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ABSTRACT

Graph neural networks (GNNs) have been widely used in graph-related con-
texts. It is known that the separation power of GNNs is equivalent to that of
the Weisfeiler-Lehman (WL) test; hence, GNNs are imperfect at identifying all
non-isomorphic graphs, which severely limits their expressive power. This work
investigates k-hop subgraph GNNs that aggregate information from neighbors
with distances up to k and incorporate the subgraph structure. We prove that
under appropriate assumptions, the k-hop subgraph GNNs can approximate any
permutation-invariant/equivariant continuous function over graphs without cycles
of length greater than 2k + 1 within any error tolerance. Our numerical experi-
ments on established benchmarks and novel architectures validate our theory on
the relationship between the information aggregation distance and the cycle size.

1 INTRODUCTION

Graph-based machine learning models, known as graph neural networks (GNNs) (Scarselli et al.,
2008; Wu et al., 2020; Zhou et al., 2020; Kipf & Welling, 2016; Veličković et al., 2018), have
emerged as powerful tools for interpreting and making predictions on data that can be represented
as networks of interconnected points. These models excel at uncovering the underlying structure
in graph data, leading to breakthroughs in numerous sectors, including but not limited to physics
(Shlomi et al., 2020), chemistry (Reiser et al., 2022; Fung et al., 2021; Coley et al., 2018), bioinfor-
matics (Zhang et al., 2021), finance (Wang et al., 2021), electronic engineering (Liao et al., 2021;
He et al., 2021; Lee et al., 2022), and operations research (Gasse et al., 2019).

From a theoretical standpoint, GNNs are utilized to learn or approximate functions on graph-
structured data. It is crucial to analyze and understand the expressiveness of GNNs, that is, to
determine the class of functions on graphs these networks can effectively approximate. This analy-
sis offers valuable insights that guide the design of more powerful and efficient GNN architectures.

A fundamental concept in the domain of GNNs is the message-passing mechanism (Gilmer et al.,
2017), which progressively refines node representations by aggregating information from neigh-
boring nodes. To formalize this process, consider a graph G composed of a vertex set V =
{v1, v2, . . . , vn} and an edge set E, with each vertex vi ∈ V initially endowed with a feature vector
h
(0)
i . The message-passing scheme iteratively updates these vectors. At each iteration or layer, the

update for a given vertex integrates input from its immediate neighbors through a combination of
two steps: a local transformation and an aggregation. The local transformation applies a learnable
function to each neighbor’s feature, while the aggregation step combines these transformed features
using a permutation-invariant operation such as summing, averaging, or taking the maximum value.
This aggregated information is then merged with the current feature of the vertex to produce an up-
dated representation. Mathematically, in the l-th iteration/layer, the updated feature h

(l)
i for vertex

vi can be expressed as:

h
(l)
i = f (l)

(
h
(l−1)
i ,AGGR

({{
g(l)(h

(l−1)
j ) : vj adjacent to vi

}}))
, (1.1)

where f (l) and g(l) are learnable functions at layer l, and h
(l−1)
j represents the feature of vertex vj

from the previous layer. The notation {{·}} indicates a multiset that can accommodate duplicate
elements, ensuring that all contributions from neighboring vertices are considered, even if some
vertices share the same feature values.
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Figure 1: Two non-isomorphic graphs that cannot be
distinguished by MP-GNNs or the WL test.

Despite their empirical successes,
message-passing graph neural networks
(MP-GNNs) have limitations in terms of
separation power or expressive power.
Notably, they can fail to differentiate
between certain non-isomorphic graphs.
For instance, as illustrated in Figure 1,
consider two distinct graphs where ver-
tices of the same color start with identical
features. Even though these graphs are
structurally different, MP-GNNs cannot
distinguish between them because vertices
of matching colors will end up with the
same feature representations after any number of message-passing rounds. This outcome persists
irrespective of the specific choices for functions f (l), g(l), or the aggregation method employed.
The reason is that each vertex gathers indistinguishable aggregated information from its neighbors,
leading MP-GNNs to perceive these non-isomorphic structures as identical.

The separation and expressive power of MP-GNNs are closely tied to the Weisfeiler-Lehman (WL)
test (Weisfeiler & Leman, 1968), a classic algorithm designed to tackle the graph isomorphism
problem. At its core, the WL test operates as a color refinement procedure: initially, each vertex vi
is assigned a color C(0)(vi) based on its initial features. The algorithm then proceeds iteratively by
updating the colors according to the following rule:

C(l)(vi) = HASH
(
C(l−1)(vi),

{{
C(l−1)(vj) : vj adjacent to vi

}})
, (1.2)

which mirrors the structure of the update mechanism in (1.1). Assuming the hash function is
collision-free, two vertices will share the same color at iteration l if and only if they have identi-
cal colors and multisets of neighbors’ colors at iteration l − 1. The WL test concludes when the
color partition stabilizes, always within no more than n − 1 iterations, where n is the number of
vertices. It deems two graphs isomorphic if their final color multisets match.

It has been demonstrated that MP-GNNs possess separation power equivalent to that of the
Weisfeiler-Lehman (WL) test (Xu et al., 2019). This means that two graphs are identified as non-
isomorphic by the WL test if and only if they produce distinct outputs in some MP-GNN. Fur-
thermore, it has been proven in Azizian & Lelarge (2021); Geerts & Reutter (2022) that GNNs
can universally approximate any continuous functions whose separation capabilities are bounded
above by the associated WL test. However, no polynomial-time algorithms are known to perfectly
solve the graph isomorphism problem, implying that the WL test cannot distinguish certain pairs of
non-isomorphic graphs, such as those illustrated in Figure 1. As a result, MP-GNNs are unable to
represent or approximate all permutation-invariant or permutation-equivariant functions.

In response to these limitations, researchers have proposed alternative GNN architectures designed
to enhance separation capabilities. A prominent approach in the literature involves the use of higher-
order GNNs (Morris et al., 2019; Maron et al., 2019; Geerts, 2020a;b; Azizian & Lelarge, 2021;
Zhao et al., 2022; Geerts & Reutter, 2022; Morris et al., 2020), which correspond to higher-order
WL tests (Cai et al., 1992). Essentially, a k-th order GNN assigns features to each k-tuple of vertices
and updates these features based on information from neighboring tuples. This mechanism allows
for a more nuanced representation of graph structures, thereby improving the model’s ability to
distinguish between non-isomorphic graphs.

In this work, we explore an alternative technique that has gained prominence in recent literature
(Zhang & Li, 2021; Zhao et al., 2021; Bevilacqua et al., 2021; Frasca et al., 2022) to enhance the
expressive power of MP-GNNs. This approach involves incorporating subgraph structures, moving
beyond the reliance on vertex features from immediate neighboring nodes alone. Architectures that
adopt this strategy are referred to as subgraph GNNs. By integrating subgraph information, these
models can capture more complex and nuanced patterns within graph data, thereby improving their
ability to distinguish between different graph structures (Feng et al., 2022; Huang et al., 2023). We
further perform numerical validation with established benchmarks (Gómez-Bombarelli et al., 2018)
and GNN architectures (Ying et al., 2021) in graph learning, whereby a strong correlation between
theoretical and numerical results is witnessed.
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Our contributions The main contributions of this paper are summarized as follows.

• We rigorously characterize the separation power of subgraph GNNs by demonstrating that they
can perfectly distinguish a large family of graphs with bounded cycle lengths. Specifically, under
appropriate assumptions, we prove that GNNs leveraging subgraph structures within a distance
k from the current vertex can distinguish all non-isomorphic graphs that do not contain cycles
of length greater than 2k + 1.

• Based on the above result, we show that such k-hop subgraph GNNs can approximate any
permutation-invariant/equivariant continuous functions on graphs without cycles of length
greater than 2k + 1.

• We empirically validate our theoretical findings on the relationship between the information ag-
gregation distance k and the cycle size 2k+1, providing valuable insights on selecting practical
information aggregation distance.

Organization The rest of this paper will be organized as follows. We define subgraph GNNs and
the associated WL test and introduce the motivation in Section 2. Our main theory for the expres-
sive power of k-hop subgraph GNNs is presented in Section 3, with detailed proofs and extensions
deferred to the appendix. Section 4 presents the numerical experiments and the whole paper is
concluded in Section 5.

2 SUBGRAPH GNNS AND THE WL TEST

This section describes the motivation and sets up the basics for subgraph GNNs.

2.1 MOTIVATION

Note that MP-GNNs (1.1) have a fundamental limitation that they fail to distinguish some non-
isomorphic graphs, such as those in Figure 1. One idea to enhance the expressive power is to
incorporate more information from neighboring vertices and subgraphs:

• The aggregation in (1.1) uses N (vi), the set of neighbors of vi. To incorporate additional infor-
mation, we define d(u, v) as the shortest-path distance between u and v in the graph G and

Nk(vi) := {v ∈ G : d(v, vi) ≤ k} , k ≥ 1.

• Beyond the vertex features in Nk(vi), one can also capture edge information, i.e., whether two
vertices are connected. This means that the topology of G|Nk(vi), the subgraph of G restricted
to Nk(vi) (known as the k-hop subgraph rooted at vi), can be used to update the feature of vi.

Let (G, h(l−1))vi,k denote the subgraph G|Nk(vi) rooted at vi, with each vertex having a feature
from h(l−1). Accordingly, the vertex feature update rule is given by

h
(l)
i = f (l)

(
h
(l−1)
i , g(l)

(
(G, h(l−1))vi,k

))
. (2.1)

The functions f (l) and g(l) are learnable, with g(l) taking the same value on isomorphic rooted
graphs. This scheme, termed the k-hop subgraph GNN, has various applications and adaptations in
the existing literature (Zhang & Li, 2021; Zhao et al., 2021; Bevilacqua et al., 2021; Frasca et al.,
2022). Notably, the learnable function g(l) is often parameterized as another GNN applied to the
smaller subgraph (G, hl−1)vi,k.

Consider the two non-isomorphic graphs in Figure 1 indistinguishable by MP-GNNs. It can be seen
that the 2-hop subgraph GNN can successfully distinguish them. Specifically, the 2-hop subgraphs
rooted at v1 are shown in Figure 2 and are clearly non-isomorphic, indicating that v1 in the two
graphs in Figure 1 will have different feature after one layer of the 2-hop subgraph GNN, as long as
g(1) can distinguish these two non-isomorphic subgraphs.

Another observation is that the 2-hop subgraph GNN fails if we increase the cycle sizes in Fig-
ure 1—for instance, by changing one graph to have two 6-cycles and the other a single 12-cycle. In
general, the k-hop subgraph GNN fails to distinguish between a graph with two (2k+2)-cycles and
one with a single (4k+4)-cycle, though it succeeds when the cycle sizes are smaller. This suggests
that larger cycles limit the separation power of the k-hop subgraph GNN.
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Figure 2: 2-hop subgraphs rooted at v1 for
graphs in Figure 1

Such observation and motivation align with em-
pirical findings in the literature. The ZINC
dataset (Dwivedi et al., 2023) consists of molec-
ular graphs with no large cycles, and variants
of subgraph GNNs have shown notable improve-
ment over message-passing GNNs on this dataset
(Zhang et al., 2023; Zhang & Li, 2021; Zhao
et al., 2021; Bevilacqua et al., 2021; Frasca et al.,
2022).

At the end of this subsection, we comment that
the above observation on k-hop subgraph GNNs
requires that g(l) has a relatively strong separation power on the subgraph (G, h(l−1))vi,k, which is
achievable if the size of (G, h(l−1))vi,k is small or G is sparse. However, if G is relatively dense, then
the size of (G, h(l−1))vi,k might be comparable with G and the subproblem of finding expressive
g(l) might be difficult.

2.2 k-HOP SUBGRAPH GNNS

We rigorously define the k-hop subgraph GNNs in this subsection, for which we define the graph
space first.
Definition 2.1 (Space of graphs with vertex features). We use Gn,m to denote the space of all undi-
rected unweighted graphs of n vertices with each vertex equipped with a feature in Rm. The space
Gn,m is equipped with the product topology of discrete topology (of graphs without vertex features)
and Euclidean topology (of vertex features).

We use (G,H) to denote an element in Gn,m where G = (E, V ) is an undirected unweighted graph,
and H = (h1, h2, . . . , hn) is the collection of all vertex features. Given (G,H) ∈ Gn,m and k ≥ 1,
the k-hop subgraph GNN is defined as follows.

• The embedding layer maps each vertex feature hi ∈ Rm as an embedding vector

h
(0)
i = f (0)(hi),

where f (0) is learnable.

• For l = 1, 2, . . . , L, the information aggregation layer computes h
(l)
i according to (2.1) for

i = 1, 2, . . . , n.
• There are two types of outputs. The graph-level output computes a real number for the whole

graph, namely
y = r

(
AGGR

({{
h
(L)
i : i ∈ {1, 2, . . . , n}

}}))
,

where r is learnable. The vertex-level output assigns a real number for each vertex:

yi = r(h
(L)
i ), i = 1, 2, . . . , n.

In general, the intermediate vertex features h(l)
i can be defined in any topological space, while one

usually uses Euclidean spaces in practice. Throughout this paper, we always consider continuous
f (l), g(l), and r, guaranteeing that all k-hop subgraph GNNs are continuous.
Definition 2.2 (Spaces of k-hop subgraph GNNs). We use Fk to denote the collection of all k-hop
subgraph GNNs with graph-level output, and use Fk,v to denote the collection of all k-hop subgraph
GNNs with vertex-level output.

It is clear that a k-hop subgraph GNN with graph-level output is permutation-invariant, and a k-hop
subgraph GNN with vertex-level output is permutation-equivariant, with respect to the following
definition.
Definition 2.3 (Permutation-invariant and permutation-equivariant functions). We say that a func-
tion Φ : Gn,m → R is permutation-invariant if

Φ(σ ∗ (G,H)) = Φ(G,H), ∀ σ ∈ Sn,

4
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where Sn denotes the permutation group on {1, 2, . . . , n} and σ ∗ (G,H) is the graph obtained by
relabeling vertices in (G,H) according to the permutation σ, and that a function Φ : Gn,m → Rn

is permutation-equivariant if
Φ(σ ∗ (G,H)) = σ(Φ(G,H)), ∀ σ ∈ Sn.

2.3 k-HOP SUBGRAPH WL TEST AND THE EQUIVALENT SEPARATION POWER

Algorithm 1 k-hop Subgraph Weisfeiler-Lehman test

Require: A graph (G,H) ∈ Gn,m and iteration limit.
Initialize the vertex color

C
(0)
i = HASH(hi), i = 1, 2, . . . , n.

while l = 1, 2, . . . , L do
Refine the color

C
(l)
i = HASH

(
C

(l−1)
i , (G,C(l−1))vi,k

)
, (2.2)

for i = 1, 2, . . . , n.
end while
Output: Multiset {{C(L)

i : i ∈ {1, 2, . . . , n}}}.

It is known that the MP-GNNs and the
classic WL test have equivalent separa-
tion power (Xu et al., 2019). The same
equivalence extends naturally for other
variants of GNNs and WL test. In par-
ticular, we consider the k-hop subgraph
GNN and the associated WL test stated
in Algorithm 1.

We define two equivalence relationships
below that characterize the separation
power of the k-hop subgraph WL test.
Definition 2.4. For two graphs
(G,H), (Ĝ, Ĥ) ∈ Gn,m, denote
{{C(L)

i : i ∈ {1, 2, . . . , n}}} and
{{Ĉ(L)

i : i ∈ {1, 2, . . . , n}}} as their final color multisets output by the k-hop subgraph WL test.

(i) We say (G,H)
k∼ (Ĝ, Ĥ) if {{C(L)

i : i ∈ {1, 2, . . . , n}}} = {{Ĉ(L)
i : i ∈ {1, 2, . . . , n}}}

for any L > 0 and any hash function.

(ii) We say (G,H)
k,v∼ (Ĝ, Ĥ) if C(L)

i = Ĉ
(L)
i , i = 1, 2, . . . , n, for any L > 0 and any hash

function.

We remark that two multisets are identical if for any element, its multiplicities in two multisets are
the same. Throughout this paper, we would say that two graphs (G,H) and (Ĝ, Ĥ) are indistin-
guishable by k-hop subgraph WL test if (G,H)

k∼ (Ĝ, Ĥ).

The following theorem states the equivalence between the separation power of k-hop subgraph
GNNs and the k-hop subgraph WL test.
Theorem 2.5. For any (G,H), (Ĝ, Ĥ) ∈ Gn,m and any k > 0, the following are equivalent:

(i) (G,H)
k∼ (Ĝ, Ĥ).

(ii) F (G,H) = F (Ĝ, Ĥ) for any F ∈ Fk.

(iii) For any Fv ∈ Fk,v , there exists σ ∈ Sn such that Fv(G,H) = σ(Fv(Ĝ, Ĥ)).

Moreover, (G,H)
k,v∼ (Ĝ, Ĥ) if and only if Fv(G,H) = Fv(Ĝ, Ĥ) for any Fv ∈ Fk,v .

The proof of Theorem 2.5 follows similar lines as in the proof of Theorem 4.2 in Chen et al. (2023),
which is straightforward and is hence omitted. Similar equivalence also holds for two vertices in a
single graph, as stated in the corollary below.

Corollary 2.6. For any (G,H) ∈ Gn,m and any k > 0. Let {{C(L)
i : i ∈ {1, 2, . . . , n}}} be the

color multiset output by the k-hop subgraph WL test. For any i, i′ ∈ {1, 2, . . . , n}, the following are
equivalent:

(i) C
(L)
i = C

(L)
i′ for any L > 0 and any hash function.

(ii) Fv(G,H)i = Fv(G,H)i′ for any Fv ∈ Fk,v .

Proof. Apply Theorem 2.5 to (G,H) and σ ∗ (G,H) where σ is the permutation that switches i, i′
and keep all other indices unchanged.
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3 EXPRESSIVE POWER OF k-HOP SUBGRAPH GNNS

This section presents our main results on the expressive power of k-hop subgraph GNNs. We con-
sider k = 1 in Section 3.1 and k ≥ 2 in Section 3.2.

3.1 1-HOP SUBGRAPH GNNS

Our main theorem on 1-hop subgraph GNNs is that they can approximate any permutation-
invariant/equivariant continuous functions on graphs without cycles of length greater than 3.
Theorem 3.1. Let P be a Borel probability measure on Gn,m. Suppose that for P-almost surely
(G,H), the graph G is connected and has no cycles of length greater than 3. Then, the following
hold.

(i) For any ϵ, δ > 0 and any permutation-invariant continuous function Φ : Gn,m → R, there
exists F ∈ F1 such that

P [|F (G,H)− Φ(G,H)| > δ] < ϵ.

(ii) For any ϵ, δ > 0 and any permutation-equivariant continuous function Φv : Gn,m → Rn,
there exists Fv ∈ F1,v such that

P [∥Fv(G,H)− Φv(G,H)∥ > δ] < ϵ.

Throughout this paper, we always denote ∥ · ∥ as the standard ℓ2-norm on Rn. We describe the
main idea here and the detailed proof of Theorem 3.1 is deferred to Section A. The classic Stone-
Weierstrass theorem states that under mild conditions, a function class can universally approximate
any continuous function if and only if it separates points, i.e., for any two different inputs, at least one
function in that class has different outputs. Therefore, based on Stone-Weierstrass-type theorems, it
suffices to show that 1-hop subgraph GNNs have strong enough separation power to distinguish all
non-isomorphic connected graphs with no cycles of length greater than 3. Noticing the equivalence
results in Section 2.3, one only needs to explore the separation power of 1-hop subgraph WL test.

Theorem 3.2. Consider (G,H), (Ĝ, Ĥ) ∈ Gn,m. Suppose that G and Ĝ are both connected and

have no cycles of length greater than 3. If (G,H)
1∼ (Ĝ, Ĥ), then (G,H) and (Ĝ, Ĥ) must be

isomorphic.

In the acyclic graph setting, it is proved in Bamberger (2022) that two trees indistinguishable by the
classic WL test (1.2) must be isomorphic. Theorem 3.2 can be viewed as a generalization of this
result from Bamberger (2022).

The key idea in the proof of Theorem 3.2 is inductively constructing the isomorphism. We con-
sider stabilized colors output by 1-hop subgraph WL test without hash collision and start from two
vertices of the same color, one from each graph. The 1-hop subgraphs rooted at these two ver-
tices are isomorphic, guaranteed by the same color. Then we inductively extend the subgraphs by
adding neighbors of two vertices in the current subgraphs of the same color, which maintains the
isomorphism, until they reach the whole graphs.

3.2 k-HOP SUBGRAPH GNNS WITH k ≥ 2

This subsection concerns the expressive power of k-hop subgraph GNNs for k ≥ 2 and the main
theory is an extension of Theorem 3.1, in the sense that k-hop subgraph GNNs (k ≥ 2) can approxi-
mate any permutation-invariant/equivariant continuous functions on graphs without cycles of length
greater than 2k + 1, but an additional assumption is required.
Definition 3.3 (k-separable graph). A graph (G,H) ∈ Gn,m is said to be k-separable if the follow-
ing condition holds when the k-hop subgraph WL test terminates with stabilized colors and without
hash collisions: For any three vertices u, v1, v2 with d(u, v1) = d(u, v2) = k and v1 ̸= v2, the
colors of v1 and v2 are different.
Theorem 3.4. Let P be a Borel probability measure on Gn,m. Suppose that P-almost surely, (G,H)
is k-separable and G is connected with no cycles of length greater than 2k+1. Then, the following
hold.

6
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(i) For any ϵ, δ > 0 and any permutation-invariant continuous function Φ : Gn,m → R, there
exists F ∈ Fk such that

P [|F (G,H)− Φ(G,H)| > δ] < ϵ.

(ii) For any ϵ, δ > 0 and any permutation-equivariant continuous function Φv : Gn,m → Rn,
there exists Fv ∈ Fk,v such that

P [∥Fv(G,H)− Φv(G,H)∥ > δ] < ϵ.

The proof of Theorem 3.4 follows a similar framework as Theorem 3.1 and is deferred to Section B,
where the key step is the following theorem that is an analog of Theorem 3.2.

Theorem 3.5. Consider k ≥ 2 and (G,H), (Ĝ, Ĥ) ∈ Gn,m that are both k-separable. Suppose that

G and Ĝ are both connected and have no cycles of length greater than 2k+1. If (G,H)
k∼ (Ĝ, Ĥ),

then (G,H) and (Ĝ, Ĥ) must be isomorphic.

Figure 3: Two non-isomorphic 3-separable
graphs indistinguishable by the classic WL
test, but distinguishable by the 3-hop sub-
graph WL test.

We remark that even restricted to k-separable graphs,
the k-hop subgraph WL test (2.2) still has strictly
stronger separation power compared to the classic
WL test (1.2). To illustrate this, we present two
non-isomorphic k-separable graphs that can be dis-
tinguished by the k-hop subgraph WL test, but are,
however, treated the same by the classic WL test. Let
k = 3, and consider the two graphs in Figure 3 with
initial vertex features as labeled by colors.

Notice that neither graph has a cycle with more than
2k + 1 = 7 vertices. Furthermore, for any vertex u in
either graph, any distinct vertices v1 and v2 with dis-
tance exactly 3 from u are of different colors. Thus,
our results imply that these two graphs can be distin-
guished by the 3-hop subgraph WL test. However, we can see that the coloring on both graphs
immediately stabilizes when the classic WL test is applied, so the classic WL test cannot distinguish
between the graphs. Moreover, this example is non-trivial in the sense that any 3-hop subgraph in
either graph is not the entire graph.

At the end of this section, we will mention some related works that analyze the separation power
of the subgraph GNNs. Feng et al. (2022) show that the separation power of subgraph GNNs is
partially stronger than the third-order WL test. More related to our work, it is proved in Huang
et al. (2023) that subgraph GNNs can “count” cycles of length up to 4 and some variant can “count”
cycles of length up to 6. It is worth noting that the subgraph topology is integrated in a specific
way in Feng et al. (2022); Huang et al. (2023), while we always assume that g(l) has strong enough
expressive/separation power on the k-hop subgraphs, without fixing the structure of g(l).

4 NUMERICAL EXPERIMENTS

4.1 EXPERIMENTAL SETTING AND DATASET

Our experiments utilize a special family of k-hop subgraph GNNs that implements (2.1) in a practi-
cal and computationally cheap way, namely

h
(l)
i = f (l)

(
h
(l−1)
i ,AGGR

({{
g(l)

(
h
(l−1)
j , d(vi, vj)

)
: vj ∈ Nk(vi)

}}))
, (4.1)

where the vertex feature is updated by aggregating information in Nk(vi) and some information
of the subgraph topology is integrated in a shortest-path distance d(vi, vj) on the graph. In partic-
ular, we implement a family of models termed k-hop Graphormer and modified from the official
Graphormer backbone (Ying et al., 2021). We also show the generalizability of our framework by
implementing the k-hop Graphormer-GD with a different definition of d(vi, vj) (Zhang et al., 2023).
The numerical experiment aims to validate our theoretical findings on an established graph learning
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benchmark using state-of-the-art GNN backbones. We also aim to assess whether the theoretically
characterized expressiveness could generalize from the training set to the testing set, which is not
characterized by most GNN-related theories, nor the recent finding that many graph benchmarks
are empirically distinguishable by either 1-WL (Zopf, 2022) or subgraph counting (Pellizzoni et al.,
2025). All experiments are performed on a server with Intel 6230R CPU, single 2080Ti GPU, and
512GB RAM.

0 5 10 15 20
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)
Figure 4: Statistics on the longest cycle length across
all testing molecules in the ZINC dataset indicate that
most molecules have a longest cycle of 6, aligning with
the chemical intuition that 6-membered rings are par-
ticularly stable. The peaks observed at 9 and 10 also
support the prevalence of common fused ring systems.

We test our model on the ZINC graph-
learning dataset, a subset of the ZINC
database with 250,000 molecules devel-
oped by Gómez-Bombarelli et al. (2018)
(often denoted as ZINC-Full). On this
dataset, the aim of the machine learning
community mainly focuses on predicting
the water-octanol partition coefficient (i.e.,
logP (Wildman & Crippen, 1999)) by neu-
ral networks, whereby the ground truth
labels are computed with cheminformat-
ics tools. As shown in Figure 4, most
graphs in the ZINC testing dataset have
a longest cycle no larger than 10. Given
these statistics and considering our theo-
retical bounds on GNN expressiveness for
cycle sizes no more than 2k+1, we antic-
ipate a notable performance boost around
k = 4 or k = 5 for our k-hop Graphorm-
ers. In line with peer methods, we report
the mean absolute error (MAE) between
GNN predictions and ground-truth labels.

4.2 k-HOP GRAPHORMER IMPLEMENTATION DETAILS

1 2 3 4 5 7 10 inf
k
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M
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n 
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k-hop Graphormer
k-hop Graphormer-GD

Figure 5: Mean absolute error (MAE) on ZINC testing
set with different ks for our k-hop Graphormer(-GD).
Dashed horizontal lines denote the best-performing en-
try. Aligned with theoretical results and dataset statis-
tics in Figure 4, we see a significant performance boost
from k = 1 to 4, and the performance is nearly satu-
rated for k ≥ 4. All results are obtained with 3 random
seeds, and the min/max MAEs are shown.

Graphormer replaces edge-wise message-
passing with attention layers, whereby the
connectivity information is incorporated
into attention weights, which are initial-
ized with pairwise shortest path distance.
We modify its attention mechanism to fit
Graphormers with our k-hop theory, by
masking out all attention paths that are be-
yond the k-hop neighbors of the aggre-
gated node. This implementation is in
line with the aggregation function in (4.1)
and d(vi, vj) is the shortest path distance.
Graphormer-GD further improves expres-
siveness by replacing the shortest path dis-
tance with resistance distance (Klein &
Randic, 1993), which could also be in-
corporated with our k-hop architecture.
Graphormer(-GD) is a special case of k-
hop Graphormer(-GD) by setting k = ∞.
We reimplement and test all Graphormers
with the following default hyperparame-
ters: Graphormer-Slim backbone, Adam
with 2 × 10−4 starting learning rate and
ending 10−9, 12 Transformer layers, 80 hidden dimensions, 8 attention heads, 60,000 warm-up
steps, and 400,000 total steps. To mitigate the gap between the slight implementation difference
of the computationally-friendly (4.1) between (2.1), we derive similar theoretical results for cycle
lengths of 2k − 1 in Section C.
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4.3 RESULTS AND DISCUSSIONS

Table 1: Mean Absolute Error (MAE) on ZINC test set. The best
entry among Graphormer variants is underlined, and the best entry
among Graphormer-GD variants is highlighted in bold.

Aggregation Model Test MAE ↓

1-hop

GIN (Xu et al., 2019) 0.088±0.002
GraphSAGE (Hamilton et al., 2017) 0.126±0.003
GAT (Veličković et al., 2018) 0.111±0.002
k-hop Graphormer (k = 1) 0.459±0.001

k-hop

k-hop Graphormer (k = 4) 0.054±0.002
k-hop Graphormer (k = 7) 0.053±0.001
k-hop Graphormer-GD (k = 4) 0.041±0.001
k-hop Graphormer-GD (k = 7) 0.042±0.001

full-graph Graphormer (Ying et al., 2021) 0.058±0.001
Graphormer-GD (Zhang et al., 2023) 0.043±0.001

In the experiments,
we evaluate the k-hop
Graphormers(-GD) with
k = 1, 2, 3, 4, 5, 7, 10,
and infinity, i.e., feature
could be aggregated from
all nodes by attention. As
shown in Figure 5, 1-hop
Graphormer performs
relatively inferior, and
the performance improves
significantly with larger
k when k ≤ 4 and reach
a nearly optimal perfor-
mance at k = 4, validating
our theoretical discovery
that a k-hop Graphormer
has the expressiveness to
learn graphs with longest cycles of 2k + 1. The performance becomes nearly saturated between
k = 4 and 10, which is within expectation as the marginal improvements in covered graphs are
less significant if read together with Figure 4. k-hop Graphormer-GD benefits from the resistance
distance over the shortest path distance, validating the effectiveness of k-hop design on both
distance metrics. We also see a slight performance drop for k-hop Graphormer in the special case
of k = ∞, indicating that too many message paths may introduce more noise than information to
the model performance. A smaller k also brings potential efficiency improvements as it has fewer
message-passing paths than an infinite k. The efficiency benefit is not obvious for the ZINC dataset
but will become valuable for larger-sized graphs.

When compared with other 1-hop aggregation methods (traditional message-passing GNNs), as
shown in Table 1, our 1-hop Graphormer has a similar MAE in scale but is inferior to 1-hop GNNs.
With an appropriate k that reflects the distribution of cycle lengths in data, k-hop Graphormers reach
a significant improvement. Our model degenerates to the original Graphormer when k → ∞. It is
also worth noting that this benchmark is nearly saturated, for example, Zhang et al. (2023) reported
a 0.025 MAE with a thorough search of the hyperparameter space but their official implementation
does not include the hyperparameters to reproduce it. When training Graphormer-GD with the same
hyperparameters from the original Graphormer, the average MAE becomes 0.043. Considering all
of these, we believe it is beyond the scope of this paper to develop new state-of-the-art. Therefore,
our main focus of experiments is to validate our theoretical results, i.e., the correlation between k
values and the performance of k-hop Graphormers.

5 CONCLUSION

This paper rigorously evaluates the efficiency of GNNs that leverage subgraph structures, particu-
larly on graphs with bounded cycles, which represent many real-world datasets. In particular, we
prove that k-hop subgraph GNNs can reliably predict properties of graphs without cycles of length
greater than 2k + 1, which is unconditionally if k = 1 and requires an additional assumption for
k ≥ 2. The correlation between k-hop subgraph GNNs and 2k+ 1 cycle size is further validated by
numerical experiments.

Let us also comment on the limitations of the current work. Firstly, it is unclear whether the k-
separability assumption in Theorem 3.4 can be removed or not. Secondly, Theorem 3.1 and Theo-
rem 3.4 rely on the strong enough separation power of g(l) in (2.1) on the k-hop subgraphs, which
might be expensive to guarantee if the input graph is dense, and it is still open whether one can estab-
lish theories of a similar style for specific information aggregation mechanisms on k-hop subgraphs,
such as (4.1) and Feng et al. (2022); Huang et al. (2023). We have included some preliminary results
for the expressive power of (4.1) in Appendix C. Lastly, it is also interesting to test k-hop subgraph
GNNs on more real-world datasets. These directions deserve future research.
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Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven contin-
uous representation of molecules. ACS central science, 4(2):268–276, 2018.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, volume 30, pp. 1025–1035, 2017.

Shiwen He, Shaowen Xiong, Yeyu Ou, Jian Zhang, Jiaheng Wang, Yongming Huang, and Yaoxue
Zhang. An overview on the application of graph neural networks in wireless networks. IEEE
Open Journal of the Communications Society, 2:2547–2565, 2021.

Yinan Huang, Xingang Peng, Jianzhu Ma, and Muhan Zhang. Boosting the cycle counting power
of graph neural networks with I2-GNNs. In The Eleventh International Conference on Learning
Representations, 2023.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

D. J. Klein and M. Randic. Resistance distance. Journal of Mathematical Chemistry, 12:81–95,
1993.

Mengyuan Lee, Guanding Yu, Huaiyu Dai, and Geoffrey Ye Li. Graph neural networks meet wire-
less communications: Motivation, applications, and future directions. IEEE Wireless Communi-
cations, 29(5):12–19, 2022.

Wenlong Liao, Birgitte Bak-Jensen, Jayakrishnan Radhakrishna Pillai, Yuelong Wang, and Yusen
Wang. A review of graph neural networks and their applications in power systems. Journal of
Modern Power Systems and Clean Energy, 10(2):345–360, 2021.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. Advances in neural information processing systems, 32, 2019.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and Leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 4602–4609, 2019.

Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and Leman go sparse: Towards
scalable higher-order graph embeddings. Advances in Neural Information Processing Systems,
33:21824–21840, 2020.

Paolo Pellizzoni, Till Hendrik Schulz, and Karsten Borgwardt. Graph neural networks can (often)
count substructures. In The Thirteenth International Conference on Learning Representations,
2025.

Patrick Reiser, Marlen Neubert, Andr’e Eberhard, Luca Torresi, Chen Zhou, Chen Shao, Houssam
Metni, Clint van Hoesel, Henrik Schopmans, Timo Sommer, and Pascal Friederich. Graph neural
networks for materials science and chemistry. Communications Materials, 3, 2022. URL https:
//api.semanticscholar.org/CorpusID:251718822.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. Graph neural networks in particle
physics. Machine Learning: Science and Technology, 2(2):021001, 2020.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
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A PROOFS FOR SECTION 3.1

The proof of Theorem 3.1 is based on Theorem 3.2 and its corollary.

Corollary A.1. Consider any (G,H) ∈ Gn,m where G is connected and has no cycles of length
greater than 3. Let {{C(L)

i : i ∈ {1, 2, . . . , n}}} be the color multiset output by the 1-hop
subgraph WL test. For any i, i′ ∈ {1, 2, . . . , n}, if C

(L)
i = C

(L)
i′ holds for any L > 0 and

any hash function, then we have for any permutation-equivariant function Φ : Gn,m → Rn that
Φ(G,H)i = Φ(G,H)i′ .

We will postpone the proofs of Theorem 3.2 and Theorem A.1 and first prove Theorem 3.1 (i) using
Theorem 3.2 and the Stone-Weierstrass theorem.

Proof of Theorem 3.1 (i). There exists a compact and permutation-invariant subset X ⊆ Gn,m such
that P[X] > 1 − ϵ and that for any (G,H) ∈ X , G is connected and has no cycles of length
greater than 3. Due to Theorem 3.2 and the permutation-invariant property of Φ, Φ|X : X → R
induces a continuous map on the quotient space Φ̃|X : X/

1∼→ R By the same reason, for F ∈ F1,
F |X : X → R also induces a continuous map F̃ |X : X/

1∼→ R. Consider any (G,H), (Ĝ, Ĥ) ∈ X

that represent different elements in X/
1∼, Theorem 2.5 guarantees that there exists F ∈ F1 such
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that F (G,H) ̸= F (Ĝ, Ĥ), suggesting that {F̃ |X : F ∈ F1} separates points on X/
1∼. Therefore,

by the Stone-Weierstrass theorem, one can conclude that there exists F ∈ F1 such that∥∥∥F̃ |X − Φ̃|X
∥∥∥
L∞(X/

1∼)
< δ,

which implies that
|F (G,H)− Φ(G,H)| < δ, ∀ (G,H) ∈ X.

Thus, it holds that
P [|F (G,H)− Φ(G,H)| > δ] ≤ P[Gn,m\X] < ϵ,

which completes the proof.

The proof of Theorem 3.1 (ii) requires a generalized Stone-Weierstrass theorem for equivariant
functions.

Theorem A.2 (Generalized Stone-Weierstrass theorem, Theorem 22 in Azizian & Lelarge (2021)).
Let X be a compact topological space and let G be a finite group that acts continuously on X and
Rn. Define the collection of all equivariant continuous functions from X to Rn as follows:

Ce(X,Rn) = {F ∈ C(X,Rn) : F (g ∗ x) = g ∗ F (x), ∀ x ∈ X, g ∈ G}.

Consider any F ⊂ Ce(X,Rn) and any Φ ∈ Ce(X,Rn). Suppose the following conditions hold:

(i) F is a subalgebra of C(X,Rn) and 1 ∈ F .

(ii) For any x, x′ ∈ X , if f(x) = f(x′) holds for any f ∈ C(X,R) with f1 ∈ F , then for any
F ∈ F , there exists g ∈ G such that F (x) = g ∗ F (x′).

(iii) For any x, x′ ∈ X , if F (x) = F (x′) holds for any F ∈ F , then Φ(x) = Φ(x′).

(iv) For any x ∈ X , it holds that Φ(x)i = Φ(x)i′ , ∀ (i, i′) ∈ I(x), where

I(x) =
{
(i, i′) ∈ {1, 2, . . . , n}2 : F (x)i = F (x)i′ , ∀ F ∈ F

}
.

Then for any ϵ > 0, there exists F ∈ F such that

sup
x∈X

∥Φ(x)− F (x)∥ < ϵ.

Proof of Theorem 3.1 (ii). There exists a compact and permutation-invariant subset X ⊆ Gn,m such
that P[X] > 1− ϵ and that for any (G,H) ∈ X , G is connected and has no cycles of length greater
than 3. The rest is to apply Theorem A.2 on X and F = F1,v , for which one needs to verify the
four conditions in Theorem A.2.

• Verification of Condition (i). By its construction, F1,v is a subalgebra of C(X,R). In addition,
1 ∈ F1,v if the output function r always takes the constant value 1.

• Verification of Condition (ii). Notice that F11 ⊂ F1,v . If F (G,H) = F (Ĝ, Ĥ), ∀ F ∈ F1,
then Theorem 2.5 implies that for any Fv ∈ F1,v , one has Fv(G,H) = σ(Fv(Ĝ, Ĥ)) for some
permutation σ ∈ Sn.

• Verification of Condition (iii). Suppose that Fv(G,H) = Fv(Ĝ, Ĥ), ∀ Fv ∈ F1,v . By Theo-

rem 2.5, it holds that (G,H)
1,v∼ (Ĝ, Ĥ). By Theorem 3.2, we know that (G,H) and (Ĝ, Ĥ) are

isomorphic, i.e., (G,H) = σ ∗ (Ĝ, Ĥ) for some σ ∈ Sn, which leads to

Φv(G,H) = Φv(σ ∗ (Ĝ, Ĥ)) = σ(Φv(Ĝ, Ĥ)). (A.1)

Moreover, it follows from σ ∗ (Ĝ, Ĥ) = (G,H)
1,v∼ (Ĝ, Ĥ) and Theorem A.1 that

Φv(Ĝ, Ĥ)i = Φv(Ĝ, Ĥ)σ(i), ∀ i ∈ {1, 2, . . . , n}. (A.2)

Then one can conclude Φv(G,H) = Φv(Ĝ, Ĥ) by combining (A.1) and (A.2).
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• Verification of Condition (iv). Condition (iv) is a direct corollary of Theorem 2.6 and Theo-
rem A.1.

Finally, we present the proof of Theorem 3.2 and Theorem A.1.

Proof of Theorem 3.2. Let A = (A1, A2, . . . , As) be an s-tuple of subgraphs of a graph A, and let
B = (B1, B2, . . . , Bs) be an s-tuple of subgraphs of a graph B. Let V (A) be the union of the
vertices in A1, A2, . . . , As, and let V (B) be the union of the vertices in B1, B2, . . . , Bs. We say that
A and B are isomorphic if there exists a bijective map of vertices of V (A) to vertices of V (B) such
that for any i ∈ {1, 2, . . . , s},

• all vertices of Ai are mapped to vertices of Bi with the same label/feature and vice versa

• all edges of Ai are mapped to edges of Bi and vice versa.

Consider (G,H)
1∼ (Ĝ, Ĥ), i.e., (G,H) and (Ĝ, Ĥ) cannot be distinguished by the 1-hop subgraph

WL test. When there are no hash collisions and the colors stabilize, the multisets of final colors
of vertices in G and Ĝ are the same, and any v1 ∈ G and v2 ∈ Ĝ with the same color must have
isomorphic 1-hop subgraphs.

We abbreviate an induced subgraph of (G,H) or (Ĝ, Ĥ) as its set of vertices. For any set S of
vertices, let N (S) be the set of all vertices in S or neighboring some vertex of S. We prove the
following statement by induction: for any t ∈ {1, 2, . . . , |G|}, there exist connected isomorphic
subsets S1 ⊆ V (G) and S2 ⊆ V (Ĝ) of size t, where V (G) and V (Ĝ) are vertex sets of G and Ĝ
respectively, such that (S1,N (S1)) and (S2,N (S2)) are isomorphic. For the base case, choose any
two vertices in G and Ĝ with the same color. For the inductive step, suppose that S1 and S2 are sets
of size t < |V (G)|, and we want to find two sets S′

1 and S′
2 with size t+ 1 that satisfy the inductive

statement. Let v1 be a vertex not in S1 adjacent to a vertex in S1, and let v2 be the image of v1
under the isomorphism f : (S1,N (S1)) → (S2,N (S2)), i.e., v2 = f(v1). Let N (v1) and N (v2)
be the sets of vertices with distance at most 1 from v1 and v2, respectively. Then N (v1) and N (v2)
are isomorphic since v1 and v2 are of the same color. We aim to show that f can be extended to an
isomorphism from (S1 ∪ {v1},N (S1) ∪N (v1)) to (S2 ∪ {v2},N (S2) ∪N (v2)).

Consider T1 = N (v1)\N (S1) and T2 = N (v2)\N (S2). We claim that any vertex u1 of T1 cannot
be connected to a vertex of N (S1) other than v1. If u1 is connected to some vertex u2 ̸= v1 in
N (S1), then both v1 and u2 must have some neighbor in S1: call these u3 and u4. If u3 = u4, then
we have the cycle u1 → v1 → u3 → u2 → u1. If u3 ̸= u4, then there must be a path through edges
of S1 from u3 to u4, so we create a cycle containing u1 → v1 → u3 → · · · → u4 → u2 → u1.
Both of these cycles have a length greater than 3, which is a contradiction. Thus, u1 is not connected
to any vertex of N (S1) other than v1. Similarly, any vertex of T2 is not connected to a vertex of
N (S2) other than v2.

Another observation is that in the induced subgraph of T1 (or T2), the degree of each vertex is at
most 1. In particular, if u1 ∈ T1 is connected to u2, u3 ∈ T1 with u2 ̸= u3, then there is a cycle
u2 → u1 → u3 → v1 → u2 of length 4, which is a contradiction.

Notice that f : (S1,N (S1)) → (S2,N (S2)) is an isomorphism and that N (S1)∩N (v1) is isomor-
phic to N (S2)∩N (v2). It can be seen that the multisets of vertex colors in T1 and T2 are the same.
Additionally, edges connecting vertices in T1 can be paired with edges connecting vertices in T2,
so that the paired edges have the same multiset of end vertex features. Since no such edges share a
common end vertex, guaranteed by the above observation, one can extend f to an isomorphism from
(S1 ∪ {v1},N (S1) ∪N (v1)) to (S2 ∪ {v2},N (S2) ∪N (v2)). Thus, we have proven the inductive
step and the proof is completed.

Proof of Corollary A.1. By the proof of Theorem 3.2, there exists a permutation σ ∈ Sn such that
σ(i) = i′ and σ ∗ (G,H) = (G,H). Then the result holds immediately.
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B PROOFS FOR SECTION 3.2

Proof of Theorem 3.4. Based on Theorem 3.5, the proof of Theorem 3.4 follows the same lines as
the proof of Theorem 3.1.

Next, we present the proof of Theorem 3.5. Let S be a subset of vertices of a graph. Define Nk(S)
as the set of all vertices with distance at most k from any vertex in S and Nk(v) as the set of all
vertices with distance at most k from v. If S is nonempty, define d(v, S) as the minimum distance
from v to any vertex in S.

To prove our Theorem 3.5, we need a lemma, which rules out the existence of undetected edges
when we do our induction.

Lemma B.1. Let k ≥ 2 and let S be a connected subset of vertices of a connected graph G with no
cycles of length greater than 2k + 1. Let u1 be a vertex not in S adjacent to a vertex in S. Then, no
vertex in T = Nk(u1) \ Nk(S) can be connected to a vertex in Nk(S) \ Nk(u1).

Proof. Assume for the sake of contradiction that there exists a vertex uk+1 ∈ T connected to
vk ∈ Nk(S) \ Nk(u1). Notice that d(vk, S) ≤ k because vk ∈ Nk(S). If d(vk, S) < k, then
d(uk+1, S) ≤ k, which contradicts uk+1 /∈ Nk(S). Thus, d(vk, S) = k.

Therefore, there must exist vertices u2, u3, . . . , uk and v0, v1, . . . , vk−1 such that ui and ui+1 are
connected for i ∈ {1, 2, . . . , k}, vi and vi+1 are connected for i ∈ {0, 1, . . . , k − 1}, and v0 ∈ S.

We claim that u1, u2, . . . , uk+1, v0, . . . , vk are pairwise distinct. For any two connected vertices a
and b, notice that |d(a, S) − d(b, S)| ≤ 1 because any path of length s from a to a vertex of S can
be extended to a path of length s + 1 from b to a vertex of S and vice versa. Since d(u1, S) = 1,
d(uk+1, S) = k + 1, d(v0, S) = 0, and d(vk, S) = k, we must have d(ui, S) = i and d(vi, S) = i
for all valid i. Thus, the only possible pairs of vertices of u1, u2, . . . , uk+1, v0, . . . , vk that can be
equal are (ui, vi) for i ∈ {1, 2, . . . , k}. Assume for the sake of contradiction that ui = vi for some
i. Then, there exists a path u1 → u2 → · · · → ui → vi+1 → · · · → vk of length k − 1 from u1

to vk, contradicting the fact that vk /∈ Nk(u1). Thus, the vertices u1, u2, . . . , uk+1, v0, . . . , vk are
pairwise distinct.

Since S is connected, there exists a path with edges in S from v0 to a vertex in S adjacent to u1.
We can combine this path with u1 → u2 → · · · → uk+1 → vk → vk−1 → · · · → v0 to create a
cycle containing vertices u1, u2, . . . , uk+1, v0, . . . , vk. This cycle contains at least 2k + 2 vertices,
a contradiction.

Proof of Theorem 3.5. We work with the same notation and setting as in the proof of Theorem 3.2.
Consider (G,H)

k∼ (Ĝ, Ĥ), i.e., (G,H) and (Ĝ, Ĥ) cannot be distinguished by the k-hop subgraph
WL test. When there are no hash collisions and the colors stabilize, the multisets of final colors
of vertices in G and Ĝ are the same, and any v1 ∈ G and v2 ∈ Ĝ with the same color must have
isomorphic k-hop subgraphs rooted at them.

We prove the following statement by induction: for any t ∈ {1, 2, . . . , |G|}, there exist connected
isomorphic subsets S1 ⊆ V (G) and S2 ⊆ V (Ĝ) of size t such that (S1,Nk(S1)) and (S2,Nk(S2))

are isomorphic. For the base case, choose any two vertices in G and Ĝ with the same color. For
the inductive step, suppose that S1 and S2 are valid sets of size t < |V (G)|, and we want to find
two sets S′

1 and S′
2 with size t + 1 satisfying the inductive statement. Let v1 be a vertex not in S1

adjacent to a vertex in S1, and let v2 be the image of v1 under an isomorphism f from (S1,Nk(S1))
to (S2,Nk(S2)). Then Nk(v1) and Nk(v2) are isomorphic since v1 and v2 are of the same color,
and f takes Nk(S1) ∩Nk(v1) to Nk(S2) ∩Nk(v2).

The k-separability assumption guarantees that vertices in Nk(vi) \ Nk(Si) have distinct colors for
i = 1, 2. Thus, there is a unique way to extend f as a map from Nk(S1) ∪ Nk(v1) to Nk(S2) ∪
Nk(v2), which keeps that a vertex has the same color as its image. We then verify that this extension
is still an isomorphism. Consider any u1 ∈ Nk(v1) \ Nk(S1) and any w1 ∈ Nk(v1) with u1 ̸= w1.
Denote u2 = f(u1) and w2 = f(w1). Then d(u1, v1) = d(u2, v2) = k. We claim that u1 and w1

are connected if and only if u2 and w2 are connected.
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• Case 1: d(w1, v1) = d(w2, v2) = k. By the k-separability assumption and the isomorphism
between Nk(v1) and Nk(v2), we immediately have that u1 and w1 are connected if and only if
u2 and w2 are connected.

• Case 2: d(w1, v1) = d(w2, v2) = k − 1. Note that the multisets of vertex colors of the direct
neighbors of w1 and w2 are the same, which combined with the k-separability assumption that
u1 and w1 are connected if and only if u2 and w2 are connected.

• Case 3: d(w1, v1) = d(w2, v2) ≤ k − 2. Then ui and wi are not connected for i = 1, 2.

By Theorem B.1 and the above arguments, we conclude that f is an isomorphism from (S1 ∪
{v1},Nk(S1) ∪Nk(v1)) to (S2 ∪ {v2},Nk(S2) ∪Nk(v2)). This completes the inductive step.

C PRELIMINARY RESULTS ON k-HOP SPD-GNNS

In this section, we present some preliminary results on the expressive power of k-hop subgraph
GNNs where the information on the k-hop subgraphs is processed and aggregated in a specific way,
as in (4.1). These results can be viewed as extensions of Section 3.

In particular, we name such GNN architecture as k-hop SPD-GNN that is defined as follows for
(G,H) ∈ Gn,m and k ≥ 1.

• The embedding layer maps each vertex feature hi ∈ Rm as an embedding vector

h
(0)
i = f (0)(hi),

where f (0) is learnable.

• For l = 1, 2, . . . , L, the information aggregation layer computes h(l)
i according to (4.1), where

d(·, ·) is the shortest-path distance (SPD), for i = 1, 2, . . . , n.
• There are two types of outputs. The graph-level output computes a real number for the whole

graph, namely
y = r

(
AGGR

({{
h
(L)
i : i ∈ {1, 2, . . . , n}

}}))
,

where r is learnable. The vertex-level output assigns a real number for each vertex:

yi = r(h
(L)
i ), i = 1, 2, . . . , n.

Definition C.1 (Spaces of k-hop SPD-GNNs). We use F spd
k to denote the collection of all k-hop

SPD-GNNs with graph-level output, and use F spd
k,v to denote the collection of all k-hop SPD-GNNs

with vertex-level output.

It is clear that the implementation of k-hop SPD-GNNs is cheaper than general k-hop subgraph
GNNs as some topology information about the subgraph is dropped. The trade-off is that k-hop
SPD-GNNs have a bit weaker expressive/separation power. To rigorously introduce our next theo-
rem on the expressive power of k-hop SPD-GNNs, we require the associated k-hop SPD-WL test
implementing the color refinement as follows:

C(l)(vi) = HASH
(
C(l−1)(vi),

{{(
C(l−1)(vj), d(vi, vj)

)
: vj ∈ Nk(vi)

}})
.

Definition C.2 (k-strongly separable graph). A graph (G,H) ∈ Gn,m is said to be k-strongly
separable if the following condition holds when the k-hop SPD-WL test terminates with stabilized
colors and without hash collisions: For any two vertices v1, v2 with d(v1, v2) ≤ 2k, the colors of v1
and v2 are different.

Our main result in this section is that k-hop SPD-GNNs can universally approximate any
permutation-invariant/equivariant continuous functions on k-strongly separable graphs with no cy-
cles of length greater than 2k − 1.
Theorem C.3. Let k ≥ 2 and let P be a Borel probability measure on Gn,m. Suppose that P-almost
surely, (G,H) is k-strongly separable and G is connected with no cycles of length greater than
2k − 1. Then, the following hold.
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(i) For any ϵ, δ > 0 and any permutation-invariant continuous function Φ : Gn,m → R, there
exists F ∈ F spd

k such that

P [|F (G,H)− Φ(G,H)| > δ] < ϵ.

(ii) For any ϵ, δ > 0 and any permutation-equivariant continuous function Φv : Gn,m → Rn,
there exists Fv ∈ F spd

k,v such that

P [∥Fv(G,H)− Φv(G,H)∥ > δ] < ϵ.

Proof of Theorem C.3. Based on Theorem C.4 below, stating that the k-hop SPD-WL test can dis-
tinguish all non-isomorphic k-strongly separable graphs, and analogues to Theorem 2.5 and Theo-
rem 2.6, one can prove Theorem C.3 following the same lines in the proof of Theorem 3.1.

Theorem C.4. Let k ≥ 2 and consider k-strongly separable graphs (G,H), (Ĝ, Ĥ) ∈ Gn,m.
Suppose that G and Ĝ are both connected and have no cycles of length greater than 2k − 1. If
(G,H) and (Ĝ, Ĥ) are indistinguishable by the k-hop SPD-WL test, then they must be isomorphic.

Proof of Theorem C.4. The main idea is that under the assumption of strong k-separability, the k-
hop SPD-WL test has stronger separation power than (k − 1)-hop SPD-WL test, and hence we can
apply the results in Theorem 3.2 and Theorem 3.5.

In particular, let us consider the final stabilized colors on (G,H) and (Ĝ, Ĥ) generated by k-hop
SPD-WL test (k ≥ 2) without hash collisions. For any vertex v, notice that any pair of vertices in
Nk(v) have a distance at most 2k from each other, so they are of different colors. Suppose u1 and
u2 are vertices in Nk−1(v). If the color of u1 implies it has a neighbor with the same color as u2,
then this neighbor must be u2, as the only neighbors of u1 are in Nk(v) and all vertices in Nk(v) are
of different colors. Otherwise, u1 and u2 cannot be connected by edges. Thus, for any u1 and u2 in
Nk−1(v), we can uniquely determine whether there is an edge between u1 and u2 by their colors.
This implies that two vertices of the same color must have isomorphic (k − 1)-hop subgraphs, i.e.,
implementing (k − 1)-hop subgraph WL test does not lead to a strict color refinement. Then the
result is a direct corollary of Theorem 3.2 and Theorem 3.5.

Figure 6: The k-strong separability assumption is
necessary in Theorem C.3

It is worth noting that when k = 1, Theo-
rem C.4 holds even without the 1-strong sepa-
rability assumption. This is because that 1-hop
SPD-WL test coincides with the classic WL
test and it is proved in Bamberger (2022) that
the classic WL test can distinguish any non-
isomorphic trees. In this sense, Theorem C.4
can be regarded as an extension of Bamberger
(2022). Another related work is Feng et al.
(2022) that proves that the separation power of
the k-hop SPD-WL test is upper bounded by
that of the third-order WL test.

We also comment that Theorem C.4 does not
hold true if the k-strong separability condition is removed. Consider the two graphs in Figure 6,
in which all vertices have the same initial feature. Each vertex has three neighbors of distance 1,
two neighbors of distance 2, and no neighbors of higher distance, so all vertices would have the
same color in any k-hop SPD-WL test for any positive integer k. Thus, these two non-isomorphic
graphs cannot be distinguished by k-hop SPD-WL test for any k ≥ 1, which does not contradicts
Theorem C.4 as these two graphs are clearly not k-strongly separable. This example also illustrates
that it is impossible to prove the conclusion of Theorem C.4 without any condition.
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