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ABSTRACT

Graph neural networks (GNNs) have been widely used in graph-related con-
texts. It is known that the separation power of GNNs is equivalent to that of
the Weisfeiler-Lehman (WL) test; hence, GNNs are imperfect at identifying all
non-isomorphic graphs, which severely limits their expressive power. This work
investigates k-hop subgraph GNNs that aggregate information from neighbors
with distances up to k£ and incorporate the subgraph structure. We prove that
under appropriate assumptions, the k-hop subgraph GNNs can approximate any
permutation-invariant/equivariant continuous function over graphs without cycles
of length greater than 2k + 1 within any error tolerance. Our numerical experi-
ments on established benchmarks and novel architectures validate our theory on
the relationship between the information aggregation distance and the cycle size.

1 INTRODUCTION

Graph-based machine learning models, known as graph neural networks (GNNs) (Scarselli et al.,
2008; (Wu et al., 2020} |Zhou et al.| 2020; Kipf & Welling| [2016; [Velickovi¢ et al.l 2018)), have
emerged as powerful tools for interpreting and making predictions on data that can be represented
as networks of interconnected points. These models excel at uncovering the underlying structure
in graph data, leading to breakthroughs in numerous sectors, including but not limited to physics
(Shlomi et al., [2020), chemistry (Reiser et al., 2022; Fung et al., [2021} |Coley et al., [2018]), bioinfor-
matics (Zhang et al., 2021), finance (Wang et al., |2021), electronic engineering (Liao et al., 2021}
He et al., 2021} [Lee et al.l 2022)), and operations research (Gasse et al., 2019).

From a theoretical standpoint, GNNs are utilized to learn or approximate functions on graph-
structured data. It is crucial to analyze and understand the expressiveness of GNNs, that is, to
determine the class of functions on graphs these networks can effectively approximate. This analy-
sis offers valuable insights that guide the design of more powerful and efficient GNN architectures.

A fundamental concept in the domain of GNNs is the message-passing mechanism (Gilmer et al.,
2017), which progressively refines node representations by aggregating information from neigh-
boring nodes. To formalize this process, consider a graph G composed of a vertex set V =
{v1,v2,...,v,} and an edge set F, with each vertex v; € V initially endowed with a feature vector

hgo). The message-passing scheme iteratively updates these vectors. At each iteration or layer, the
update for a given vertex integrates input from its immediate neighbors through a combination of
two steps: a local transformation and an aggregation. The local transformation applies a learnable
function to each neighbor’s feature, while the aggregation step combines these transformed features
using a permutation-invariant operation such as summing, averaging, or taking the maximum value.
This aggregated information is then merged with the current feature of the vertex to produce an up-

dated representation. Mathematically, in the [-th iteration/layer, the updated feature hz(-
v; can be expressed as:

ph = f® (hgl_l),AGGR ({{g(l)(h;l_l)) : v; adjacent to vz}}» , (1.1)
where f(©) and g(") are learnable functions at layer [, and h;l_l) represents the feature of vertex v;
from the previous layer. The notation {{-}} indicates a multiset that can accommodate duplicate
elements, ensuring that all contributions from neighboring vertices are considered, even if some
vertices share the same feature values.

D for vertex
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Despite  their empirical successes, @ @ @ @
message-passing graph neural networks

(MP-GNNs) have limitations in terms of

separation power Or expressive power. @ @

Notably, they can fail to differentiate @ @
between certain non-isomorphic graphs. @ @

For instance, as illustrated in Figure E], G @
consider two distinct graphs where ver-
tices of the same color start with identical @ @ @ @

features. Even though these graphs are

structurally different, MP-GNNs cannot  gioyre 1: Two non-isomorphic graphs that cannot be

distinguish between them because vertices distinguished by MP-GNNGs or the WL test.
of matching colors will end up with the

same feature representations after any number of message-passing rounds. This outcome persists
irrespective of the specific choices for functions f, gV, or the aggregation method employed.
The reason is that each vertex gathers indistinguishable aggregated information from its neighbors,
leading MP-GNN:Ss to perceive these non-isomorphic structures as identical.

The separation and expressive power of MP-GNNs are closely tied to the Weisfeiler-Lehman (WL)
test (Weisfeiler & Leman, |1968)), a classic algorithm designed to tackle the graph isomorphism
problem. At its core, the WL test operates as a color refinement procedure: initially, each vertex v;
is assigned a color C'(*) (v;) based on its initial features. The algorithm then proceeds iteratively by
updating the colors according to the following rule:

D (v;) — HASH (C(l_l)(vi), {{c<l—1>(vj) - v; adjacent to v}}) , (12)

which mirrors the structure of the update mechanism in (I.I). Assuming the hash function is
collision-free, two vertices will share the same color at iteration [ if and only if they have identi-
cal colors and multisets of neighbors’ colors at iteration [ — 1. The WL test concludes when the
color partition stabilizes, always within no more than n — 1 iterations, where n is the number of
vertices. It deems two graphs isomorphic if their final color multisets match.

It has been demonstrated that MP-GNNs possess separation power equivalent to that of the
Weisfeiler-Lehman (WL) test (Xu et al.l [2019). This means that two graphs are identified as non-
isomorphic by the WL test if and only if they produce distinct outputs in some MP-GNN. Fur-
thermore, it has been proven in |Azizian & Lelarge (2021); (Geerts & Reutter| (2022)) that GNNs
can universally approximate any continuous functions whose separation capabilities are bounded
above by the associated WL test. However, no polynomial-time algorithms are known to perfectly
solve the graph isomorphism problem, implying that the WL test cannot distinguish certain pairs of
non-isomorphic graphs, such as those illustrated in Figure [T} As a result, MP-GNNs are unable to
represent or approximate all permutation-invariant or permutation-equivariant functions.

In response to these limitations, researchers have proposed alternative GNN architectures designed
to enhance separation capabilities. A prominent approach in the literature involves the use of higher-
order GNNs (Morris et al., 2019; Maron et al., [2019; |Geerts| [2020a;bj, |Azizian & Lelargel 2021}
Zhao et al., 2022} Geerts & Reutter, |[2022; Morris et al., 2020), which correspond to higher-order
WL tests (Cai et al.,|[1992)). Essentially, a k-th order GNN assigns features to each k-tuple of vertices
and updates these features based on information from neighboring tuples. This mechanism allows
for a more nuanced representation of graph structures, thereby improving the model’s ability to
distinguish between non-isomorphic graphs.

In this work, we explore an alternative technique that has gained prominence in recent literature
(Zhang & Li, 2021} Zhao et al.| 2021} |Bevilacqua et al., [2021} [Frasca et al.l [2022)) to enhance the
expressive power of MP-GNNs. This approach involves incorporating subgraph structures, moving
beyond the reliance on vertex features from immediate neighboring nodes alone. Architectures that
adopt this strategy are referred to as subgraph GNNs. By integrating subgraph information, these
models can capture more complex and nuanced patterns within graph data, thereby improving their
ability to distinguish between different graph structures (Feng et al.| 2022; |Huang et al.| 2023). We
further perform numerical validation with established benchmarks (Gomez-Bombarelli et al., [2018))
and GNN architectures (Ying et al., 2021)) in graph learning, whereby a strong correlation between
theoretical and numerical results is witnessed.
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Our contributions The main contributions of this paper are summarized as follows.

* We rigorously characterize the separation power of subgraph GNNs by demonstrating that they
can perfectly distinguish a large family of graphs with bounded cycle lengths. Specifically, under
appropriate assumptions, we prove that GNNs leveraging subgraph structures within a distance
k from the current vertex can distinguish all non-isomorphic graphs that do not contain cycles
of length greater than 2k + 1.

* Based on the above result, we show that such k-hop subgraph GNNs can approximate any
permutation-invariant/equivariant continuous functions on graphs without cycles of length
greater than 2k + 1.

* We empirically validate our theoretical findings on the relationship between the information ag-
gregation distance k and the cycle size 2k + 1, providing valuable insights on selecting practical
information aggregation distance.

Organization The rest of this paper will be organized as follows. We define subgraph GNNs and
the associated WL test and introduce the motivation in Section [2| Our main theory for the expres-
sive power of k-hop subgraph GNNss is presented in Section [3] with detailed proofs and extensions
deferred to the appendix. Section [ presents the numerical experiments and the whole paper is
concluded in Section[3]

2 SUBGRAPH GNNS AND THE WL TEST
This section describes the motivation and sets up the basics for subgraph GNNss.

2.1 MOTIVATION

Note that MP-GNNs (I.T) have a fundamental limitation that they fail to distinguish some non-
isomorphic graphs, such as those in Figure [I, One idea to enhance the expressive power is to
incorporate more information from neighboring vertices and subgraphs:

* The aggregation in (I.I)) uses N (v;), the set of neighbors of v;. To incorporate additional infor-
mation, we define d(u, v) as the shortest-path distance between v and v in the graph G and

Ni(v)) ={veG:dwv,v) <k}, k>1.
* Beyond the vertex features in Ay (v;), one can also capture edge information, i.e., whether two

vertices are connected. This means that the topology of G|, (v,). the subgraph of G restricted
to Nk (v;) (known as the k-hop subgraph rooted at v;), can be used to update the feature of v;.

Let (G,h(!=1),. ) denote the subgraph G| Na(v;) Tooted at v;, with each vertex having a feature
from A=Y . Accordingly, the vertex feature update rule is given by

nO = 1O (1D g0 (60D 0) ). @

The functions f() and ¢g¥) are learnable, with ¢(!) taking the same value on isomorphic rooted
graphs. This scheme, termed the k-hop subgraph GNN, has various applications and adaptations in
the existing literature (Zhang & Lil [2021}; [Zhao et al.l [2021; |[Bevilacqua et al., 2021} |[Frasca et al.,
2022). Notably, the learnable function g!) is often parameterized as another GNN applied to the
smaller subgraph (G, h!=1),, 1.

Consider the two non-isomorphic graphs in Figure[I]indistinguishable by MP-GNNs. It can be seen
that the 2-hop subgraph GNN can successfully distinguish them. Specifically, the 2-hop subgraphs
rooted at vy are shown in Figure [2| and are clearly non-isomorphic, indicating that v; in the two
graphs in Figure[T| will have different feature after one layer of the 2-hop subgraph GNN, as long as
g™ can distinguish these two non-isomorphic subgraphs.

Another observation is that the 2-hop subgraph GNN fails if we increase the cycle sizes in Fig-
ure [T-—for instance, by changing one graph to have two 6-cycles and the other a single 12-cycle. In
general, the k-hop subgraph GNN fails to distinguish between a graph with two (2k 4 2)-cycles and
one with a single (4k 4 4)-cycle, though it succeeds when the cycle sizes are smaller. This suggests
that larger cycles limit the separation power of the k-hop subgraph GNN.
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Such observation and motivation align with em- e @
pirical findings in the literature. The ZINC
dataset (Dwivedi et al.l 2023) consists of molec-
ular graphs with no large cycles, and variants
of subgraph GNNs have shown notable improve- @ @ @ @
ment over message-passing GNNs on this dataset

(Zhang et al., 2023} [Zhang & Lil 2021} Zhao
et al.,2021; Bevilacqua et al.,[2021} |Frasca et al.| 0 0 0

2022).
) ) Figure 2: 2-hop subgraphs rooted at v; for
At the end of this subsection, we comment that graphs in Figure

the above observation on k-hop subgraph GNNs

requires that (") has a relatively strong separation power on the subgraph (G, h(l‘l))%k, which is
achievable if the size of (G, h(!=1)),, 1 is small or G is sparse. However, if G is relatively dense, then
the size of (G, h(lfl))% , might be comparable with G and the subproblem of finding expressive
g™ might be difficult.

2.2 k-HOP SUBGRAPH GNNSs

We rigorously define the k-hop subgraph GNNs in this subsection, for which we define the graph
space first.

Definition 2.1 (Space of graphs with vertex features). We use G,, ,,, to denote the space of all undi-
rected unweighted graphs of n vertices with each vertex equipped with a feature in R™. The space
Gn,m is equipped with the product topology of discrete topology (of graphs without vertex features)
and Euclidean topology (of vertex features).

We use (G, H) to denote an element in G,, ,,, where G = (E, V') is an undirected unweighted graph,
and H = (hq, hg, ..., hy) is the collection of all vertex features. Given (G, H) € G, y, and k > 1,
the k-hop subgraph GNN is defined as follows.

» The embedding layer maps each vertex feature h; € R™ as an embedding vector
= 1O (hy),

where f(%) is learnable.

e Forl = 1,2,...,L, the information aggregation layer computes hgl) according to (2.I) for
i=1,2,...,n.

* There are two types of outputs. The graph-level output computes a real number for the whole

graph, namely
y=r(acer ({{n" ie 2. m}})).

where 7 is learnable. The vertex-level output assigns a real number for each vertex:

yi=r(P), i=12,... n
In general, the intermediate vertex features h,gl) can be defined in any topological space, while one
usually uses Euclidean spaces in practice. Throughout this paper, we always consider continuous
f®, ¢® and r, guaranteeing that all k-hop subgraph GNNs are continuous.

Definition 2.2 (Spaces of k-hop subgraph GNNs). We use Fj, to denote the collection of all k-hop
subgraph GNNs with graph-level output, and use Fy, ,, to denote the collection of all k-hop subgraph
GNNs with vertex-level output.

It is clear that a k-hop subgraph GNN with graph-level output is permutation-invariant, and a k-hop
subgraph GNN with vertex-level output is permutation-equivariant, with respect to the following
definition.

Definition 2.3 (Permutation-invariant and permutation-equivariant functions). We say that a func-
tion ® : G,y — R is permutation-invariant if

O(ocx(G,H))=D(G,H), VoeS,,
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where S,, denotes the permutation group on {1,2,...,n} and o x (G, H) is the graph obtained by
relabeling vertices in (G, H) according to the permutation o, and that a function ® : G,, ,, — R"
is permutation-equivariant if

O(o * (G, H)) = o(®(G, H)), Yo €Sy

2.3  k-HOP SUBGRAPH WL TEST AND THE EQUIVALENT SEPARATION POWER

It is known that the MP-GNNs and the
classic WL test have equivalent separa-
tion power (Xu et all 2019). The same Require: A graph (G, H) € G, ,,, and iteration limit.
equivalence extends naturally for other  Initialize the vertex color

variants of GNNs and WL test. In par- o) _ .

ticular, we consider the k-hop subgraph Ci” =HASH(hi), i=1,2...,n.
GNN and the associated WL test stated while/ =1,2,..., L do

Algorithm 1 k-hop Subgraph Weisfeiler-Lehman test

in Algorithm 1] Refine the color
We define two equivalence relationships oW — HASH (C§l—1) (G C(l71)) A k) 2.2)
below that characterize the separation E Lo veR)

power of the k-hop subgraph WL test. fori=1,2,...,n.

Definition 2.4. For two graphs end while

(G H),(G,H) € Gum denote  Output: Multiset {{C'") :i e {1,2,... n}}}.
(e i e {1,2,...,n}}} and
{{CA’Z»(L) 21 €{1,2,...,n}}} as their final color multisets output by the k-hop subgraph WL test.

(i) We say (G, H) % (G, H) if ({C{ rie{1,2,...,n}}} = ({CF rie {12, .n}}}
for any L > 0 and any hash function.

(ii) We say (G, H) Y (G‘,ﬁ) ifC,i(L) = CA’EL), i=1,2,...,n, forany L > 0 and any hash

function.

We remark that two multisets are identical if for any element, its multiplicities in two multisets are
the same. Throughout this paper, we would say that two graphs (G, H) and (G, H) are indistin-

guishable by k-hop subgraph WL test if (G, H) EJ (G, H).

The following theorem states the equivalence between the separation power of k-hop subgraph
GNNs and the k-hop subgraph WL test.

Theorem 2.5. Forany (G, H),(G, H) € G, and any k > 0, the following are equivalent:

(i) (G, H) % (G, H).
(i) F(G,H) = F(G, H) forany F € F;.
(iii) For any F,, € Fy ., there exists o € Sy, such that F,,(G, H) = O‘(FU<G, ﬁ))

Moreover, (G, H) i3] (G, H) if and only if F (G, H) = F,(G, H) for any F, € Fy,.,.

The proof of Theorem@]follows similar lines as in the proof of Theorem 4.2 in|Chen et al.|(2023)),
which is straightforward and is hence omitted. Similar equivalence also holds for two vertices in a
single graph, as stated in the corollary below.

Corollary 2.6. For any (G,H) € Gy, ., and any k > 0. Let {{Ci(L) 21 €{1,2,...,n}}} be the
color multiset output by the k-hop subgraph WL test. For any i,i’ € {1,2,...,n}, the following are
equivalent:

(i) Ci(L) = CZ-(,L) for any L > 0 and any hash function.

(ii) F,(G,H); = F,(G,H) for any F,, € Fi, .

Proof. Apply Theorem|2.5|to (G, H) and o * (G, H) where o is the permutation that switches i,
and keep all other indices unchanged. O
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3 EXPRESSIVE POWER OF k-HOP SUBGRAPH GNNS

This section presents our main results on the expressive power of k-hop subgraph GNNs. We con-
sider k = 1 in Section and k& > 2 in Section[3.2}

3.1 1-HOP SUBGRAPH GNNSs

Our main theorem on 1-hop subgraph GNNs is that they can approximate any permutation-
invariant/equivariant continuous functions on graphs without cycles of length greater than 3.

Theorem 3.1. Let P be a Borel probability measure on Gy, . Suppose that for P-almost surely
(G, H), the graph G is connected and has no cycles of length greater than 3. Then, the following
hold.

(i) For any €, > 0 and any permutation-invariant continuous function ® : G,, ,, = R, there
exists ' € Fy such that

PF(G, H) — ®(G, H)| > 0] < e.

(ii) For any €, > 0 and any permutation-equivariant continuous function ®,, : G, ,, — R",
there exists I, € Fi ,, such that

PlIF.(G. H) — 0,(G, H)|| > 6] <.

Throughout this paper, we always denote || - || as the standard ¢3-norm on R™. We describe the
main idea here and the detailed proof of Theorem is deferred to Section [Al The classic Stone-
Weierstrass theorem states that under mild conditions, a function class can universally approximate
any continuous function if and only if it separates points, i.e., for any two different inputs, at least one
function in that class has different outputs. Therefore, based on Stone-Weierstrass-type theorems, it
suffices to show that 1-hop subgraph GNNs have strong enough separation power to distinguish all
non-isomorphic connected graphs with no cycles of length greater than 3. Noticing the equivalence
results in Section[2.3] one only needs to explore the separation power of 1-hop subgraph WL test.

Theorem 3.2. Consider (G, H), (é, H ) € Gy m. Suppose that G and G are both connected and

have no cycles of length greater than 3. If (G, H) A (G, H), then (G, H) and (G, H) must be
isomorphic.

In the acyclic graph setting, it is proved in|Bamberger|(2022) that two trees indistinguishable by the
classic WL test (I.2) must be isomorphic. Theorem [3.2| can be viewed as a generalization of this
result from [Bamberger| (2022)).

The key idea in the proof of Theorem is inductively constructing the isomorphism. We con-
sider stabilized colors output by 1-hop subgraph WL test without hash collision and start from two
vertices of the same color, one from each graph. The 1-hop subgraphs rooted at these two ver-
tices are isomorphic, guaranteed by the same color. Then we inductively extend the subgraphs by
adding neighbors of two vertices in the current subgraphs of the same color, which maintains the
isomorphism, until they reach the whole graphs.

3.2 k-HOP SUBGRAPH GNNS WITH k£ > 2

This subsection concerns the expressive power of k-hop subgraph GNNs for £ > 2 and the main
theory is an extension of Theorem|[3.1] in the sense that k-hop subgraph GNNs (k > 2) can approxi-
mate any permutation-invariant/equivariant continuous functions on graphs without cycles of length
greater than 2k + 1, but an additional assumption is required.

Definition 3.3 (k-separable graph). A graph (G, H) € Gy, ,, is said to be k-separable if the follow-
ing condition holds when the k-hop subgraph WL test terminates with stabilized colors and without
hash collisions: For any three vertices u, vy, vy with d(u,v1) = d(u,vy) = k and v1 # v, the
colors of v1 and vy are different.

Theorem 3.4. Let P be a Borel probability measure on G, n,. Suppose that P-almost surely, (G, H)

is k-separable and G is connected with no cycles of length greater than 2k + 1. Then, the following
hold.
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(i) For any €, > 0 and any permutation-invariant continuous function ® : G,, ,, = R, there
exists F' € Fy, such that

P(|F(G, H) — &(G, H)| > ] < e

(ii) For any €, > 0 and any permutation-equivariant continuous function ®,, : G, ,, — R",
there exists I, € Fy, ., such that

]P[”Fv(GﬂH) _(I)U(GvH)H > 6] <€

The proof of Theorem [3.4]follows a similar framework as Theorem [3.1]and is deferred to Section|B]
where the key step is the following theorem that is an analog of Theorem 3.2]

Theorem 3.5. Consider k > 2 and (G, H), (G, H) € G, that are both k-separable. Suppose that

G and G are both connected and have no cycles of length greater than 2k + 1. If(G,H) L (é, ﬁ),
then (G, H) and (G, H) must be isomorphic.

We remark that even restricted to k-separable graphs, Q_Oi Q_Oi
the k-hop subgraph WL test (2.2) still has strictly

stronger separation power compared to the classic
WL test (I.2). To illustrate this, we present two
non-isomorphic k-separable graphs that can be dis-
tinguished by the k-hop subgraph WL test, but are,
however, treated the same by the classic WL test. Let

k = 3, and consider the two graphs in Figure |3| with

initial vertex features as labeled by colors. % & —O—0O

Notice that neither graph has a cycle with more than  Fjgure 3: Two non-isomorphic 3-separable
2k + 1 = 7 vertices. Furthermore, for any vertex w in  graphs indistinguishable by the classic WL

either graph, any distinct vertices vy and vy with dis-  test, but distinguishable by the 3-hop sub-
tance exactly 3 from w are of different colors. Thus, graph WL test.

our results imply that these two graphs can be distin-

guished by the 3-hop subgraph WL test. However, we can see that the coloring on both graphs
immediately stabilizes when the classic WL test is applied, so the classic WL test cannot distinguish
between the graphs. Moreover, this example is non-trivial in the sense that any 3-hop subgraph in
either graph is not the entire graph.

At the end of this section, we will mention some related works that analyze the separation power
of the subgraph GNNs. |[Feng et al| (2022)) show that the separation power of subgraph GNNss is
partially stronger than the third-order WL test. More related to our work, it is proved in |Huang
et al.|(2023) that subgraph GNNs can “count” cycles of length up to 4 and some variant can “count”
cycles of length up to 6. It is worth noting that the subgraph topology is integrated in a specific
way in [Feng et al.[(2022); [Huang et al.[(2023), while we always assume that g(l) has strong enough
expressive/separation power on the k-hop subgraphs, without fixing the structure of g(*).

4 NUMERICAL EXPERIMENTS

4.1 EXPERIMENTAL SETTING AND DATASET

Our experiments utilize a special family of k-hop subgraph GNNs that implements (2.1)) in a practi-
cal and computationally cheap way, namely

p = fO (hgl‘”, AGGR ({ {g(l) (R4, d(vy,vy)) < vy € Nk(vi)}}>) . @

where the vertex feature is updated by aggregating information in N (v;) and some information
of the subgraph topology is integrated in a shortest-path distance d(v;,v;) on the graph. In partic-
ular, we implement a family of models termed k-hop Graphormer and modified from the official
Graphormer backbone (Ying et al. [2021). We also show the generalizability of our framework by
implementing the k-hop Graphormer-GD with a different definition of d(v;, v;) (Zhang et al., 2023).
The numerical experiment aims to validate our theoretical findings on an established graph learning
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benchmark using state-of-the-art GNN backbones. We also aim to assess whether the theoretically
characterized expressiveness could generalize from the training set to the testing set, which is not
characterized by most GNN-related theories, nor the recent finding that many graph benchmarks
are empirically distinguishable by either 1-WL (Zopf}, 2022)) or subgraph counting (Pellizzoni et al.,
20235)). All experiments are performed on a server with Intel 6230R CPU, single 2080Ti GPU, and

512GB RAM.

We test our model on the ZINC graph-
learning dataset, a subset of the ZINC
database with 250,000 molecules devel-
oped by |(Gomez-Bombarelli et al.| (2018)
(often denoted as ZINC-Full). On this
dataset, the aim of the machine learning
community mainly focuses on predicting
the water-octanol partition coefficient (i.e.,
logP (Wildman & Crippen, |1999)) by neu-
ral networks, whereby the ground truth
labels are computed with cheminformat-
ics tools. As shown in Figure 4] most
graphs in the ZINC testing dataset have
a longest cycle no larger than 10. Given
these statistics and considering our theo-
retical bounds on GNN expressiveness for
cycle sizes no more than 2k + 1, we antic-
ipate a notable performance boost around
k = 4 or k = 5 for our k-hop Graphorm-
ers. In line with peer methods, we report
the mean absolute error (MAE) between
GNN predictions and ground-truth labels.

Occurrence (x1000)

T T T
10 15

Longest Cycle

o
o

20

Figure 4: Statistics on the longest cycle length across
all testing molecules in the ZINC dataset indicate that
most molecules have a longest cycle of 6, aligning with
the chemical intuition that 6-membered rings are par-
ticularly stable. The peaks observed at 9 and 10 also
support the prevalence of common fused ring systems.

4.2  k-HOP GRAPHORMER IMPLEMENTATION DETAILS

Graphormer replaces edge-wise message-
passing with attention layers, whereby the
connectivity information is incorporated
into attention weights, which are initial-
ized with pairwise shortest path distance.
We modify its attention mechanism to fit
Graphormers with our k-hop theory, by
masking out all attention paths that are be-
yond the k-hop neighbors of the aggre-
gated node. This implementation is in
line with the aggregation function in (@.I)
and d(v;, v;) is the shortest path distance.
Graphormer-GD further improves expres-
siveness by replacing the shortest path dis-
tance with resistance distance (Klein &
Randic, [1993)), which could also be in-
corporated with our k-hop architecture.
Graphormer(-GD) is a special case of k-
hop Graphormer(-GD) by setting k = oo.
We reimplement and test all Graphormers
with the following default hyperparame-
ters: Graphormer-Slim backbone, Adam
with 2 x 10~* starting learning rate and

0.07f k-hop Graphormer

- L k-hop Graphormer-GD
£

w 0.06f

2

5 L

2

2 0.051

<

c L

©

(]

= 004f

1 2 3 4 5 7 10 inf

Figure 5: Mean absolute error (MAE) on ZINC testing
set with different ks for our k-hop Graphormer(-GD).
Dashed horizontal lines denote the best-performing en-
try. Aligned with theoretical results and dataset statis-
tics in Figure[d] we see a significant performance boost
from k = 1 to 4, and the performance is nearly satu-
rated for k > 4. All results are obtained with 3 random
seeds, and the min/max MAEs are shown.

ending 1079, 12 Transformer layers, 80 hidden dimensions, 8 attention heads, 60,000 warm-up
steps, and 400,000 total steps. To mitigate the gap between the slight implementation difference
of the computationally-friendly (@.I) between (2.1, we derive similar theoretical results for cycle

lengths of 2k — 1 in Section[C]
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4.3 RESULTS AND DISCUSSIONS

In thle ¢ exgenn};e;:ts, Table 1: Mean Absolute Error (MAE) on ZINC test set. The best
we evaluate - the  f-hop entry among Graphormer variants is underlined, and the best entry

Graphormers(-GD)  with ) . S ;
ko= 1.2.3.4,5,710, among Graphormer-GD variants is highlighted in bold.

and infinity, i.e., feature

could be aggregated from Aggregation Model Test MAE |
all nodes by attention. As GIN (Xu et al.|[2019) 0.088+0.002
shown in Figure [5} 1-hop L-ho GraphSAGE (Hamilton et al.}[2017)  0.126+0.003
Graphormer performs P GAT (Velickovic et al.[[2018) 0.11140.002
relatively  inferior, and k-hop Graphormer (k = 1) 0.459+0.001
the performance improves k-hop Graphormer (k = 4) 0.0544-0.002
significantly with larger Ih k-hop Graphormer (k = 7) 0.05340.001
k when k£ < 4 and reach ~hop k-hop Graphormer-GD (k = 4) 0.0410.001
a nearly optimal perfor- k-hop Graphormer-GD (k = 7) 0.04240.001
mance at k = 4, validating Graphormer (Ying et al.| 2021) 0.058£0.001

our theoretical discovery — full-graph o o0 6D (Zhang et al]2023)  0.043+£0.001
that a k-hop Graphormer

has the expressiveness to

learn graphs with longest cycles of 2k + 1. The performance becomes nearly saturated between
k = 4 and 10, which is within expectation as the marginal improvements in covered graphs are
less significant if read together with Figure |4l k-hop Graphormer-GD benefits from the resistance
distance over the shortest path distance, validating the effectiveness of k-hop design on both
distance metrics. We also see a slight performance drop for k-hop Graphormer in the special case
of k = oo, indicating that too many message paths may introduce more noise than information to
the model performance. A smaller k also brings potential efficiency improvements as it has fewer
message-passing paths than an infinite k. The efficiency benefit is not obvious for the ZINC dataset
but will become valuable for larger-sized graphs.

When compared with other 1-hop aggregation methods (traditional message-passing GNNs), as
shown in Table[I] our 1-hop Graphormer has a similar MAE in scale but is inferior to 1-hop GNNs.
With an appropriate & that reflects the distribution of cycle lengths in data, k-hop Graphormers reach
a significant improvement. Our model degenerates to the original Graphormer when & — oco. It is
also worth noting that this benchmark is nearly saturated, for example, |[Zhang et al.| (2023) reported
a 0.025 MAE with a thorough search of the hyperparameter space but their official implementation
does not include the hyperparameters to reproduce it. When training Graphormer-GD with the same
hyperparameters from the original Graphormer, the average MAE becomes 0.043. Considering all
of these, we believe it is beyond the scope of this paper to develop new state-of-the-art. Therefore,
our main focus of experiments is to validate our theoretical results, i.e., the correlation between k
values and the performance of k-hop Graphormers.

5 CONCLUSION

This paper rigorously evaluates the efficiency of GNNs that leverage subgraph structures, particu-
larly on graphs with bounded cycles, which represent many real-world datasets. In particular, we
prove that k-hop subgraph GNNs can reliably predict properties of graphs without cycles of length
greater than 2k + 1, which is unconditionally if k¥ = 1 and requires an additional assumption for
k > 2. The correlation between k-hop subgraph GNNs and 2k + 1 cycle size is further validated by
numerical experiments.

Let us also comment on the limitations of the current work. Firstly, it is unclear whether the k-
separability assumption in Theorem [3.4] can be removed or not. Secondly, Theorem [3.1] and Theo-
rem [3.4|rely on the strong enough separation power of g() in (2:T) on the k-hop subgraphs, which
might be expensive to guarantee if the input graph is dense, and it is still open whether one can estab-
lish theories of a similar style for specific information aggregation mechanisms on k-hop subgraphs,
such as (@.I) and[Feng et al|| (2022); [Huang et al|(2023)). We have included some preliminary results
for the expressive power of (.1]) in Appendix [C] Lastly, it is also interesting to test k-hop subgraph
GNNs on more real-world datasets. These directions deserve future research.
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A PROOFS FOR SECTION[3.1]

The proof of Theorem 3.1]is based on Theorem [3.2]and its corollary.
Corollary A.1. Consider any (G, H) € G, where G is connected and has no cycles of length
greater than 3. Let {{Ci(L) c i€ {1,2,...,n}}} be the color multiset output by the 1-hop

subgraph WL test. For any i,i' € {1,2,...,n}, if Ci(L) = C’Z.(,L) holds for any L > 0 and
any hash function, then we have for any permutation-equivariant function ® : G, ,, — R" that

We will postpone the proofs of Theorem [3.2]and Theorem[A.T|and first prove Theorem [3.1] (i) using
Theorem 3.2] and the Stone-Weierstrass theorem.

Proof of Theorem[3.1](i). There exists a compact and permutation-invariant subset X C G,, ,, such
that P[X] > 1 — e and that for any (G,H) € X, G is connected and has no cycles of length
greater than 3. Due to Theorem and the permutation-invariant property of ®, ®|x : X — R
induces a continuous map on the quotient space ®|x : X/ AR By the same reason, for F' € Fi,
F|x : X — Ralso induces a continuous map F|x : X A5 R. Consider any (G, H),(G,H) e X
that represent different elements in X/ i, Theorem [2.5| guarantees that there exists F' € F; such

12
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that F(G, H) # F(G, H), suggesting that {1*:\; : F € F1} separates points on X/ ~. Therefore,
by the Stone-Weierstrass theorem, one can conclude that there exists F' € JF7 such that

|7 =20
Loo(X/~)
which implies that
|F(G,H)—®(G,H)| <46, V(G,H)eX.
Thus, it holds that
P[IF(G,H) = ®(G, H)| > 6] < P[Gnm\X] <,

which completes the proof. O

The proof of Theorem [3.1] (ii) requires a generalized Stone-Weierstrass theorem for equivariant
functions.

Theorem A.2 (Generalized Stone-Weierstrass theorem, Theorem 22 in |Azizian & Lelarge| (2021)).
Let X be a compact topological space and let G be a finite group that acts continuously on X and
R™. Define the collection of all equivariant continuous functions from X to R™ as follows:

Ce(X,R") ={F € C(X,R") : F(g*z) =g F(zx), Vo € X,g € G}.
Consider any F C Co(X,R™) and any ® € C.(X,R™). Suppose the following conditions hold:
(i) F is a subalgebra of C(X,R™) and 1 € F.

(ii) Forany z,x’ € X, if f(x) = f(z) holds for any f € C(X,R) with f1 € F, then for any
F € F, there exists g € G such that F(x) = g« F(2').

(iii) Forany x,2' € X, if F(x) = F(2') holds for any F € F, then ®(x) = ®(z').
(iv) Forany x € X, it holds that ®(x); = ®(x)y, V (i,i') € I(x), where
I(z) = {(4,7) € {1,2,...,n}* : F(z); = F(z)y, VF € F}.

Then for any € > 0, there exists F' € F such that

sup ||@(z) — F(z)| < e.
xeX

Proof of Theorem (ii). There exists a compact and permutation-invariant subset X C G,, ,,, such
that P[X] > 1 — e and that for any (G, H) € X, G is connected and has no cycles of length greater
than 3. The rest is to apply Theorem [A.2]on X and F = Fi ., for which one needs to verify the
four conditions in Theorem[A2]

* Verification of Condition (i). By its construction, F , is a subalgebra of C(X,R). In addition,
1 € F, , if the output function r always takes the constant value 1.

* Verification of Condition (ii). Notice that 711 C Fy,. If F(G,H) = F

(G,
then Theorem [2.5|implies that for any F,, € Fi ,, one has F},(G, H) = o(F,(
permutation o € S,,.

* Verification of Condition (iii). Suppose that F,,(G, H) = Fy(é,ﬁ), vV F, € Fi,. By Theo-
1,v

rem it holds that (G, H) < (G, H). By Theorem we know that (G, H) and (G, H) are
isomorphic, i.e., (G, H) = o % (G, H) for some o € S,,, which leads to

H), YV F e F,
G, H)) for some

®,(G, H) = &, (0 % (G, H)) = 0(®,(G, H)). (A1)
Moreover, it follows from o * (G, H) = (G, H) ® (G, H) and Theorethhat
®,(G, H); = 0,(G, H)py, Vie{l,2,...,n} (A2)

Then one can conclude ¢,(G, H) = @U(G, H) by combining (A.T)) and (A.2).

13
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* Verification of Condition (iv). Condition (iv) is a direct corollary of Theorem [2.6] and Theo-

rem[A]]
O

Finally, we present the proof of Theorem [3.2]and Theorem [A.T]

Proof of Theorem[3.2] Let A = (A1, Aa, ..., Ag) be an s-tuple of subgraphs of a graph A, and let
B = (B1,Ba,...,Bs) be an s-tuple of subgraphs of a graph B. Let V(. A) be the union of the
vertices in Ay, A, ..., A, and let V(B) be the union of the vertices in By, B, ..., Bs. We say that
A and B are isomorphic if there exists a bijective map of vertices of V'(.A) to vertices of V(B) such
that for any i € {1,2,...,s},

* all vertices of A; are mapped to vertices of B; with the same label/feature and vice versa

* all edges of A; are mapped to edges of B; and vice versa.

Consider (G, H) A (G, H),ie. (G, H)and (G, H) cannot be distinguished by the 1-hop subgraph
WL test. When there are no hash collisions and the colors stabilize, the multisets of final colors
of vertices in G and G are the same, and any v; € G and vo € G with the same color must have
isomorphic 1-hop subgraphs.

We abbreviate an induced subgraph of (G, H) or (G, H) as its set of vertices. For any set S of
vertices, let A/(.S) be the set of all vertices in S or neighboring some vertex of S. We prove the
following statement by induction: for any ¢ € {1,2,...,|G|}, there exist connected isomorphic

subsets S; € V(G) and Sy C V(G) of size t, where V(G) and V(G) are vertex sets of G and G
respectively, such that (S, N (S1)) and (S2, N'(S2)) are isomorphic. For the base case, choose any
two vertices in G and G with the same color. For the inductive step, suppose that S; and .S, are sets
of size t < |V (G)|, and we want to find two sets S7 and S} with size ¢ + 1 that satisfy the inductive
statement. Let v; be a vertex not in S; adjacent to a vertex in S7, and let vo be the image of v,
under the isomorphism f : (S1,N(S1)) — (S2,N(S2)), i.e., va = f(v1). Let N(v1) and NV (v2)
be the sets of vertices with distance at most 1 from v; and vs, respectively. Then N (vy) and N (vs)

are isomorphic since v; and vy are of the same color. We aim to show that f can be extended to an
isomorphism from (S7 U {v1}, N(S1) UN (v1)) to (S2 U {va}, N'(S2) UN (v2)).

Consider T1 = N (v1) \N (S1) and T = N (v2) \ N (S2). We claim that any vertex u; of T cannot
be connected to a vertex of N'(Sy) other than v;. If u; is connected to some vertex us # vy in
N (S1), then both v; and us must have some neighbor in S;: call these uz and uy. If ug = uy, then
we have the cycle u; — v — ug — ug — uq. If ug # uy, then there must be a path through edges
of S7 from ug to uy, so we create a cycle containing uy — v1 — uz — -+ — Ug —> Uz — Uq.
Both of these cycles have a length greater than 3, which is a contradiction. Thus, u; is not connected

to any vertex of A'(S7) other than v;. Similarly, any vertex of T is not connected to a vertex of
N (S3) other than vs.

Another observation is that in the induced subgraph of 7} (or 13), the degree of each vertex is at
most 1. In particular, if u; € T} is connected to ug, us € Ty with ug # usg, then there is a cycle
Uy — U1 — usz — v1 — us of length 4, which is a contradiction.

Notice that f : (S1, N (S1)) = (S2,N'(S2)) is an isomorphism and that N'(S1) NN (vy) is isomor-
phic to N(S2) NN (v2). It can be seen that the multisets of vertex colors in 73 and 75 are the same.
Additionally, edges connecting vertices in 77 can be paired with edges connecting vertices in 75,
so that the paired edges have the same multiset of end vertex features. Since no such edges share a
common end vertex, guaranteed by the above observation, one can extend f to an isomorphism from
(S1 U{v1}, N(S1) UN(v1)) to (S2 U{va}, N (S2) UN (v2)). Thus, we have proven the inductive
step and the proof is completed. O

Proof of Corollary[A.1] By the proof of Theorem there exists a permutation ¢ € .S, such that
o(i) =14 and o *x (G, H) = (G, H). Then the result holds immediately. O
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B PROOFS FOR SECTION[3.2]

Proof of Theorem[3.4] Based on Theorem [3.3] the proof of Theorem [3.4] follows the same lines as
the proof of Theorem|3.1 O

Next, we present the proof of Theorem Let S be a subset of vertices of a graph. Define N (.S)
as the set of all vertices with distance at most & from any vertex in S and N (v) as the set of all
vertices with distance at most k& from v. If S is nonempty, define d(v, S) as the minimum distance
from v to any vertex in S.

To prove our Theorem [3.5] we need a lemma, which rules out the existence of undetected edges
when we do our induction.

Lemma B.1. Let k > 2 and let S be a connected subset of vertices of a connected graph G with no
cycles of length greater than 2k + 1. Let uy be a vertex not in S adjacent to a vertex in S. Then, no
vertex in T = N (u1) \ Ni(S) can be connected to a vertex in Ny (S) \ Ny (uy).

Proof. Assume for the sake of contradiction that there exists a vertex ug4+1 € 7' connected to
v € Ni(S) \ Ni(u1). Notice that d(vg, S) < k because vy € Ni(S). If d(vg, S) < k, then
d(ug+1,S) < k, which contradicts uyy1 ¢ Ni(S). Thus, d(vg, S) = k.

Therefore, there must exist vertices us, us, . .., u; and vg, vy, ..., vg—1 such that u; and u;,, are
connected fori € {1,2,...,k}, v; and v, are connected for ¢ € {0,1,...,k — 1}, and vy € S.
We claim that uy, ua, ..., uk+1, V0, - - ., Uk are pairwise distinct. For any two connected vertices a

and b, notice that |d(a, S) — d(b, S)| < 1 because any path of length s from a to a vertex of .S can
be extended to a path of length s + 1 from b to a vertex of S and vice versa. Since d(uq,S) = 1,
d(ugy1,5) =k + 1, d(vg, S) = 0, and d(vg, S) = k, we must have d(u;, S) = i and d(v;, S) = i
for all valid <. Thus, the only possible pairs of vertices of uy,us, ..., ug+1,v0, - - ., U that can be
equal are (u;,v;) fori € {1,2,...,k}. Assume for the sake of contradiction that u; = v; for some
i. Then, there exists a path u; — uo — -+ — u; — V341 — -+ — vg of length k£ — 1 from u;
to vy, contradicting the fact that vy, & Nj(u1). Thus, the vertices w1, us, ..., Uki1, Vo, - - - , Vg are
pairwise distinct.

Since S is connected, there exists a path with edges in S from vy to a vertex in S adjacent to u;.
We can combine this path with w1 — us — -+ = upy1 — v — Vg—1 — --- — vg to create a
cycle containing vertices w1, u2, ..., Ug+1, Vo, - - - , Ug. Lhis cycle contains at least 2k + 2 vertices,
a contradiction. O

Proof of Theorem[3.5] We work with the same notation and setting as in the proof of Theorem [3.2]
Consider (G, H) & (G, H),ie., (G, H) and (G, H) cannot be distinguished by the k-hop subgraph
WL test. When there are no hash collisions and the colors stabilize, the multisets of final colors
of vertices in G and G are the same, and any v; € G and v, € G with the same color must have
isomorphic k-hop subgraphs rooted at them.

We prove the following statement by induction: for any t € {1,2,..., |G|}, there exist connected

isomorphic subsets S; C V(G) and So C V(G) of size t such that (S, N (S1)) and (S2, Nx(52))
are isomorphic. For the base case, choose any two vertices in G and G with the same color. For
the inductive step, suppose that Sy and S; are valid sets of size ¢ < |V(G)|, and we want to find
two sets .57 and S% with size ¢ + 1 satisfying the inductive statement. Let v; be a vertex not in Sy
adjacent to a vertex in S7, and let vo be the image of vy under an isomorphism f from (S7, NV (S1))
to (S2, Nk (S2)). Then Ny (v1) and N (v2) are isomorphic since vy and vy are of the same color,

and f takes N (S1) NN (v1) to Ng(S2) NN (v2).

The k-separability assumption guarantees that vertices in Ny (v;) \ Ny (S;) have distinct colors for
i = 1,2. Thus, there is a unique way to extend f as a map from N (S1) U Ny (v1) to Ny (S2) U
Ni(v2), which keeps that a vertex has the same color as its image. We then verify that this extension
is still an isomorphism. Consider any u; € Ny (v1) \ Nx(S1) and any wy € Ny (v1) with uy # wy.
Denote us = f(u1) and wg = f(wy). Then d(u1,v1) = d(ua,v2) = k. We claim that vy and wq
are connected if and only if us and wy are connected.
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* Case 1: d(wy,v1) = d(ws,v2) = k. By the k-separability assumption and the isomorphism
between N (v1) and N (ve), we immediately have that u; and w; are connected if and only if
uo and wy are connected.

 Case 2: d(wy,v1) = d(wa,v2) = k — 1. Note that the multisets of vertex colors of the direct
neighbors of w; and wo are the same, which combined with the k-separability assumption that
u; and w; are connected if and only if us and wo are connected.

e Case 3: d(wq,v1) = d(ws,v2) < k — 2. Then u,; and w; are not connected for i = 1, 2.

By Theorem and the above arguments, we conclude that f is an isomorphism from (S; U
{v1}, Ni(S1) UN(v1)) to (S2 U {va}, Ni(S2) UNj(ve)). This completes the inductive step. [J

C PRELIMINARY RESULTS ON k-HOP SPD-GNNSs

In this section, we present some preliminary results on the expressive power of k-hop subgraph
GNNs where the information on the k-hop subgraphs is processed and aggregated in a specific way,
as in (@.I)). These results can be viewed as extensions of Section 3]

In particular, we name such GNN architecture as k-hop SPD-GNN that is defined as follows for
(G,H) € Gpmand k > 1.

» The embedding layer maps each vertex feature h; € R™ as an embedding vector
= O h),

where f(©) is learnable.

e Forl =1,2,..., L, the information aggregation layer computes hy)

d(-,-) is the shortest-path distance (SPD), fori = 1,2,...,n.
* There are two types of outputs. The graph-level output computes a real number for the whole

graph, namely
y=r(acar ({{n®:ie2...m}})),

where 7 is learnable. The vertex-level output assigns a real number for each vertex:

according to (.1), where

Y = T(hl(»L)), i1=1,2,...,n.

Definition C.1 (Spaces of k-hop SPD-GNNs). We use ]-'Zpd to denote the collection of all k-hop
SPD-GNNs with graph-level output, and use F, zpvd to denote the collection of all k-hop SPD-GNNs
with vertex-level output.

It is clear that the implementation of k-hop SPD-GNNs is cheaper than general k-hop subgraph
GNNs as some topology information about the subgraph is dropped. The trade-off is that k-hop
SPD-GNNs have a bit weaker expressive/separation power. To rigorously introduce our next theo-
rem on the expressive power of k-hop SPD-GNNs, we require the associated k-hop SPD-WL test
implementing the color refinement as follows:

D (v;) = HASH (CU*U(W), {{ (CU=D(wy), d(vi,v))) : v € Nk(vi)}}) .

Definition C.2 (k-strongly separable graph). A graph (G,H) € G, n, is said to be k-strongly
separable if the following condition holds when the k-hop SPD-WL test terminates with stabilized
colors and without hash collisions: For any two vertices vy, vy with d(vy,ve) < 2k, the colors of vy
and vy are different.

Our main result in this section is that k-hop SPD-GNNs can universally approximate any
permutation-invariant/equivariant continuous functions on k-strongly separable graphs with no cy-
cles of length greater than 2k — 1.

Theorem C.3. Let k > 2 and let P be a Borel probability measure on G,, ,,. Suppose that P-almost
surely, (G, H) is k-strongly separable and G is connected with no cycles of length greater than
2k — 1. Then, the following hold.
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(i) For any €, > 0 and any permutation-invariant continuous function ® : G,, ,, = R, there
exists F' € F, Zpd such that

P(|F(G, H) — ®(G, H)| > 6] < e.

(ii) For any €, > 0 and any permutation-equivariant continuous function ®, : G, ,, — R",
there exists F,, € F vad such that

P[||F, (G, H) — ®,(G, H)| > ] < .

Proof of Theorem|C.3] Based on Theorem [C.4] below, stating that the k-hop SPD-WL test can dis-
tinguish all non-isomorphic k-strongly separable graphs, and analogues to Theorem and Theo-
rem[2.6] one can prove Theorem [C.3|following the same lines in the proof of Theorem [3.1] O

Theorem C.4. Let k > 2 and consider k-strongly separable graphs (G, H), (G, H) € Gy m.
Suppose that G and G are both connected and have no cycles of length greater than 2k — 1. If
(G, H) and (G, H) are indistinguishable by the k-hop SPD-WL test, then they must be isomorphic.

Proof of Theorem|[C.4} The main idea is that under the assumption of strong k-separability, the k-
hop SPD-WL test has stronger separation power than (k — 1)-hop SPD-WL test, and hence we can
apply the results in Theorem [3.2] and Theorem [3.5]

In particular, let us consider the final stabilized colors on (G, H) and (G, H) generated by k-hop
SPD-WL test (k > 2) without hash collisions. For any vertex v, notice that any pair of vertices in
Nj:(v) have a distance at most 2k from each other, so they are of different colors. Suppose u; and
ug are vertices in N_1(v). If the color of u; implies it has a neighbor with the same color as uo,
then this neighbor must be s, as the only neighbors of u; are in Ny (v) and all vertices in Ny (v) are
of different colors. Otherwise, u; and us cannot be connected by edges. Thus, for any u; and us in
Ni—1(v), we can uniquely determine whether there is an edge between u; and usy by their colors.
This implies that two vertices of the same color must have isomorphic (k — 1)-hop subgraphs, i.e.,
implementing (k — 1)-hop subgraph WL test does not lead to a strict color refinement. Then the
result is a direct corollary of Theorem [3.2]and Theorem [3.5] O

It is worth noting that when & = 1, Theo-
rem holds even without the 1-strong sepa-
rability assumption. This is because that 1-hop
SPD-WL test coincides with the classic WL
test and it is proved in |Bamberger| (2022) that
the classic WL test can distinguish any non-
isomorphic trees. In this sense, Theorem [Cj]
can be regarded as an extension of |Bamberger|
(2022). Another related work is [Feng et al.
(2022) that proves that the separation power of
the k-hop SPD-WL test is upper bounded by
that of the third-order WL test.

Figure 6: The k-strong separability assumption is
necessary in Theorem|C.3|

We also comment that Theorem [C.4] does not

hold true if the k-strong separability condition is removed. Consider the two graphs in Figure [6]
in which all vertices have the same initial feature. Each vertex has three neighbors of distance 1,
two neighbors of distance 2, and no neighbors of higher distance, so all vertices would have the
same color in any k-hop SPD-WL test for any positive integer k. Thus, these two non-isomorphic
graphs cannot be distinguished by k-hop SPD-WL test for any k£ > 1, which does not contradicts
Theorem [C.4]as these two graphs are clearly not k-strongly separable. This example also illustrates
that it is impossible to prove the conclusion of Theorem [C.4] without any condition.
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