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Abstract

Multimodal meta-learning is a recent problem that extends conventional few-shot
meta-learning by generalizing its setup to diverse multimodal task distributions.
This setup makes a step towards mimicking how humans make use of a diverse set
of prior skills to learn new skills. Previous work has achieved encouraging per-
formance. In particular, in spite of the diversity of the multimodal tasks, previous
work claims that a single meta-learner trained on a multimodal distribution can
sometimes outperform multiple specialized meta-learners trained on individual uni-
modal distributions. The improvement is attributed to knowledge transfer between
different modes of task distributions. However, there is no deep investigation to
verify and understand the knowledge transfer between multimodal tasks. Our work
makes two contributions to multimodal meta-learning. First, we propose a method
to quantify knowledge transfer between tasks of different modes at a micro-level.
Our quantitative, task-level analysis is inspired by the recent transference idea
from multi-task learning. Second, inspired by hard parameter sharing in multi-task
learning and a new interpretation of related work, we propose a new multimodal
meta-learner that outperforms existing work by considerable margins. While the
major focus is on multimodal meta-learning, our work also attempts to shed light
on task interaction in conventional meta-learning. The code for this project is
available at https://miladabd.github.io/KML.

1 Introduction

Multimodal meta-learning was recently proposed as an extension of conventional few-shot meta-
learning. In [1], it is defined as a meta-learning problem that involves classification tasks from
multiple different input and label domains. An example in their work is a 3-mode few-shot image
classification which includes tasks to classify characters (Omniglot) and natural objects of different
characteristics (FC100, mini-ImageNet). The multimodal extension of meta-learning is proposed
with two objectives. First, it generalizes the conventional meta-learning setup for more diverse
task distributions. Second, it makes a step towards mimicking humans’ ability to acquire a new
skill via prior knowledge of a set of diverse skills. For example, humans can quickly learn a novel
snowboarding trick by exploiting not only fundamental snowboarding knowledge but also skiing and
skateboarding experience [1].

Multimodal Model-Agnostic Meta-Learning (MMAML) [1] proposes a framework to better handle
multimodal task distributions and achieves encouraging performance. As one of the most intriguing
findings, MMAML claims that a single meta-learner trained on a multimodal distribution can
sometimes outperform multiple specialized meta-learners trained on individual unimodal distributions.
This was observed in spite of the diversity of the multimodal tasks. In [1], this observation is attributed
to knowledge transfer across different modes of multimodal task distribution.
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In our work, we delve into understanding knowledge transfer in multimodal meta-learning. While
improved performance using a multimodal task distribution is reported in [1], there is no deep
investigation to verify and understand how tasks from different modes benefit from each other.
Towards understanding knowledge transfer in multimodal meta-learning at a micro-level, we propose
a new quantification method inspired by the idea of transference recently proposed in multi-task
learning (MTL) [2]. Despite the large number of meta-learning algorithms proposed in the literature,
we remark that little work has been done in analyzing meta-learning at the task sample level. In
particular, to the best of our knowledge, there is no previous work on understanding knowledge
transfer among tasks and quantitative analysis of task samples in the context of meta-learning.
Because of the lack of such study, the interaction between task samples remains rather opaque in
meta-learning. Interestingly, despite the notion of a task in meta-learning and MTL, there has not
been much intersections between these two branches of research, perhaps due to several fundamental
differences between meta-learning and MTL1 (e.g, meta-learning optimizes the risk over a large
number of future tasks sampled from an unknown distribution of tasks, while MTL optimizes the
average risk over a finite number of known tasks; this will be further discussed). We note that
because of these fundamental differences, we propose adaptations to develop our method to quantify
knowledge transfer for multimodal tasks in meta-learning.

Another contribution of our work is a new multimodal meta-learner. Our idea is inspired by hard
parameter sharing in MTL [4]. Furthermore, we discuss our own interpretation of the modulation
mechanism in [1]. These lead us to propose a new method that achieves substantial improvement over
the best results in multimodal meta-learning [1]. While our major focus in this work is on multimodal
meta-learning, we have also performed experiments on conventional meta-learning for our proposed
knowledge transfer quantification. Our work makes an attempt to shed light on task interaction in
conventional meta-learning.

Our main contributions are

• Focusing on multimodal meta-learning, we propose a method to understand and quantify
knowledge transfer across different modes at a micro-level.

• We propose a new multimodal meta-learner that outperforms existing state-of-the-art meth-
ods by substantial margins.

2 Related Work

Few-Shot Learning. In a few-data regime, conventional learning methods mostly fail due to over-
fitting. Fine-tuning a pre-trained network [5, 6, 7, 8] sometimes prevents overfitting but at the cost
of computation [9]. Therefore, recent successful approaches tackle this problem by meta-learning
[10]. These methods can be classified into several categories. In metric-based approaches, a sim-
ilarity metric between support and query samples is learned by learning an embedding space, in
which samples from similar classes are close and samples from different classes are further apart
[11, 12, 13, 14, 15, 16]. Optimization-based methods focus on learning an optimizer, including
an LSTM meta-learner for replacing stochastic gradient descent optimizer [17], a mechanism to
update weights using an external memory [18], or finding a good initialization point for model
parameters for fast adaptation [19, 20, 21, 22]. Augmentation-based methods learn a generator from
the existing labeled data to further use it for data augmentation in novel classes [23, 24]. Finally,
weight-generation methods directly generate the classification weights for unseen classes [25, 26].

Multi-Task Learning. MTL algorithms can generally be divided into hard or soft parameter sharing
methods [4]. Hard parameter sharing is the most prevalent design to MTL where a subset of the
hidden layers are shared among all tasks, while several task-specific layers are stacked on top of
the shared base [27]. Hard parameter sharing reduces the risk of overfitting and enables parameter
efficiency across tasks [3, 28]. In soft parameter sharing, each task has a separate model. Then, either
the parameters of the models are encouraged to be similar by regularizing a distance [29, 30] or the
knowledge of tasks are linearly combined to produce output for each task [31]. Other works try to
improve the multi-task performance by addressing what to share [32, 33, 34], which tasks to train
together [35, 36], or inferring task-specifc model weights [37, 30, 38]. Recently, the transference is

1Here we follow the MTL definition in Zhang and Yang [3] instead of a loose definition of MTL: learning
problems that involve more that one task.
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Figure 1: Information transfer (transference) from 300 meta-train mini-ImageNet tasks to a meta-test
FC100 task. Transference Histogram for: (a) ProtoNet, (b) MProtoNet (with FiLM modulation),
(c) MProtoNet with proposed KML method. For both positive knowledge transfer (LR < 1), and
negative knowledge transfer (LR > 1) an exemplar task is shown. Proposed method increases the
positive transfer from average of 27% to 41%. Here, we simply use the LR threshold to classify the
transference of a task as positive or negative.

proposed to analyze the information transfer in a general MTL framework [2]. This metric is then
used for selecting the tasks for updating shared parameters.

3 Preliminaries

In the N-way, K-shot image classification task, given N classes and K labeled examples per class,
the final goal is to learn a model that can generalize well to unseen examples from the same classes.
Each task T consists of a support set ST = {(xi, yi)}N×Ki=1 and a query set QT = {(x̃i, ỹi)}N×Mi=1 .
The model learns from the samples in the support set ST and is evaluated on the query set QT . As a
solution, meta-learning assumes that tasks are sampled from a distribution of tasks p(T ), and are
split into meta-training and meta-test sets. The meta-learner learns the prior knowledge about the
underlying structure of tasks using the meta-training set, such that later, the meta-test tasks can benefit
from this prior knowledge. While early meta-learning algorithms directly minimize the average
training error of a set of training tasks, Vinyals et al. [12] propose a novel training strategy called
episodic training. Episodic training utilizes sampled mini-batches called episodes during training,
where each episode is designed to mimic the few-shot task and generated by subsampling of classes
and samples from the training dataset. The use of episodes improves the generalization by making the
training process more faithful to the test environment and has become a dominant approach for the
few-shot learning [39, 19, 11]. Meta-learning algorithms usually suppose the task distribution p(T )
is unimodal, meaning that all generated classification tasks belong to a single input-label domain
(e.g. classification tasks with different combination of digits). Then, a multimodal counterpart can
be considered where it contains classification tasks from multiple different input-label domains (e.g.
few-shot digits classification and birds classification). In our work, multimodal meta-learning refers
to the multimodality occurs in task distribution p(T ) due to using tasks from multiple domains. This
should not be confused with multimodality in data type [40] (e.g., combination of image and text).

4 Information Transfer Among Tasks

Transference in Episodic Training. The episodic training process can be viewed from a multi-
task learning point of view, where multiple tasks (episodes) collaborate to build a shared feature
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Algorithm 1: Measuring Transference on a Target Task.
Require: task distribution p(T ), learning rate α, current state of network parameters θt

1 Sample a batch of tasks ξ = {Ti} ∼ p(T )
2 Sample a target task Tj
3 Use support set of target task Sj for adaption
4 Use query set Qj to evaluate the adapted model and compute the loss LTj (Qj ; θt,Sj)
5 for all Ti ∈ ξ do
6 Use support set Si to adapt to that task
7 Use query set Qi to evaluate the adapted model and compute the loss LTi(Qi; θt,Si)
8 Update model parameters with respect to task i using (1)
9 Compute the loss of target task using updated parameters LTj (Qj ; θt+1

i ,Sj)
10 Compute transference from task i to target task LRi→j using (2)
11 end

representation that is broadly suitable for many tasks. Consequently, training episodes implicitly
transfer information to each other by updating this shared feature representation with successive
gradient updates. Then, the information transfer (transference) in episodic training can be viewed as
the effect of gradients update from one episode (or a group of episodes) to the network parameters on
the generalization performance on other episodes. Like MTL, in an episodic training scenario, some
learning episodes can be constructive regarding a target task and some can be destructive [41].

Analysis of Transference. To gain insights on the interaction between different episodes during
episodic training, we adapt the transference idea [2] from multi-task learning to episodic training
scenario of meta-learning. Consider a meta-learner parameterized by θ. At time-step t of episodic
training, a batch of tasks are sampled from task distribution p(T ). Then for task i denoted by Ti, the
model uses its support set Si to adapt to it, and the quality of adaption is evaluated by the loss on
query set Qi denoted by LTi . The quantity θt+1

i is defined as updated model parameters after a SGD
step with respect to task i:

θt+1
i = θt − α∇θtLTi(Qi; θt,Si) (1)

We can use this quantity to calculate a loss which reflects the effect of task i on the performance of
others. More specifically, in order to assess the effect of the gradient update of task i on a given target
task j, we calculate the ratio between loss of task j before and after applying the gradient update on
the shared parameters with respect to i:

LRi→j =
LTj (Qj ; θt+1

i ,Sj)
LTj (Qj ; θt,Sj)

(2)

In episodic training, the loss ratio LRi→j can be considered as a measure of transference from
meta-train task i to meta-test task j. If LRi→j has a value smaller than one, the update on the network
parameters results in a lower loss on target task j than the original parameter values, meaning that task
i has a constructive effect on the generalization of the model on task j. On the other hand, if LRi→j
has a value greater than one, it indicates the destructive effect of task i on the target task. For i = j,
the loss ratio denotes the self-transference, i.e. the effect of a task’s gradient update in its own loss
which can be used as a baseline for transference. One major limitation of the transference algorithm
proposed in [2] is that while the knowledge transfer is measured by generalization performance,
they have only considered the LR improvement on the target training tasks. This can not necessarily
guarantee the improvement in the generalization performance. We adrress this by sampling source
tasks from meta-train dataset and target tasks from meta-test dataset. Then, our transference metric
can be considered as a generalization metric in micro-level. So we expect the algorithms with better
generalization to have a more positive knowledge transfer in terms of our transference metric, and
vice versa. The overall procedure of calculating transference within an episodic training framework
is summarized in Algorithm 1.

Experiments. To investigate the interaction between tasks during training in a multimodal task
distribution, we have sampled 300 meta-train tasks from the mini-ImageNet dataset as source tasks.
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Figure 2: Transference from 300 mini-ImageNet meta-train tasks to a FC100 meta-test task. In
the beginning of the training, when network learns low-level features, both tasks transfer negative
knowledge. As the training proceeds, one becomes more and more positive, and then, consistently
transfers positive knowledge to target task.

Then we have analyzed the transference from these tasks to a single FC100 meta-test task using
algorithm 1. For this experiment, we have used ProtoNet [11] as meta-learner, and the analysis is
performed in the middle of training on the combination of mini-ImageNet and FC100 datasets. The
details of the experimental setup can be found in the supplementary. The histogram of the transference
is shown in Figure 1a which indicates both positive and negative knowledge transfer from mini-
ImageNet tasks to the target task. An exemplar task for both positive and negative knowledge transfer
is shown in figure 1. The task including animal classes has positive knowledge transfer to target task
while the task including non-animal classes has negative transfer.

In figure 2, the transference to a different meta-test FC100 target task from mini-ImageNet meta-train
tasks is shown. While the target task includes classification from people and insect classes, two source
tasks with animal classes are among the best and worst knowledge transferring source tasks. This can
be attributed to the quality of samples in these tasks. When a task includes noisy data samples, it is
much harder to solve meaning that the transference can also happen based on task hardness [42].
Figure 2 also indicates that in the cross mode knowledge transfer, the negative transference occurs
at the beginning iterations and increasingly more positive transference occurs as training proceeds.
Based on the experience from MTL literature, the negative knowledge transfer occurs when different
tasks fight for the capacity [41]. In the next section we will propose a new modulation scheme to
reduce negative transfer and improve generalization (Figure 1c).

5 Proposed Multimodal Meta-Learner

In the previous section, the transference analysis shows that different tasks in episodic training can
have a positive or negative impact on the learning process of other tasks. Recent works have analyzed
the compatibility of tasks in multi-task learning [36, 2] during training to select some grouping of
tasks for co-training that can improve performance. In our episodic training scenario, ideally, we
would like to select the grouping of learning episodes that are compatible with the meta-test task.
However, direct application of the methods in MTL to episodic training is not possible, due to two
main reasons. First, the novel tasks in meta-testing are unseen and unknown during meta-training.
Second, even if the tasks in meta-testing were known, it can be very computationally expensive to
determine the group of cooperative tasks, and then assign a task-specific layer for each task, because
episodic training involves tens of thousands of training tasks. Here, we propose a new interpretation of
the modulation mechanism in MMAML. These lead us to propose pseudo-task-specific (task-aware)
layers inspired by hard parameter sharing in MTL.
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Figure 3: (a) General multimodal meta-Learning framework; Modulation scheme in (b) MMAML,
(c) Proposed KML method.

5.1 Multimodal Model-Agnostic Meta-Learning

To tackle multimodal few-shot tasks, MMAML [1] proposes a multimodal meta-learning framework
which consists of a modulation network and a base network fθ (Figure 3a). The modulation network,
predicts the mode of a task and generates a set of task-specific modulation parameters to help the
base network to better fit to the identified mode. It includes a task encoder network and a modulation
parameter generator. Task encoder takes the support samples of a task T as input and produces
an embedding vector υT = hϕ(ST ) to encode its characteristics. Then, task-specific modulation
parameters are generated using the embedding vector of task by the parameter generator network
ωT = gφ(υT ). Since MMAML uses feature-wise linear modulation (FiLM) [43], the generated
modulation parameters are split into scaling and shifting parameters ωT = {ηT ,γT }. Let Yi denote
the ith output channel of a layer in the base network fθ. Then, the corresponding modulated output
channel in MMAML is calculated as:

Ŷi = ηiYi + γi (3)

where ηi ∈ ηT and γi ∈ γT are scalar values. For task encoder, MMAML uses a 4-layer convo-
lutional network which is followed by multiple MLPs as parameter generator. MMAML uses the
model-agnostic meta-learning (MAML) algorithm [19] as meta-learner in base network.

Limitations of Feature-Wise Modulation. We believe the major limitation of MMAML results
from using FiLM modulation scheme. For each convolutional layer of a CNN, the ith output channel
(feature map) is computed by convolving the ith kernel of that layer Wi (the layer index is removed
for the sake of simplicity) with input to the layer X and adding the bias term bi:

Yi = Wi ∗X + bi (4)

where ∗ denotes the convolution operator. Considering this, the modulation in (3) can be rewritten as:

Ŷi = (ηiWi) ∗X + (ηibi + γi) (5)

We define the modulated kernel, and the modulated bias as Ŵi = ηiWi, and b̂i = ηibi + γi. Note
that the modulated kernel is calculated by scaling the whole elements of the original kernel with a
single scalar number. Then considering (3)-(5), the modulation in MMAML can be interpreted as
convolving the input with this modulated kernel and adding the modulated bias term. The validity of
this new interpretation is verified with experimental results (please refer to supplementary material).
Based on this new interpretation, the modulated kernels used for different tasks are heavily bound
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Algorithm 2: Kernel Modulation Algorithm
Require: task distribution p(T ), learning rate α

1 Randomly initialize θ, ϕ, φ
2 while not done do
3 Sample batch of tasks Ti ∼ p(T )
4 for all Ti do
5 Infer υTi = hϕ(Si)
6 Generate M (l)

Ti and ∆b
(l)
Ti using (8) and (9)

7 Modulate θ using (6) and (7) to obtain θ̂Ti
8 Compute LTi(Qi; θ̂Ti ,Si) using fθ̂Ti

9 end
10 Update θ ← θ − α∇θ

∑
Ti∼p(T ) LTi(Qi; θ̂Ti ,Si)

11 Update ϕ← ϕ− α∇ϕ
∑
Ti∼p(T ) LTi(Qi; θ̂Ti ,Si)

12 Update φ← φ− α∇φ
∑
Ti∼p(T ) LTi(Qi; θ̂Ti ,Si)

13 end
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Figure 4: Simplified design for
modulation parameter generator.

together by W and are just scaled versions of it. Since the base kernel is shared across all tasks and
scaling gives not many degrees of freedom for each task to produce its desired modulated kernel,
different tasks fight for the model capacity, and the negative transfer between tasks from different
distributions can lead to training a compromised base kernel.

5.2 Kernel Modulation

We propose to modulate the base network by changing the whole parameters within each layer using
the modulation parameters conditioned on the task. This gives more capacity for each task to generate
its desired kernel. To do this, for every single parameter within the network, a modulation parameter
is generated. For a task T , and for each layer l = 1, . . . , L of the network, let Ml(υT , φ) denote
the modulation matrix generated for modulating the base kernel Wl of that layer. Among different
design choices, intuitively, if we consider the modulated kernels as perturbations around the base
kernel, by learning to generate the residual weights, a more powerful base kernel can be learned via
enabling proper knowledge transfer across different modes of the task distribution. In our case, this
can be achieved by adding the unit matrix J (all-ones matrix) to the modulation matrix and then
perform Hadamard multiplication between the result and the base kernel as follows:

Ŵl
T = Wl � (J + Ml(υT , φ)) (6)

For the bias of each layer we simply add an offset term ∆bl(υT , φ):

b̂lT = bl + ∆bl(υT , φ) (7)

The modulated parameters for task T are therefore a collection of modulated kernels and biases,
i.e., θ̂T = {Ŵ1

T , . . . ,Ŵ
L
T , b̂

1
T , . . . , b̂

L
T }. The modulation parameters for each task are generated

through processing task embeddings of that task υT by parameter generator network gφ (Figure
3). Similar to [1], assuming gφ to be MLP, saves lots of computations where a separate parameter
generation network glφ used for each layer. The main concern with using an MLP is the large number
of parameters required in glφ to generate the modulation parameters ∆bl and Ml. Because we want
to produce the modulation parameters for the whole parameters of a deep neural network, we need to
employ some sort of parameter reduction in gφ to prevent an explosion of parameters. Instead of
following current complicated algorithms such as pruning the weights of network [44] or redesigning
the operations [45], we propose a simple design for gφ which substitutes an MLP module with
three smaller ones (Figure 4). In this design, the modulation matrix is generated by processing task
embeddings υT using two modules, and then performing the outer product operation on the output
of these two modules:

Ml(υT , φ) = glφ1
(υT )⊗ glφ2

(υT ) (8)
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The produced matrix is then reshaped to match the kernel shape in that layer. The bias offset of each
layer is generated by processing the embedding vector υT using the third module:

∆bl(υT , φ) = glφ3
(υT ) (9)

Our experiments show that compared to a single MLP, the proposed simplified structure decreases the
number of parameters in gφ by a factor of 150, and also provides better generalization performance. A
detailed discussion can be found in supplementary. A similar approach to our simplified structure for
parameter generator is proposed in [46]. However in [46], it is used to filter out noisy gradients rather
than generating task-aware parameter for few-shot learning done in our work. The overall multimodal
meta-learning algorithm using the proposed Kernel ModuLation (KML) scheme is summarized in
Algorithm 2. Note that considering the new interpretation presented in (5), our KML can be thought
of as a generalization of FiLM. So we can expect that applying KML to the areas improved by FiLM
may bring some further improvements. In addition to the few-shot classification results provided in
section 6, we have also provided some results on visual reasoning in the supplementary which shows
better performance of proposed KML over FiLM.

6 Experiments and Analysis

We evaluate the proposed model in both multimodal and unimodal few-shot classification scenarios.
Following [1], to create a multimodal few-shot image classification meta-dataset, we combine
multiple widely used datasets (Omniglot [47], mini-Imagenet [12], FC100 [48], CUB [49], and
Aircraft [50]). Most of our experiments were performed by modifying the code accompanying [1],
and for a fair comparison, we follow their experimental protocol unless specified. The details of all
datasets, experimental setups, and network structure can be found in the supplementary material.
Note that when using an optimization-based meta-learner (fθ) like MAML, our KML idea can easily
be extended to Reinforcement Learning (RL) environments. More details and experimental results on
RL can be found in supplementary.

Multimodal Few-shot Classification Results. For multimodal few-shot classification, similar to
[1], we train and evaluate models on the meta-datasets with two modes (Omniglot and mini-Imagenet),
three modes (Omniglot, mini-Imagenet, and FC100), and five modes (all the five datasets). This
meta-dataset includes a few-shot classification of characters, natural objects with different statistics
and also fine-grained classification of different bird and aircraft types. Due to the large discrepancies
between datasets, the possibility of negative transfer increases which makes few-shot classification
more challenging. We also combine the mini-ImageNet and FC100 datasets to construct another
two-mode meta-dataset. Both mini-ImageNet and FC100 include samples of natural objects and
few-shot tasks generated from them probably have a similar underlying structure. However, the
few-shot classification of FC-100 tasks is a bit challenging due to the smaller image size. So, here we
aim to investigate the possibility of knowledge transfer from mini-ImageNet to FC100. We use two
different meta-learners namely ProtoNet [11], and MAML [19], and several baselines considering
each meta-learner. The first baseline is training and testing multiple separate meta-learners, one
for each dataset. The second baseline is considered when meta-learner has no access to task mode
information and simply trained and tested in the combination of tasks from different modes. The third
baseline is the MMAML [1] which to the best of our knowledge is the only proposed algorithm for
multimodal few-shot learning. A variant of this baseline (MProtoNet) is also used here by replacing
the ProtoNet meta-learner with MAML in the general framework of [1].

Multimodal few-shot image classification results are shown in Table 1. Comparing MProtoNet with
MMAML, we can see that replacing ProtoNet with MAML considerably improves the classification
accuracy. We believe that most of the extra accuracy gained in the multimodal framework by
replacing MAML with ProtoNet results from the proper training of modulation network due to
improved gradient flow from meta-learner. A detailed experiment can be found in supplementary.
Additionally, as the results in Table 1 suggest, the proposed KML scheme considerably improves
the performance of multimodal few-shot classification with both meta-learners. The improvement
in 5-shot scenarios is higher because more clues about the task provide more accurate embedding
vectors to generate the modulation parameters. We have also included the detailed accuracy for
2Mode† scenario consisting of mini-ImageNet and FC100 in table 2. This shows on average a
positive knowledge transfer from mini-ImageNet to FC100 dataset in terms of increased classification
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Table 1: Meta-test accuracies on the multimodal few-shot image classification with 2, 3, and 5 modes.
The accuracy values are mean of 1000 randomly generated test tasks, and the± shows 95% confidence
interval over tasks. 2Mode† and 2Mode indicate the combination of mini-ImageNet with FC100 and
Omniglot, respectively. * Results produced by code provided in [1]. ** Our Implementation.

Setup Method

MAML [19]* Multi-MAML MMAML [1]* MMAML+KML (ours)

2Mode† 1-shot 40.53±68% 39.27±0.76% 39.11±0.62% 40.73±0.66%
5-shot 54.11±0.63% 53.51±0.72% 52.02±0.63% 53.72±0.60%

2Mode 1-shot 65.18±0.61% 66.77±0.68% 67.67±0.63% 68.01±0.59%
5-shot 74.18±0.57% 73.07±0.61% 73.52±0.71% 77.02±0.66%

3 Mode 1-shot 54.40±0.56% 56.01±0.66% 57.35±0.61% 57.68±0.59%
5-shot 66.51±0.54% 65.92±0.62% 64.21±0.57% 67.12±0.55%

5Mode 1-shot 47.19±0.49% 48.33±0.58% 49.53±0.50% 50.31±0.49%
5-shot 58.13±0.48% 59.20±0.52% 58.89±0.47% 60.51±0.47%

ProtoNet [11]** Multi-ProtoNet MProtoNet [1]** MProtoNet+KML (ours)

2Mode† 1-shot 43.05±0.58% 43.42±0.56% 43.57±0.59% 44.40±0.65%
5-shot 57.70±0.59% 56.73±0.64% 56.03±0.64% 59.31±0.62%

2Mode 1-shot 69.55±0.54% 70.17±0.61% 70.60±0.56% 73.69±0.52%
5-shot 75.12±0.41% 75.33±0.46% 75.72±0.47% 79.82±0.40%

3 Mode 1-shot 58.14±0.49% 59.89±0.50% 59.62±0.54% 62.08±0.54%
5-shot 66.84±0.44% 67.03±0.44% 67.51±0.47% 70.03±0.43%

5Mode 1-shot 49.31±0.53% 50.69±0.57% 51.75±0.52% 56.72±0.46%
5-shot 58.91±0.51% 59.88±0.54% 59.95±0.42% 64.91±0.38%

Table 2: Meta-test accuracies including the performance on each dataset.

Method
Datasets

mini-ImageNet FC100 Overall
1shot 5shot 1shot 5shot 1shot 5shot

MAML1 41.70±0.91% 60.03±0.88% — — 39.27±0.86% 53.51±0.82%MAML2 — — 36.84±0.81% 47.08±0.74%

MAML [19] 44.11±0.88% 59.34±0.78% 37.01±0.82% 49.01±0.73% 40.53±0.68% 54.11±0.63%
MMAML [1] 42.70±0.86% 56.93±0.78% 35.50±0.75% 47.11±0.77% 39.11±0.72% 52.02±0.63%

MAML+KML(ours) 44.01±0.82% 58.95±0.76% 37.47±0.86% 48.45±0.76% 40.73±0.66% 53.72±0.60%

ProtoNet1 47.19±0.58% 61.11±0.53% — — 43.42±0.56% 56.73±0.64%ProtoNet2 — — 39.61±0.54% 52.35±0.57%

ProtoNet [11] 45.62±0.82% 61.74±0.75% 40.36±0.76% 53.66±0.77% 43.05±0.58% 57.70±0.59%

MProtoNet [1] 47.06± 0.80 60.56± 0.77 40.09± 0.77 51.50± 0.83 43.57± 0.59 56.03± 0.64

MProto+KML(ours) 48.34± 0.86% 61.20± 0.77% 40.48± 0.77% 54.42± 0.76% 44.40± 0.65% 59.31± 0.62%

accuracy compared to a single meta-learner trained and tested on FC100. The improved accuracy of
proposed KML over previous modulation comes at the cost of parameter and computational overhead.
A detailed discussion can be found in the supplementary. In addition to multimodal scenario, KML
also brings considerable improvement in the conventional unimodal scenario (e.g., mini-ImageNet).
Please see supplementary for more details and results.

Transference Results. In addition to classification results, here we analyse the performance of
the proposed KML method on improving knowledge transfer. To this end, we apply the proposed
transference metric to analyse the knowledge transfer from 300 randomly sampled mini-ImageNet
meta-train tasks to another random meta-test FC100 task. We use Algorithm 1 to calculate the
transference during training and the transference histogram is plotted in figure 5 for both ProtoNet
and proposed MProtoNet+KML. In each sub-figure, we have included the results for both methods
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Figure 5: Transference Histogram from mini-ImageNet to FC100 task.

for ease of comparison. A vertical line is also drawn to specify the threshold between positive and
negative transference. The percentage of the Positive (P), Negative (N) and Neutral (Nu) transference
is also shown for each method. For classifying a source task as neutral, we use an interval around
the threshold that the loss change is negligible and corresponds to less than 0.05% change in the
meta-test accuracy. Note that in average, proposed KML also performs better in micro-level in terms
of increasing positive knowledge transfer and reducing the negative transfer.

The cross mode knowledge transfer can be investigated between different datasets. An interesting
behavior that we observed during our analysis is that even Omniglot few-shot tasks –which are
considered as easy tasks and can be handled very well with current meta-learning algorithms– can
have positive knowledge transfer to challenging FC100 tasks specially in later training iterations. We
believe in this case Omniglot tasks act more like a regularizer as they emphasize on simple yet strong
features and prevent the model from overfitting to FC100 meta-train task (please find the analysis
results in supplementary). Note that knowledge transfer can also be analysed within tasks of a single
dataset as in some datasets like mini-ImageNet classes vary so much in few-shot setup (please see
supplementary for more details).

7 Discussion and Conclusion

In this work, we propose a new quantification method for understanding knowledge transfer in
multimodal meta-learning. We then propose a new interpretation of the modulation mechanism in
MMAML. These lead us to propose a new multi-modal meta-learner inspired by hard parameter
sharing in multi-task learning. Our extensive experimental results show that the proposed method
achieves substantial improvement over the best results in multimodal meta-learning. While our major
focus is on multimodal meta-learning, our work also attempts to shed light on conventional unimodal
meta-learning. Limitations are discussed in the supplementary.
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