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ABSTRACT

Electroencephalography (EEG) analysis using deep learning has traditionally
placed a strong emphasis on models that are custom-built and optimized for spe-
cific datasets. Several recent research utilize self-supervised learning to extract
generic representations from massive amounts of unlabeled EEG data. The pre-
trained models are then fine-tuned on each downstream dataset independently,
demonstrating promising results. However, in practical applications involving
multiple tasks, utilizing a separate model for each is not ideal regarding com-
putational and spatial cost. In this study, we go one step further and explore the
simultaneous adaptation of a pre-trained model to multiple different tasks. The
EEG signals exhibit significant heterogeneity due to their collection from vari-
ous subjects using diverse devices and experimental setups, resulting in potential
conflicts among different tasks that impede joint optimization. To tackle this chal-
lenge, we propose MTEEG, a multi-task EEG recognition framework which in-
corporates a task-agnostic temporal encoder and task-specific low-rank adaptation
modules to disentangle the parameter space, facilitating both task interaction and
specification. Experiments show that MTEEG surpasses other multi-task meth-
ods and performs on par with state-of-the-art single-task methods on abnormal
detection, event type classification, emotion recognition, seizure detection, sleep
stage classification and motor imagery classification after being tuned jointly on
six publicly available datasets. MTEEG shows the potential of multi-task EEG
recognition and promotes the development of general-purpose brain-computer in-
terfaces in the future. The source code will be released.

1 INTRODUCTION

Electroencephalography (EEG) is a widely used neuroimaging technique that captures electrical
activity of the brain through non-invasive scalp electrodes. In recent years, deep learning models,
such as convolutional neural networks (CNNs) and transformers, have demonstrated remarkable
success in extracting meaningful patterns from EEG data, leading to significant improvements in
various applications including emotion recognition (Li et al., 2022b), motor imagery classification
(Li et al., 2022b) and seizure detection (Boonyakitanont et al., 2020). However, despite their power,
these models are typically customized for specific tasks and input formats, which causes them to
overfit and become ungeneralizable.

Drawing inspirations from the advancements of large language models (Devlin, 2018; Achiam
et al., 2023), some researchers (Yang et al., 2023a; Yi et al., 2024; Jiang et al., 2024) employ self-
supervised learning to extract generic representations from large amounts of unlabeled EEG data,
significantly improving the model’s generalizability. Despite their remarkable performance, these
models necessitate individual fine-tuning for each downstream dataset, thereby constraining their
versatility and applicability in practical scenarios involving multiple tasks. For example, an EEG-
based health monitoring system may need to perform and switch between seizure detection, emotion
recognition and sleep stage classification per demand to have a comprehensive evaluation of the pa-
tient’s condition, both physically and mentally. In this case, a pre-trained model must be replicated
and fine-tuned three times, once for each task, resulting in significant computational and spatial
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overhead. Therefore, it would be beneficial to have a unified system that is capable of handling
different tasks simultaneously.

Despite the promise, challenges persist to build an efficient multi-task model for EEG processing.
The EEG signals, collected from various subjects utilizing different devices and experimental con-
figurations, exhibit markedly distinct intrinsic characteristics. This variability can mislead the model
with conflicting parameter update directions, leading to a substantial decrease in learning efficacy.
Similar heterogeneity-induced issues have also been noted in other domains (Yu et al., 2020; Zhou
et al., 2024b), and many methods have been proposed to tackle them; some incorporate separate
modules for specific tasks (Liu et al., 2022b; Mahabadi et al., 2021), while others use soft-gating
mechanisms to flexibly assign modules for different tasks (Ma et al., 2018; Cheng et al., 2016). Nev-
ertheless, the majority of these studies focus on the analysis of image, text and audio data, raising
doubts about the applicability of their findings to EEG.
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Figure 1: Overview of MTEEG’s performance
(balanced accuracy) on downstream datasets.

In this study, we propose MTEEG, a novel
EEG recognition framework which exploits a
pre-trained LaBraM (Jiang et al., 2024) along
with task-specific modules to facilitate effi-
cient multi-task joint training. It consists of
three major components: 1) a temporal en-
coder that’s shared across all the tasks; 2)
a transformer encoder with a frozen shared
backbone and multiple task-specific low-rank
adapters; 3) task-specific classification heads
that output the final predictions. During train-
ing, the task-agnostic temporal encoder pro-
motes interaction among different tasks and the
reuse of global knowledge, whereas the trans-
former encoder allocates specialized low-rank
adapters to each task, explicitly isolating the
parameters. Thus, the disentanglement of task-
specific knowledge towards their correspond-
ing adapters effectively reduces conflicts aris-
ing from heterogeneity. Furthermore, since
the task-specific modules are implemented with
low-rank adapters, the computational and spa-
tial overhead they incur is significantly lower
than that of fully fine-tuning a pre-trained model. In summary, our contributions are as follows:

• We investigate multi-task EEG recognition, which is a crucial yet underexplored aspect
in the practical application of brain-computer interfaces. Concurring with prior research
on other data types, we observe that joint training on heterogeneous EEG datasets also
presents the issue of conflicts between different tasks, leading to substantial performance
deterioration of the model.

• We present the MTEEG framework, which enhances a pre-trained model by incorporating
task-specific modules to achieve parameter isolation across different tasks. This isolation
allows for the separation of gradients to prevent conflicts, hence facilitating efficient multi-
task joint training.

• Through extensive experiments, we demonstrate that after joint optimization on six pub-
licly available datasets, MTEEG can handle abnormal detection, event type classification,
emotion recognition, seizure detection, sleep stage classification and motor imagery simul-
taneously, achieving performance superior than other multi-task methods and on par with
state-of-the-art single-task methods.

2 RELATED WORK

Self-supervised EEG pre-training. Despite the scarcity of annotated EEG data, there is a substan-
tial volume of unlabeled EEG data collected from various sources. Consequently, there has been
a growing interest in adopting self-supervised methods to learn generic representations from these
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unlabeled data to improve the model’s performance and generalizability. BENDR (Kostas et al.,
2021) utilizes a contrastive learning model, wav2vec 2.0 (Baevski et al., 2020), to learn compressed
representations of raw EEG signals. Neuro-GPT (Cui et al., 2024) masks random parts of the input
and lets the model learn to reproduce the original signal. Brant-2 incorporates both mask-prediction
and forecasting pretext tasks to enhance the model’s robustness and scalability. EEG2Rep (Moham-
madi Foumani et al., 2024) reconstructs the masked samples in an abstract representation space to
enhance the semantic quality of EEG representations. MMM (Yi et al., 2024) spatially divides the
scalp into 17 regions and allocate a learnable token to each of them, enabling a unified topology for
cross-dataset pre-training. LaBraM (Jiang et al., 2024) learns common spatial embeddings based on
the 10-20 international system to be compatible with different electrode configurations, and adopts
a two-stage pre-training paradigm to facilitate representation learning from noisy EEG signals.

Multi-task learning. Multi-task learning (MTL) aims to develop a model capable of handling var-
ious tasks simultaneously. The existing methods for MTL differ in how and where different tasks
interact with each other. Hard parameter sharing (HPS) methods (Long et al., 2017; Lu et al., 2017)
employ a single encoder for all tasks, resulting in exceptional scalability but limitations in their
ability to deal with the conflicts between different tasks. The cross-stitch network (Misra et al.,
2016) introduces a sharing unit to linearly combine the activation values at each layer. MTAN (Liu
et al., 2019) uses attention modules to compute attention masks, thereby controlling the parame-
ters involved in processing each task. MMoE (Ma et al., 2018) proposes to share multiple experts
among different tasks with weights computed by task-specific gates, thus enabling the model to au-
tomatically learn how to balance the experts given specific inputs. PLE (Tang et al., 2020) explicitly
divides experts into shared and task-specific ones, further improving the model’s robustness. In ad-
dition to the aforementioned methods that specifically target image processing, the concept of MTL
has also been incorporated into EEG analysis. MIN2Net (Autthasan et al., 2021) and ERPENet (Dit-
thapron et al., 2019) utilize multi-task autoencoder to achieve good performance on motor imagery
and P300 classification, respectively. GMSS (Li et al., 2022c) constructs different pretext tasks for a
graph-based self-supervised learning model to reduce the chance of overfitting. These methods are
fundamentally different from MTEEG in that they hand-craft tasks to serve for better optimization
on a single dataset, while MTEEG is designed to be jointly optimized on heterogeneous datasets.

Low-rank adaptation. Low-Rank Adaptation (LoRA) (Hu et al., 2021) is a parameter-efficient
fine-tuning method, which aims at reducing space and computation cost without sacrificing the
model’s expressiveness. It has been widely used for adapting large foundation models to specific
domains (Zhang et al., 2023; Zhou et al., 2024a). In the context of MTL, LoRA has also shown great
potential because of its high level of flexibility. LoraHub (Huang et al., 2023) combines multiple
LoRA modules to enhance cross-task generalization in few-shot scenarios. MOELoRA (Liu et al.,
2023) integrates LoRA into a Mixture-of-Experts (MOE) framework and demonstrates superior per-
formance. LoRAMOE (Dou et al., 2024) utilizes LoRA as an MOE-style plugin to alleviate the
world knowledge forgetting problem in large language models. MoLA (Zhou et al., 2024b) includes
LoRA during the training procedure and verifies their method on multiple types of heterogeneous
data. However, unlike MTEEG which targets a cross-dataset setting, these methods are still limited
to tasks within the same dataset.

3 METHOD

3.1 PROBLEM FORMULATION

Assume there are a total of P datasets. For p ∈ {1, 2, . . . , P}, given any multi-channel EEG signal
X ∈ RCp×Tp in the p-th dataset, where Cp and Tp represent the number of channels and the input
duration respectively, the model aims to predict the corresponding label y ∈ Yp, where Yp represents
the set of all possible outputs.

3.2 MODEL ARCHITECTURE

The architecture of MTEEG is built upon that of LaBraM. An input EEG sample X ∈ RCp×Tp is
first segmented in the temporal dimension with a non-overlapping window of length w, resulting
in patches x = {xi,j |i = 1, 2, . . . , Cp, j = 1, 2, . . . , ⌊Tp

w ⌋}. The patches are then processed se-
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quentially by the temporal encoder, transformer encoder and classification head to produce the final
output.

Temporal Encoder. The temporal encoder takes the segmented input patches and encode them
into embeddings, serving to capture the intricate temporal features in the signal. It consists of
multiple temporal convolution blocks, each of which is composed of a 1-D convolution layer, a
group normalization layer, and a GELU activation function. Formally, given a set of input patches
x from dataset p, the output can be denoted as

{ei,j = TE(xi,j) ∈ Rd|xi,j ∈ x, i = 1, 2, . . . , Ck, j = 1, 2, . . . , ⌊Tp

w
⌋},

where TE represents the temporal encoder and d is the dimension of the embeddings.

Transformer Encoder. To take account of the global features in the signal, we add the patch
embeddings with temporal and spatial embeddings based on the 10-20 international system, then
feed them into the transformer encoder to be processed with the attention mechanism. The attention
function can be formulated as

Attention(Q,K, V ) = softmax(
LN(Q)LN(K)T√

dp
)V,

where dp is the dimension of the key and query, and LN stands for layer normalization, which are
added to stabilize training by avoiding overly large values in the attention logits.

Following common practice, we employ multi-head attention to let the model attend to information
from different representational subspaces:

MultiHead(Q,K, V ) = Concat(head1, . . . ,headh)W
O

where headi = Attention(QWQ
i ,KWK

i , V WV
i )

where h is the number of heads, WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv ,

WO ∈ Rhdv×dmodel are the linear projection matrices.

3.3 TRAINING PROCEDURE

The training of MTEEG entails a two-stage process. In the first stage, a LaBraM model is pre-
trained on unlabeled data to provide a solid foundation for extracting useful information raw EEG
signals. Specifically, we start by training a neural tokenizer which is inspired by VQ-VAE (Van
Den Oord et al., 2017). The tokenizer employs the architecture outlined in Section 3.2 and is fol-
lowed by a neural codebook which quantizes the continuous representations into discrete tokens.
The learning process is then guided by the reconstruction of the amplitude and phase from these
discrete tokens. After the tokenizer is sufficiently trained, we train the LaBraM model by randomly
masking a proportion of the input patches and letting the model predict their corresponding indices
in the codebook. Some technical details are omitted here since the pre-training stage is not the main
focus of this work.

In the second stage, the pre-trained model is adapted to downstream datasets via a fine-tuning pro-
cess, in which we incorporate two major designs. Firstly, the parameters of the temporal encoder
are shared across and updated by all the tasks to promote the reuse of global knowledge. Secondly,
in the transformer encoder, we allocate specialized low-rank adapters to each task to achieve param-
eter isolation. An overview of the fine-tuning stage is shown in Figure 2. For any linear layer f
with weight matrix W0 ∈ Rm×n and bias b0, we define a set of low-rank decomposition matrices
∆W = {∆Wp = BpAp|Bp ∈ Rm×r, Ap ∈ Rr×n, p = 1, 2, . . . , P} where r is the rank and P
is the total number of tasks. When the model performs the p-th task, the corresponding adapter is
injected into the layer and the original linear operation is transformed into

f(x) = W0x+∆Wpx+ b0

= (W0 +BpAp)x+ b0

We apply this transformation to the linear projections of query, key, value and output matrices, as
well as the fully connected feed-forward network that follows the attention layers. Formally, for task
p, the output of a single attention head is

headi = Attention(Q(WQ
i +BQ

i,pA
Q
i,p),K(WK

i +BK
i,pA

K
i,p), V (WV

i +BV
i,pA

V
i,p))
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Figure 2: Overview of the fine-tuning stage. The temporal encoder, task-specific low-rank adapters
and classification heads are trainable, while the pre-trained weights in the transformer encoder re-
main frozen.

and the full multi-head attention can be rewritten as

MultiHead(Q,K, V ) = Concat(head1, . . . ,headh)(W
O +BO

p AO
p )

where h is the number of heads, WQ
i , WK

i , WV
i , WO are the pre-trained weights for linear pro-

jections and BQ
i,pA

Q
i,p, BK

i,pA
K
i,p, BV

i,pA
V
i,p, BO

p AO
p are the corresponding task-specific low-rank

adapters.

Throughout the fine-tuning stage, all the pre-trained weights in the transformer encoder are kept
frozen and only the low-rank adapters are trainable. In this way, the gradients from different tasks
are distinctly separated and confined within different modules, thereby alleviating the heterogeneous
conflict issue.

4 EXPERIMENTS

4.1 DOWNSTREAM DATASETS

After pre-training, we fine-tune and evaluate our MTEEG jointly on the following six datasets, the
statistics of which are detailed in Table 1.

TUAB (abnormal detection) (Obeid & Picone, 2016): A corpus of EEGs that have been annotated
as normal or abnormal.

TUEV (event type classification) (Obeid & Picone, 2016): A subset of TUEG that contains anno-
tations of EEG segments as one of six classes: (1) spike and sharp wave (SPSW), (2) generalized
periodic epileptiform discharges (GPED), (3) periodic lateralized epileptiform discharges (PLED),
(4) eye movement (EYEM), (5) artifact (ARTF) and (6) background (BCKG).

SEED-V (emotion recognition) (Liu et al., 2021): An emotion EEG dataset collected while 16
subjects watched video clips corresponding to five emotion categories (happy, sad, neutral, disgust,
and fear).

CHB-MIT (seizure detection) (Shoeb, 2009): A database from Children’s Hospital Boston consist-
ing of EEG recordings from 22 pediatric subjects with intractable seizures. Signals are sampled with
23 bipolar channels and we select the 16 standard montages in the experiments. Since the dataset
is highly imbalanced (about 0.3% positive ratio), we segment the seizure regions with a 1-second
stride to generate overlapping samples. In addition, we follow common practices (Lee et al., 2024;
Chung et al., 2024) to randomly select 10% of the negative samples during training.
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Sleep-EDF (sleep stage classification) (Goldberger et al., 2000): A database containing 197 whole-
night PolySomnoGraphic sleep recordings, among which we use the 153 recordings from the study
of age effects in healthy subjects (SC) in the experiments. Samples are manually annotated as one
of the eight classes (W, N1, N2, N3, N4, REM, MOVEMENT, UNKNOWN). Following previous
works (Supratak et al., 2017; Supratak & Guo, 2020), we exclude movement artifacts at the begin-
ning and the end of each sleep data that was labeled as MOVEMENT or UNKNOWN, as they do
not belong to the five sleep stages. In addition, we merge the N3 and N4 stages into a single stage
N3 to stick to the AASM manual (Berry, 2012).

PhysioNet (motor imagery classification) (Goldberger et al., 2000): A dataset containing EEG
recordings from 109 participants, with trials that belong to 5 classes: left hand, right hand, both
hands, both feet, as well as rest. Following previous works (Barmpas et al., 2023; Zoumpourlis &
Patras, 2024), we discard data from 6 participants (S088, S090, S092, S100, S104, S106) that have
inconsistent sampling frequencies or trial lengths.

Table 1: Downstream dataset statistics

Dataset # Channel Sampling Rate
(Hz)

Duration
(seconds) # Sample Task

TUAB 23 256 10 409,455 Binary classification
TUEV 23 256 5 112,491 6-class classification
SEED-V 62 1000 1 148,694 5-class classification
CHB-MIT 16 256 10 26,483 Binary classification
Sleep-EDF 2 100 30 195,479 6-class classification
PhysioNet 64 160 4 18,540 5-class classification

4.2 EXPERIMENTAL SETUP

Preprocessing. We first filter the EEG signals within the range of 0.1 Hz to 75 Hz to eliminate low-
frequency noise. A 50 Hz notch filter is subsequently employed to eliminate power-line interference.
After that, all EEG signals are resampled to a frequency of 200 Hz. The typical range of EEG values
is between -0.1 mV and 0.1 mV, which we normalize by setting the unit to 0.1 mV to ensure the
values predominantly fall between -1 and 1.

Pre-training & Fine-tuning. We construct MTEEG utilizing two different configurations of
LaBraM, specifically LaBraM-Base and LaBraM-Large, yielding MTEEG-Base and MTEEG-Large
correspondingly. For the pre-training of LaBraM, We use the default hyperparameters outlined in
the original paper. The pre-training data comprises nine public datasets, detailed in Appendix A,
with a total duration of approximately 2000 hours. In the fine-tuning stage, the datasets are first
split into training, validation and test subsets as outlined in Appendix B. Subsequently, we train
the models using binary cross-entropy loss for binary classification tasks and cross-entropy loss for
multi-class classification tasks. Due to the significantly larger data volume of TUAB compared to
other datasets, which leads to early convergence and overfitting, we randomly sample 10% of the
data points in TUAB for each training epoch to balance the optimization. All the experiments are
conducted on Linux servers equipped with NVIDIA A100 GPUs and Python 3.10.14 + PyTorch
2.2.2 + CUDA 12.1 environment. The optimal models are trained on the training set, selected from
the validation set, and finally evaluated on the test set. We report the average and standard deviation
values on three different random seeds to obtain comparable results.

Baselines. For single-task baselines, we consider both self-supervised and supervised methods.
Self-supervised baselines include LaBraM and BIOT (Yang et al., 2023a). Supervised baselines
include SPaRCNet (Jing et al., 2023), ContraWR (Yang et al., 2021), CNN-Transformer (Peh et al.,
2022), FFCL (Li et al., 2022a) and ST-Transformer (Song et al., 2021). LaBraM and BIOT are
publicly accessible in their official repositories, with the supervised methods implemented by BIOT.
We use the default hyperparameters for fair comparison.

Given that multi-task learning in EEG processing is underexplored and there is currently no public
method for comparison, we integrate a pre-trained LaBraM-Base as the backbone network within
three established multi-task learning frameworks to set up the multi-task baselines. These frame-
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works include: (1) HPS (Long et al., 2017; Lu et al., 2017) where different tasks share the same
expert (backbone network), except for the classification heads, (2) MMoE (Ma et al., 2018) where
multiple experts are shared among different tasks with weights controlled by task-specific gates,
(3) CGC (Cheng et al., 2016) where both shared and task-specific experts are included to enhance
the extraction of heterogeneous features. The implementation is based on LibMTL (Lin & Zhang,
2022). Following common practice, we set the number of shared experts in MMoE and CGC to
match the number of tasks, which is six in our case, and we designate one task-specific expert per
task in CGC.

Metrics. We use the following metrics for evaluating the models: (1) Balanced Accuracy: the
average of recall (sensitivity) on each class. (2) AUC-PR: area under the precision-recall curve,
which summarizes the trade-off between precision and recall at different classification thresholds.
This metric is used for binary classification. (3) AUROC: area under the receiver operating char-
acteristic curve, which summarizes the trade-off between the true positive rate (sensitivity) and the
false positive rate (1-specificity) at different classification thresholds. This metric is used for binary
classification. (4) Cohen’s Kappa: an assessment of the agreement between two classifiers on a
categorical scale, taking into account the possibility of agreement occurring by chance. This metric
is used for multi-class classification. (5) Weighted F1: a weighted average of individual F1-scores
for each class. This metric is used for multi-class classification. AUROC and Cohen’s Kappa are
used as the monitoring metrics for binary and multi-class classifications respectively. For multi-task
methods, we monitor the average values of these metrics across all tasks. We use PyHealth (Yang
et al., 2023b) for the implementation of all the metrics.

4.3 COMPARISON WITH OTHER METHODS

The main results are summarized in Table 2, 3 and 4. The best results of multi-task and single-task
methods in each column are highlighted in bold and underlined, respectively. Based on these results,
we make the following observations.

Firstly, there exists a significant performance gap between HPS and LaBraM-Base across all tasks
and metrics, despite their architectural similarities. This suggests that, similar to other data types,
EEG signals from diverse sources can also confuse the model due to conflicting optimization di-
rections, resulting in substantial performance degradation. Although multi-task methods such as
MMoE and CGC have demonstrated efficacy in addressing this issue in other domains, their effec-
tiveness in EEG processing remains limited. This may result from the gating mechanism in these
methods being implemented with basic linear layers, which may be inadequate for differentiating the
intricate intrinsic properties of highly noisy EEG signals. Secondly, in comparison to its multi-task
counterparts, our proposed MTEEG-Base exhibits comparable performance on SEED-V and signif-
icantly outperforms them across all other datasets, thereby demonstrating the efficacy of gradient
separation with task-specific low-rank adapters. Moreover, MTEEG even performs on par with the
state-of-the-art single-task method. Comparing to LaBraM-Base, MTEEG-Base performs better on
TUEV, SEED-V, CHB-MIT, and PhysioNet and slightly worse on TUAB and Sleep-EDF. The same
phenomenon is also evident in the large variant of the model, confirming the scalability of our ap-
proach. Thirdly, MTEEG has the advantage of being lightweight. The base and large variants have
only 1.8M and 7.4M trainable parameters fine-tuning respectively, compared to 5.8M and 46M for
LaBraM-Base and LaBraM-Large. The time and space efficiency associated with this lightweight
design would be beneficial in practical applications, particularly when computational resources are
constrained or latency is critical.

4.4 ABLATION STUDIES

Ablation studies were performed on all six datasets; however, results are only presented for TUAB,
TUEV, and SEED-V in the main paper to conserve space. For additional results on the other datasets,
please refer to Appendix C.

Impact of adapter rank r. We assign different values to r, ranging from 4 to 32 to examine
its impact on the model’s downstream performance. As illustrated in Figure 3, the base variant
consistently achieves its maximum performance at r = 8 across all datasets, whereas the large
variant reaches peak performance at r = 16 on TUAB and r = 8 on the remaining datasets. This
indicates that a higher rank does not necessarily yield better performance, likely due to over-fitting
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Table 2: Results on TUAB and TUEV
Methods # Trainable TUAB TUEV

Parameters Balanced Acc. ↑ AUC-PR ↑ AUROC ↑ Balanced Acc. ↑ Cohen’s Kappa ↑ Weighted F1 ↑

Single-task methods

SPaRCNet 0.79M 0.7896±0.0018 0.8414±0.0018 0.8676±0.0012 0.4161±0.0262 0.4233±0.0181 0.7024±0.0104
ContraWR 1.6M 0.7746±0.0041 0.8421±0.0104 0.8456±0.0074 0.4384±0.0349 0.3912±0.0237 0.6893±0.0136
CNN-Transformer 3.2M 0.7777±0.0022 0.8433±0.0039 0.8461±0.0013 0.4087±0.0161 0.3815±0.0134 0.6854±0.0293
FFCL 2.4M 0.7848±0.0038 0.8448±0.0065 0.8569±0.0051 0.3979±0.0104 0.3732±0.0188 0.6783±0.0120
ST-Transformer 3.5M 0.7966±0.0023 0.8521±0.0026 0.8707±0.0019 0.3984±0.0228 0.3765±0.0306 0.6823±0.0190
BIOT 3.2M 0.7959±0.0057 0.8792±0.0023 0.8815±0.0043 0.5281±0.0225 0.5273±0.0249 0.7492±0.0082
LaBraM-Base 5.8M 0.8126±0.0019 0.8911±0.0090 0.8843±0.0102 0.6436±0.0031 0.6254±0.0157 0.8172±0.0063
LaBraM-Large 46M 0.8137±0.0022 0.9079±0.0013 0.9004±0.0012 0.6584±0.0054 0.6470±0.0051 0.8284±0.0034

Multi-task methods

HPS 6.0M 0.8052±0.0032 0.8740±0.0056 0.8759±0.0020 0.6093±0.0047 0.6097±0.0136 0.8109±0.0071
MMoE 37M 0.7959±0.0094 0.8621±0.0051 0.8682±0.0103 0.5459±0.0065 0.5832±0.0123 0.7970±0.0047
CGC 43M 0.7992±0.0029 0.8604±0.0062 0.8683±0.0038 0.5933±0.0132 0.6083±0.0058 0.8108±0.0007

MTEEG-Base 1.8M 0.8096±0.0004 0.8775±0.0004 0.8784±0.0028 0.6438±0.0024 0.6281±0.0042 0.8184±0.0069
MTEEG-Large 7.4M 0.8105±0.0022 0.8801±0.0102 0.8928±0.0046 0.6538±0.0066 0.6596±0.0044 0.8321±0.0037

Table 3: Results on SEED-V and CHB-MIT
Methods # Trainable SEED-V CHB-MIT

Parameters Balanced Acc. ↑ Cohen’s Kappa ↑ Weighted F1 ↑ Balanced Acc. ↑ AUC-PR ↑ AUROC ↑

Single-task methods

SPaRCNet 0.79M 0.2865±0.0022 0.1115±0.0034 0.2966±0.0031 0.8417±0.0036 0.9364±0.0022 0.9151±0.0039
ContraWR 1.6M 0.3681±0.0028 0.2099±0.0031 0.3682±0.0042 0.8034±0.0064 0.9057±0.0014 0.8671±0.0070
CNN-Transformer 3.2M 0.3036±0.0127 0.1367±0.0218 0.2813±0.0260 0.7861±0.0026 0.9032±0.0043 0.8701±0.0024
FFCL 2.4M 0.3714±0.0047 0.2152±0.0084 0.3750±0.0087 0.8106±0.0072 0.9225±0.0063 0.8918±0.0095
ST-Transformer 3.5M 0.2828±0.0025 0.1182±0.0036 0.2740±0.0045 0.8229±0.0027 0.9165±0.0047 0.8942±0.0058
BIOT 3.2M 0.3831±0.0066 0.2238±0.0089 0.3831±0.0049 0.8439±0.0035 0.9367±0.0005 0.9026±0.0018
LaBraM-Base 5.8M 0.4097±0.0065 0.2616±0.0086 0.4119±0.0012 0.8229±0.0311 0.9260±0.0066 0.8989±0.0088
LaBraM-Large 46M 0.4188±0.0028 0.2733±0.0027 0.4253±0.0021 0.8653±0.0107 0.9346±0.0154 0.9166±0.0147

Multi-task methods

HPS 6.0M 0.4107±0.0050 0.2684±0.0062 0.4208±0.0064 0.7524±0.0002 0.9223±0.0139 0.8914±0.0135
MMoE 37M 0.4113±0.0071 0.2651±0.0096 0.4182±0.0077 0.7221±0.0158 0.8994±0.0148 0.8572±0.0201
CGC 43M 0.4067±0.0013 0.2592±0.0040 0.4145±0.0039 0.7360±0.0071 0.9014±0.0267 0.8625±0.0427

MTEEG-Base 1.8M 0.4112±0.0028 0.2677±0.0037 0.4173±0.0035 0.8586±0.0152 0.9742±0.0015 0.9656±0.0025
MTEEG-Large 7.4M 0.4226±0.0003 0.2778±0.0010 0.4277±0.0018 0.8712±0.0091 0.9779±0.0062 0.9733±0.0087

Table 4: Results on Sleep-EDF and PhysioNet

Methods # Trainable Sleep-EDF PhysioNet

Parameters Balanced Acc. ↑ Cohen’s Kappa ↑ Weighted F1 ↑ Balanced Acc. ↑ Cohen’s Kappa ↑ Weighted F1 ↑

Single-task methods

SPaRCNet 0.79M 0.7066±0.0055 0.6378±0.0100 0.7538±0.0073 0.5088±0.0050 0.4355±0.0079 0.6253±0.0044
ContraWR 1.6M 0.7148±0.0023 0.6785±0.0080 0.7837±0.0063 0.3855±0.0021 0.2673±0.0065 0.4888±0.0059
CNN-Transformer 3.2M 0.7095±0.0027 0.6874±0.0052 0.7869±0.0054 0.3967±0.0041 0.2986±0.0015 0.5324±0.0016
FFCL 2.4M 0.7143±0.0144 0.6633±0.0265 0.7739±0.0152 0.3868±0.0007 0.2532±0.0037 0.5202±0.0040
ST-Transformer 3.5M 0.6993±0.0020 0.6630±0.0006 0.7690±0.0015 0.4440±0.0005 0.3301±0.0081 0.5433±0.0065
BIOT 3.2M 0.7006±0.0014 0.6740±0.0096 0.7799±0.0065 0.3346±0.0006 0.1642±0.0061 0.3262±0.0313
LaBraM-Base 5.8M 0.7003±0.0035 0.6742±0.0015 0.7789±0.0025 0.5072±0.0011 0.4303±0.0053 0.6110±0.0033
LaBraM-Large 46M 0.7125±0.0050 0.6854±0.0006 0.7867±0.0034 0.5278±0.0017 0.4472±0.0089 0.6218±0.0059

Multi-task methods

HPS 6.0M 0.6628±0.0098 0.6411±0.0107 0.7647±0.0065 0.4571±0.0120 0.3677±0.0216 0.5679±0.0140
MMoE 37M 0.6623±0.0113 0.6583±0.0128 0.7666±0.0070 0.4397±0.0059 0.3357±0.0017 0.5455±0.0019
CGC 43M 0.6636±0.0072 0.6573±0.0147 0.7683±0.0077 0.5051±0.0070 0.4113±0.0119 0.5986±0.0104

MTEEG-Base 1.8M 0.6847±0.0019 0.6574±0.0008 0.7720±0.0009 0.5087±0.0059 0.4376±0.0054 0.6117±0.0038
MTEEG-Large 7.4M 0.6989±0.0012 0.6645±0.0018 0.7763±0.0011 0.5308±0.0055 0.4586±0.0086 0.6315±0.0059

induced by an excess of parameters. Therefore, we select r = 8 as the default configuration in our
experiments.
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Impact of adapter locations. The selection of locations for applying low-rank adapters is known to
significantly influence the model’s performance (Hu et al., 2021). Thus, we evaluate three different
configurations of adapter locations: (1) only in multi-head self-attention modules (MHSA), (2) only
in the feed-forward networks (FFN) that follow MHSA, (3) in both MHSA and FFN. As shown in
Figure 4, the adaptations of both MHSA and FFN are crucial, as the elimination of either leads to a
significant decline in performance.

4 8 16 32

0.800

0.805

0.810

0.815

TUAB (Balanced Accuracy)

4 8 16 32

0.85

0.86

0.87

0.88

0.89

0.90

0.91

TUAB (AUC-PR)

4 8 16 32
0.85

0.86

0.87

0.88

0.89

0.90
TUAB (AUROC)

4 8 16 32
0.58

0.60

0.62

0.64

0.66
TUEV (Balanced Accuracy)

4 8 16 32

0.58

0.60

0.62

0.64

0.66

TUEV (Cohen's Kappa)

4 8 16 32

0.78

0.79

0.80

0.81

0.82

0.83

TUEV (Weighted F1)

4 8 16 32
LoRA rank r

0.400

0.405

0.410

0.415

0.420

SEED-V (Balanced Accuracy)

4 8 16 32
LoRA rank r

0.250

0.255

0.260

0.265

0.270

0.275

0.280
SEED-V (Cohen's Kappa)

4 8 16 32
LoRA rank r

0.405

0.410

0.415

0.420

0.425

0.430
SEED-V (Weighted F1)

Base Large

Figure 3: Ablation study on the impact of adapter rank r.
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Figure 4: Ablation study on the impact of adapter locations.

Contribution of temporal encoder. The task-agnostic temporal encoder is designed to promote
interaction among different tasks. To examine its actual contribution to the model’s downstream
performance, we freeze it during fine-tuning and observe the resultant impact. As shown in Figure
5, freezing the temporal encoder leads to a notable decline in performance across all the tasks and
metrics, with a more pronounced decrease observed in the more challenging multi-class classifica-
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tion tasks. This suggests that the temporal encoder manages to capture global knowledge that helps
with reducing overfitting and enhancing the generalizability of the model.
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Figure 5: Ablation study on the contribution of temporal encoder.

5 CONCLUSION

This paper introduces MTEEG, an innovative multi-task EEG recognition framework. Utilizing
a powerful pre-trained model, MTEEG incorporates a task-agnostic temporal encoder to capture
global knowledge, along with task-specific low-rank adaptation modules to disentangle the param-
eter spaces for different tasks, thereby alleviating the conflicts stemming from the heterogeneity
of EEG signals. We validate the effectiveness of MTEEG by fine-tuning it jointly on six publicly
available datasets. Experiments show that MTEEG can simultaneously manage abnormal detection,
event type classification, emotion recognition, seizure detection, sleep stage classification and mo-
tor imagery classification, outperforming other multi-task methods and matching the performance of
state-of-the-art single-task methods. The adaptability and applicability of MTEEG demonstrate the
significant potential of multi-task EEG recognition and promote the advancement of general-purpose
brain-computer interfaces in the future.
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A PRE-TRAINING DATASETS

We use a selection of datasets from the original LaBraM paper, omitting the private ones, for pre-
training. The overall duration is approximately 2000 hours.

Table 5: Information of datasets used for pre-training.

Dataset #Channel Rate
(Hz)

Time
(h) Description

TUEP (Veloso et al.,
2017) 19-23 256 591.22

A subset of TUEG that contains 100
subjects epilepsy and 100 subjects without
epilepsy, as determined by a certified
neurologist.

TUSL (von Weltin
et al., 2017) 23 256 20.59 A subset of TUEG that contains

annotations of slowing events.

TUSZ (Shah et al.,
2018) 19-23 256 1138.53

A corpus containing EEG signals that
have been manually annotated data for
seizure events (start time, stop, channel
and seizure type).

TUAR (Buckwalter
et al., 2021) 23 256 92.22

A subset of TUEG that contains
annotations of 5 different artifacts: (1) eye
movement (EYEM), (2) chewing
(CHEW), (3) shivering (SHIV), (4)
electrode pop, electrode static, and lead
artifacts (ELPP), and (5) muscle artifacts
(MUSC).

SEED Series (Zheng
& Lu, 2015; Zheng
et al., 2018; Liu
et al., 2022a)

62 1000 166.75

Emotional datasets collected when
subjects watched videos. These datasets
include SEED (15 subjects), SEED-IV (15
subjects), SEED-GER (8 subjects), and
SEED-FRA (8 subjects).

Raw EEG Data
(Trujillo, 2020) 64 256 34.35

A dataset containing EEG signals
recorded during the reported
Information-Integration categorization
task and the reported multidimensional
Rule-Based categorization task.

B ADDITIONAL DETAILS OF FINE-TUNING

B.1 DATA SPLIT

TUAB and TUEV: The training and test sets are provided by the original creator of the dataset. We
adhere to BIOT and LaBraM to partition the training set into training and validation subsets at a
ratio of 80% and 20%, respectively.

SEED-V: We divide the 15 trials of each session into three groups of five, then consolidate each
group from all sessions to create the training, validation, and test sets.

CHB-MIT: There are a total of 23 cases collected from 22 subjects. Following BIOT, we use cases
1 to 19 for training, cases 20 and 21 for validation, and cases 22 and 23 for testing.

Sleep-EDF and PhysioNet: We partition the recordings by order into training, validation and test
sets at a ratio of 64%, 16% and 20%, respectively.
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B.2 HYPERPARAMETERS

Table 6: Hyperparameters for downstream fine-tuning.
Hyperparameters Values

Batch size 128
LoRA learning rate 5e-3

Temporal encoder learning rate 5e-4
Minimal learning rate 1e-6

Learning rate scheduler Cosine
Optimizer AdamW
Adam β (0.9,0.999)

Weight decay 0.05
Total epochs 50

Warmup epochs 5
Drop path 0.1

Layer-wise learning rate decay 0.9
Label smoothing (multi-class classification) 0.1

C ADDITIONAL RESULTS OF ABLATION STUDIES

The results of ablation studies on CHB-MIT, Sleep-EDF and PhysioNet are shown in Figure 6, 7
and 8. We observe similar trends to those in Figure 3, 4 and 5, which are summarized as follows:

• MTEEG reaches peak performance when the rank of adapters is set to 8.

• Adaptations to both the MHSA and FFN modules in transformer encoder are crucial, as
eliminating either of them results a significant decrease in the model’s downstream perfor-
mance.

• The shared temporal encoder enables interaction between different tasks, thereby reducing
overfitting and further boosting the performance.

These observations are consistent across all tasks and metrics, thereby affirming their validity.
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Figure 6: Additional results of ablation study on the impact of adapter rank r.
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Figure 7: Additional results of ablation study on the impact of adapter locations.
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Figure 8: Additional results of ablation study on the contribution of temporal encoder.

D DISCUSSION

MTEEG represents a groundbreaking study in the joint optimization on heterogeneous EEG datasets
to facilitate multi-task capability, yielding commendable results across diverse downstream tasks.
Nonetheless, we note that it has the following limitations. Firstly, the representational ability of
MTEEG is significantly influenced by the selection of the pre-trained model. The pre-training phase,
although not the primary focus of this paper, is an essential element that establishes the upper limit
of the model’s performance. Therefore, MTEEG would benefit from the future advancement of self-
supervised EEG pre-training paradigms. Secondly, the EEG datasets exhibit significant variability
in size and convergence speed, leading to challenges in balancing the optimization processes. In this
study, we employ a rudimentary strategy to sample a subset of the data points in TUAB for each
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training epoch, thereby decelerating convergence on this particular dataset; however, this approach
is suboptimal and presents significant opportunities for enhancement. Looking ahead, we believe
that adopting a more adaptive approach to handle the imbalance between different datasets would
greatly enhance multi-task joint training.
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