norms, respectively. The notation 1n×n is the all-one n× n matrix, and the notation
1 denotes the all-one vector of appropriate size.

Background For simplicity, we assume the target and source density r, c ∈ Rn satisfies
∑

i ri =∑
j cj = 1. For any inequality constraint of the form D · P ≥ t, note one can convert the condition

to (D − t1n×n) · P ≥ 0, and similarly in the equality case. Let K and L respectively denote the
number of inequality and equality constraints. By the construction above, for each optimal transport
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problem under linear constraint, there exists D1, . . . DK , DK+1, . . . , DK+L ∈ Rn×n so that the
linear constraints are encoded by I, E where

I :=
⋂

k=1,...,K

{P | Dk · P ≥ 0}, E :=
⋂

l=1,...,L

{P | Dl+K · P = 0}. (3)

We summarize the general form of constrained optimal transport by the following the following
linear program (LP):

min
P :P1=r,P⊤1=c,P≥0

C · P, such that P ∈ S, (4)

where S := I ∩ E for I, E defined in equation 3.

Entropic optimal transport under constraint Under entropic linear programming (Fang, 1992),
one can write down the formulation for entropic optimal transport under general linear constraints.
For k = 1, . . . ,K, we define sk to be the slack variable corresponding to Dk · P . The constrained
entropic optimal transport follows from the following equation:

min
P,s:P1=r, P⊤1=c,

P≥0, sk≥0 ∀ k

C · P +
1

η
H(P, s1, . . . , sK),

subject to Dk · P = sk for k = 1, . . . ,K.
Dl+K · P = 0 for l = 1, . . . , L,

(5)

where the entropy term is defined by H(P, s1, . . . , sK) =
∑

ij pij log(pij) +
∑K

k=1 sk log sk.

We motivate the optimization task in equation 5 by Theorem 1, which shows that the entropy-
regularized optimal solution is exponentially close to the optimal solution:
Theorem 1. For simplicity, assume that

∑
i∈[n] ri =

∑
j∈[n] cj = 1, the LP in equation 4 has a

unique solution P ⋆, and assume that ∥Dk∥∞ ≤ 1 for k = 1, . . . ,K. Denote P ⋆
η as the unique

solution to equation 5. There exists a constant ∆, depending only on the LP in equation 4, so that
the following holds for η ≥ (K+1)(1+ln(4n2(K+1)))

∆ :

∥P ⋆
η − P ⋆∥1 ≤ 8n

2
K+1 (K + 1) exp

(
−η ∆

K + 1

)
.

The definition of ∆ and the proof are deferred to Appendix F. In this work, we only consider exam-
ples for which K = O(1), in which case the bound in Theorem 1 does not significantly differ from
the unconstrained case. It should be noted that the dependency on n goes down with an increasing
number of inequality constraints K, but one can check the bound is monotonically worse as K in-
creases. Interpreting the bound could mean that adding more inequality constraints limits the degree
of freedom but may also potentially amplify the error caused by entropy regularization.

Variational formulation under entropic regularization By introducing the Lagrangian variable
and using the minimax theorem (for a detailed derivation, see Appendix H), we formulate the asso-
ciated primal-dual problem to equation 5 as encoded by the primal-dual function L:

max
x,y,a

min
P,s

L(P, s, x, y, a) :=
1

η
P · logP + C · P − x · (P1− r)− y · (P⊤1− c)

+
1

η

K∑
k=1

sk log sk +

K∑
k=1

aksk −
K+L∑
m=1

am(Dm · P ),

(6)

where s = (s1, . . . , sK) is the shorthand for slack variable, a = (a1, . . . , aK , aK+1, . . . , aK+L) is
the shorthand for the constraint dual variables (excluding the original row/column constraints).

By eliminating P, s (see Appendix H), the function f(x, y, a) := minP,s L(P, s, x, y, a) admits the
following form

f(x, y, a) =− 1

η

∑
ij

exp
(
η(−Cij +

L+K∑
m=1

am (Dm)ij + xi + yj)− 1
)

+
∑
i

xiri +
∑
j

yjcj −
1

η

K∑
k=1

exp(−ηak − 1).

(7)
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As a consequence of the minimax theorem, maximizing over f is equivalent to solving the prob-
lem defined in equation 5. We emphasize that f is concave, allowing one to use routine convex
optimization techniques.

Define P = exp
(
η(−C +

∑
m amDm + x1⊤ + 1y⊤)− 1

)
as the intermediate matrix correspond-

ing to dual variables x, y, a. We write down the first derivative of the Lyapunov function f (also
known as the dual potential function):

∇xf = r − P1, ∇yf = c− P⊤1,

∂ak
f = exp(−ηak − 1)− P ·Dk, ∀k ∈ [K],

∂al+K
f = −P ·Dl+K , ∀l ∈ [L] .

(8)

Indeed, one can use any first-order method on f . Moreover, methods based on accelerated gradient
descent have shown good practical performance in optimal transport. One notable example is the
adaptive primal-dual accelerated gradient descent (APDAGD) algorithm, which has been shown to
outperform the Sinkhorn algorithm during the initial stages of optimization (Dvurechensky et al.,
2018). Appendix D details the extension of APDAGD to constrained optimal transport using the
primal-dual form shown in equation 6. Section 5 shows that APDAGD likewise enjoys good numer-
ical performance for constrained optimal transport. Overall, the APDAGD leaves room for improve-
ment, as the numerical result in Section 5 shows that our main approach enjoys better convergence
properties.

Extension to partial optimal transport The main formulation of this work precludes the case of
partial optimal transport (POT) Chapel et al. (2020). In particular, POT places inequality constraint
for the row sum and column sum for the transportation matrix, which is a different problem setting
than those considered in equation 5. We develop an extension of our approach to the case of POT,
and in particular, we showcase a practical numerical algorithm with practical super-exponential
convergence.

3 MAIN ALGORITHM

This section proposes an efficient Sinkhorn-type algorithm in the constrained case. We assume
K + L = O(1) to ensure the efficiency of the proposed approach.

Main idea of the algorithm The variational formulation under entropic regularization shows that
one can effectively solve for the entropic formulation in equation 5 by solving for the optimization
task:

max
x∈Rn,y∈Rn,a∈RK+L

f(x, y, a)

for f given in equation 7. We define a Sinkhorn-type algorithm by introducing three iteration steps:

1. (x update) x← argmaxx̃ f(x̃, y, a),

2. (y update) y ← argmaxỹ f(x, ỹ, a),

3. (a update) a, t← argmaxã,t̃ f(x+ t̃1, y, ã)

The proposed alternating update approach is summarized in Algorithm 1.

Implementation detail Let (x, y, a) be the current dual variables and define

P = exp

(
η(−C +

∑
m

amDm + x1⊤ + 1y⊤)− 1

)
as the current intermediate transport plan defined by these dual variables. By equation 8, one has
∇xf = 0 ⇐⇒ P1 = r and ∇yf = 0 ⇐⇒ P⊤1 = c. Thus, the x, y update steps amount to
row/column scaling of the matrix P , which is identical to the Sinkhorn algorithm.

The a update step constitutes the main novelty of our algorithm in the constrained case. In particular,
the inclusion of the t variable improves numerical stability by enforcing a normalization condition:

5
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Suppose P is the intermediate transport plan formed by the dual variable (x+ t1, y, a), then

∂tf(x+ t1, y, a) = 0 ⇐⇒
∑
ij

Pij =
∑
i

ri, (9)

which ensures that terms of the form M ·P can be bounded by ∥M∥∞ (
∑

i ri). Thus, optimality in
the t variable ensures boundedness in the derivatives of f such as those in equation 8.

We propose to use Newton’s method for the a update step. Namely, by directly computing the gra-
dient and the Hessian, ∇atf,∇2

atf , one uses the search direction (∆a,∆t) = −
(
∇2

atf
)−1∇atf .

The learning rate is obtained through the standard backtracking line search scheme (Boyd and Van-
denberghe, 2004).

Algorithm 1 Sinkhorn-type algorithm under linear constraint

Require: f, xinit, yinit, ainit, N, i = 0, ϵ > 0
1: (x, y, a)← (xinit, yinit, ainit)
2: while i < N do
3: i← i+ 1
4: # Row&Column scaling step
5: P ← exp

(
η(−C +

∑
m amDm + x1⊤ + 1y⊤)− 1

)
6: x← x+ (log(r)− log(P1)) /η
7: P ← exp

(
η(−C +

∑
m amDm + x1⊤ + 1y⊤)− 1

)
8: y ← y +

(
log(c)− log(P⊤1)

)
/η

9: # Constraint dual update step
10: a, t← argmaxã,t̃ f(x+ t̃1, y, ã)
11: x← x+ t1
12: end while
13: Output dual variables (x, y, a).

Complexity analysis of Algorithm 1 The row/column scaling step is identical to the Sinkhorn
algorithm and thus costs O(n2) per iteration. For the constraint dual update step, the compu-
tation cost is dominated by the calculation of ∇2

atf . By direct computation in Appendix C,
one can show that the cost for obtaining the Hessian term ∇2

atf is dominated by the compu-
tation of

∑
ij Pij (Dm)ij (Dm′)ij for m,m′ = 1, . . . ,K + L and so the cost of the a update

step is O((K + L)2n2)) per iteration of the Newton method. As the setting of this work as-
sumes K + L = O(1), one can see that each Newton step has a cost of O(n2). We set Algo-
rithm 1 to run Na = O(1) Newton steps, as Newton’s method enjoys super-exponential conver-
gence practically (Boyd and Vandenberghe, 2004). Thus, the total cost of the a update step is
O(Na(K + L)2n2)) = O(n2).

3.1 ACCELERATION TECHNIQUES

Entropy regularization scheduling An important feature of the Sinkhorn algorithm is that the
iteration complexity heavily depends on the entropy regularization term η, the tuning of which
plays a significant part in practical performance. To that end, one can aid acceleration by using
the doubling entropy regularization scheduling technique introduced in (Chen et al., 2023). For
a desired entropy regularization value ηfinal, we take an initial regularization strength ηinit and
take Nη = ⌈log2(ηfinal/ηinit)⌉. Then, one defines successively doubling regularization levels
η0, . . . , ηNη so that ηinit = η0 < . . . < ηNη = ηfinal and ηi = 2ηi−1 for i = 1, . . . , Nη − 1.
For each step i, one runs the subroutine in Algorithm 1 at ηi−1, and the obtained dual variable is
used as the initialization when calling the subroutine for ηi.

Second-order acceleration through sparsity We further accelerate the Sinkhorn-type algorithm
with Sinkhorn-Newton-Sparse (SNS) (Tang et al., 2024), a second-order method originally devel-
oped for the unconstrained case. Instead of alternating maximization as in Algorithm 1, one can
instead introduce the combined variable z = (x, y, a), where a naive strategy would be to optimize
directly f through a full Newton update of the type z = z − α(∇2

zf)
−1∇zf , where α can be ob-

tained through backtracking line search. However, a full Newton step would require an impractical
O((n+K + L)3) scaling.
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The SNS algorithm introduces a practical second-order method through a sparse approximation of
the Hessian matrix, and we show how one can extend the algorithm to the constrained OT case. The
key observation of SNS is that the Hessian submatrix corresponding to variable x, y has a special
structure:

∇2
xyf(x, y, a) = η

[
diag(P1) P

P⊤ diag(P⊤1)

]
, (10)

which admits a sparse approximation as long as P admits a sparse approximation. Moreover, the
full Hessian matrix to f admits a sparse approximation: As K + L = O(1), the blocks of ∇2f
corresponding to∇xy∇af and ∇2

af lead to at most O(n) nonzero entries to keep track of.

The rationale for approximate sparsity is simple: Under a mild uniqueness assumption, the optimal
solution P ⋆ to the LP in equation 4 has at most 2n− 1 +K +L = O(n) nonzero entries due to the
fundamental theorem of linear programming (Luenberger et al., 1984). Moreover, the exponential
closeness result in Theorem 1 implies that the entries of P ⋆

η decay at a rate of exp (− η∆
K+1 ) except

at 2n− 1+K +L = O(n) entries, which proves that approximate sparsity holds in the constrained
case as well.

We propose an extended SNS algorithm by sparsifying the ∇2
xyf block in which one keeps only

O(n) nonzero entries. The sparse Newton step is used in combination with Algorithm 1 as a warm
start to achieve rapid acceleration. The proposed scheme leads to the same O(n2) per-iteration
complexity as SNS in the unconstrained case. Implementation details can be found in Algorithm 2
in Appendix C.

In addition, Appendix J includes the numerical performance of the Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) algorithm and the limited-memory Broy-
den–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm, which are two of the most widely used
quasi-Newton methods. The numerical experiments shows that the two aforementioned quasi-
Newton methods have inferior performance when compared to the sparse Newton iteration we
propose.

4 CONVERGENCE ANALYSIS

In this section, we present a convergence bound for a modified version of the proposed Sinkhorn-
type algorithm in terms of the stationarity condition. Similar to the proof in (Altschuler et al.,
2017) for the unconstrained case, our proof strategy relies on characterizing convergence through
the Lyapunov function f introduced in equation 7. For the rest of this section, we assume

∑
i ri =∑

j cj = 1.

We present a bound on the first-order stationarity condition. As one is performing alternating opti-
mization for more than two variables, the convergence proof requires a modification to Algorithm
1, in which one examines the stationary condition on each variable and chooses the update step
greedily. The following Theorem characterizes the approximate stationarity of the greedy version of
Algorithm 1 (proof is in Appendix G):

Theorem 2. Let (x, y, a) be the current variable, let P be the associated transport matrix, and let
dm be as in equation 24. Define Qx, Qy, Qa by

Qx =KL (r||P1) , Qy = KL
(
c||P⊤1

)
,

Qa =

K∑
k=1

|dk|min

(
1

8η
,

|dk|
8ηcd + 4η(K + L)c2d

)
+

L∑
l=1

d2l+K

2η(K + L)c2d
,

which are respectively the right-hand-side of equation 22, equation 23, and equation 25.

Consider a greedy version of Algorithm 1, in which only one update step is performed at each
iteration, and an x (resp. y, a) update step is chosen if Qx (resp. Qy , Qa) is the largest among
(Qx, Qy, Qa). Define cd := maxm∈[K+L]∥Dm∥∞, and define cg as the gap term in the Lyapunov
function f at initialization, i.e.

cg = max
x̃,ỹ,ã

f(x̃, ỹ, ã)− f(xinit, yinit, ainit).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Let (xu, yu, au) be the dual variable after u iterations and let Pu be the associated intermediate
transport plan. Then, the greedy algorithm outputs dual variables (x, y, a) which satisfies the below
approximate stationarity condition in O(cgϵ

−2) iterations:

∥∇f(x, y, a)∥1 ≤ ϵ. (11)

Moreover, the matrix P associated with the outputted dual variable satisfies the following condition:

ϵ ≥∥P1− r∥1 + ∥P⊤1− c∥1 +
K∑

k=1

|min (P ·Dk, 0)|+
L∑

l=1

|P ·Dl+K |, (12)

which shows that P approximately satisfies the linear constraints in equation 4.

5 NUMERICAL EXPERIMENTS

We conduct numerical experiments to showcase the performance of the proposed Sinkhorn-type
algorithm and its acceleration techniques. Let Ur,c be the set of transport matrices from r to c. We
use the rounding algorithm in Altschuler et al. (2017) to obtain projection into Ur,c. The performance
is evaluated through the cost and constraint violation of the transport matrix one obtains through
rounding. Specifically, one first uses the dual variable (x, y, a) to form the intermediate matrix P .
Then, one uses the rounding algorithm to get a transport matrix, denoted Round(P,Ur,c). The cost
or score of the transport is evaluated as

Cost(P ) = C · Round(P,Ur,c), Score(P ) = (−C) · Round(P,Ur,c).

For constraint violation, we use the following metric:

Violation(P ) =

K∑
k=1

|min (Round(P,Ur,c) ·Dk, 0)|+
L∑

l=1

|Round(P,Ur,c) ·Dl+K |.

In Proposition 1 in Appendix G, we give an upper bound on Violation(P ) when one runs the greedy
version of Algorithm 1 in Theorem 2. Additional experiments can be found in Appendix A.

Random assignment problem under constraints In the first numerical test, we consider the
random assignment problem (Mézard and Parisi, 1987; Steele, 1997; Aldous, 2001) with additional
inequality and equality constraints. In this setting, we set the problem size of n = 500 and an
entropy regularization of η = 1200. The source and target vectors are c = r = 1

n1. We consider
three n × n matrices C,DI , DE , which respectively encode the cost, the inequality constraint, and
the equality constraint. We generate the entries of C,DI , DE by i.i.d. random variables following
the distribution Unif([0, 1]). We then set two threshold variables tI , tE and consider the following
optimal transport task:

min
P :P1=r, P⊤1=c

C · P,

subject to DI · P ≤ tI , DE · P = tE .
(13)

The conversion of equation 13 to the general form is done by taking D1 = (DI − tI1n×n)/n,D2 =
(DE − tE1n×n)/n. Subsequently, we perform the proposed Sinkhorn-type algorithm detailed in
Algorithm 1, as well as the accelerated Sinkhorn-Newton-Sparse algorithm in Algorithm 2 (see
Appendix C). As a benchmark, we provide numerical result for the APDAGD algorithm, whose
detail is covered in Appendix D. We set the threshold parameters to be tI = tE = 1

2 , and it has been
verified that the tested instances of equation 13 is feasible. We test the performance for Algorithm 1
and Algorithm 2. For Algorithm 2, we use N1 = 20 Sinkhorn steps for initialization.

In Figure 2, we plot the performance of Algorithm 1 and Algorithm 2. One can see that the proposed
Sinkhorn-type algorithm quickly converges to an approximately optimal solution that approximately
satisfies the additional constraints. Algorithm 2 achieves similar performance under a vastly smaller
number of iterations. In Figure 3, we show that both Algorithm 1 and Algorithm 2 can converge to
P ⋆
η in the total variation (TV) distance. Furthermore, Algorithm 2 provides solutions with machine

accuracy rapidly during the Newton stage. In contrast, while the initial performance of APDAGD
is good, the convergence is relatively slow in later stages. This result is similar to the APDAGD
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Figure 2: Random assignment problem. Plot of the proposed Sinkhorn-type algorithm in terms of
assignment cost and constraint violation.
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Figure 3: Random assignment problem. Plot of the proposed algorithms in terms of total variation
(TV) distance to the entropically optimal solution P ⋆

η .

algorithm in the unconstrained optimal transport setting, where likewise APDAGD could outperform
Sinkhorn, but the benefit is largely limited to initial stages (Dvurechensky et al., 2018).

At last, to test the effect of random seed in the performance, we repeat the experiment 100 times.
We plot the result in Figure 4, which shows that Algorithm 2 is quite robust in converging to P ⋆

η .
Further results are shown in Appendix B.

Pareto front for geometric transport problem under Euclidean distance and Manhattan dis-
tance In the second numerical example, we consider the trade-off between two transport costs of a
geometric nature. In this experiment, we run the task of Pareto front profiling between the Manhat-
tan distance cost c1(x, y) = ∥x−y∥1 and the Euclidean distance transport cost c2(x, y) = ∥x−y∥22.
As a byproduct, one obtains an interpolation between the Wasserstein W1 transport plan under the
l1 distance and the W2 transport plan under the l2 distance. Let C1, C2 be the cost matrix associated
with the Manhattan distance and the Euclidean distance (Villani et al., 2009). To do so, we consider
the following optimization task:

min
P :P1=r, P⊤1=c

C1 · P,

subject to C2 · P ≤ t2,
(14)

where t is set so that the feasibility set is not empty. We let tmin be the W2 distance between the
source and target vectors, and let tmax be the Euclidean transport cost of a transport plan which min-
imizes Manhattan distance transport cost. We remark that tmin and tmax can be obtained through
conventional OT algorithms. By tracing the value of t in [tmin, tmax] and solving equation 14 through
entropic regularization, one can effectively obtain a Pareto front between Euclidean distance trans-
port cost and Manhattan distance transport cost.

Similar to the previous case, Algorithm 2 is able to reach optimal solution P ⋆
η within machine

accuracy. Thus, we run multiple instances of Algorithm 2 for t ∈ [tmin, tmax] and η = 10, 100, 1000.
Then, we plot the Pareto front formed by P ⋆

η for every choice of η. The true Pareto front can be
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Figure 4: Random assignment problem. Aggregated performance of Algorithm 2 in terms of TV
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η in random realizations of the random assignment problem across 100 random seeds.
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obtained through running Algorithm 3 in Appendix C for ηtarget = 8 × 104, and convergence is
verified through checking the first order derivative reaches machine accuracy.

Similar to Cuturi (2013), we illustrate the procedure through optimal transport on the MNIST
dataset. We pick two images, which are converted to a vector of intensities on the 28× 28 pixel grid
and normalized to sum to 1. The entry corresponding to the (i1, i2)-th pixel is conceptualized as the
point (i1/28, i2/28) ∈ R2. In Figure 5, we see that the Pareto front formed by increasing η indeed
converges to the true Pareto front.

6 CONCLUSION

We introduce an entropic formulation of optimal transport with a combination of additional equality
and inequality constraints. We propose a Sinkhorn-type algorithm that has a novel constraint dual
variable update step. We provide preliminary results on the approximation error of the entropic for-
mulation and the convergence of the Sinkhorn-type algorithm. A future direction is a more refined
analysis on the convergence property of Algorithm 1 to the optimal entropic solution P ⋆

η . More-
over, we provide a detailed discussion on improving the proposed Sinkhorn-type algorithm with
acceleration techniques, especially Sinkhorn-Newton-Sparse and entropy regularization scheduling.
The proposed work enables one to obtain approximately optimal solutions in more complicated OT
instances efficiently. We contend that this work has the potential to be a vital tool in the field of opti-
mal transport under constraint and in attracting the use of constrained optimal transport in machine
learning. While the entropic barrier function for the constrained optimal transport has shown robust
performance, the use of other barrier functions such as the log barrier might lend the formulation
added flexibility and may enjoy good practical performance.
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A APPLICATION TO RANKING PROBLEMS UNDER CONSTRAINTS

In this numerical example, we consider cost matrices associated with evaluation metrics in ranking
problems (Liu et al., 2009; Manning, 2009). The problem of ranking can be naturally perceived as a
transport problem where the transport matrix is analogous to the permutations of items (Mena et al.,
2018). All linear additive ranking metrics, such as precision, recall, and discounted cumulative gain
(DCG), are linear functions of the permutation matrix. For example, the DCG metric measures the
quality of a ranking σ : [n] → [n]. For a relevance vector g ∈ Rn and a discount vector v ∈ Rn, a
DCG score is defined by the following:

DCGv,g(σ) =

n∑
i=1

gσ(i)vi = (gv⊤) · P

where P is the permutation matrix associated with σ. Thus, optimizing the DCG metric corresponds
to an OT instance through the relaxation of the permutation matrix within the Birkhoff polytope.

In practical problems such as e-commerce ranking, there are typically multiple relevance labels in
the form of different attributes of an item. Motivated by this, we consider the following constrained
OT problem:

max
P :P1=1, P⊤1=1

(gcv
⊤) · P,

subject to (gIv
⊤) · P ≥ tI ,

(gEv
⊤) · P = tE ,

(15)

where gc, gI , gE are three relevance vectors associated with the cost, the inequality constraint, and
the equality constraint, respectively. In accordance with the information retrieval literature, we
consider the discount vector v with vi = 1

log2(i+1) . The entries of gc, gI , gE are i.i.d. entries
simulated from the Rademacher distribution. In equation 15, we choose the two threshold variables
as tI = 1

nDI · 1n×n, tE = 1
nDE · 1n×n, so that the feasibility set is guaranteed to be non-empty.

In accordance with equation 13, we consider a problem size of n = 500 and an entropy regulariza-
tion of η = 1200

500 = 2.4. The performance is plotted in Figure 6 and Figure 7, which shows that
both Algorithm 1 and Algorithm 2 can quickly converge to an approximately optimal solution that
approximately satisfies the additional constraints.

B FURTHER DETAILS ON NUMERICAL EXPERIMENTS

Statistics of performance under random assignment To fully justify the numerical finding in
Section 5, we test the performance of the proposed algorithm under repeated sampling of random
assignment problem parameters. In particular, the problem parameter (C,DI , DE) is sampled by
taking each entry to be i.i.d. random variables following Unif([0, 1]), and so different random
seeds may lead to different performance. Thus, we use the problem setting in Section 5 and test
the proposed algorithms under 100 random realizations. Figure 8 plots the performance of the
algorithms in terms of total variation to the entropically optimal solution P ⋆

η . One can see that the
Sinkhorn-Newton-Sparse algorithm exhibits robust super-exponential convergence for all random
assignment instances.

Performance of random assignment under larger instances To show that the proposed algo-
rithms are scalable to larger problem size, we use the experiment setting for Section 5 for random
assignment problems. In particular, we take n = 5000, which is a much larger problem than the
setting of n = 500 due to the O(n2) scaling. We use the same parameter setting as in Section 5.
In Figure 9, we show that both the APDAGD algorithm continues to have relatively large constraint
violation throughout the optimization procedure. In Figure 10, we show that both the Sinkhorn-
type algorithm and the Sinkhorn-Newton-Sparse algorithm can converge to the entropically optimal
solution, but the APDAGD algorithm stays quite far from the optimal solution.
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Figure 6: Ranking under constraints. Plot of the proposed Sinkhorn-type algorithm in terms of
DCG score and constraint violation. Specifically, constraint violation is defined by Violation(P ) =
|min(0, DI · Round(P,Ur,c))|+ |DE · Round(P,Ur,c)|.

0 50 100 150 200
Iterations

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

TV
 d

ist
an

ce

Convergence in iterations

0 2 4 6 8 10
Seconds

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100
Convergence in wall time

Figure 7: Ranking under constraints. Plot of the proposed algorithms in terms of TV distance to P ⋆
η .

0 5 10 15 20 25 30 35 40
Iterations

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

TV
 d

ist
an

ce

Convergence in iterations

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Seconds

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100
Convergence in wall time

Sinkhorn-Newton-Sparse SNS terminates

Figure 8: Plot of the proposed Sinkhorn-Newton-Sparse algorithm in terms of TV distance to P ⋆
η in

100 realizations.

C PRACTICAL IMPLEMENTATION OF ACCELERATED SINKHORN-TYPE
ALGORITHM UNDER CONSTRAINT

In this section, we detail the procedure to combine Algorithm 1 with entropy regularization schedul-
ing and Sinkhorn-Newton-Sparse (SNS). As the detail of entropic regularization scheduling is pre-
sented in Section 3, we shall give implementation details of SNS in the constrained case. Similar to
the construction in Tang et al. (2024), for a matrix M ∈ Rn×n

≥0 , we use Sparisfy(M,ρ) to denote
entry-wise truncation with a threshold ρ. For M̃ := Sparisfy(M,ρ), one has

M̃ij =

{
Mij if Mij ≥ ρ,

0 otherwise.
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Figure 9: Random assignment problem for n = 5000. Plot of the proposed Sinkhorn-type algorithm
in terms of the assignment cost and constraint violation.
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Let P be the intermediate transport matrix formed by the current dual variable (x, y, a). One can
write down the Hessian term∇2f as follows:

∇2f(x, y, a) = −η

diag(P1) P ∇x∇af
P⊤ diag(P⊤1) ∇y∇af
∇a∇xf ∇a∇yf ∇2

af

 . (16)

As we assume K + L = O(1) in this work, the terms such as ∇xy∇af,∇2
af can be kept without

posing significant challenges to the Newton step, which allows us to use the approximation below:

∇2f(x, y, a) ≈ H = −η

 diag(P1) Sparisfy(P, ρ) ∇x∇af
Sparisfy(P⊤, ρ) diag(P⊤1) ∇y∇af
∇a∇xf ∇a∇yf ∇2

af

 . (17)

The value of ρ is a tunable parameter, and one sets ρ so that Sparisfy(P, ρ) contains only O(n)
nonzero entries. As a result, applying H−1 to a vector can be done with a O((n+K+L)2) = O(n2)
complexity through the conjugate-gradient algorithm (Golub and Van Loan, 2013). Additionally, to
ensure stability in the degenerate direction (δx, δy, δa) = v := (1n,−1n,0K+L), we in practice
use the following modified version of Lyapunov function:

f̃(x, y, a) = f(x, y, a)− 1

2
(
∑
i

xi −
∑
j

yj)
2.

Same as Tang et al. (2024), one can see that the maximizer of f̃ is also a maximizer of f . The
final Sinkhorn-Newton-Sparse algorithm used is in Algorithm 2, where we include a Sinkhorn stage
which uses Algorithm 1 as initialization, and a subsequent Newton stage which uses sparse Newton
iteration to accelerate convergence.

The combination of entropy regularization scheduling and SNS is described in Algorithm 3. We re-
mark that the iteration count N1,i, N2,i within Algorithm 3 are typically set to be much smaller than
N1, N2 in Algorithm 2, which is possible because the optimization task at an entropy regularization
parameter ηi is initialized by the dual variables obtained for regularization parameter ηi−1 = ηi/2.

As a special case, Algorithm 3 also provides substantial acceleration to the unconstrained entropic
OT problem (Cuturi, 2013).

D ACCELERATED FIRST-ORDER METHOD FOR CONSTRAINED OT

In this section, we detail the implementation for the adaptive primal-dual accelerated gradient de-
scent (APDAGD) method introduced in Dvurechensky et al. (2018). In particular, the APDAGD
algorithm already generalizes to the setting of constrained optimal transport by simply using the
primal-dual form in equation 6. Therefore, we will only describe the algorithm detail of APDAGD.
A future direction is to analyze the APDAGD algorithm for constrained optimal transport and see
if one can likewise obtain complexity guarantee similar to Lin et al. (2019). For simplicity, we do
not use the adaptive termination condition, and instead we simply run the APDAGD condition for a
fixed number of iterations.

Algorithm summary We summarize the procedure in Algorithm 4, which implements the
APDAGD algorithm using the notation of this work. The term f is the Lyapunov dual potential
defined in equation 7.

E PARTIAL OPTIMAL TRANSPORT UNDER ENTROPIC REGULARIZATION

Partial optimal transport (POT) considers the following linear programming problem:

min
P :P1≤r,P⊤1≤c,1⊤P1=t,P≥0

C · P, (18)

which has found great application in machine learning and general engineering applications (Sarlin
et al., 2020; Chapel et al., 2020; Bonneel and Coeurjolly, 2019; Liu et al., 2020; Kawano et al.,
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Algorithm 2 Sinkhorn-Newton-Sparse (SNS) for OT under linear constraint

Require: f̃ , xinit ∈ Rn, yinit ∈ Rn, ainit ∈ RK+L, N1, N2, ρ, i = 0
1: # Sinkhorn stage

2: v ←

[
1n

−1n

0K+L

]
▷ Initialize degenerate direction

3: (x, y, a)← (xinit, yinit, ainit) ▷ Initialize dual variable
4: while i < N do
5: i← i+ 1
6: # Row&Column scaling step
7: P ← exp

(
η(−C +

∑
m amDm + x1⊤ + 1y⊤)− 1

)
8: x← x+ (log(r)− log(P1)) /η
9: P ← exp

(
η(−C +

∑
m amDm + x1⊤ + 1y⊤)− 1

)
10: y ← y +

(
log(c)− log(P⊤1)

)
/η

11: # Constraint dual update step
12: a, t← argmaxã,t̃ f(x+ t̃1, y, ã)
13: x← x+ t1
14: end while
15: # Newton stage
16: z ← Projv⊥((x, y, a)) ▷ Project into non-degenerate direction of f
17: while i < N1 +N2 do
18: P ← exp

(
η(−C +

∑
m amDm + x1⊤ + 1y⊤)− 1

)
19: H ← −η

 diag(P1) Sparisfy(P, ρ) ∇x∇af
Sparisfy(P⊤, ρ) diag(P⊤1) ∇y∇af
∇a∇xf ∇a∇yf ∇2

af

 ▷ Sparse approximation of∇2f

with threshold ρ.
20: H ← H − vv⊤ ▷ Add regularization term corresponding to f̃ .
21: ∆z ← Conjugate Gradient(H,−∇f̃(z)) ▷ Solve sparse linear system
22: α← Line search(f̃ , z,∆z) ▷ Line search for step size
23: z ← z + α∆z
24: i← i+ 1
25: end while
26: Output dual variables (x, y, a)← z.

Algorithm 3 Sinkhorn-Newton-Sparse with entropy regularization scheduling for OT under linear
constraint
Require: xinit ∈ Rn, yinit ∈ Rn, ainit ∈ RK+L, ρ

Require: ηtarget, Nη = ⌈log2(ηtarget)⌉, (N1,i)
Nη

i=1, (N2,i)
Nη

i=1, i = 1
1: (x, y, a)← (xinit, yinit, ainit) ▷ Initialize dual variable
2: η = 1 ▷ Initialize entropy regularization
3: while i ≤ Nη do
4: Run Algorithm 2 with entropy regularization set to η and initialized dual variables set to

(x, y, a), and N1, N2 set to N1,i, N2,i.
5: Save the output of previous step to (x, y, a).
6: i← i+ 1
7: η = min(2η, ηtarget) ▷ Double entropy regularization term
8: end while
9: Run the Newton stage of Algorithm 2 at η = ηtarget until the solution reaches convergence.

10: Output dual variables (x, y, a).
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Algorithm 4 Adaptive primal-dual accelerated gradient descent algorithm (APDAGD)

Require: f,N, k = 0, z0 = ζ0 = λ0 = 02n+m

1: α0 ← 0, β0 ← 0, L0 = 1,
2: while k < N do
3: Mk = Lk/2
4: while True do
5: Mk = 2Mk

6: αk+1 = 1+
√
1+4Mkβk

2Mk

7: βk+1 = βk + αk+1

8: τk = αk+1

βk+1

9: λk+1 ← τkζk + (1− τk)zk
10: ζk+1 ← ζk + αk+1∇f(λk+1)
11: zk+1 ← τkζk+1 + (1− τk)zk
12: if f(zk+1) ≥ f(λk+1) + ⟨∇f(λk+1), zk+1 − λk+1⟩ − Mk

2 ∥zk+1 − λk+1∥22 then
13: Break
14: end if
15: end while
16: Lk+1 ←Mk/2k ← k + 1
17: end while
18: Output dual variables (x, y, a)← zN−1.

2022; Wang et al., 2022; Nietert et al., 2023). In particular, the row and column inequality constraint
makes the POT formulation different from the constrained optimal transport setting formulated in
equation 4.

Variational formulation of entropically regularized POT Similar to the main setting of con-
strained optimal transport, the POT task in equation 18 also admits an entropic regularization fol-
lowing the entropic LP formulation (Fang, 1992), and one writes down the primal formulation as
follows:

min
P,p,q:P1+p=r,P⊤1+q=c,1⊤P1=t

C · P +
1

η
H(P, p, q), (19)

where the entropy term is defined by

H(P, p, q) =
∑
ij

pij log(pij) +
∑
i

pi log pi +
∑
j

qj log qj .

We designate x, y ∈ Rn as the symbol for dual variables corresponding to the row and column
constraint, and we designate w ∈ R as the symbol for the dual variable for the total sum constraint.
By performing similar derivation with Lagrangian dual variable and minimax theorem as in Section
2, one obtains the following dual objective for POT:

fPOT(x, y, w) =−
1

η

∑
ij

exp
(
η(−Cij + w + xi + yj)− 1

)
+ tw

+
∑
i

xiri +
∑
j

yjcj −
1

η

∑
i

exp(ηxi − 1)− 1

η

∑
j

exp(ηyj − 1),

(20)

and we remark that equation 20 is equivalent to the dual formulation of the entropically regularized
POT as in Nguyen et al. (2024). In particular, let P = [exp (η(−Cij + w + xi + yj)− 1)]ij denote
the intermediate transport plan variable formed by the dual variable (x, y, w), and likewise we use
p = [exp(ηxi − 1)]i , q = [exp(ηyj − 1)]j to denote the respective row and column slack variables
formed by the dual variable. By simple calculation, one has

∂xfPOT = r − P1− p, ∂yfPOT = c− P⊤1− q, ∂wfPOT = t− 1⊤P1,

which in particular verifies that stationarity of fPOT implies the P variable gives a feasible POT
solution.
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Sparse Newton iterations for POT In this section, we propose to use sparse Newton iterations
(Tang et al., 2024) to form an accelerated algorithm for the POT dual objective. In particular, one
can calculate the Hessian and obtain

∇2fPOT = −η

diag(P1+ p) P P1
P⊤ diag(P⊤1+ q) P⊤1

(P1)
⊤ (

P⊤1
)⊤

1⊤P1

 ,

for which one can see that ∇2fPOT admits a sparse approximation as long as P admits a sparse
approximation. Assuming uniqueness, the optimal solution P ⋆ to equation 18 has only O(n) entries
due to the fundamental theorem of linear programming. Moreover, the entropically optimal regular-
ized solution P ⋆

η to equation 19 is exponentially close to P ⋆ following the analysis in Weed (2018).
Therefore, it is reasonable to assume that P admits a sparse approximation and one can apply a
sparse approximation of ∇2fPOT for second-order acceleration. Notably, the application of sparse
Newton iteration for the POT task calls for the design of a warm initialization procedure, and one
can directly apply the APDAGD algorithm in Nguyen et al. (2024). As the sparse approximation
only occurs for the preconditioner of the optimization procedure, the sparsification error doesn’t
affect convergence to ground truth as long as the error is mild.

We remark that one can also use entropy regularization scheduling (Chen et al., 2023) to gradually
increase the entropy regularization parameter to η, which would also achieve warm initialization.

Algorithm summary To summarize, we propose a two-stage algorithm for the entropically reg-
ularized POT task in equation 19. The two-stage approach is such that the first stage uses the
APDAGD algorithm for fixed number of iterations, and the second stage uses sparse Newton itera-
tions to reach convergence. The algorithm block is in Algorithm 5. We remark that the APDAGD
procedure for POT can be found in Nguyen et al. (2024), and one can also use APDAGD by running
Algorithm 4 in Appendix D with fPOT in place of f .

Algorithm 5 APDAGD followed by sparse Newton iteration for POT

Require: fPOT, N1, N2, ρ, i = 0
1: # APDAGD stage
2: Run N1 iterations of APDAGD and output the dual variable (x, y, w) as initialization
3: # Newton stage
4: while i < N2 do
5: (x, y, w)← z
6: P ← exp

(
η(−C + x1⊤ + 1y⊤ + w)− 1

)
7: p← exp (ηx− 1), q ← exp (ηy − 1)

8: H ← −η

 diag(P1+ p) Sparisfy(P, ρ) P1
Sparisfy(P⊤, ρ) diag(P⊤1+ q) P⊤1

(P1)
⊤ (

P⊤1
)⊤

1⊤P1

 ▷ Sparse Hessian approximation

with threshold ρ.
9: ∆z ← Conjugate Gradient(H,−∇fPOT(z)) ▷ Solve sparse linear system

10: α← Line search(f̃ , z,∆z) ▷ Line search for step size
11: z ← z + α∆z
12: i← i+ 1
13: end while
14: Output dual variables (x, y, w)← z.

Numerical experiment for POT We test the performance of the proposed algorithm. As a com-
parison, we use the APDAGD algorithm in Nguyen et al. (2024) as a benchmark. The metric used is
the optimality gap of the dual objective fPOT. For a fair comparison, we choose the same entropic
parameter for APDAGD and for the sparse Newton algorithm, and we run the APDAGD algorithm
for a fixed number of iterations.

In the numerical test, we consider the random assignment problem (Mézard and Parisi, 1987; Steele,
1997; Aldous, 2001). The cost matrix C = [cij ]

n
ij=1 ∈ Rn×n with n = 500 is generated by

cij ∼ Unif([0, 1]), and we take t = 1/2 and let r = c = 0.51
n 1. We use N1 = 20 for Algorithm
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Figure 11: Performance comparison between Algorithm 5 and the APDAGD algorithm.
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Figure 12: Histogram for the number of sparse Newton iterations to reach machine accuracy for 100
independent sampling of random linear assignment tasks.

5 and we sparsify the Hessian so that one keeps only 2/n fraction of the entries. As seen in Figure
11, the sparse Newton iteration is able to converge to the optimal solution after a few iterations.
As the cost matrix is generated randomly, we repeat the same experiment 100 times, and Figure 12
shows that the super-exponential convergence is robust across iterations. In particular, the constraint
violation for SNS is with machine accuracy after a few steps of iterations, which is why one does
not necessarily need to use the rounding step in Nguyen et al. (2024), but larger values of η might
necessitate the use of projection to ensure constraint satisfaction.

F PROOF OF THEOREM 1

Definition 1. Let S be the constraint set defined in equation 4. Define P as the polyhedron formed
by the transport matrix, i.e.

P := {P | P1 = r, P⊤1 = c, P ≥ 0, P ∈ S}.
The symbol V denotes the set of vertices of P . The symbol O stands for the set of optimal vertex
solutions, i.e.

O := argmin
P∈V

C · P. (21)

The symbol ∆ denotes the vertex optimality gap

∆ = min
Q∈V−O

Q · C − min
P∈O

P · C.

We can now finish the proof.

Proof. This convergence result is mainly due to the application of Corollary 9 in Weed (2018) to
this case. We define another polyhedron Q as follows:

Q := {(P, s) | P ∈ P,∀k ∈ [K], sk = Dk · P}.
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Let P ⋆
η be as defined in the statement, and for k = 1, . . . ,K we define s⋆η;k = Dk · P ⋆

η . We use R1

and RH to denote the l1 and entropic radius of Q in the sense defined in Weed (2018). It is easy to
see that for R1 one has

1 ≤ R1 = 1 +max
P∈P

K∑
k=1

P ·Dk ≤ 1 +K,

where the second inequality uses Holder’s inequality and the assumption that ∥Dk∥∞ ≤ 1

For RH , one similarly has

RH = max
(s,P ),(s′,P ′)∈Q

∑
ij

(
pij log(pij)− p′ij log(p

′
ij)
)
+
∑
k

(sk log(sk)− s′k log(s
′
k))

≤

 max
P,P ′∈P

∑
ij

(
pij log(pij)− p′ij log(p

′
ij)
)+

(
max

P,P ′∈P

∑
k

(P ·Dk) log(P ·Dk)− (P ′ ·Dk) log(P
′ ·Dk)

)
≤ log(n2) +K/e,

where the second equality holds because H(P ) ∈ [0, log (n2)] and P ·Dk log(P ·Dk) ∈ [−1/e, 0].

For η ≥ (K+1)(1+ln(4n2(K+1))
∆ > R1+RH

∆ , one has

∥P ⋆ − P ⋆
η ∥1 ≤∥(P ⋆, s⋆)− (P ⋆

η , s
⋆
η)∥1

≤2R1 exp

(
−η ∆

R1
+ 1 +

RH

R1

)
=2R1 exp

(
RH − η∆

R1
+ 1

)
≤2(K + 1) exp

(
RH − η∆

K + 1
+ 1

)
=2(K + 1) exp

(
2 log(n) +K/e− η∆

K + 1
+ 1

)
≤8n

2
K+1 (K + 1) exp

(
−η ∆

K + 1

)
,

where the third inequality is because RH−η∆ ≤ 0, and the last inequality holds because exp( K/e
K+1+

1) ≤ exp(1 + 1/e) ≤ 4.

G CHARACTERIZATION OF LYAPUNOV FUNCTION UNDER SINKHORN STEPS

Before proving Theorem 2, we first prove the following theorem which characterizes the improve-
ment of the Lyapunov function from one step of the proposed algorithm:

Theorem 3. Let (x, y, a) be the current dual variable which has undergone at least one update step,
and let P be the associated transport matrix, i.e.,

P = exp

(
η(−C +

∑
m

amDm + x1⊤ + 1y⊤)− 1

)
.

For the x update step satisfying x′ = argmaxx̃ f(x̃, y, a), one has

f(x′, y, a)− f(x, y, a) = KL (r||P1) , (22)

where KL (·||·) stands for the Kullback-Leibler divergence.

For the y update step satisfying y′ = argmaxỹ f(x, ỹ, a), one has

f(x, y′, a)− f(x, y, a) = KL
(
c||P⊤1

)
. (23)
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Consider the a update step satisfying (a′, t′) = argmaxã,t̃ f(x+ t̃1, y, ã). For m = 1, . . . ,K +L,
define dm as the optimality condition corresponding to am, i.e.

dk := exp(−ηak − 1)− P ·Dk, k = 1, . . . ,K

dl+K := −P ·Dl+K , l = 1, . . . , L.
(24)

Then, for cd := maxm∈[K+L]∥Dm∥∞, one has

f(x+ t′1, y, a′)− f(x, y, a)

≥
K∑

k=1

|dk|min

(
1

8η
,

|dk|
8ηcd + 4η(K + L)c2d

)

+

L∑
l=1

d2l+K

2η(K + L)c2d
.

(25)

For legibility, in what follows, we introduce the symbols x̂, ŷ, â used exclusively for dummy vari-
ables.

Proof. For the reader’s convenience, we list the explicit form of the Lyapunov function f here:

f(x̂, ŷ, â) = −1

η

∑
ij

exp

(
η(−Cij +

L+K∑
m=1

âm (Dm)ij + x̂i + ŷj)− 1

)
+
∑
i

x̂iri+
∑
j

ŷjcj−
1

η

K∑
k=1

exp(−ηâk − 1).

First we prove
∑

ij Pij = 1. By assumption, the dual variable (x, y, a) has gone through at least
one update step. If the x update step has been last performed, then one has∇xf = 0, which implies∑

ij Pij =
∑

i ri = 1. If the y update step has been last performed, then one likewise has∇yf = 0

and
∑

ij Pij =
∑

j cj = 1. If the a update step has been performed, then the optimality in the t

variable as shown in equation 9 implies
∑

ij Pij = 1. Thus, one has
∑

ij Pij = 1 in all the three
possible cases, as claimed.

The proof for equation 22 and equation 23 then largely follows from Lemma 2 of (Altschuler et al.,
2017). Suppose that an x update step is performed and P ′ is the matrix formed by the dual variable
(x′, y, a). Due to the optimality of the x′ variable, one has

∑
ij P

′
ij = 1. Thus one has

f(x′, y, a)−f(x, y, a) =
1

η
(
∑
ij

Pij−
∑
ij

P ′
ij)+

∑
i

ri(x
′
i−xi) =

∑
i

ri(x
′
i−xi) = KL (r||P1) ,

where the last equality is due to ri(x
′
i − xi) = ri log

ri
(P1)i

. The proof for equation 23 follows
likewise:

f(x, y′, a)−f(x, y, a) = 1

η
(
∑
ij

Pij−
∑
ij

P ′
ij)+

∑
j

cj(y
′
j−yj) =

∑
j

cj(y
′
j−yj) = KL

(
c||P⊤1

)
.

We proceed with the proof for equation 25. First, we introduce an augmented Lyapunov function by
maximizing over the t variable, which provides a smoother optimization landscape for subsequent
analysis. Define the augmented Lyapunov function faug as

faug(x̂, ŷ, â) := max
t̃

f(x̂+ t̃1, ŷ, â).

As
∑

ij Pij = 1 implies optimality over the t variable by equation 9, one has f(x, y, a) =

faug(x, y, a) for the dual variable (x, y, a). After the augmented a update step, one has by definition
that f(x + t′1, y, a′) = faug(x, y, a

′). Thus, one can simplify the left-hand side of equation 25 by
the following equation:
f(x+ t′1, y, a′)− f(x, y, a) = faug(x, y, a

′)− faug(x, y, a) = max
ã

faug(x, y, ã)− faug(x, y, a).

We then derive the formula for faug. By direct calculation, one has
f(x̂+ t1, ŷ, â)

=− 1

η

∑
ij

exp

(
η(−Cij +

L+K∑
m=1

âm (Dm)ij + x̂i + ŷj + t)− 1

)
+
∑
i

x̂iri +
∑
j

ŷjcj + t− 1

η

K∑
k=1

exp(−ηâk − 1).
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Let t⋆ = argmaxt̃ f(x̂+ t̃1, ŷ, â). Under the optimality condition ∂tf(x̂+ t⋆1, ŷ, â) = 0, one has

∑
ij

exp

(
η(−Cij +

L+K∑
m=1

âm (Dm)ij + x̂i + ŷj + t⋆)− 1

)
= 1.

Taking log over the above equation, one has the following result for t⋆:

1− ηt⋆ = LSE

(
η(−C +

∑
m

âmDm + x̂1⊤ + 1ŷ⊤)

)
, (26)

where for a matrix M , the function LSE defines the log-sum-exponential function LSE (M) =

log
(∑

ij exp (mij)
)

. Thus one has

faug(x̂, ŷ, â) =f(x̂+ t⋆1, ŷ, â)

=− 1

η
+
∑
i

x̂iri +
∑
j

ŷjcj + t⋆ − 1

η

K∑
k=1

exp(−ηâk − 1)

=− 1

η
LSE

(
η(−C +

∑
m

âmDm + x̂1⊤ + 1ŷ⊤)

)
+
∑
i

x̂iri +
∑
j

ŷjcj −
1

η

K∑
k=1

exp(−ηâk − 1).

The rest of the proof follows from a perturbational argument on faug around the point
(x, y, a), and thus we provide a formula for the derivatives of faug. Let P̂ =
exp

(
η(−C +

∑
m âmDm + x̂1⊤ + 1ŷ⊤)− 1

)
be the transport plan formed by the dual variable

(x̂, ŷ, â). For k = 1, . . . ,K, one has

∂ak
faug(x̂, ŷ, â) = exp(−ηâk − 1)−Dk ·

P̂∑
ij P̂ij

,

and likewise for l = 1, . . . , L one has

∂al+K
faug(x̂, ŷ, â) = −Dl+K ·

P̂∑
ij P̂ij

.

In terms of the second-order information, by direct calculation, one has

∂am
∂am′ faug(x̂, ŷ, â) = −η(Dm ⊙Dm′) · P̂∑

ij P̂ij

+ η

(
P̂ ·Dm

)(
P̂ ·Dm′

)
(∑

ij P̂ij

)2 + smm′ , (27)

where ⊙ is the Hadamard element-wise product, and smm′ is zero except when m = m′ = k for
k = 1, . . . ,K, in which case one has smm′ = −η exp(−ηâk − 1).

We then bound the spectrum of the Hessian matrix. Define

rmm′ = −η(Dm ⊙Dm′) · P̂∑
ij P̂ij

+ η

(
P̂ ·Dm

)(
P̂ ·Dm′

)
(∑

ij P̂ij

)2 , (28)

and R = [rmm′ ]K+L
m,m′=1. Let (I, J) be a random vector supported on [n] × [n], and moreover

let (I, J) follow the multinomial distribution with P [(I, J) = (i, j)] =
P̂ij∑
ij P̂ij

. Moreover, for

m = 1, . . . ,K + L, let Ym be the random variable defined by Ym = (Dm)IJ . Then, one can
directly verify that R = −ηCov (Y1, . . . , YK+L), and therefore R is a negative semi-definite matrix.
Let S = [smm′ ]K+L

m,m′=1. The matrix S is a diagonal matrix with non-positive entries and therefore
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is likewise negative semi-definite. By the trace bound one has

∥R∥2 ≤−
K+L∑
m=1

rmm

=

K+L∑
m=1

η

(Dm ⊙Dm) · P̂∑
ij P̂ij

−

(
P̂ ·Dm∑

ij P̂ij

)2


≤
K+L∑
m=1

η

(
(Dm ⊙Dm) · P̂∑

ij P̂ij

)
≤η(K + L)c2d,

and therefore one has the spectral bound S − η(K + L)c2dI ⪯ ∇2
afaug ⪯ S.

For simplicity, for the current variable (x, y, a), define a function g by g(â) = faug(x, y, â). By
Taylor’s remainder theorem, for any δa, one has

faug(x, y, a+ δa)− faug(x, y, a) = g(a+ δa)− g(a) = δa⊤∇ag(a) +
1

2
δa⊤∇2

ag(a+ ξδa)δa,

where ξ ∈ [0, 1] is an unknown quantity. Thus, the spectral bound on∇2
afaug leads to the following

inequality,

faug(x, y, a+ δa)− faug(x, y, a)

≥δa⊤∇ag(a)−
1

2
η(K + L)c2d∥δa∥22 −

1

2

K∑
k=1

η exp(−ηak − 1) exp(−ηξδak)δa2k

=

K+L∑
m=1

(
δamdm −

1

2
η(K + L)c2dδa

2
m

)
− 1

2

K∑
k=1

η exp(−ηak − 1) exp(−ηξδak)δa2k

(29)

where dm = ∂am
g(a) is due to

∑
ij Pij = 1.

Importantly, the lower bound in equation 29 is fully separable in terms of the δam terms. In what
follows, we use equation 29 to give a construction for δa, which would then give a lower bound
for the improvement in the Lyapunov function in the a update step. For l = 1, . . . , L, one sets
δal+K = dl+K

η(K+L)c2d
. One then has

δal+Kdl+K −
1

2
η(K + L)c2dδa

2
l+K =

d2l+K

2η(K + L)c2d
.

For k = 1, . . .K, one sets

δak = max

(
− log(2)

η
,

dk
η (2 exp(−ηak − 1) + (K + L)c2d)

)
. (30)

We shall prove that the construction of δak leads to the following bound:

δakdk −
1

2
η(K + L)c2dδa

2
k −

1

2
η exp(−ηak − 1) exp(−ηξδak)δa2k ≥ |dk|min

(
1

8η
,

|dk|
8ηcd + 4η(K + L)c2d

)
.

By construction, one has exp(−ηξδak) ≤ 2, and thus

−1

2
η exp(−ηak − 1) exp(−ηξδak)δa2k ≥ −

1

2
(2η exp(−ηak − 1)δ) a2k.

If − log(2)
η ≥ dk

η(2 exp(−ηak−1)+(K+L)c2d)
, then one has δak = − log(2)

η ≤ 0 and dk ≤ 0. By

equation 30 one has
δakη

(
2 exp(−ηak − 1) + (K + L)c2d

)
≥ dk,
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and thus multiplying both sides by − 1
2δak, the inequality becomes

−1

2
η
(
2 exp(−ηak − 1) + (K + L)c2d

)
δa2k ≥ −

1

2
δakdk.

Thus

δakdk −
1

2
η(K + L)c2dδa

2
k −

1

2
η exp(−ηak − 1) exp(−ηξδak)δa2k

≥δakdk −
1

2
η
(
2 exp(−ηak − 1) + (K + L)c2d

)
δa2k

≥δakdk −
1

2
δakdk

=
1

2
δakdk

=|dk|
log(2)

2η
,

which in particular implies the claimed bound as log(2)
2 ≥ 1

8 .

Otherwise, if− log(2)
η ≤ dk

η(2 exp(−ηak−1)+(K+L)c2d)
, then one has δak = dk

η(2 exp(−ηak−1)+(K+L)c2d)
by construction. Then, one has

δakdk −
1

2
η(K + L)c2dδa

2
k −

1

2
η exp(−ηak − 1) exp(−ηξδak)δa2k

≥δakdk −
1

2
η
(
2 exp(−ηak − 1) + (K + L)c2d

)
δa2k

=
d2k

2η (2 exp(−ηak − 1) + (K + L)c2d)

=
d2k

4η exp(−ηak − 1) + 2η(K + L)c2d

≥|dk|
|dk|

4η|dk|+ 4ηcd + 2η(K + L)c2d

≥|dk|min

(
1

8η
,

|dk|
8ηcd + 4η(K + L)c2d

)
,

where the third inequality is obtained by applying the mediant inequality, and the second inequality
is because

exp(−ηak − 1) ≤ |exp(−ηak − 1)− P ·Dk|+ |P ·Dk| = |dk|+ |P ·Dk| ≤ |dk|+ cd.

The proof for equation 25 is by organizing the arranged results:
f(x+ t′1, y, a′)− f(x, y, a)

=faug(x, y, a
′)− faug(x, y, a)

=max
ã

faug(x, y, ã)− faug(x, y, a)

≥faug(x, y, a+ δa)− faug(x, y, a)

=g(a+ δa)− g(a)

=δa⊤∇ag(a) +
1

2
δa⊤∇2

ag(a+ ξδa)δa

≥
K∑

k=1

(
δakdk −

1

2
η(K + L)c2dδa

2
k −

1

2
η exp(−ηak − 1) exp(−ηξδak)δa2k

)

+

L∑
l=1

(
δal+Kdl+K −

1

2
η(K + L)c2dδa

2
l+K

)

≥
K∑

k=1

|dk|min

(
1

8η
,

|dk|
8ηcd + 4η(K + L)c2d

)
+

L∑
l=1

d2l+K

2η(K + L)c2d
.
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Remark 1. In the proof for Theorem 3, it might be advantageous to use an alternative spectral bound
when the matrices Dm have special sparsity structures. In such special cases, it is better to use the
Gershgorin circle theorem instead of the trace bound in the numerical treatment for the a step.

One defines

r1;mm′ = −η(Dm ⊙Dm′) · P̂∑
ij P̂ij

,

r2;mm′ = η

(
P̂ ·Dm

)(
P̂ ·Dm′

)
(∑

ij P̂ij

)2 ,

(31)

and let R1 = [r1;mm′ ]K+L
m,m′=1, R2 = [r2;mm′ ]K+L

m,m′=1. Let Ym for m = 1, . . . ,K + L be as in the
proof of Theorem 3. One can directly verify that R2 is positive semi-definite as it is the outer product
of the vector

√
ηE [Y1, . . . , YK+L] with itself, and thus S + R1 ⪯ ∇2

afaug. By the Gershgorin
circle theorem, it follows that ∥R1∥2 is bounded by the matrix 1-norm of R1. In particular, define
E ∈ Rn×n as the sum of the constraint matrices up to absolute value, i.e.

(E)ij =

K+L∑
m=1

|(Dm)ij |.

Then, one has

∥R1∥2 ≤max
m

K+L∑
m′=1

|r1;mm′ |

=ηmax
m

K+L∑
m′=1

∣∣∣∣∣(Dm ⊙Dm′) · P̂∑
ij P̂ij

∣∣∣∣∣
=ηmax

m

K+L∑
m′=1

∣∣∣∣∣
(

P̂∑
ij P̂ij

⊙Dm′

)
·Dm

∣∣∣∣∣
≤ηcd

K+L∑
m′=1

∥ P̂∑
ij P̂ij

⊙Dm′∥1

=ηcd

K+L∑
m′=1

∣∣∣∣∣ P̂∑
ij P̂ij

·Dm′

∣∣∣∣∣
≤ηcd

(
P̂∑
ij P̂ij

· E

)
≤ηcd∥E∥∞,

where the second and third equality is by the property of the Hadamard product, the second and
fourth inequality is by Holder’s inequality, and the third inequality is by the definition of E. We
define ce = ∥E∥∞, which gives one the following bound in contrast to equation 29:

faug(x, y, a+ δa)− faug(x, y, a)

≥δa⊤∇ag(a)−
1

2
ηcecd∥δa∥22 −

1

2

K∑
k=1

η exp(−ηak − 1) exp(−ηξδak)δa2k

=

K+L∑
m=1

(
δamdm −

1

2
ηcecdδa

2
m

)
− 1

2

K∑
k=1

η exp(−ηak − 1) exp(−ηξδak)δa2k.

(32)

Using equation 32, one can derive a tighter bound in the conclusion part of Theorem 3 by applying
a similar argument in the main statement. Overall, the bound in equation 32 is more advantageous
when ce is significantly smaller than (K +L)cd, and indeed one can see that ce ≤ (K +L)cd. One
situation in which an advantage exists is when the constraints Dm are themselves sparse, which is
the case in capacity constrained OT.
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We now prove Theorem 2.

Proof. For any iteration index u, let Qu
x, Q

u
y , Q

u
a be the quantity as defined by the Theorem for Pu

in place of P . Similarly we define dum by equation 24 with Pu in place of P . One then has by
construction that

f(xu+1, yu+1, au+1)− f(xu, yu, au) ≥ 1

3

(
Qu

x +Qu
y +Qu

a

)
. (33)

In particular, for any k = 1, . . . ,K, one has

f(xu+1, yu+1, au+1)− f(xu, yu, au) ≥ 1

3
|duk |min

(
1

8η
,

|duk |
8ηcd + 4η(K + L)c2d

)
.

Suppose that there are NI iterations for which 1
8η ≤

|du
k |

8ηcd+4η(K+L)c2d
for some k = 1, . . . ,K. For

such u, one has |duk | = Ω(1) and therefore one has f(xu+1, yu+1, au+1) − f(xu, yu, au) = Ω(1).
Thus NI = O(cg), and therefore for k = 1, . . . ,K, one has 1

8η ≥
|du

k |
8ηcd+4η(K+L)c2d

except for

O(cg) iterations. Let C = 1
8ηcd+4η(K+L)c2d

, and then the following condition holds except for NI

iterations:

f(xu+1, yu+1, au+1)− f(xu, yu, au) ≥ 1

3

(
KL (Pu1||r) + KL

(
P⊤
u 1||c

)
+ C

K+L∑
m=1

(dum)2

)
.

(34)
Let NII be the number of iterations for which the following condition is satisfied

∥∇f∥1 = ∥Pu1− r∥1 + ∥P⊤
u 1− c∥1 +

K+L∑
m=1

|dm| > ϵ. (35)

Then, if u is among the said NII iterations, one has

ϵ2 <

(
∥Pu1− r∥1 + ∥P⊤

u 1− c∥1 +
K+L∑
m=1

|dum|

)2

≤(K + L+ 2)2

(
∥Pu1− r∥21 + ∥P⊤

u 1− c∥21 +
K+L∑
m=1

(dum)2

)

≤(K + L+ 2)2

(
2KL (Pu1||r) + 2KL

(
P⊤
u 1||c

)
+

K+L∑
m=1

(dum)2

)
,

where the second inequality is by Cauchy-Schwartz, the third inequality is equation 24, and the third
inequality is by Pinsker’s inequality. Thus, for at least NII − NI iterations, both equation 34 and
equation 35 are satisfied, under which there exists a constant C ′ for which one has

ϵ2 ≤(K + L+ 2)2

(
2KL (Pu1||r) + 2KL

(
P⊤
u 1||c

)
+

K+L∑
m=1

(dum)2

)
≤C ′ (f(xu+1, yu+1, au+1)− f(xu, yu, au)

)
As
∑∞

u=0 f(x
u+1, yu+1, au+1) − f(xu, yu, au) ≤ cg , one must have NII − NI = O

(
(ϵ)−2cg

)
.

One then has NII = NI + O
(
(ϵ)−2cg

)
= O

(
(ϵ)−2cg

)
, as desired, and thus the first u for which

equation 11 holds occurs after O
(
(ϵ)−2cg

)
iterations.

Lastly, equation 12 holds as a result of equation 11 because one has |duK+l| = Pu · DK+l and
|duk | ≥ |min(0, Pu ·Dk)|.

As a result of Theorem 2, one has the following bound if one applies a rounding operation to the
output of P in Theorem 2:
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Proposition 1. Let P be the same as in Theorem 2, let Ur,c denote the set of transport matrix from
r to c, and let Round(P,Ur,c) be the result of applying the rounding algorithm in Altschuler et al.
(2017) to obtain projection of P into Ur,c. Define constraint violation of P by

Violation(P ) =

K∑
k=1

|min (Round(P,Ur,c) ·Dk, 0)|

+

L∑
l=1

|Round(P,Ur,c) ·Dl+K |.

One has
Violation(P ) ≤ ϵ (1 + 2(K + L)cd)

where cd := maxm∈[K+L]∥Dm∥∞.

Proof. This proof is a simple consequence of existing results. By Lemma 7 in Altschuler et al.
(2017), one has

∥P − Round(P,Ur,c)∥1 ≤ 2ϵ.

Thus one has

Violation(P ) ≤
K∑

k=1

|min (P ·Dk, 0)|+
L∑

l=1

|P ·Dl+K |+
K+L∑
m=1

|(P − Round(P,Ur,c)) ·Dm|

≤ϵ+ 2(K + L)cdϵ,

where the last inequality uses Holder’s inequality and equation 12.

H EQUIVALENCE OF PRIMAL AND PRIMAL-DUAL FORM

We now show that the primal form in equation 5 can be obtained from the primal-dual form by
eliminating the dual variables.

Proposition 2. Define

L(P, s, x, y, a) =
1

η
P · logP + C · P − x · (P1− r)− y · (P⊤1− c)

+
1

η

K∑
k=1

sk log sk +

K∑
k=1

aksk −
K+L∑
m=1

am(Dm · P ),

and then, for S as in equation 4, the following equation holds:

max
x,y,a

min
P,s

L(P, s, x, y, a, b) = min
P :P1=r,P⊤1=c,P∈S

1

η
P · logP +

K∑
k=1

1

η
(Dk ·P ) · log(Dk ·P )+C ·P

(36)
Moreover, for the Lyapunov potential function f in equation 7, one has

f(x, y, a) = min
P,s

L(P, s, x, y, a). (37)

Proof. As L is concave in x, y and convex in P , one can invoke the minimax theorem to interchange
the operations of maximization and minimization. Therefore:

min
P,s

max
x,y,a

L(P, s, x, y, a) = min
P,s:P1=r,P⊤1=c,P∈S,sk=Dk·P ∀k∈[K]

1

η
P · logP +

1

η
s · log s+ C · P

= min
P :P1=r,P⊤1=c,P∈S

1

η
P · logP +

K∑
k=1

1

η
(Dk · P ) · log(Dk · P ) + C · P.
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In terms of entries, one writes L(P, s, x, y, a) as follows:

max
xi,yj

min
pij

L(P, s, x, y, a) =
1

η

∑
ij

pij log pij +
∑
ij

Cijpij −
∑
i

xi(
∑
j

pij − ri)−
∑
j

yj(
∑
i

pij − cj)

+
1

η

K∑
k=1

sk log sk +

K∑
k=1

aksk −
K+L∑
m=1

∑
ij

am(Dm)ijpij

We then solve the inner min problem explicitly by taking the derivative of pij , sk to zero, from which
one obtains

pij = exp(η(−Cij +

K+L∑
m=1

am(Dm)ij + xi + yj)− 1).

and
sk = exp(−ηak − 1).

Plugging in the formula for pij and sk, one has
min
P,s

L(P, s, x, y, a)

= −1

η

∑
ij

exp(η(−Cij +

K+L∑
m=1

am(Dm)ij + xi + yj)− 1) +
∑
i

rixi +
∑
j

cjyj −
1

η

K∑
k=1

exp(−ηak − 1),

which is equal to f(x, y, a).

I RELATION OF ALGORITHM 1 TO BREGMAN PROJECTION

In this section, we show that the proposed a update step is equivalent to a Bregman projection for
equality constraints. The Bregman projection step introduced in Benamou et al. (2015) introduces
an iterative projection-based approach. As in the setting of Section 3, let (x, y, a) be the current dual
variable and let P be the intermediate matrix corresponding to (x, y, a).

Suppose that K = 0 and thus there are no inequality constraints. As in main text, we define E by
the following space

E :=
⋂

l=1,...,L

{M | Dl ·M = 0}.

Moreover, assume
∑

i ri =
∑

j cj = 1 and define ∆n×n as the n2-dimensional simplex. Let a′, t′ =
argmaxã,t̃ f(x + t̃1, y, ã), and let P ′ be the intermediate matrix corresponding to (x + t′1, y, a′).
Then, the claimed equivalence can be seen by proving the following equation:

P ′ = argmin
M∈∆n×n∩E

KL (M ||P ) (38)

where for two entry-wise non-negative matrices M,N , the term KL (M ||N) is defined by
KL (M ||N) =

∑
ij mij

(
log(

mij

nij
)− 1

)
. Suppose M = [mij ]

n
i,j=1 achieves the optimality con-

dition set in equation 38. As it is a constrained optimization problem, the necessary condition for
optimality is that there exists µ and λl for l = 1, . . . , L, so that the following holds:

∀i, j ∈ [n], ∂mij
KL (M ||P ) = η

(
L∑

l=1

λl(Dl)ij + µ

)
.

Utilizing the definition of KL (·||·), one rewrites the above equation as below:

log(mij)− log(pij) = η

(
L∑

l=1

λl(Dl)ij + µ

)
.

Thus, there exists µ and λl for l = 1, . . . , L, for which one has M = exp(
∑

l λlDm + µ11⊤)⊙ P ,
where ⊙ is the Hadamard product. Thus, one has

Mij = exp

(
η(−Cij +

L∑
l=1

(am + λl) (Dl)ij + xi + yj + µ)− 1

)
. (39)
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Figure 13: Performance of Quasi-Newton methods, compared against the Sinkhorn-Newton-Sparse
algorithm and the Sinkhorn algorithm.

Furthermore, M satisfies the following normalization condition∑
ij

Mij = 1. (40)

Moreover, for l ∈ [L], the following holds:

M ·Dl = 0. (41)

As seen in the main text, P ′ satisfies equation 40, equation 41. Moreover, by setting λl = a′m − am
and µ = t′, one can show that P ′ also satisfies equation 39. As f is concave and the equality
constraints are affine, this shows that P ′ satisfies the optimality condition in that of the right-hand
side of equation 38.

J COMPARISON BETWEEN SINKHORN-NEWTON-SPARSE WITH
QUASI-NEWTON METHODS

This section presents the result of quasi-Newton algorithms (Nocedal and Wright, 1999) applied to
the variational form of constrained optimal transport problems. We show that, while being a rea-
sonable proposal for solving entropic optimal transport with second-order information, traditional
quasi-Newton algorithms work poorly in practice for constrained optimal transport when compared
with sparse Newton iterations. In short, a quasi-Newton algorithm can be obtained from Sinkhorn-
Newton-Sparse by replacing the Hessian approximation step in Algorithm 2. Specifically, instead
of sparse approximation, a quasi-Newton method approximates the Hessian matrix through the his-
tory of gradient information. In particular, we consider the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm and the limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algo-
rithm, which are two of the most widely used quasi-Newton methods.

We repeat the experiment settings in Section 5, and the result is shown in Figure 13. To ensure a fair
comparison, the quasi-Newton candidate algorithms are given the same Sinkhorn initialization as in
the SNS algorithm. For both quasi-Newton methods, the provided search directions can be such that
the line search procedure fails to terminate. To ensure fairness of comparison in terms of number of
iterations, in such failure modes we restart the quasi-Newton algorithm by keeping the current dual
variable while resetting the initial guess of the Hessian matrix. As the plot shows, quasi-Newton
algorithms are inferior in numerical performance when compared against the SNS algorithm.
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