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ABSTRACT

Large language models (LLM), such as Google’s Minerva and OpenAI’s GPT
families, are becoming increasingly capable of solving mathematical quantitative
reasoning problems. However, they still make unjustified logical and computational
errors in their reasoning steps and answers. In this paper, we leverage the fact
that if the training corpus of LLMs contained sufficiently many examples of
formal mathematics (e.g. in Isabelle, a formal theorem proving environment), they
can be prompted to translate i.e. autoformalize informal mathematical statements
into formal Isabelle code — which can be verified automatically for internal
consistency. This provides a mechanism to automatically reject solutions whose
formalized versions are inconsistent within themselves or with the formalized
problem statement. We evaluate our method on GSM8K, MATH and MultiArith
datasets and demonstrate that our approach provides a consistently better heuristic
than vanilla majority voting — the previously best method to identify correct
answers, by more than 12% on GSM8K. In our experiments it improves results
consistently across all datasets and LLM model sizes. The code can be found at
https://github.com/jinpz/dtv.

1 INTRODUCTION

Recently, language models (Devlin et al., 2018; Brown et al., 2020; Chowdhery et al., 2022) have
advanced significantly in many natural language processing tasks such as machine translation,
question answering, summarization, etc. More recent large language models (LLMs) such as Min-
erva (Lewkowycz et al., 2022), GPT3.5 (OpenAI) and GPT4 (OpenAI, 2023) have also become
increasingly capable of solving quantitative reasoning problems, ranging from middle school math
word problems (Cobbe et al., 2021) to challenging high school mathematical competition prob-
lems (Hendrycks et al., 2021). By training or finetuning the model on high-quality natural language
mathematical and scientific text, these LLMs can generate self-contained step-by-step solutions to
quantitative reasoning problems without relying on external tools. However, just like human beings,
the solutions LLMs generate are prone to simple calculation errors and unjustified logical leaps.

Following Wang et al. (2022); Lewkowycz et al. (2022), one can sample many proposed solutions,
extract the final answer from each, and select the most common answer. While aggregating answers
like this improves performance at the problem level, the most common answer is sometimes wrong.
Ideally, we would like a better heuristic to identify the correct answer. In fact, there are well-known
techniques for computers to verify mathematical reasoning using formalization (Wiedijk, 2008).
Those methods involve translating the problem and sometimes the solution into a formal language.
Unfortunately this translation is difficult and time-intensive enough that formalization methods are
less frequently leveraged.

Recently it was discovered that large language models, with few-shot prompting, can automatically
formalize natural mathematical language into formal languages (Agrawal et al., 2022; Azerbayev
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Figure 1: A pictorial illustration of Don’t Trust: Verify. Left: starting from an informal statement,
an informal solution is generated by a large language model. The informal statement and solution
are then translated into their formal counterparts. Multiple informal solutions for each problem
are generated with temperature sampling. Right: An automated theorem prover in the formal
environment is used to verify formal solutions against formal statements step by step (indicated by
[ATP]). The final answer is chosen using majority voting over only the verified solutions. In this
example, Formal Solution #1 successfully proves Formal Statement #1. Formal Solution #2, however,
fails to prove the ”only if” direction of Formal Statement #2.

et al., 2023; Wu et al., 2022; Jiang et al., 2023; Wang et al., 2020). It is conjectured this capability
arises because the training data for these LLMs contains sufficiently many examples of computer
code and/or formal mathematics. While the translation is far from perfect and can fail on many
complex statements, the correctness of the statements produced can be checked using formal theorem
proving systems such as Isabelle (Nipkow et al., 2002) and Lean (de Moura et al., 2015).

In this paper, we demonstrate that in spite of its issues, autoformalization is already capable enough to
identify correct answers for many quantitative reasoning problems. We call our method Don’t Trust:
Verify (DTV) and provide an overview in Figure 1. Intuitively, instead of naively taking majority
voting of all generated natural language solutions, we only aggregate solutions that can be verified
with autoformalization. To carry out verification, both a formal statement and solution are needed.
Therefore, we attempt to translate the plain text problem and solution into formal language using large
language models. However, because language models can erroneously translate incorrect statements
into correct ones, we develop both symbolic and neural filters to improve the statement translation
reliability. Additionally, even with a correct formal statement, a formal solution directly translated
from informal solution can fail to prove it. In particular, correct informal solutions (whether generated
by humans or LLMs) skip low-level steps that are necessary for formal reasoning. To this end, we
instead generate a formal solution sketch following Wiedijk (2004); Jiang et al. (2023) and employ
an automated theorem prover (ATP) to fill in the low-level gaps.

We evaluate DTV on GSM8K (Cobbe et al., 2021), three subsets of MATH (Hendrycks et al.,
2021) following prior work (Zheng et al., 2021), and MultiArith (Roy & Roth, 2016) datasets. The
results show that our method consistently outperforms vanilla majority voting (Wang et al., 2022;
Lewkowycz et al., 2022), with a more than 12% improvement on GSM8K. We demonstrate that
DTV improves performance across various model sizes and categories. Additionally, we provide case
studies on our method identifying correct answers as well as informal solutions. Finally, we discuss
the limitations of our approach inherited from LLM and theorem proving environments.

2 BACKGROUND AND RELATED WORK

Informal quantitative reasoning with language models. A number of large language models
such as PaLM (Chowdhery et al., 2022), Minerva (Lewkowycz et al., 2022), GPT3.5 (OpenAI)
and GPT4 (OpenAI, 2023) have demonstrated their impressive quantitative reasoning abilities
by pretraining or finetuning on mathematical and science data. To improve informal reasoning
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performance, chain-of-thought prompting (Wei et al., 2022) is typically used to encourage language
models outputting intermediate reasoning steps before arriving at an answer. A diverse set of
prompting methods have since been proposed for informal reasoning that tries to find better examples
for prompting (Fu et al., 2023; Zhang et al., 2022) or better strategies for decoding from the model
such as conditioning on references, multi-step decoding (Creswell et al., 2022; Zheng et al., 2023;
Welleck et al., 2022; Khot et al., 2023). Cobbe et al. (2021) explores training informal verifiers to
judge the correctness of reasoning. Additionally, to alleviate erroneous reasoning with language
models, techniques that explore multi-sample consistency in the informal reasoning (Wang et al.,
2022; Jung et al., 2022) have also been proposed. Our approach does not require training and is
complementary to these methods since we rely on the consistency of a formal theorem proving system
to identify correct reasoning paths and improve the reliability of large language model reasoning.

Augmented language models. Besides elucidating rationales via chain-of-thought prompting,
recent research has also been devoted to augmenting LLMs with external tools such as web search
engine (Nakano et al., 2021; Lazaridou et al., 2022; Schick et al., 2023), external memory retrieval (Shi
et al., 2023; Izacard et al., 2022) and programming-based calculators (Chen et al., 2022; Gao et al.,
2022; Imani et al., 2023) to bolster their downstream performance and reduce hallucination. Our
work augments language models with a formal theorem proving environment that goes beyond simple
arithmetic (Chen et al., 2022; Imani et al., 2023) and Boolean logic (Jung et al., 2022).

Interactive theorem proving and autoformalization. Modern interactive theorem provers such as
Isabelle (Nipkow et al., 2002), Coq (Barras et al., 1997), and Lean (de Moura et al., 2015), provide
an interactive environment to encode and mechanically verify mathematical proofs. Success stories
with handcrafted proofs include the verification of industrial software systems (Klein et al., 2009)
and research-level mathematics (Castelvecchi et al., 2021). Szegedy (2020) argues for automatically
obtaining formal mathematics from their informal counterparts by translation i.e. autoformalization.
Since then, researchers have shown the feasibility of autoformalization using neural networks in
particular large language models (Agrawal et al., 2022; Azerbayev et al., 2023; Wu et al., 2022; Jiang
et al., 2023; Wang et al., 2020). Our work which aims to ground LLM reasoning with formal theorem
proving environments is distinct from Jiang et al. (2023) that improves theorem proving performance
with LLM. DTV assumes a much more difficult but realistic setting where only natural language data
is available. We are the first to demonstrate it is possible to automatically verify correct answer and
informal solutions with autoformalization.

3 DON’T TRUST: VERIFY

We describe our approach Don’t Trust: Verify (DTV). Given a mathematical question and several
solutions to it phrased in natural language, we assume the question has a well-defined answer and
each solution contains an answer that may or may not be correct. Our goal is to understand which
informal solutions are more likely to be correct. An overview of our method can be found in Figure 1.

3.1 STATEMENT FORMALIZATION

We begin by finding a formal statement that corresponds to the description of the informal problem
statement. In many mainstream formal theorem proving environments such as Isabelle (Nipkow et al.,
2002), Lean (de Moura et al., 2015), and Coq (Barras et al., 1997), a formal statement needs to be
an assertion rather than a question. For example, a formal statement cannot be in the form of Is π
irrational? but rather Show that π is irrational. Since quantitative reasoning problems typically ask
for an answer rather than a proof, we first extract the answer from each proposed informal solution.
The formal statement is then generated conditioned on both the plain text statement and the extracted
answer. Following Wu et al. (2022), we leverage the few-shot learning capability of large language
models to generate formal representation of the informal statements. Specifically, we provide a
few informal-formal statement translation pairs and prompt the language model to complete the
subsequent problem statement formalization.

3.2 SOLUTION FORMALIZATION AND VERIFICATION

The formalized statement itself does not tell us its correctness without a formal solution or proof.
Because of this, we seek to generate a piece of formal solution to verify the statement correctness.
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Ideally, formal solution steps could be directly translated from natural language solution steps by
sharing a similar level of abstraction. However, this could fail to prove the statement since formal
reasoning steps require additional low-level justification than their natural language counterparts
either written by human or LLMs. To address this issue, we generate a formal solution sketch
following Wiedijk (2004); Jiang et al. (2023) (see Figure 1 (left)). The formal solution sketch contains
high-level steps that are based on natural language counterparts and leaves low-level justifications to
an automated theorem prover (indicated as [ATP] in Figure 1). Similar to statement formalization,
we few-shot prompt a large language model to automatically generate such formal solution sketches.

To perform verification, we attempt to prove the formal statement with individual solution steps in a
formal theorem proving environment. We leverage the consistency of the formal environment and
its automated theorem prover to sequentially verify the steps. At any step, if the automated theorem
prover fails to close the gap, we consider the formal statement not verified and hence incorrect.
Besides, if there are still remaining goals to be proved after verifying every step, the formal statement
is also treated as unverified. For example, in Figure 1 (right) Formal Solution #2, although both steps
are correct, the formal statement cannot be proved since the original statement is an if and only if
statement, and the right-to-left direction is clearly false. If a formal statement is considered verified,
the corresponding informal solution and answer are also considered verified. To arrive at the final
answer to the problem, we take the most common answer among the verified informal solutions. If
no solution can be verified, we fallback to majority voting across all unverified solutions.

3.3 FILTERING UNFAITHFUL STATEMENT FORMALIZATIONS

For DTV to achieve good performance, it is crucial that informal and formal statements match
precisely with each other. This is because an answer that is definitely incorrect to one problem
could still be correct to an altered problem. For example, in the problem statement of Figure 1, if
the constraint of x being positive is omitted, the answer x = ±2 would be correct instead. This is
detrimental as the erroneously translated formal statements with incorrect answers can get verified by
DTV. We call such statements unfaithful. To mitigate this issue, we propose to employ two types of
filters to discard formal statements that are potentially unfaithful.

Vacuous statement filter. In our preliminary experiments, we found that vacuous formal statements
form one common category of verified but unfaithful statement translations. By vacuous we mean that
the formalized statement’s hypotheses are contradictory, and can thus be used to prove anything by
contradiction. The contradictory hypotheses are usually due to language model translation mistakes
rather than the original problem itself being contradictory. For instance, a translated statement could
constrain a variable x to simultaneously satisfy x > 0 and x < 0, leading to a contradiction. To
address this issue, we replace the formal statement goal with a simple statement of False and apply
the automated theorem prover. Any formal statement that can be proved after this substitution is
vacuous. We assume it is very unlikely that the natural language question is legitimately vacuous and
we discard such vacuous formalizations.

Self-critique filter. There are other categories of unfaithful translations we find harder to identify
symbolically with automated theorem provers. Formalization attempts generated by LLMs can
sometimes be irrelevant to the problem or will even modify a formula to make the statement correct.
Inspired by the fact that large language models are capable of critiquing their own outputs (Saunders
et al., 2022), we explicitly ask the language model to decide whether the formal statement is a faithful
translation of the informal statement. The likelihood of a yes versus no followed by a justification is
compared. If the likelihood of no outweighs yes, the formal statement is considered unfaithful and
discarded. It is worth noting that the self-critique filter can reject faithful formal statements as well as
miss unfaithful formal statements. We empirically verify its effectiveness in the experiment section.

4 EXPERIMENTS

4.1 DATASET AND FORMAL ENVIRONMENT

We evaluate DTV on three quantitative reasoning datasets: GSM8K (Cobbe et al., 2021),
MATH (Hendrycks et al., 2021) and MultiArith (Roy & Roth, 2016). These datasets have been used
extensively to evaluate the reasoning capability of large language models (Cobbe et al., 2021; Wei
et al., 2022; Lewkowycz et al., 2022; Zhang et al., 2022; OpenAI, 2023). GSM8K and MultiArith
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Informal Statement from Prealgebra: At Annville Junior High School, 30% of the students in the
Math Club are in the Science Club, and 80% of the students in the Science Club are in the Math Club.
There are 15 students in the Science Club. How many students are in the Math Club? Show that it is 40.

Generated Formal Statement:
theorem
fixes math_club science_club math_and_science :: nat
assumes "math_and_science = 0.3 * math_club"
and "math_and_science = 0.8 * science_club"
and "science_club = 15"
shows "math_club = 40"

Informal Statement from Number Theory: What is the hundreds digit in the following product:
5× 6× 7× 8× 9× 10 ? Show that it is 2.

Generated Formal Statement:
theorem
"((5::nat) * 6 * 7 * 8 * 9 * 10) div 100 mod 10 = 2"

Informal Statement from GSM8K: A herd consists of camels and dromedaries. There are 180 heads
and 304 bumps. How many dromedaries are there if camels have two humps each and dromedaries
have one hump each? Show that it is 56.

Generated Formal Statement:
theorem
fixes camels dromedaries :: nat
assumes "camels + dromedaries = 180"
and "2 * camels + dromedaries = 304"
shows "dromedaries = 56"

Informal Statement from Algebra: A parabola ax2 + bx+ c contains the points (−1, 0), (0, 5), and
(5, 0). Find the value 100a+ 10b+ c. Show that it is -55.

Generated Formal Statement:
theorem
fixes a b c :: real
assumes h0 : "a * (-1)ˆ2 + b * (-1) + c = 0"
and h1 : "a * 0ˆ2 + b * 0 + c = 5"
and h2 : "a * 5ˆ2 + b * 5 + c = 0"
shows "100 * a + 10 * b + c = -55"

Figure 2: Examples of faithful formal statements translated from informal statements with correct
answers by DTV. Majority voting failed to solve all four problems but DTV solves them successfully.
The model is capable of translating complex informal statements precisely. Note that the sentence
“Show that it is [answer]” is appended to the original informal problem statement by first extracting
the answer from an informal solution. We provide more examples in Appendix A.1.

datasets contain grade-school arithmetic word problems. MATH dataset consists of high school math-
ematical competition problems drawn from AMC 10, AMC 12, AIME, etc that are more challenging.
The problems in MATH have also been grouped into 7 categories: Prealgebra, Algebra, Number
Theory, Counting and Probability, Geometry, Intermediate Algebra, and Precalculus. Following prior
work (Zheng et al., 2021) which only draws problems from algebra and number theory categories, we
evaluate on Prealgebra, Algebra and Number Theory subsets of the MATH dataset, which are most
applicable in current theorem proving environments.

Similar to Wu et al. (2022); Jiang et al. (2023), we use Isabelle (Nipkow et al., 2002) as the formal
theorem proving environment for the experiments since it has one of the largest formal corpora that
enables formalization of challenging problems as well as powerful automated theorem provers to
close low-level details in the formal solution sketches. We do not see fundamental limitations of our
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DTV framework applying to other formal languages such as Lean and Mizar and we leave this to
future work. We adopt the Portal-to-ISAbelle (Jiang et al., 2021) interface to interact with Isabelle.

4.2 BASELINES AND EVALUATION PROTOCOL

We compare DTV with two baselines: single sample and multiple samples with majority voting (Wang
et al., 2022; Lewkowycz et al., 2022). In single sample, for each problem, only one informal solution
is sampled greedily with T = 0. For the latter, multiple informal solutions are generated with
temperature sampling. To evaluate the performance, we consider a problem being solved correctly if
the most common answer matches the ground truth answer. For single sample, the most common
answer is the answer extracted from the solution whereas for multiple samples with majority voting, a
grouping of solutions based on the answer is performed and the most frequent answer is chosen.

4.3 EXPERIMENTAL SETUP

Informal solution generation. We few-shot prompt large language models to generate n = 64
informal solutions per problem conditioned on the informal problem statement. We experiment with
the 8B, 62B and 540B Minerva models (Lewkowycz et al., 2022). We use the default sampling
configuration (T = 0.6, nucleus sampling (Holtzman et al., 2019) p = 0.95) reported in Lewkowycz
et al. (2022) for Minerva models.

Statement formalization. We prepare 25 paired (informal statement, Isabelle formal statement)
examples for each of the three categories from MATH dataset, GSM8K and MultiAirth datasets as
the candidates for few-shot demonstrations. When prompting the model to formalize an informal
statement, we randomly draw and permute 10 examples to form the few-shot prompt. We always
ensure the problem to be translated does not appear in the few-shot prompt. To reduce randomness of
statement formalization process, for each informal solution, we perform 10 statement formalization
attempts. All few-shot demonstration examples can be found in the supplementary materials.

Solution formalization and verification. We further select 10 problems from each dataset and
manually write complete formalization examples including both statements and solutions in the form
of (informal statement, formal statement, informal solution, formal solution sketch) as examples
for solution formalization. We randomly select 3 examples for each few-shot prompt. We query
the language model once for solution formalization for each formal statement sample so that each
informal solution is in total formalized 10 × 1 times. We then use Isabelle to verify the formal
solution sketch against the generated formal statement. Sledgehammer (Paulsson & Blanchette, 2012)
along with 11 common tactics (auto, simp, blast, fastforce, force, eval, presburger, sos,
arith, linarith, and auto simp: field simps) are used to close low-level open conjectures
in the formal solution sketch. We consider the formal solution and consequently the corresponding
original informal solution correct if Sledgehammer and tactics succeed. An informal solution is kept
if any of the 10 formalization attempts is verified successfully.

Unfaithful statement filters. For the vacuous statement filter, we change the goal to be proved in
generated formal statement to false. This is accomplished by replacing text after show clause to
show false and checking whether Sledgehammer and tactics can prove the modified formal statement.
Statements proved this way are discarded due to being vacuous. To create the self-critique filter,
we take 5 faithful and 5 unfaithful statement formalization examples generated by the model in the
preliminary experiments as few-shot demonstrations. The unfaithful formalization examples are
also accompanied by what errors it have. This few shot demonstration is kept fixed throughout the
experiments. Generated formal statements are discarded if the likelihood of an answer of yes is lower
than no for the language model.

4.4 EXPERIMENTAL RESULTS

Table 1 shows the percentage of problems solved for baselines and DTV. The informal solutions are
generated with Minerva 62B model (Lewkowycz et al., 2022). We consider two autoformalization
model choices: Minerva 62B and GPT3.5 (OpenAI). Due to the API inference time and cost, we only
use GPT3.5 to generate the formal statements, which is the most crucial component in our approach.
Minerva 62B is queried for both solution formalization and self-critique filter.
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It can be seen that majority voting is a strong baseline that significantly improves the language
model performance over single sample generation from an average of 42.8% to 61.5%, matching
the observations in Wang et al. (2022); Lewkowycz et al. (2022). With autoformalization and
verification in the formal environment, DTV outperforms majority voting baseline and achieves an
average performance of 65.0% using the same Minerva 62B without any finetuning, suggesting the
effectiveness of autoformalization. Since Minerva was mainly trained on natural language math
content, its autoformalization capability could be limited. To this end, with the same informal
solutions generated by Minerva, we switch the statement formalization model to GPT3.5. This
leads to an even larger improvement of average solve rate to 68.2%. We observe that the boost in
performance is consistent across all datasets and categories of problems. A larger improvement could
potentially be obtained by switching solution formalization and self-critique filter to GPT3.5.

Table 1: Comparison of problem solve rate on GSM8K, MATH Number Theory, Algebra, Prealgebra
and MultiArith evaluation sets. DTV consistently outperforms the two baselines that do not perform
autoformalization. *To reduce the time and cost of repeatedly calling OpenAI APIs, GPT3.5 is only
used to generate formal statements.

Problem Solve Rate GSM8K Number Theory Algebra Prealgebra MultiArith Average

Baselines

Single Sample with Minerva 62B 48.6% 12.2% 33.3% 34.1% 85.7% 42.8%
Majority Voting with Minerva 62B 67.2% 23.7% 60.8% 59.2% 96.6% 61.5%

Don’t Trust: Verify (DTV)

DTV Formalization with Minerva 62B 71.4% 31.9% 61.8% 61.0% 98.8% 65.0%
DTV Formalization with GPT3.5* 79.4% 36.1% 63.2% 63.4% 99.0% 68.2%

4.5 ABLATION

Size of informal solution models. Table 2 shows how baselines and DTV performs when varying
the size of model that generates informal solutions. Specifically, we experiment with all three sizes
of the Minerva model: 8B, 62B and 540B on Number theory, GSM8K and MultiArith problems.
Not surprisingly, as the informal solution model scales up, both single sample and majority voting
baselines improve their performance, suggesting larger models have generally stronger quantitative
reasoning capability than smaller models. For DTV, we keep the formalization model the same as
in Table 1 and do not vary its size. DTV consistently outperforms the baselines by a large margin
across all three informal reasoning model sizes on all three datasets, indicating the scalability of DTV.
The improvement is particularly significant on Minerva 8B, almost doubling its problem solve rate
for GSM8K and number theory. Interestingly, the results also demonstrate that it is beneficial to
autoformalize informal solutions from a larger model (Minerva 540B) even with a weaker model
such as Minerva 62B, which opens up the possibility of reducing autoformalization runtime and cost.

Table 2: Problem solve rate on MATH Number Theory, GSM8K, MultiArith datasets. Each column
represents the model that generates informal solutions, ranging from Minerva 8B to Minerva 540B.
Baselines and DTV are shown on each row. DTV consistently outperforms baselines at different
model sizes. *To reduce the time and cost of repeatedly calling OpenAI APIs, GPT3.5 is only used to
generate formal statements.

Problem Solve Rate on Number Theory Minerva 8B Minerva 62B Minerva 540B

Baselines

Single Sample 7.1% 12.2% 19.1%
Majority Voting 13.5% 23.7% 36.1%

Don’t Trust: Verify (DTV)

DTV Formalization with Minerva 62B 23.0% 31.9% 40.2%
DTV Formalization with GPT3.5* 26.1% 36.1% 44.4%

Problem Solve Rate on GSM8K Minerva 8B Minerva 62B Minerva 540B

Baselines

Single Sample 15.2% 48.6% 54.1%
Majority Voting 27.7% 67.2% 75.6%

Don’t Trust: Verify (DTV)

DTV Formalization with Minerva 62B 48.4% 71.4% 78.8%

Problem Solve Rate on MultiArith Minerva 8B Minerva 62B Minerva 540B

Baselines

Single Sample 55.7% 85.7% 95.9%
Majority Voting 85.3% 96.6% 99.5%

Don’t Trust: Verify (DTV)

DTV Formalization with Minerva 62B 95.0% 98.8% 99.8%
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Effect of solution formalization and filters. For quantitative reasoning problems, it is possible
to directly prove a translated formal statement with the automated theorem prover in absence of a
step-by-step solution sketch. This is because once the statement has been formalized correctly, the
proposition to be proved is not “far” from the assumption. Proving the proposition could just involve
simplification and evaluation that the automated theorem prover can be capable of. We observe that
by not asking DTV to formalize informal solutions, we can still achieve a strong problem solve
rate (see Table 3). However, in this case only the informal solution answer is checked by DTV and
correct formal statements that require elaborate formal solution steps will not be proved successfully.
As shown in Table 3, both filters that are used to detect unfaithful formalization are beneficial for
improving the problem solve rate.

Table 3: Problem solve rate on MATH Number theory, Algebra and Prealgebra categories with
three types of ablation. The results suggest that solution formalization and two statement filters are
beneficial for improving performance.

Problem Solve Rate Number Theory Algebra Prealgebra

DTV Formalization with Minerva 62B 31.9% 61.8% 61.0%
– Formal Solution Sketch 29.2% 60.7% 60.3%
– Vacuous Statement Filter 30.7% 61.4% 60.4%
– Self-Critique Filter 30.0% 60.9% 58.4%

4.6 QUALITATIVE ANALYSIS

DTV translates problems that majority voting fails. In Figure 2, we show four case study examples
that majority voting fails to solve due to the correct answer not being the most common answer.
DTV, however, successfully formalizes the informal statement and uses automated theorem prover to
prove these propositions, making the correct answer as the majority answer. Each example statement
formalized require clear and precise understanding of the informal statement and the language model
is capable of formalizing diverse types of problems. For example, in the first example, the model
needs to understand inclusion-exclusion relationship between different types of students and precisely
translates them into the formal environment. In Appendix A.1, we provide more case study examples
of statement formalization.

DTV solves additional problems leveraging correct informal solution steps. In Figure 3, we
showcase a number theory problem whose statement and informal solution are both formalized
correctly by the model. The formal statement itself is beyond the capability of automated theorem
prover and requires formal solution steps to solve it. It can be seen that by translating individual
informal solution steps correctly, the problem is successfully solved. Additionally, we observe that
for this problem, there are low-quality informal solutions that simply output a final answer without
justification and their corresponding formal solutions cannot prove the proposition. This suggests that
autoformalization could potentially be used to identify high-quality informal solutions. We provide
more examples in Appendix A.2.

4.7 LIMITATIONS AND FUTURE WORK

One limitation of our approach is that it requires the theorem proving environment to support the
problem domain in question. Currently, most environments are still limited in scope, a shortcoming
that DTV naturally inherits. For example, Isabelle has limited support for formalizing geometric and
probabilistic reasoning. Statements involving such arguments usually need to be built upon measure
theory and advanced calculus, which is far beyond the math required to solve these high school
problems. This is also the reason why these subsets in the MATH dataset have been excluded by
prior work (Zheng et al., 2021) and us. As more support in such areas becomes available, we expect
DTV to exhibit similar gains but a thorough evaluation is currently left as future work. Until then, for
practical purposes, one could imagine training a simple classifier that predicts if a particular problem
belongs to the domain that is well suited for DTV.

The second inherent limitation of DTV is the LLM’s capability to translate a theorem, written
in natural language, into a formal statement. Mistakes can be subtle. For example, 1 − 2 + 3
could be erroneously formalized to (1::nat) - 2 + 3, which evaluates to 3 instead of 2 in
Isabelle because a variable of the type nat cannot be negative (i.e. (1::nat) - 2 = 0). Future

8
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Informal Statement from Number Theory: The least common multiple of two numbers is 3720, and
their greatest common divisor is 8. Given that one of the numbers is 120, what is the other number?
Show that it is 248.

Generated Informal Solution:
The product of the two numbers is the product of their LCM and their GCD:

3720 · 8 = 29760.

Since one of the numbers is 120, we can divide this product by 120 to obtain the other number:

29760

120
= 248 .

Final Answer: The final answer is 248. I hope it is correct.

Generated Formal Statement and Formal Solution:
theorem
fixes x y :: nat
assumes "lcm x y = 3720"
and "gcd x y = 8"
and "x = 120"
shows "y = 248"

proof -
(* The product of the two numbers is the product of their LCM and their GCD:
3720\cdot8=29760. *)
have "lcm x y * gcd x y = x * y"
by auto [ATP]

then have "3720 * 8 = 120 * y" using assms
by fastforce [ATP]

(* Since one of the numbers is 120, we can divide this product by 120
to obtain the other number: \frac{29760}{120}=\boxed{248}. *)
then have "y = 29760/120"
by auto [ATP]

then show ?thesis
by auto [ATP]

qed

Figure 3: An example number theory problem of which both the informal statement and solution are
translated correctly by DTV. The generated formal statement cannot be directly solved by automated
theorem prover. By translating informal solution step by step, the formal statement is proved and the
answer is verified. The steps that end with [ATP] are generated by the automated theorem prover.

directions could explore employing more effective filters and leveraging reinforcement learning
from human feedback (RLHF) (Bai et al., 2022) to further finetune language models on aligned
mathematical formalizations directly.

5 CONCLUSION

In this paper, we show that by leveraging the autoformalization capability of large language models
through few-shot prompting, we can identify the correct answer among many informal solution
samples generated by the same large language models. Our approach, Don’t Trust: Verify, utilizes the
internal consistency of formal theorem proving environments to check for correct answers. DTV is
lightweight with no training or finetuning required. We demonstrate the feasibility and effectiveness
of DTV by reaching state-of-the-art performance on GSM8K, subsets of MATH and MultiArith
datasets. DTV consistently outperforms vanilla majority voting, the best previous approach, and leads
to improvement across different model sizes from 8B, 64B and 540B. DTV is also complementary to
different prompting methods such as Zheng et al. (2023); Fu et al. (2023) that only process reasoning
in informal domain. We seek to combine these approaches with DTV for future work.
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APPENDIX

A ADDITIONAL CASE STUDY EXAMPLES

A.1 FAITHFUL STATEMENT FORMALIZATION

Informal Statement: Gina has five pairs of white socks, three pairs of black socks, and two pairs of
red socks. What percent of her socks are red? Show that it is 20%.

Generated Formal Statement:
theorem
assumes "card whites = 10"
and "card blacks = 6"
and "card reds = 4"
shows "100 * (card reds) / (card whites + card blacks + card reds) = 20"

Informal Statement: What is the sum of the units digits of all the multiples of 3 between 0 and 50?
Show that it is 78.

Generated Formal Statement:
theorem
"sum_list [x mod 10 . x \<leftarrow> [0..50], 3 dvd x] = (78::nat)"

Informal Statement: Blake and Jenny each took four 100-point tests. Blake averaged 78 on the four
tests. Jenny scored 10 points higher than Blake on the first test, 10 points lower than him on the second
test, and 20 points higher on both the third and fourth tests. What is the difference between Jenny’s
average and Blake’s average on these four tests? Show that it is 10.

Generated Formal Statement:
theorem
fixes b1 b2 b3 b4 j1 j2 j3 j4 :: real
assumes "b1 + b2 + b3 + b4 = 4 * 78"
and "j1 = b1 + 10"
and "j2 = b2 - 10"
and "j3 = b3 + 20"
and "j4 = b4 + 20"
shows "(j1 + j2 + j3 + j4)/4 - (b1 + b2 + b3 + b4)/4 = 10"
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Informal Statement: What is the perimeter, in units, of a rhombus if its area is 120 square units and
one diagonal is 10 units? Show that it is 52.

Generated Formal Statement:
theorem
fixes d1 d2 :: real
assumes "d1 > 0"
and "d2 > 0"
and "d1 = 10"
and "d1 * d2 / 2 = 120"
shows "2 * sqrt ((d1/2)ˆ2 + (d2/2)ˆ2) * 2 = 52"

Informal Statement: Sam is carrying a 2 gallon bucket of milk to his house from the barn, which is 3
miles away from his house. However, the bucket has a leak in it. For each mile he walks, there is 2

3
as much milk in the bucket as at the beginning of the mile. How many gallons of milk will be in the
bucket when Sam gets home? Show that it is 16

27
.

Generated Formal Statement:
theorem
fixes x :: real
assumes "x = (2/3)ˆ3 * 2"
shows "x = 16/27"

Informal Statement: Expand (2x5 + 3x2)(x4 − 4x2 + 3x− 8). Show that it is 2x9 − 8x7 + 9x6 −
16x5 − 12x4 + 9x3 − 24x2.

Generated Formal Statement:
theorem
fixes x :: real
shows "(2 * x̂ 5 + 3 * x̂ 2) * (x̂ 4 - 4 * x̂ 2 + 3 * x - 8)

= 2 * x̂ 9 - 8 * x̂ 7 + 9 * x̂ 6 - 16 * x̂ 5
- 12 * x̂ 4 + 9 * x̂ 3 - 24 * x̂ 2"

Informal Statement: The function f(n) = n2 + n+ 17 for 0 ≤ n ≤ 15 generates prime numbers.
What is the value of f(10)− f(9)? Show that it is 20.

Generated Formal Statement:
theorem
fixes n :: nat
assumes "\<forall> n \<in> {0..15}. prime (n̂ 2 + n + 17)"
shows "((10::nat)ˆ2 + 10 + 17) - ((9::nat)ˆ2 + 9 + 17) = 20"

Informal Statement: Reversing the digits in John’s age results in his father’s age. The positive
difference between their ages is 27 years. If the sum of the digits in each age is 5, what is the number of
years in John’s father’s age? Show that it is 41.

Generated Formal Statement:
theorem
fixes j f j1 f1 :: nat
assumes "j = 10 * j1 + f1"
and "f = 10 * f1 + j1"
and "f - j = 27"
and "j1 + f1 = 5"
shows "f = 41"
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Informal Statement: It took Lara five days to read a novel. Each day after the first day, Lara read half
as many pages as the day before. If the novel was 248 pages long, how many pages did she read on the
first day? Show that it is 128.

Generated Formal Statement:
theorem
fixes p1 p2 p3 p4 p5 :: nat
assumes "p1 + p2 + p3 + p4 + p5 = 248"
and "p2 = p1 / 2"
and "p3 = p2 / 2"
and "p4 = p3 / 2"
and "p5 = p4 / 2"
shows "p1 = 128"

Informal Statement: Alex, Bob, Camille, and Danielle’s mothers are comparing their children’s ages.
They observe that the sum of Alex, Bob, and Danielle’s ages is fourteen times Camille’s age. They also
note that the sum of Alex and Bob’s ages is six times Camille’s age, and Bob’s age is two years less
than the difference in ages of Danielle and Alex. How old is Camille? Show that it is 1.

Generated Formal Statement:
theorem
fixes a b c d :: nat
assumes "a > 0"
and "b > 0"
and "c > 0"
and "d > 0"
and "a + b + d = 14 * c"
and "a + b = 6 * c"
and "b = (d - a) - 2"
shows "c = 1"

Figure 4: Additional examples of faithful formal statements translated from informal statements
with correct answers by DTV. Majority voting failed to solve these problems but DTV solves them
successfully. The model is capable of translating complex informal statements precisely. Note that the
”Show that it is [answer]” is appended to the original informal problem statement by first extracting
the answer from informal solution.
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A.2 FAITHFUL SOLUTION FORMALIZATION

Informal Statement: Kailin’s favorite restaurant has a special offer on a three-course meal. A meal
consists of an appetizer, an entree and a dessert. The menu features five appetizers, eight entrees and
four desserts. How many different three-course meals can be formed with these choices? Show that it is
160.

Generated Informal Solution:
We have to choose one of the five appetizers, one of the eight entrees, and one of the four desserts. We
have 5 choices for the appetizers, 8 choices for the entrees, and 4 choices for the dessert. Therefore, the
number of possible meals is 5 · 8 · 4 = 160. Final Answer: The final answer is 160. I hope it is correct.

Generated Formal Statement and Formal Solution:
theorem
assumes "card appetizers = 5"
and "card entrees = 8"
and "card desserts = 4"
shows "card (appetizers \<times> entrees \<times> desserts) = 160"

proof -
(* We have to choose one of the five appetizers, one of the eight entrees,
and one of the four desserts. *)
have "card (appetizers \<times> entrees \<times> desserts)

= card appetizers * card entrees * card desserts"
by (simp add: card_cartesian_product)

(* Therefore, the number of possible meals is 5 · 8 · 4 = 160. *)
then have "card (appetizers \<times> entrees \<times> desserts)

= 5 * 8 * 4" using assms
by auto [ATP]

also have "\<dots> = 160"
by simp [ATP]

(* Final Answer: The final answer is 160. I hope it is correct. *)
finally show ?thesis
by auto [ATP]

qed
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Informal Statement: Simplify
√
192. Show that it is 8

√
3.

Generated Informal Solution:
We can factor out a perfect square from 192: 192 = 64 · 3 = 82 · 3. Thus, we have

√
192 =

√
82 · 3 =

8
√
3. Final Answer: The final answer is 8

√
3. I hope it is correct.

Generated Formal Statement and Formal Solution:
theorem
fixes x :: real
assumes "x = 192"
shows "sqrt x = 8 * sqrt (3::real)"

proof -
(* We can factor out a perfect square from 192: 192 = 64 · 3 = 82 · 3.
Thus, we have

√
192 =

√
82 · 3 = 8

√
3. *)

have "x = 64 * 3" unfolding assms
by simp [ATP]

then have "sqrt x = sqrt (64 * 3)"
by simp [ATP]

also have "\<dots> = sqrt 64 * sqrt 3"
using real_sqrt_mult by blast [ATP]

also have "\<dots> = 8 * sqrt 3"
by simp [ATP]

finally show ?thesis
by simp [ATP]

qed

Informal Statement: What is 3−4 · 3−8 · 314? Show that it is 9.

Generated Informal Solution:
By the product rule for exponents, we have that

3−4 · 3−8 · 314 = 3(−4)+(−8)+14 = 32 = 9 .

Final Answer: The final answer is 9. I hope it is correct.

Generated Formal Statement and Formal Solution:
theorem
fixes x y z :: real
assumes "x = 3 powr (-4)"
and "y = 3 powr (-8)"
and "z = 3 powr 14"
shows "x * y * z = 9"

proof -
(* By the product rule for exponents, we have that *)
have "x * y * z = 3 powr (-4) * 3 powr (-8) * 3 powr 14"
by (smt (z3) assms(1) assms(2) assms(3)) [ATP]

(* 3ˆ{-4} \cdot 3ˆ{-8} \cdot 3ˆ{14} = 3ˆ{(-4)+(-8)+14} = 3ˆ{2} = \boxed{9}. *)
also have "\<dots> = 3 powr (-4 + -8 + 14)"
by eval [ATP]

also have "\<dots> = 3 powr 2"
by auto [ATP]

also have "\<dots> = 9"
by auto [ATP]

(* Final Answer: The final answer is 9. I hope it is correct. *)
finally show ?thesis
by auto [ATP]

qed
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Informal Statement: Simplify: 3!(23 +
√
9)÷ 2. Show that it is 33.

Generated Informal Solution:
First, we simplify the expressions inside the parentheses and the square root.

23 +
√
9 = 8 + 3 = 11

Next, we simplify the factorial.
3! = 3 · 2 · 1 = 6

Now, we can combine the three expressions.

3!(23 +
√
9)÷ 2 = 6 · 11÷ 2 = 33

Final Answer: The final answer is 33. I hope it is correct.

Generated Formal Statement and Formal Solution:
theorem
"fact 3 * (2ˆ3 + sqrt 9) / 2 = 33"

proof -
(* First, we simplify the expressions inside the parentheses
and the square root. *)
have "2ˆ3 + sqrt 9 = 8 + 3"
by auto [ATP]

(* Next, we simplify the factorial. *)
have "fact 3 = 3 * 2"
by (smt (z3) fact_2 fact_numeral pred_numeral_simps(3)) [ATP]

(* Final Answer: The final answer is 33. I hope it is correct. *)
then show ?thesis
by auto [ATP]

qed

Figure 5: Additional example problems of which both the informal statement and solution are trans-
lated correctly by DTV. The generated formal statement cannot be directly solved by an automated
theorem prover. By translating the informal solution step by step, the formal statement is proved
and the answer is verified. The steps that end with [ATP] are generated by the automated theorem
prover.
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B FEW-SHOT PROMPT DATA

We provide few-shot prompts used in the experiments in the supplementary material zip file. Below
is a few-shot prompt example for statement formalization.

Informal Statement: Evaluate log2 64. Show that it is 6.
Formal Statement:
theorem
shows "log 2 64 = 6"

Informal Statement: What is the distance between the points with coordinates (−5, 5) and
(5,−5)? Express your answer in simplest radical form. Show that it is 10

√
2.

Formal Statement:
theorem
fixes x1 x2 y1 y2 :: real
assumes "(x1, y1) = (-5, 5)" and "(x2, y2) = (5, -5)"
shows "sqrt ((y2 - y1)ˆ2 + (x2 - x1)ˆ2) = 10 * sqrt(2)"

Informal Statement: If three flicks are equivalent to eight flecks, and six flocks are equivalent
to four flecks, how many flocks are equivalent to 12 flicks? Show that it is 48.
Formal Statement:
theorem
fixes flick fleck flock :: real
assumes "flick > 0" and "flock > 0" and "fleck > 0"
assumes "3 * flick = 8 * fleck"
and "6 * flock = 4 * fleck"
shows "48 * flock = 12 * flick"

...
<Informal statement to be formalized here>

C ADDITIONAL DISCUSSION

DTV with GPT3.5. In Table 4, we additionally evaluate the performance of DTV when the informal
solutions and their formalization are both generated from GPT3.5. Due to the cost of OpenAI API,
we evaluate only on the MATH Number Theory category. It can be seen that by leveraging stronger
models like GPT3.5, the performance of DTV can be further improved.

Problem Solve Rate Minerva 62B GPT-3.5

Single Sample 12.2% 25.0%
Majority Voting 23.7% 41.0%
DTV Formalization with Minerva 62B 31.9% -
DTV Formalization with GPT-3.5 36.1% 49.4%

Table 4: Comparison of problem solve rates

DTV performance with number of samples. In the experiment section, we use 64 samples per
problem for majority voting and DTV. In Figure 6, we plot the performance of majority voting and
DTV against number of samples per problem on Number Theory. It can be seen that both majority
voting and DTV improve as number of samples increase and DTV significantly outperform majority
voting when the number of samples is around 20.

Informal answer extraction. To facilitate answer extraction, we include the following answer format
in the few-shot prompt examples: The final answer is [placeholder]. and use regular expressions to
extract the answer. In certain scenarios, extraction might be more challenging and not only restricted
to the final answer. In this case, we could leverage various semantic parsing methods (Kamath & Das,
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Figure 6: Comparison of majority voting and DTV.

2018) and possibly use a language model to extract the informal reasoning as seen in Kojima et al.
(2022) as well.

Potential improvement of filters. In the main text, we discuss and experiment with one symbolic
filter that filters out vacuous formal statements. The filter can be leveraged to detect unfaithful
statement translations. It is also possible to expand this into a set of filters that attempt to detect trivial
formal statements, which are very likely to be unfaithful translations. One type of trivial statements
could have the same goal appearing in the assumption already, which makes it provable immediately
following the assumption. Another type could have the left-hand side of the goal being the same as
that of right-hand side. Implementing these filters could potentially further improve the performance
at a diminishing rate.

DTV helps filter incorrect answer solutions. Besides problem solve rate, we study to what extent
DTV can reject incorrect answer solutions present in the informal solution samples. As seen in Table
5, without autoformalization, the portion of correct answer solutions from Minerva 62B is between
24.3% and 33.9% for different categories. By performing autoformalization and only considering
informal solutions whose formal counterparts are proved, the percentage of correct answer solutions
increase by more than 20%, indicating the effectiveness of our approach in identifying correct answer
solutions. GPT3.5 is better than Minerva 62B at this, which also supports the fact that GPT3.5 leads
to higher problem solve rate in Table 1.

Table 5: Proportion of correct answer solutions generated by Minerva 62B before and after performing
autoformalization. DTV is effective in discarding incorrect answer solutions and lead to better
performance.

Correct Answer Rate Number Theory Algebra Prealgebra

No autoformalization 24.3% 31.0% 33.9%
DTV Formalization with Minerva 62B 50.5% 45.6% 45.2%
DTV Formalization with GPT3.5 62.3% 56.1% 54.9%
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